Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Langlet, Jonatan
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
    Towards Machine Learning Inference in the Data Plane2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Recently, machine learning has been considered an important tool for various networkingrelated use cases such as intrusion detection, flow classification, etc. Traditionally, machinelearning based classification algorithms run on dedicated machines that are outside of thefast path, e.g. on Deep Packet Inspection boxes, etc. This imposes additional latency inorder to detect threats or classify the flows.With the recent advance of programmable data planes, implementing advanced function-ality directly in the fast path is now a possibility. In this thesis, we propose to implementArtificial Neural Network inference together with flow metadata extraction directly in thedata plane of P4 programmable switches, routers, or Network Interface Cards (NICs).We design a P4 pipeline, optimize the memory and computational operations for our dataplane target, a programmable NIC with Micro-C external support. The results show thatneural networks of a reasonable size (i.e. 3 hidden layers with 30 neurons each) can pro-cess flows totaling over a million packets per second, while the packet latency impact fromextracting a total of 46 features is 1.85μs.

    Download full text (pdf)
    fulltext
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf