This project describes how the Active Pinion hydraulic steering system can be used to replace a electric power steering actuator in the Parking Pilot automatic parking system.
Customer demand for fully or semi automatic parking systems in passenger cars, are getting higher with increased cost of parking related body damage repair coupled with restricted rearward sight and the larger dimensions of modern cars. This, however, puts new demands on the steering actuator. An automatic parking system requires full control of the steering servo, which is not possible with current hydraulic actuators. Instead these systems have to rely on electric servos which allow for the needed controