Digitala Vetenskapliga Arkivet

Change search
Refine search result
1234 1 - 50 of 170
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abrehdary, M.
    et al.
    Royal Inst Technol KTH, Div Geodesy & Satellite Positioning, S-10044 Stockholm, Sweden..
    Sjöberg, L. E.
    Royal Inst Technol KTH, Div Geodesy & Satellite Positioning, S-10044 Stockholm, Sweden..
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Land management, GIS. Royal Inst Technol KTH, Div Geodesy & Satellite Positioning, S-10044 Stockholm, Sweden..
    Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinesz-Moritz' method2016In: Acta Geodaetica et Geophysica, ISSN 2213-5812, Vol. 51, no 2, p. 137-149Article in journal (Refereed)
    Abstract [en]

    An experiment for estimating Moho depth is carried out based on satellite altimetry and topographic information using the Vening Meinesz-Moritz gravimetric isostatic hypothesis. In order to investigate the possibility and quality of satellite altimetry in Moho determination, the DNSC08GRA global marine gravity field model and the DTM2006 global topography model are used to obtain a global Moho depth model over the oceans with a resolution of 1 degrees x 1 degrees. The numerical results show that the estimated Bouguer gravity disturbance varies from 86 to 767 mGal, with a global average of 747 mGal, and the estimated Moho depth varies from 3 to 39 km with a global average of 19 km. Comparing the Bouguer gravity disturbance estimated from satellite altimetry and that derived by the gravimetric satellite-only model GOGRA04S shows that the two models agree to 13 mGal in root mean square (RMS). Similarly, the estimated Moho depths from satellite altimetry and GOGRA04S agree to 0.69 km in RMS. It is also concluded that possible mean dynamic topography in the marine gravity model does not significantly affect the Moho determination.

  • 2.
    Abrehdary, Majid
    et al.
    Department of Environment and Life Sciences, Geomatics Section, University of Karlstad, Karlstad,Sweden; Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Lars, Sjöberg
    Division of Geodesy and Satellite Positioning, Royal Institute of Technology(KTH), Sweden.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Land management, GIS.
    Sampietro, Daniele
    GReD s.r.l., Como, Italy.
    Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations2017In: Journal of Applied Geodesy, ISSN 1862-9016, E-ISSN 1862-9024, Vol. 11, no 4, p. 231-247Article in journal (Refereed)
    Abstract [en]

    We present a combined method for estimating a new global Moho model named KTH15C, containing Moho depth and Moho density contrast (or shortly Moho parameters), from a combination of global models of gravity (GOCO05S), topography (DTM2006) and seismic information (CRUST1.0 and MDN07) to a resolution of 1° × 1° based on a solution of Vening Meinesz-Moritz’ inverse problem of isostasy. This paper also aims modelling of the observation standard errors propagated from the Vening Meinesz-Moritz and CRUST1.0 models in estimating the uncertainty of the final Moho model. The numerical results yield Moho depths ranging from 6.5 to 70.3 km, and the estimated Moho density contrasts ranging from 21 to 650 kg/m3, respectively. Moreover, test computations display that in most areas estimated uncertainties in the parameters are less than 3 km and 50 kg/m3, respectively, but they reach to more significant values under Gulf of Mexico, Chile, Eastern Mediterranean, Timor sea and parts of polar regions. Comparing the Moho depths estimated by KTH15C and those derived by KTH11C, GEMMA2012C, CRUST1.0, KTH14C, CRUST14 and GEMMA1.0 models shows that KTH15C agree fairly well with CRUST1.0 but rather poor with other models. The Moho density contrasts estimated by KTH15C and those of the KTH11C, KTH14C and VMM model agree to 112, 31 and 61 kg/m3 in RMS. The regional numerical studies show that the RMS differences between KTH15C and Moho depths from seismic information yields fits of 2 to 4 km in South and North America, Africa, Europe, Asia, Australia and Antarctica, respectively.

  • 3.
    Abrehdary, Majid
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning. Univ Karlstad, Sweden.
    Sjöberg, Lars
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning. Univ Gävle, Sweden.
    Sampietro, D.
    Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations2017In: Journal of Applied Geodesy, ISSN 1862-9016, E-ISSN 1862-9024, Vol. 11, no 4, p. 231-247Article in journal (Refereed)
    Abstract [en]

    We present a combined method for estimating a new global Moho model named KTH15C, containing Moho depth and Moho density contrast (or shortly Moho parameters), from a combination of global models of gravity (GOCO05S), topography (DTM2006) and seismic information (CRUST1.0 and MDN07) to a resolution of 1 degrees x 1 degrees based on a solution of Vening Meinesz-Moritz' inverse problem of isostasy. This paper also aims modelling of the observation standard errors propagated from the Vening Meinesz-Moritz and CRUST1.0 models in estimating the uncertainty of the final Moho model. The numerical results yield Moho depths ranging from 6.5 to 70.3 km, and the estimated Moho density contrasts ranging from 21 to 650 kg/m(3), respectively. Moreover, test computations display that in most areas estimated uncertainties in the parameters are less than 3 km and 50 kg/m(3), respectively, but they reach to more significant values under Gulf of Mexico, Chile, Eastern Mediterranean, Timor sea and parts of polar regions. Comparing the Moho depths estimated by KTH15C and those derived by KTH11C, GEMMA2012C, CRUST1.0, KTH14C, CRUST14 and GEMMA1.0 models shows that KTH15C agree fairly well with CRUST1.0 but rather poor with other models. The Moho density contrasts estimated by KTH15C and those of the KTH11C, KTH14C and VMM model agree to 112, 31 and 61 kg/m(3) in RMS. The regional numerical studies show that the RMS differences between KTH15C and Moho depths from seismic information yields fits of 2 to 4 km in South and North America, Africa, Europe, Asia, Australia and Antarctica, respectively.

  • 4.
    Abrehdary, Majid
    et al.
    Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Sjöberg, Lars E.
    Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Land management, GIS. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model2015In: Journal of Earth Science, ISSN 1674-487X, E-ISSN 1867-111X, Vol. 26, no 4, p. 607-616Article in journal (Refereed)
    Abstract [en]

    According to Vening Meinesz-Moritz (VMM) global inverse isostatic problem, either the Moho density contrast (crust-mantle density contrast) or the Moho geometry can be estimated by solving a non-linear Fredholm integral equation of the first kind. Here solutions to the two Moho parameters are presented by combining the global geopotential model (GOCO-03S), topography (DTM2006) and a seismic crust model, the latter being the recent digital global crustal model (CRUST1.0) with a resolution of 1A(0)x1A(0). The numerical results show that the estimated Moho density contrast varies from 21 to 637 kg/m(3), with a global average of 321 kg/m(3), and the estimated Moho depth varies from 6 to 86 km with a global average of 24 km. Comparing the Moho density contrasts estimated using our leastsquares method and those derived by the CRUST1.0, CRUST2.0, and PREM models shows that our estimate agrees fairly well with CRUST1.0 model and rather poor with other models. The estimated Moho depths by our least-squares method and the CRUST1.0 model agree to 4.8 km in RMS and with the GEMMA1.0 based model to 6.3 km.

  • 5.
    Abrehdary, Majid
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Sjöberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning. Univ Gavle, Dept Ind Dev IT & Land Management, SE-80176 Gavle, Sweden.
    Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model2015In: Journal of Earth Science, ISSN 1674-487X, E-ISSN 1867-111X, Vol. 26, no 4, p. 607-616Article in journal (Refereed)
    Abstract [en]

    According to Vening Meinesz-Moritz (VMM) global inverse isostatic problem, either the Moho density contrast (crust-mantle density contrast) or the Moho geometry can be estimated by solving a non-linear Fredholm integral equation of the first kind. Here solutions to the two Moho parameters are presented by combining the global geopotential model (GOCO-03S), topography (DTM2006) and a seismic crust model, the latter being the recent digital global crustal model (CRUST1.0) with a resolution of 1A(0)x1A(0). The numerical results show that the estimated Moho density contrast varies from 21 to 637 kg/m(3), with a global average of 321 kg/m(3), and the estimated Moho depth varies from 6 to 86 km with a global average of 24 km. Comparing the Moho density contrasts estimated using our leastsquares method and those derived by the CRUST1.0, CRUST2.0, and PREM models shows that our estimate agrees fairly well with CRUST1.0 model and rather poor with other models. The estimated Moho depths by our least-squares method and the CRUST1.0 model agree to 4.8 km in RMS and with the GEMMA1.0 based model to 6.3 km.

  • 6.
    Abrehdary, Majid
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Sjöberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinesz–Moritz’ method2016In: Acta Geodaetica et Geophysica Hungarica, ISSN 1217-8977, E-ISSN 1587-1037, Vol. 51, no 2, p. 137-149Article in journal (Refereed)
    Abstract [en]

    An experiment for estimating Moho depth is carried out based on satellite altimetryand topographic information using the Vening Meinesz–Moritz gravimetric isostatichypothesis. In order to investigate the possibility and quality of satellite altimetry in Mohodetermination, the DNSC08GRA global marine gravity field model and the DTM2006 globaltopography model are used to obtain a global Moho depth model over the oceans with aresolution of 1 x 1 degree. The numerical results show that the estimated Bouguer gravity disturbancevaries from 86 to 767 mGal, with a global average of 747 mGal, and the estimatedMoho depth varies from 3 to 39 km with a global average of 19 km. Comparing the Bouguergravity disturbance estimated from satellite altimetry and that derived by the gravimetricsatellite-only model GOGRA04S shows that the two models agree to 13 mGal in root meansquare (RMS). Similarly, the estimated Moho depths from satellite altimetry andGOGRA04S agree to 0.69 km in RMS. It is also concluded that possible mean dynamictopography in the marine gravity model does not significantly affect the Moho determination.

  • 7.
    Abrehdary, Majid
    et al.
    Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Sjöberg, Lars E.
    Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Land management, GIS. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    The spherical terrain correction and its effect on the gravimetric-isostatic Moho determination2016In: International Journal of Geophysics, ISSN 1687-885X, E-ISSN 1687-8868, Vol. 204, no 1, p. 262-273Article in journal (Refereed)
    Abstract [en]

    In this study, the Moho depth is estimated based on the refined spherical Bouguer gravity disturbance and DTM2006 topographic data using the Vening Meinesz-Moritz gravimetric-isostatic hypothesis. In this context, we compute the refined spherical Bouguer gravity disturbances in a set of 1° × 1° blocks. The spherical terrain correction, a residual correction to each Bouguer shell, is computed using rock heights and ice sheet thicknesses from the DTM2006 and Earth2014 models. The study illustrates that the defined simple Bouguer gravity disturbance corrected for the density variations of the oceans, ice sheets and sediment basins and also the non-isostatic effects needs a significant terrain correction to become the refined Bouguer gravity disturbance, and that the isostatic gravity disturbance is significantly better defined by the latter disturbance plus a compensation attraction. Our study shows that despite the fact that the lateral variation of the crustal depth is rather smooth, the terrain affects the result most significantly in many areas. The global numerical results show that the estimated Moho depths by the simple and refined spherical Bouguer gravity disturbances and the seismic CRUST1.0 model agree to 5.6 and 2.7 km in RMS, respectively. Also, the mean value differences are 1.7 and 0.2 km, respectively. Two regional numerical studies show that the RMS differences between the Moho depths estimated based on the simple and refined spherical Bouguer gravity disturbance and that using CRUST1.0 model yield fits of 4.9 and 3.2 km in South America and yield 3.2 and 3.4 km in Fennoscandia, respectively.

  • 8.
    Abrehdary, Majid
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Sjöberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    The spherical terrain correction and its effect on the gravimetric-isostatic Moho determination2016In: Geophysical Journal International, ISSN 0956-540X, E-ISSN 1365-246X, Vol. 204, no 1, p. 262-273Article in journal (Refereed)
    Abstract [en]

    In this study, the Moho depth is estimated based on the refined spherical Bouguer gravity disturbance and DTM2006 topographic data using the Vening Meinesz-Moritz gravimetric-isostatic hypothesis. In this context, we compute the refined spherical Bouguer gravity disturbances in a set of 1 degrees x 1 degrees blocks. The spherical terrain correction, a residual correction to each Bouguer shell, is computed using rock heights and ice sheet thicknesses from the DTM2006 and Earth2014 models. The study illustrates that the defined simple Bouguer gravity disturbance corrected for the density variations of the oceans, ice sheets and sediment basins and also the non-isostatic effects needs a significant terrain correction to become the refined Bouguer gravity disturbance, and that the isostatic gravity disturbance is significantly better defined by the latter disturbance plus a compensation attraction. Our study shows that despite the fact that the lateral variation of the crustal depth is rather smooth, the terrain affects the result most significantly in many areas. The global numerical results show that the estimated Moho depths by the simple and refined spherical Bouguer gravity disturbances and the seismic CRUST1.0 model agree to 5.6 and 2.7 km in RMS, respectively. Also, the mean value differences are 1.7 and 0.2 km, respectively. Two regional numerical studies show that the RMS differences between the Moho depths estimated based on the simple and refined spherical Bouguer gravity disturbance and that using CRUST1.0 model yield fits of 4.9 and 3.2 km in South America and yield 3.2 and 3.4 km in Fennoscandia, respectively.

  • 9.
    Agha Karimi, Armin
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Univ Gävle, Fac Engn & Sustainable Dev, Gävle, Sweden..
    Horemuz, Milan
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.
    Multidecadal Sea Level Variability in the Baltic Sea and Its Impact on Acceleration Estimations2021In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 8Article in journal (Refereed)
    Abstract [en]

    Multidecadal sea level variation in the Baltic Sea is investigated from 1900 to 2020 deploying satellite and in situ datasets. As a part of this investigation, nearly 30 years of satellite altimetry data are used to compare with tide gauge data in terms of linear trend. This, in turn, leads to validation of the regional uplift model developed for the Fennoscandia. The role of North Atlantic Oscillation (NAO) in multidecadal variations of the Baltic Sea is also analyzed. Although NAO impacts the Baltic Sea level on seasonal to decadal time scales according to previous studies, it is not a pronounced factor in the multidecadal variations. The acceleration in the sea level rise of the basin is reported as statistically insignificant in recent studies or even decelerating in an investigation of the early 1990s. It is shown that the reason for these results relates to the global warming hiatus in the 1950s-1970s, which can be seen in all eight tide gauges used for this study. To account for the slowdown period, the acceleration in the basin is investigated by fitting linear trends to time spans of six to seven decades, which include the hiatus. These results imply that the sea level rise is accelerated in the Baltic Sea during the period 1900-2020.

  • 10.
    Agha Karimi, Armin
    et al.
    KTH.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences. KTH.
    Huremuz, Milan
    KTH.
    Multidecadal sea level variability in the Baltic sea and its impact on acceleration estimations2021In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 8, article id 702512Article in journal (Refereed)
    Abstract [en]

    Multidecadal sea level variation in the Baltic Sea is investigated from 1900 to 2020 deploying satellite and in situ datasets. As a part of this investigation, nearly 30 years of satellite altimetry data are used to compare with tide gauge data in terms of linear trend. This, in turn, leads to validation of the regional uplift model developed for the Fennoscandia. The role of North Atlantic Oscillation (NAO) in multidecadal variations of the Baltic Sea is also analyzed. Although NAO impacts the Baltic Sea level on seasonal to decadal time scales according to previous studies, it is not a pronounced factor in the multidecadal variations. The acceleration in the sea level rise of the basin is reported as statistically insignificant in recent studies or even decelerating in an investigation of the early 1990s. It is shown that the reason for these results relates to the global warming hiatus in the 1950s−1970s, which can be seen in all eight tide gauges used for this study. To account for the slowdown period, the acceleration in the basin is investigated by fitting linear trends to time spans of six to seven decades, which include the hiatus. These results imply that the sea level rise is accelerated in the Baltic Sea during the period 1900–2020.

    Download full text (pdf)
    fulltext
  • 11.
    Amin, H.
    et al.
    Univ Gävle, Fac Engn & Sustainable Dev, SE-80176 Gävle, Sweden..
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Univ Gävle, Fac Engn & Sustainable Dev, SE-80176 Gävle, Sweden.
    Sjöberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Univ Gävle, Fac Engn & Sustainable Dev, SE-80176 Gävle, Sweden.
    Quantifying barystatic sea-level change from satellite altimetry, GRACE and Argo observations over 2005-20162020In: Advances in Space Research, ISSN 0273-1177, E-ISSN 1879-1948, Vol. 65, no 8, p. 1922-1940Article in journal (Refereed)
    Abstract [en]

    Time-varying spherical harmonic coefficients determined from the Gravity Recovery and Climate Experiment (GRACE) data provide a valuable source of information about the water mass exchange that is the main contributor to the Earth's gravity field changes within a period of less than several hundred years. Moreover, by measuring seawater temperature and salinity at different layers of ocean depth, Argo floats help to measure the steric component of global mean sea level (GMSL). In this study, we quantify the rate of barystatic sea-level change using both GRACE RL05 and RL06 monthly gravity field models and compare the results with estimates achieved from a GMSL budget closure approach. Our satellite altimetry-based results show a trend of 3.90 +/- 0.14 mm yr(-1) for the GMSL rise. About 35% or 1.29 +/- 0.07 mm yr(-1) of this rate is caused by the thermosteric contribution, while the remainder is mainly due to the barystatic contribution. Our results confirm that the choice of decorrelation filters does not play a significant role in quantifying the global barystatic sea-level change, and spatial filtering may not be needed. GRACE RL05 and RL06 solutions result in the barystatic sea-level change trends of 2.19 +/- 0.13 mm yr(-1) and 2.25 +/- 0.16 mm yr(-1), respectively. Accordingly, the residual trend, defined as the difference between the altimetry-derived GMSL and sum of the steric and barystatic components, amounts to 0.51 +/- 0.51 and 0.45 +/- 0.44 mm yr(-1) for RL05 and RL06-based barystatic sea-level changes, respectively, over January 2005 to December 2016. The exclusion of the halosteric component results in a lower residual trend of about 0.36 +/- 0.46 mm yr(-1) over the same period, which suggests a sea-level budget closed within the uncertainty. This could be a confirmation on a high level of salinity bias particularly after about 2015. Moreover, considering the assumption that the GRACE-based barystatic component includes all mass change signals, the rather large residual trend could be attributed to an additional contribution from the deep ocean, where salinity and temperature cannot be monitored by the current observing systems. The errors from various sources, including the model-based Glacial Isostatic Adjustment signal, independent estimation of geocenter motion that are not quantified in the GRACE solutions, as well as the uncertainty of the second degree of zonal spherical harmonic coefficients, are other possible contributors to the residual trend.

  • 12.
    Amin, Hadi
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Sjöberg, Lars E.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Evaluation of the Closure of Global Mean Sea Level Rise Budget over January 2005 to August 20162019Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    Sea level changes over time because of water mass exchange among the oceans and continents, ice sheets, and atmosphere. It fluctuates also due to variations of seawater salinity and temperature known as the steric contributor. GRACE-based Stokes coefficients provide a valuable source of information, about the water mass exchange as the main contributor to the Earth’s gravity field changes, within decadal scales. Moreover, measuring seawater temperature and salinity at different layers of ocean depth, Argo floats help to model the steric component of Global Mean Sea Level. In this study, we evaluate the Global Mean Sea Level (GMSL) budget closure using satellite altimetry, GRACE, and Argo products. Hereof, considering the most recent released GRACE monthly products (RL06), we examine an iterative remove-restore method to minimize the effect of artifact leaked large signal from ice sheets and land hydrology. In addition, the effect of errors and biases in geophysical model corrections, such as GIA, on the GMSL budget closure is estimated. Moreover, we quantify the influence of spatial and decorrelation filtering of GRACE data on the GMSL budget closure. In terms of the monthly fluctuations of sea level, our results confirm that closing the GMSL budget is highly dependent on the choice of the spatial averaging filter. In addition, comparing the trends and variations for both the global mean sea level time series and those estimated for mass and steric components, we find that spatial averaging functions play a significant role in the sea level budget closure.

    Download full text (pdf)
    fulltext
  • 13.
    Amin, Hadi
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences. KTH.
    Sjöberg, Lars E.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences. KTH.
    Quantifying barystatic sea-level change from satellite altimetry, GRACE and Argo observations over 2005–20162020In: Advances in Space Research, ISSN 0273-1177, E-ISSN 1879-1948, Vol. 65, no 8, p. 1922-1940Article in journal (Refereed)
    Abstract [en]

    Time-varying spherical harmonic coefficients determined from the Gravity Recovery and Climate Experiment (GRACE) data provide a valuable source of information about the water mass exchange that is the main contributor to the Earth’s gravity field changes within a period of less than several hundred years. Moreover, by measuring seawater temperature and salinity at different layers of ocean depth, Argo floats help to measure the steric component of global mean sea level (GMSL). In this study, we quantify the rate of barystatic sea-level change using both GRACE RL05 and RL06 monthly gravity field models and compare the results with estimates achieved from a GMSL budget closure approach. Our satellite altimetry-based results show a trend of 3.90 ± 0.14 mm yr−1 for the GMSL rise. About 35% or 1.29 ± 0.07 mm yr−1 of this rate is caused by the thermosteric contribution, while the remainder is mainly due to the barystatic contribution. Our results confirm that the choice of decorrelation filters does not play a significant role in quantifying the global barystatic sea-level change, and spatial filtering may not be needed. GRACE RL05 and RL06 solutions result in the barystatic sea-level change trends of 2.19 ± 0.13 mm yr−1 and 2.25 ± 0.16 mm yr−1, respectively. Accordingly, the residual trend, defined as the difference between the altimetry-derived GMSL and sum of the steric and barystatic components, amounts to 0.51 ± 0.51 and 0.45 ± 0.44 mm yr−1 for RL05 and RL06-based barystatic sea-level changes, respectively, over January 2005 to December 2016. The exclusion of the halosteric component results in a lower residual trend of about 0.36 ± 0.46 mm yr−1 over the same period, which suggests a sea-level budget closed within the uncertainty. This could be a confirmation on a high level of salinity bias particularly after about 2015. Moreover, considering the assumption that the GRACE-based barystatic component includes all mass change signals, the rather large residual trend could be attributed to an additional contribution from the deep ocean, where salinity and temperature cannot be monitored by the current observing systems. The errors from various sources, including the model-based Glacial Isostatic Adjustment signal, independent estimation of geocenter motion that are not quantified in the GRACE solutions, as well as the uncertainty of the second degree of zonal spherical harmonic coefficients, are other possible contributors to the residual trend.

  • 14.
    Amin, Hadi
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Sjöberg, Lars
    Division of Geodesy and satellite positioning, KTH.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters2019In: Journal of Geodesy, ISSN 0949-7714, E-ISSN 1432-1394, Vol. 93, no 10, p. 1943-1961Article in journal (Refereed)
    Abstract [en]

    The geoid, according to the classical Gauss–Listing definition, is, among infinite equipotential surfaces of the Earth’s gravity field, the equipotential surface that in a least squares sense best fits the undisturbed mean sea level. This equipotential surface, except for its zero-degree harmonic, can be characterized using the Earth’s global gravity models (GGM). Although, nowadays, satellite altimetry technique provides the absolute geoid height over oceans that can be used to calibrate the unknown zero-degree harmonic of the gravimetric geoid models, this technique cannot be utilized to estimate the geometric parameters of the mean Earth ellipsoid (MEE). The main objective of this study is to perform a joint estimation of W0, which defines the zero datum of vertical coordinates, and the MEE parameters relying on a new approach and on the newest gravity field, mean sea surface and mean dynamic topography models. As our approach utilizes both satellite altimetry observations and a GGM model, we consider different aspects of the input data to evaluate the sensitivity of our estimations to the input data. Unlike previous studies, our results show that it is not sufficient to use only the satellite-component of a quasi-stationary GGM to estimate W0. In addition, our results confirm a high sensitivity of the applied approach to the altimetry-based geoid heights, i.e., mean sea surface and mean dynamic topography models. Moreover, as W0 should be considered a quasi-stationary parameter, we quantify the effect of time-dependent Earth’s gravity field changes as well as the time-dependent sea level changes on the estimation of W0. Our computations resulted in the geoid potential W0 = 62636848.102 ± 0.004 m2 s−2 and the semi-major and minor axes of the MEE, a = 6378137.678 ± 0.0003 m and b = 6356752.964 ± 0.0005 m, which are 0.678 and 0.650 m larger than those axes of GRS80 reference ellipsoid, respectively. Moreover, a new estimation for the geocentric gravitational constant was obtained as GM = (398600460.55 ± 0.03) × 106 m3 s−2.

  • 15.
    Amin, Hadi
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Sjöberg, Lars E.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters2020Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    According to the classical Gauss–Listing definition, the geoid is the equipotential surface of the Earth’s gravity field that in a least-squares sense best fits the undisturbed mean sea level. This equipotential surface, except for its zero-degree harmonic, can be characterized using the Earth’s Global Gravity Models (GGM). Although nowadays, the satellite altimetry technique provides the absolute geoid height over oceans that can be used to calibrate the unknown zero-degree harmonic of the gravimetric geoid models, this technique cannot be utilized to estimate the geometric parameters of the Mean Earth Ellipsoid (MEE). In this study, we perform joint estimation of W0, which defines the zero datum of vertical coordinates, and the MEE parameters relying on a new approach and on the newest gravity field, mean sea surface, and mean dynamic topography models. As our approach utilizes both satellite altimetry observations and a GGM model, we consider different aspects of the input data to evaluate the sensitivity of our estimations to the input data. Unlike previous studies, our results show that it is not sufficient to use only the satellite componentof a quasi-stationary GGM to estimate W0. In addition, our results confirm a high sensitivity of the applied approach to the altimetry-based geoid heights, i.e. mean sea surface and mean dynamic topography models. Moreover, as W0 should be considered a quasi-stationary parameter, we quantify the effect of time-dependent Earth’s gravity field changes as well as the time-dependent sea-level changes on the estimation of W0. Our computations resulted in the geoid potential W0 = 62636848.102 ± 0.004 m2s-2 and the semi-major and –minor axes of the MEE,a = 6378137.678 ± 0.0003 m and b = 6356752.964 ± 0.0005 m, which are 0.678 and 0.650 m larger than those axes of the GRS80 reference ellipsoid, respectively. Moreover, a new estimation for the geocentric gravitational constant was obtained as GM = (398600460.55 ± 0.03) × 106 m3s-2.

    Download full text (pdf)
    fulltext
  • 16.
    Amin, Hadi
    et al.
    Faculty of Engineering and Sustainable Development, University of Gävle, 80176, Gävle, Sweden.
    Sjöberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Faculty of Engineering and Sustainable Development, University of Gävle, 80176, Gävle, Sweden.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Faculty of Engineering and Sustainable Development, University of Gävle, 80176, Gävle, Sweden.
    A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters2019In: Journal of Geodesy, ISSN 0949-7714, E-ISSN 1432-1394, Vol. 93, no 10, p. 1943-1961Article in journal (Refereed)
    Abstract [en]

    The geoid, according to the classical Gauss-Listing definition, is, among infinite equipotential surfaces of the Earth's gravity field, the equipotential surface that in a least squares sense best fits the undisturbed mean sea level. This equipotential surface, except for its zero-degree harmonic, can be characterized using the Earth's global gravity models (GGM). Although, nowadays, satellite altimetry technique provides the absolute geoid height over oceans that can be used to calibrate the unknown zero-degree harmonic of the gravimetric geoid models, this technique cannot be utilized to estimate the geometric parameters of the mean Earth ellipsoid (MEE). The main objective of this study is to perform a joint estimation of W-0, which defines the zero datum of vertical coordinates, and the MEE parameters relying on a new approach and on the newest gravity field, mean sea surface and mean dynamic topography models. As our approach utilizes both satellite altimetry observations and a GGM model, we consider different aspects of the input data to evaluate the sensitivity of our estimations to the input data. Unlike previous studies, our results show that it is not sufficient to use only the satellite-component of a quasi-stationary GGM to estimate W-0. In addition, our results confirm a high sensitivity of the applied approach to the altimetry-based geoid heights, i.e., mean sea surface and mean dynamic topography models. Moreover, as W-0 should be considered a quasi-stationary parameter, we quantify the effect of time-dependent Earth's gravity field changes as well as the time-dependent sea level changes on the estimation of W-0. Our computations resulted in the geoid potential W-0 = 62636848.102 +/- 0.004 m(2) s(-2) and the semi-major and minor axes of the MEE, a = 6378137.678 +/- 0.0003 m and b = 6356752.964 +/- 0.0005 m, which are 0.678 and 0.650 m larger than those axes of GRS80 reference ellipsoid, respectively. Moreover, a new estimation for the geocentric gravitational constant was obtained as GM = (398600460.55 +/- 0.03) x 10(6) m(3) s(-2).

  • 17.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    A comparison of three gravity inversion methods for crustal thickness modelling in Tibet plateau2012In: Journal of Asian Earth Sciences, ISSN 1367-9120, E-ISSN 1878-5786, Vol. 43, no 1, p. 89-97Article in journal (Refereed)
    Abstract [en]

    Crustal thickness can be determined by gravimetric methods based on different assumptions, e.g. by isostatic hypotheses. Here we compare three gravimetric inversion methods to estimate the Moho depth. Two Moho models based on the Vening Meinesz-Moritz hypothesis and one by using Parker-Oldenburg's algorithm, which are investigated in Tibet plateau. The results are compared with CRUST2.0, and it will be presented that the estimated Moho depths from the Vening Meinesz-Moritz model will be better than the Parker-Oldenburg's algorithm.

  • 18.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    A study on the quality of GNSS signals for extracting the sea level height and tidal frequencies utilizing the GNSS-R approach2023Conference paper (Other (popular science, discussion, etc.))
    Download full text (pdf)
    fulltext
  • 19.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Assessing environmental changes with GNSS reflectometry: An innovative geodetic tool for modelling sea level variations2024In: GIM International, ISSN 1566-9076, no 2Article in journal (Other academic)
    Abstract [en]

    The utilization of remote sensing observations to monitor essential climate variables (ECVs) has become increasingly important in studying their regional and global impacts, as defined by the Global Climate Observing System (GCOS). Understanding the Earth’s surface conditions, including soil moisture runoff, snow, temperature, precipitation, water vapour, radiation, groundwater and sea surface height (SSH), can positively impact the environment and ecosystems. Here, the authors present an overview of how global navigation satellite systems (GNSS) can be employed for environmental monitoring, with a particular focus on sea surface height monitoring. This includes examination of the advantages and disadvantages of utilizing a network of permanent GNSS stations for monitoring sea level rise along shorelines.

  • 20.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Challenges and Solutions for Establishing Precise Geodetic Control Networks: Introducing an Innovative Method2024Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    Human-made infrastructure, such as dams, bridges, tunnels, and high towers, requires highly precise geodetic control networks and continuous monitoring to detect potential failure risks and plan civil engineering maintenance works. In classical 2D geodetic networks, reducing slope distances to horizontal ones is an important task for engineers. The common practice for this reduction involves using vertical angles and applying trigonometric rules. However, using vertical angles introduces systematic errors, primarily due to air refraction, deflections of the vertical (DOV), and the geometric effects of the reference surface, whether it is a sphere or an ellipsoid. Therefore, employing vertical angles in establishing geodetic control networks in 2D is challenging due to these systematic errors. To mitigate the refraction and DOV effects, reciprocal observations of vertical angles can be considered, especially if the elevation differences are small. In this study, we quantify these effects and propose an innovative solution to eliminate these systematic errors in small-scale geodetic networks. Specifically, we propose a new technique that does not rely on vertical angles for the reduction of distances, which is called the network-aided method. Thus, the geometric, physical, and refraction effects cancel out in this method. The results of this study hold significant importance for surveying guidelines. The main advantage of the proposed method is less fieldwork and, hence cost reduction since there is no need for different OFF-construction (reference) and ON-construction (monitoring) networks. Consequently, the number of network points will be less than in traditional networks. There is no need for reciprocal observations since vertical angles are not utilized, while the precision remains equal or even superior (in terms of quality factors i.e., higher redundancy numbers and smaller error ellipses).

  • 21.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Urban and regional planning/GIS-institute.
    Combination of seismic and an isostatic crustal thickness models using Butterworth filter in a spectral approach2012In: Journal of Asian Earth Sciences, ISSN 1367-9120, E-ISSN 1878-5786, Vol. 59, p. 240-248Article in journal (Refereed)
  • 22.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Combination of seismic and an isostatic crustal thickness models using Butterworth filter in a spectral approach2012In: Journal of Asian Earth Sciences, ISSN 1367-9120, E-ISSN 1878-5786, Vol. 59, no SI, p. 240-248Article in journal (Refereed)
    Abstract [en]

    In this study, using Butterworth filter a combined crustal thickness model based on seismic and isostatic-gravimetric models is presented in a spectral domain. Vening Meinesz-Moritz isostatic model and a seismic model which obtained from sparse seismic data are two models used in this study. The filter used helps to join two models without any jump in the overlap degree in the spectral domain. The main motivations of this study are (a) presenting a higher resolution for the crustal thickness and (b) removing non-isostatic effects from the isostatic model. The result obtained from the combined model is a synthetic Earth crustal model up to degree 180 (equivalent resolution 1° × 1°). In spite of the differences in the some parts of the Earth between the seismic and isostatic-gravimetric models, the test computations show a satisfactory agreement between the results provided. Numerical results show that this method of combination agrees with the seismic crustal thickness (about 2.0. km rms difference).

  • 23.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Land management, GIS. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden .
    Deformation monitoring using different least squares adjustment methods: a simulated study2016In: KSCE Journal of Civil Engineering, ISSN 1226-7988, E-ISSN 1976-3808, Vol. 20, no 2, p. 855-862Article in journal (Refereed)
    Abstract [en]

    This study aims to investigate the ability of different least squares adjustment techniques for detecting deformation. A simulated geodetic netwo rk is used for this purpose. The observations are collected using the Total Station instrument in three epochs and different least squares adjustment methods are used to analyze the simulated network. The applied methods are adjustment-byelement, using variance-covariance components and Tikhonov regularization. For numerical computation, we utilized exist geodetic network around the simulated network and the deformation (changes in the simulated network) imposes to the object using a simulator in each epoch. The obtained results demonstrate that more accurate outcome for detection of small deformation is possible by estimating variance-covariance components. The difference of the estimated and the simulated deformations in the best scenario, i.e., applying variance-covariance components, is 0.2 and 0.1 mm in x and y directions. In comparison with adjustment by element and Tikhonov regularization methods the differences are 1.1 and 0.1 in x direction and 1.4 and 1.1 mm in y direction, respectively. In addition, it is also possible to model the deformation and therefore it can be seen that how the calculated displacement will affect the result of deformation modelling. It has been demonstrated that determining reasonable variance-covariance components is very important to estimate realistic deformation model and monitoring the geodetic networks. 

  • 24.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning. University of Gävle, Sweden.
    Deformation monitoring using different least squares adjustment methods: A simulated study2016In: KSCE Journal of Civil Engineering, ISSN 1226-7988, E-ISSN 1976-3808, Vol. 20, no 2, p. 855-862Article in journal (Refereed)
    Abstract [en]

    This study aims to investigate the ability of different least squares adjustment techniques for detecting deformation. A simulated geodetic netwo rk is used for this purpose. The observations are collected using the Total Station instrument in three epochs and different least squares adjustment methods are used to analyze the simulated network. The applied methods are adjustment-byelement, using variance-covariance components and Tikhonov regularization. For numerical computation, we utilized exist geodetic network around the simulated network and the deformation (changes in the simulated network) imposes to the object using a simulator in each epoch. The obtained results demonstrate that more accurate outcome for detection of small deformation is possible by estimating variance-covariance components. The difference of the estimated and the simulated deformations in the best scenario, i.e., applying variance-covariance components, is 0.2 and 0.1 mm in x and y directions. In comparison with adjustment by element and Tikhonov regularization methods the differences are 1.1 and 0.1 in x direction and 1.4 and 1.1 mm in y direction, respectively. In addition, it is also possible to model the deformation and therefore it can be seen that how the calculated displacement will affect the result of deformation modelling. It has been demonstrated that determining reasonable variance-covariance components is very important to estimate realistic deformation model and monitoring the geodetic networks.

  • 25.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Urban and regional planning/GIS-institute.
    Global earth isostatic model using smoothed Airy-Heiskanen and Vening Meinesz hypotheses2012In: Earth Science Informatics, ISSN 1865-0473, Vol. 5, no 2, p. 93-104Article in journal (Refereed)
  • 26.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Global earth isostatic model using smoothed Airy-Heiskanen and Vening Meinesz hypotheses2012In: Earth Science Informatics, ISSN 1865-0473, Vol. 5, no 2, p. 93-104Article in journal (Refereed)
    Abstract [en]

    Isostatic hypotheses are used for different purposes in geophysics and geodesy. The Erath crustal thickness modelling is more complicated than the classical isostatic models. In this study we try to modify Airy-Hesiskanen model, utilizing a smoothing factor, to a model with regional or global isostatic model through a modern solution of the gravimetric-isostatic Vening Meinesz model and CRUST.0. In Airy-Hesiskanen's theory there is no correlation between neighbouring crustal columns, while this must be the case in reality due to the elasticity of the Earth. The idea is to keep the simplicity of the Airy-Heiskanen model, because it needs only the topographic data, and change the model which becomes to a model with regional/global isostatic model. The isostatic assumption for compensating the topographic potential is incomplete, as there are other geophysical phenomena which should be considered. Using the isostatic hypothesis for determining the depth of crust causes some disturbing signals in the gravity anomaly (approximately 285 mGal), which influence the crustal thickness determination. In this paper a simple method use for removing these effects. Spherical harmonic potential coefficients of the topographic compensation masses are used for modifying Airy-Heiskanen's model in a least-square adjustment procedure by estimating smoothing factor. The numerical analysis shows that below degree 10, the modified Airy-Hesiskanen and Vening Meinesz models are close together. Smoothing factors for modifying the Airy-Hesiskanen model vary from 0.75 to 0.64 between degrees 200 and 2159.

  • 27.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Urban and regional planning/GIS-institute.
    Impact of compensating mass on the topographic mass: A study using isostatic and non-isostatic Earth crustal models2012In: Acta Geodaetica et Geophysica Hungarica, ISSN 1217-8977, E-ISSN 1587-1037, Vol. 47, no 1, p. 29-51Article in journal (Refereed)
  • 28.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Impact of compensating mass on the topographic mass-A study using isostatic and non-isostatic Earth crustal models2012In: Acta Geodaetica et Geophysica Hungarica, ISSN 1217-8977, E-ISSN 1587-1037, Vol. 47, no 1, p. 29-51Article in journal (Refereed)
    Abstract [en]

    The Earth topographic masses are compensated by an isostatic adjustment. According to the isostatic hypothesis a mountain is compensated by mass deficiency beneath it, where the crust is floating on the viscous mantle. For study of the impact of the compensating mass on the topographic mass a crustal thickness (Moho boundary) model is needed. A new gravimetric-isostatic model to estimate the Moho depth, Vening Meinesz-Moritz model, and two well-known Moho models (CRUST2.0 and Airy-Heiskanen) are used in this study. All topographic masses cannot be compensated by simple isostatic assumption then other compensation mechanism should be considered. In fact small topographic masses can be supported by elasticity of the larger masses and deeper Earth's layers. We discuss this issue applying spatial and spectral analyses in this study. Here we are going to investigate influence of the crustal thickness and its density in compensating the topographic potential. This study shows that the compensating potential is larger than the topographic potential in low-frequencies vs. in high-frequencies which are smaller. The study also illustrates that the Vening Meinesz-Moritz model compensates the topographic potential better than other models, which is more suitable for interpolation of the gravity field in comparison with two other models. In this study, two methods are presented to determine the percentage of the compensation of the topographic potential by the isostatic model. Numerical studies show that about 75% and 57% of the topographic potentials are compensated by the potential beneath it in Iran and Tibet. In addition, correlation analysis shows that there is linear relation between the topographic above the sea level and underlying topographic masses in the low-frequencies in the crustal models. Our investigation shows that about 580 +/- 7.4 metre (in average) of the topographic heights are not compensated by variable the crustal root and density.

  • 29.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Importance of precise geoid model in direct georeferencing and aerial photogrammetry: A case study in Sweden2022Conference paper (Other academic)
    Abstract [en]

    Airborne mobile mapping is one of the most important data acquisitionmethods for producing topographical maps and extracting terrain featuresfrom aerial images. The interest in 3D geospatial data is expanding, andtechnology is growing at an unprecedented speed with new digitalcamera mapping systems. Different sensors are used for data acquisitionin modern airborne photogrammetry. GNSS/INS (Inertial NavigationSystems) applications are developing, especially for direct georeferencingin airborne photogrammetry. Achieving accurately georeferencedproducts from the integration of GNSS and INS requires removingexisting systematic errors/bias, due to different reference systems, in themobile mapping systems. The collected data should refer to the samereference system; otherwise, it can impose a systematic shift in theresults. In this presentation, we assess the impact of the deflection ofverticals (i.e. the angle between the plumb line and normal to thereference ellipsoid) on the obtained horizontal and vertical coordinates.

  • 30.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Moholso: A MATLAB program to determine crustal thickness by an isostatic and a global gravitational model2012In: Computers & Geosciences, ISSN 0098-3004, E-ISSN 1873-7803, Vol. 44, p. 177-183Article in journal (Refereed)
    Abstract [en]

    This paper focuses on the modeling of the boundary between Earth's crust and upper mantle using a gravimetric-isostatic model. Here a MATLAB code is presented based on the gravimetric-isostatic model i.e. the Veiling Meinesz-Moritz model. Inverse problems in isostasy consist in making the isostatic anomalies to be zero under a certain isostatic hypothesis. The Vening Meinesz-Moritz problem is to determine the Moho depth such that the compensating attraction totally compensates the Bouguer gravity anomaly on the Earth's surface, implying that the isostatic anomaly vanishes on the Earth's surface. The main idea is easy but the theoretical analysis is somewhat difficult. Here a practical method to recover the Moho depth from the gravity data is used in the MATLAB code (Moholso.m) based on the Vening Meinesz-Moritz method. The code has been designed based on different sub-codes. The body of the main code works according to the vectorization technique, because this technique causes that the speed of code increases. One of the important possible limitations for the code is over-flow and under-flow for higher degrees in the fully normalized associated Legendre function. This problem occurs in the subroutine applied in this study, it limits the numerical study up to degrees 1800-2000.

  • 31.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Preliminary results of the GRACE and GRACE ofllow-on derived land uplift model in Fennoscandia2024Conference paper (Other academic)
  • 32.
    Bagherbandi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences. KTH.
    Amin, Hadi
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences. Department of Computer and Spatial Sciences University of Gävle Gävle Sweden.
    Wang, Linsong
    China University of Geosciences; GFZ German Research Centre for Geosciences, Telegrafenberg, Germany.
    Shirazian, Masoud
    Shahid Rajaee Teacher Training University, Tehran, Iran.
    Mantle Viscosity Derived From Geoid and Different Land Uplift Data in Greenland2022In: Journal of Geophysical Research - Solid Earth, ISSN 2169-9313, E-ISSN 2169-9356, Vol. 127, no 8, article id e2021JB023351Article in journal (Refereed)
    Abstract [en]

    The Earth's mass redistribution due to deglaciation and recent ice sheet melting causes changes in the Earth's gravity field and vertical land motion in Greenland. The changes are because of ongoing mass redistribution and related elastic (on a short time scale) and viscoelastic (on time scales of a few thousands of years) responses. These signatures can be used to determine the mantle viscosity. In this study, we infer the mantle viscosity associated with the glacial isostatic adjustment (GIA) and long-wavelength geoid beneath the Greenland lithosphere. The viscosity is determined based on a spatio-spectral analysis of the Earth's gravity field and the land uplift rate in order to find the GIA-related gravity field. We used different land uplift data, that is, the vertical land motions obtained by the Greenland Global Positioning System (GPS) Network (GNET), gravity recovery and climate experiment (GRACE) and glacial isostatic adjustment (GIA) data, and also combined them using the Kalman filtering technique. Using different land uplift rates, one can obtain different GIA-related gravity fields. As shown in this study, the mantle viscosities of 1.9 × 1022 Pa s and 7.8 × 1021 Pa s for a depth of 200–700 km are obtained using ICE-6G (VM5a) model and the combined land uplift model, respectively, and the GIA-related gravity potential signal

    Download full text (pdf)
    fulltext
  • 33.
    Bagherbandi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Amin, Hadi
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Wang, Linsong
    Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, China.
    Shirazian, Masoud
    Department of geomatics engineering, Civil Engineering Faculty, Shahid Rajaee Teacher Training University, Tehran, Iran..
    Mantle viscosity derived from geoid and different land uplift data in Greenland2022Conference paper (Other academic)
    Abstract [en]

    The Earth’s mass redistribution due to deglaciation and recent ice sheet melting causes changes in the Earth’s gravity field and vertical land motion in Greenland. The changes are because of ongoing mass redistribution and related elastic (on a short time scale) and viscoelastic (on time scales of a few thousands of years) responses. These signatures can be used to determine the mantle viscosity. In this study, we infer the mantle viscosity associated with the glacial isostatic adjustment (GIA) and long-wavelength geoid beneath the Greenland lithosphere. The viscosity is determined based on a spatio-spectral analysis of the Earth’s gravity field and the land uplift rate in order to find the GIA-related gravity field. We used and evaluated different land uplift data, i.e. the vertical land motions obtained by the Greenland Global Positioning System (GPS) Network (GNET), GRACE and Glacial Isostatic Adjustment (GIA) data. In addition, a  combined land uplift rate using the Kalman filtering technique is presented in this study. We extract the GIA-related gravity signals by filtering the other effects due to the deeper masses i.e. core-mantle (related to long-wavelengths) and topography (related to short-wavelengths). To do this, we applied correlation analysis to detect the best harmonic window. Finally, the mantle viscosity using the obtained GIA-related gravity field is estimated. Using different land uplift rates, one can obtain different GIA-related gravity fields. For example, different harmonic windows were obtained by employing different land uplift datasets, e.g. the truncated geoid model with a harmonic window between degrees 10 to 39 and 10 to 25 showed a maximum correlation with the GIA model ICE-6G (VM5a) and the combined land uplift rates, respectively. As shown in this study, the mantle viscosities of 1.6×1022 Pa s and 0.9×1022 Pa s for a depth of 200  to 650  km are obtained using ICE-6G (VM5a) model and the combined land uplift model, respectively, and the GIA-related gravity potential signal.

    Download full text (pdf)
    fulltext
  • 34.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Univ Gävle, Dept Comp & Spatial Sci, Gävle, Sweden..
    Amin, Hadi
    Univ Gävle, Dept Comp & Spatial Sci, Gävle, Sweden..
    Wang, Linsong
    China Univ Geosci, Inst Geophys & Geomatics, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan, Peoples R China.;GFZ German Res Ctr Geosci, Helmholtz Ctr Postdam, Telegrafenberg, Germany..
    Shirazian, Masoud
    Shahid Rajaee Teacher Training Univ, Civil Engn Fac, Dept Geomat Engn, Tehran, Iran..
    Mantle viscosity derived from geoid and different land uplift data in Greenland2022In: Journal of Geophysical Research - Solid Earth, ISSN 2169-9313, E-ISSN 2169-9356, Vol. 127, no 8, article id e2021JB023351Article in journal (Refereed)
    Abstract [en]

    The Earth's mass redistribution due to deglaciation and recent ice sheet melting causes changes in the Earth's gravity field and vertical land motion in Greenland. The changes are because of ongoing mass redistribution and related elastic (on a short time scale) and viscoelastic (on time scales of a few thousands of years) responses. These signatures can be used to determine the mantle viscosity. In this study, we infer the mantle viscosity associated with the glacial isostatic adjustment (GIA) and long-wavelength geoid beneath the Greenland lithosphere. The viscosity is determined based on a spatio-spectral analysis of the Earth's gravity field and the land uplift rate in order to find the GIA-related gravity field. We used different land uplift data, that is, the vertical land motions obtained by the Greenland Global Positioning System (GPS) Network (GNET), gravity recovery and climate experiment (GRACE) and glacial isostatic adjustment (GIA) data, and also combined them using the Kalman filtering technique. Using different land uplift rates, one can obtain different GIA-related gravity fields. As shown in this study, the mantle viscosities of 1.9 x 10(22) Pa s and 7.8 x 10(21) Pa s for a depth of 200-700 km are obtained using ICE-6G (VM5a) model and the combined land uplift model, respectively, and the GIA-related gravity potential signal.

  • 35.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Bai, Y.
    Sjöberg, L. E.
    Tenzer, R.
    Abrehdary, Majid
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Miranda, S.
    Alcacer Sanchez, J. M.
    Effect of the lithospheric thermal state on the Moho interface: A case study in South America2017In: Journal of South American Earth Sciences, ISSN 0895-9811, E-ISSN 1873-0647, Vol. 76, p. 198-207Article in journal (Refereed)
    Abstract [en]

    Gravimetric methods applied for Moho recovery in areas with sparse and irregular distribution of seismic data often assume only a constant crustal density. Results of latest studies, however, indicate that corrections for crustal density heterogeneities could improve the gravimetric result, especially in regions with a complex geologic/tectonic structure. Moreover, the isostatic mass balance reflects also the density structure within the lithosphere. The gravimetric methods should therefore incorporate an additional correction for the lithospheric mantle as well as deeper mantle density heterogeneities. Following this principle, we solve the Vening Meinesz-Moritz (VMM) inverse problem of isostasy constrained by seismic data to determine the Moho depth of the South American tectonic plate including surrounding oceans, while taking into consideration the crustal and mantle density heterogeneities. Our numerical result confirms that contribution of sediments significantly modifies the estimation of the Moho geometry especially along the continental margins with large sediment deposits. To account for the mantle density heterogeneities we develop and apply a method in order to correct the Moho geometry for the contribution of the lithospheric thermal state (i.e., the lithospheric thermal-pressure correction). In addition, the misfit between the isostatic and seismic Moho models, attributed mainly to deep mantle density heterogeneities and other geophysical phenomena, is corrected for by applying the non-isostatic correction. The results reveal that the application of the lithospheric thermal-pressure correction improves the RMS fit of the VMM gravimetric Moho solution to the CRUST1.0 (improves ∼ 1.9 km) and GEMMA (∼1.1 km) models and the point-wise seismic data (∼0.7 km) in South America.

  • 36.
    Bagherbandi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Land management, GIS. KTH Royal Institute of Technology, Stockholm, Sweden.
    Bai, Yongliang
    School of Geosciences, China University of Petroleum (East China), Qingdao, China.
    Sjöberg, Lars
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Tenzer, Robert
    NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Plzeň, Czechia.
    Abrehdary, Majid
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Miranda, Silvia
    Departamento de Geofísica y Astronomía, FCEFN Universidad Nacional de San Juan, San Juan, Argentina.
    Sanchez, Juan M. Alcacer
    Departamento de Geofísica y Astronomía, FCEFN Universidad Nacional de San Juan, San Juan, Argentina.
    Effect of the lithospheric thermal state on the Moho interface: a case study in South America2017In: Journal of South American Earth Sciences, ISSN 0895-9811, E-ISSN 1873-0647, Vol. 76, p. 198-207Article in journal (Refereed)
    Abstract [en]

    Gravimetric methods applied for Moho recovery in areas with sparse and irregular distribution of seismic data often assume only a constant crustal density. Results of latest studies, however, indicate that corrections for crustal density heterogeneities could improve the gravimetric result, especially in regions with a complex geologic/tectonic structure. Moreover, the isostatic mass balance reflects also the density structure within the lithosphere. The gravimetric methods should therefore incorporate an additional correction for the lithospheric mantle as well as deeper mantle density heterogeneities. Following this principle, we solve the Vening Meinesz-Moritz (VMM) inverse problem of isostasy constrained by seismic data to determine the Moho depth of the South American tectonic plate including surrounding oceans, while taking into consideration the crustal and mantle density heterogeneities. Our numerical result confirms that contribution of sediments significantly modifies the estimation of the Moho geometry especially along the continental margins with large sediment deposits. To account for the mantle density heterogeneities we develop and apply a method in order to correct the Moho geometry for the contribution of the lithospheric thermal state (i.e., the lithospheric thermal-pressure correction). In addition, the misfit between the isostatic and seismic Moho models, attributed mainly to deep mantle density heterogeneities and other geophysical phenomena, is corrected for by applying the non-isostatic correction. The results reveal that the application of the lithospheric thermal-pressure correction improves the RMS fit of the VMM gravimetric Moho solution to the CRUST1.0 (improves ∼ 1.9 km) and GEMMA (∼1.1 km) models and the point-wise seismic data (∼0.7 km) in South America.

  • 37.
    Bagherbandi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Land management, GIS.
    Eshagh, Mehdi
    Avd för naturvetenskap, lantmäteri- och maskinteknik, Institutionen för ingenjörsvetenskap, Högskolan i Väst.
    Combined Moho Estimators2014In: Geodynamics : Research International Bulletin, ISSN 2345-4997, Vol. 1, no 3, p. 1-11Article in journal (Other (popular science, discussion, etc.))
    Abstract [en]

    In this study, we develop three estimators to optimally combine seismic and gravimetric models of Moho surface. The first estimator combines them by their special harmonic coefficients; the second one uses the spherical harmonic coefficients of the seismic model and use integral formula for the gravimetric one. The kernel of the integral terms of this estimator shows that a cap size of 20◦ is required for the integration, but since this integral is presented to combine the low frequencies of the gravimetric model, a low resolution model is enough for the integration. The third estimator uses the gravity anomaly and converts its low frequencies to those of the gravimetric Moho model, meanwhile combining them with those of seismic one. This integral requires an integration domain of 30◦ for the gravity anomalies but since the maximum degree of this kernel is limited to a specific degree, the use of its spectral form is recommended. The kernel of the integral involving the gravity anomalies, developed for recovering high frequencies of Moho, is written in a closed-from formula and its singularity is investigated. This kernel is well-behaving and decreases fast, meaning that it is suitable for recovering the high frequencies of Moho surface.

  • 38.
    Bagherbandi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Urban and regional planning/GIS-institute.
    Eshagh, Mehdi
    Royal Institute of Technology (KTH), Stockholm, Sweden, and K. N. Toosi University of Technology, Tehran, Iran .
    Crustal thickness recovery using an isostatic model and GOCE data2012In: Earth Planets and Space, ISSN 1343-8832, E-ISSN 1880-5981, Vol. 64, no 11, p. 1053-1057Article in journal (Refereed)
    Abstract [en]

    One of the GOCE satellite mission goals is to study the Earth's interior structure including its crustal thickness. A gravimetric-isostatic Moho model, based on the Vening Meinesz-Moritz (VMM) theory and GOCE gradiometric data, is determined beneath Iran's continental shelf and surrounding seas. The terrestrial gravimetric data of Iran are also used in a nonlinear inversion for a recovering-Moho model applying the VMM model. The newly-computed Moho models are compared with the Moho data taken from CRUST2.0. The root-mean-square (RMS) of differences between the CRUST2.0 Moho model and the recovered model from GOCE and that from the terrestrial gravimetric data are 3.8 km and 4.6 km, respectively.

  • 39.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Eshagh, Mehdi
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Crustal thickness recovery using an isostatic model and GOCE data2012In: Earth Planets and Space, ISSN 1343-8832, E-ISSN 1880-5981, Vol. 64, no 11, p. 1053-1057Article in journal (Refereed)
    Abstract [en]

    One of the GOCE satellite mission goals is to study the Earth's interior structure including its crustal thickness. A gravimetric-isostatic Moho model, based on the Vening Meinesz-Moritz (VMM) theory and GOCE gradiomet-ric data, is determined beneath Iran's continental shelf and surrounding seas. The terrestrial gravimetric data of Iran are also used in a nonlinear inversion for a recovering-Moho model applying the VMM model. The newly-computed Moho models are compared with the Moho data taken from CRUST2.0. The root-mean-square (RMS) of differences between the CRUST2.0 Moho model and the recovered model from GOCE and that from the terrestrial gravimetric data are 3.8 km and 4.6 km, respectively.

  • 40.
    Bagherbandi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Urban and regional planning/GIS-institute.
    Eshagh, Mehdi
    Islamic Azad Univ, Dept Surveying.
    Recovery of Moho’s undulations based on the Vening Meinesz–Moritz theory from satellite gravity gradiometry data: A simulation study2012In: Advances in Space Research, ISSN 0273-1177, E-ISSN 1879-1948, Vol. 49, no 6, p. 1097-1111Article in journal (Refereed)
  • 41.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Eshagh, Mehdi
    Recovery of Moho's undulations based on the Vening Meinesz-Moritz theory from satellite gravity gradiometry data: A simulation study2012In: Advances in Space Research, ISSN 0273-1177, E-ISSN 1879-1948, Vol. 49, no 6, p. 1097-1111Article in journal (Refereed)
    Abstract [en]

    In the gravimetric approach to determine the Moho depth an isostatic hypothesis can be used. The Vening Meinesz-Moritz isostatic hypothesis is the recent theory for such a purpose. Here, this theory is further developed so that the satellite gravity gradiometry (SGG) data are used for recovering the Moho depth through a nonlinear integral inversion procedure. The kernels of its forward and inverse problems show that the inversion should be done in a larger area by 5 than the desired one to reduce the effect of the spatial truncation error of the integral formula. Our numerical study shows that the effect of this error on the recovered Moho depths can reach 6 km in Persia and it is very significant. The iterative Tikhonov regularization in a combination with either generalized cross validation or quasi-optimal criterion of estimating the regularization parameter seems to be suitable and the solution is semi-convergent up to the third iteration. Also the Moho depth recovered from the simulated SGG data will be more or less the same as that obtained from the terrestrial gravimetric data with a root mean square error of 2 km and they are statistically consistent.

  • 42.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Surveying – Geodesy, Land Law and Real Estate Planning. Univ Gävle, Gävle, Sweden.
    Farzaneh, Saeed
    Univ Tehran, Sch Surveying & Geospatial Engn, Tehran, Iran..
    Assessing environmental changes with GNSS reflectometry2024In: GIM international : Geomatics Info Magazine international, ISSN 1566-9076, Vol. 38, no 2Article in journal (Refereed)
    Abstract [en]

    The utilization of remote sensing observations to monitor essential climate variables (ECVs) has become increasingly important in studying their regional and global impacts, as defined by the Global Climate Observing System (GCOS). Understanding the Earth's surface conditions, including soil moisture runoff, snow, temperature, precipitation, water vapour, radiation, groundwater and sea surface height (SSH), can positively impact the environment and ecosystems. Here, the authors present an overview of how global navigation satellite systems (GNSS) can be employed for environmental monitoring, with a particular focus on sea surface height monitoring. This includes examination of the advantages and disadvantages of utilizing a network of permanent GNSS stations for monitoring sea level rise along shorelines.

  • 43.
    Bagherbandi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Farzaneh, Saeed
    Gholamrezaee, Sara
    Parvazi, Kamal
    How accurate are GNSS signals for extracting sea level height and tidal frequencies using GNSS-R technique?2023Conference paper (Refereed)
    Abstract [en]

    Remote sensing observations of Essential Climate Variables (ECVs) provide a means of studying their global and regional impacts. Coastal GNSS stations measure water levels using GNSS Reflectometry (GNSS-R) technique by determining the vertical distance between the antenna and the water surface. In this study, GNSS-R data from four stations over three months were used to estimate sea surface heights (SSH) and assess accuracy using nearest tide gauge observations. Results showed that GNSS signals from GPS, GLONASS, Galileo, and BeiDou were accurate for the SSH estimation. In addition, 145 significant tidal frequencies were extracted using the GNSS-R and tide gauge time series by employing the Least Square Harmonic Estimation (LS-HE) approach. The study demonstrates the usefulness of GNSS-R for tide studies and its potential use alongside tide gauge measurements in coastal locations.

  • 44.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.
    Gido, Nureldin A. A.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.
    A study on the relationship between isostatic equilibrium and seismicity: A case study in AfricaIn: Journal of Geodynamics, ISSN 0264-3707, E-ISSN 1879-1670Article in journal (Other academic)
    Abstract [en]

    The principle of isostasy plays an important role in understanding the relationship between the geodynamic processes. It is difficult to find an exact method that delivers a complete image of the Earth structure, gravimetric and seismic methods can provide images of the interior of the Earth. The Earth’s crust parameters, i.e. crustal depth and crust-mantle density contrast, can reveal information about the solid Earth system e.g. earthquakes and continental rifting processes. In this study, a combined Moho model using seismic and gravity data is determined to investigate the relationship between the isostatic state of the crust and seismic activities in our study area in Africa. To do this we determine the isostatic gravity disturbance and the density contrast. Our results show that isostatic equilibrium and compensation states are closely correlated to the seismicity patterns in the study area. This paper presents a method to determine the crustal thickness and crust-mantle density contrast and consequently one can detect low-density contrasts (about 200 kg/m3) and thin crust (about 30 km) near the Afar Triangle, which confirms the state of over-compensation. Furthermore, the density structure of the mantle lithosphere shows a large correlation with the earthquake activity, sub-crustal stress and volcanic distribution.

  • 45.
    Bagherbandi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Gido, Nureldin A. A.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    How isostasy explains continental rifting in East Africa?2020Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    The principle of isostasy plays an important role to understand the relation between different geodynamic processes. Although, it is difficult to find an exact method that delivers a complete image of the Earth structure. However, gravimetric methods are alternative to provide images of the interior of the Earth. The Earth’s crust parameters, i.e. crustal depth and crust-mantle density contrast, can reveal adequate information about the solid Earth system such as volcanic activity, earthquake and continental rifting. Hence, in this study, a combine Moho model using seismic and gravity data is determined to investigate the relationship between the isostatic state of the lithosphere and seismic activities in East Africa. Our results show that isostatic equilibrium and compensation states are closely correlated to the seismicity patterns in the study area. For example, several studies suggest that African superplume causes the rift valley, and consequently differences in crustal and mantle densities occur. This paper presents a method to determine the crustal thickness and crust-mantle density contrast and consequently one can observe low-density contrast (about 200 kg/m3 ) and thin crust (about 30 km) near the triple junction plate tectonics in East Africa (Afar Triangle), which confirms the state of overcompensation in the rift valley areas. Furthermore, the density structure of the lithosphere shows a large correlation with the earthquake activity, sub-crustal stress and volcanic distribution across East Africa.

    Download full text (pdf)
    fulltext
  • 46.
    Bagherbandi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Gido, Nureldin A. A.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Sjöberg, Lars E.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Tenzer, Robert
    Hong Kong Polytechnic University.
    Studying permafrost using GRACE and in situ data in the northern high-latitudes regions2019Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    There is an exceptional opportunity of achieving simultaneous and complementary data from a multitude of geoscience and environmental near-earth orbiting artificial satellites to study phenomena related to the climate change e.g. sea level change, ice melting, soil moisture variation, temperature changes, and earth surface deformations. In this study, we focus on permafrost thawing and its associated gravity change, and organic material changes using GRACE data and other satellite- and ground-based observations. The estimation of permafrost changes requires combining information from various sources, particularly using the gravity field change, surface temperature change, and GIA. The most significant factor for careful monitoring of the permafrost thawing is the fact that this process could be responsible for releasing an additional enormous amount of greenhouse gases emitted to the atmosphere, most importantly to mention Carbone dioxide and Methane that are currently stored in the frozen ground. The results of a preliminary numerical analysis reveal a possible existence of a high correlation between the secular trends of greenhouse gases, temperature and equivalent water thickness in the selected regions. Furthermore, according to our estimates based on processing the GRACE data, the groundwater storage attributed to the due to permafrost thawing increased at the annual rates of 3.4, 3.8, 4.4 and 4.0 cm, in Siberia, northern Alaska, and Canada. Despite a rather preliminary character of our results, these findings indicate that the methodology developed and applied in this study should be improved by incorporating the in situ permafrost measurements.

  • 47.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.
    Jouybari, A.
    Nilfouroushan, F.
    Ågren, J.
    Deflection of Vertical Effect on Direct Georeferencing in Aerial Mobile Mapping Systems: A Case Study in Sweden2022In: Photogrammetric Record, ISSN 0031-868X, E-ISSN 1477-9730, Vol. 37, no 179, p. 285-305Article in journal (Refereed)
    Abstract [en]

    GNSS/INS applications are being developed, especially for direct georeferencing in airborne photogrammetry. Achieving accurately georeferenced products from the integration of GNSS and INS requires removing systematic errors in the mobile mapping systems. The INS sensor's uncertainty is decreasing; therefore, the influence of the deflection of verticals (DOV, the angle between the plumb line and normal to the ellipsoid) should be considered in the direct georeferencing. Otherwise, an error is imposed for calculating the exterior orientation parameters of the aerial images and aerial laser scanning. This study determines the DOV using the EGM2008 model and gravity data in Sweden. The impact of the DOVs on horizontal and vertical coordinates, considering different flight altitudes and camera field of view, is assessed. The results confirm that the calculated DOV components using the EGM2008 model are sufficiently accurate for aerial mapping system purposes except for mountainous areas because the topographic signal is not modelled correctly. 

  • 48.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Faculty of Engineering and Sustainable Development, University of Gävle, Gävle, Sweden.
    Jouybari, A.
    Nilfouroushan, F.
    Ågren, J.
    Importance of precise gravity field modeling in direct georeferencing and aerial photogrammetry: a case study for Sweden2022In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022XXIV ISPRS Congress (2022 edition), 2022, Vol. XLIII-B2, International Society for Photogrammetry and Remote Sensing , 2022, Vol. 43, no B2-2022, p. 15-20Conference paper (Refereed)
    Abstract [en]

    Direct georeferencing of airborne mobile mapping systems is developing with unprecedented speed using GNSS/INS integration. Removal of systematic errors is required for achieving a high accurate georeferenced product in mobile mapping platforms with integrated GNSS/INS sensors. It is crucial to consider the deflection of verticals (DOV) in direct georeferencing due to the recently improved INS sensor accuracy. This study determines the DOV using Sweden's EGM2008 model and gravity data. The influence of the DOVs on horizontal and vertical coordinates and considering different flight heights is assessed. The results confirm that the calculated DOV components using the EGM2008 model are sufficiently accurate for aerial photogrammetry purposes except for the mountainous areas because the topographic signal is not modeled correctly.

  • 49.
    Bagherbandi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences. KTH.
    Jouybari, Arash
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Nilfouroushan, Faramarz
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Ågren, Jonas
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences. Lantmäteriet.
    Deflection of Vertical Effect on Direct Georeferencing in Aerial Mobile Mapping Systems: A Case Study in Sweden2022In: Photogrammetric Record, ISSN 0031-868X, E-ISSN 1477-9730, Vol. 37, no 179, p. 285-305Article in journal (Refereed)
    Abstract [en]

    GNSS/INS applications are being developed, especially for direct georeferencing in airborne photogrammetry. Achieving accurately georeferenced products from the integration of GNSS and INS requires removing systematic errors in the mobile mapping systems. The INS sensor's uncertainty is decreasing; therefore, the influence of the deflection of verticals (DOV, the angle between the plumb line and normal to the ellipsoid) should be considered in the direct georeferencing. Otherwise, an error is imposed for calculating the exterior orientation parameters of the aerial images and aerial laser scanning. This study determines the DOV using the EGM2008 model and gravity data in Sweden. The impact of the DOVs on horizontal and vertical coordinates, considering different flight altitudes and camera field of view, is assessed. The results confirm that the calculated DOV components using the EGM2008 model are sufficiently accurate for aerial mapping system purposes except for mountainous areas because the topographic signal is not modelled correctly.

    Download full text (pdf)
    fulltext
  • 50.
    Bagherbandi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences. KTH.
    Jouybari, Arash
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Nilfouroushan, Faramarz
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences. Lantmäteriet.
    Ågren, Jonas
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences. Lantmäteriet.
    Importance of precise gravity field modeling in direct georeferencing and aerial photogrammetry: a case study for Sweden2022In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022XXIV ISPRS Congress (2022 edition), ISPRS , 2022Conference paper (Refereed)
    Abstract [en]

    Direct georeferencing of airborne mobile mapping systems is developing with unprecedented speed using GNSS/INSintegration. Removal of systematic errors is required for achieving a high accurate georeferenced product in mobile mappingplatforms with integrated GNSS/INS sensors. It is crucial to consider the deflection of verticals (DOV) in direct georeferencing dueto the recently improved INS sensor accuracy. This study determines the DOV using Sweden’s EGM2008 model and gravity data.The influence of the DOVs on horizontal and vertical coordinates and considering different flight heights is assessed. The resultsconfirm that the calculated DOV components using the EGM2008 model are sufficiently accurate for aerial photogrammetrypurposes except for the mountainous areas because the topographic signal is not modeled correctly.

    Download full text (pdf)
    fulltext
1234 1 - 50 of 170
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf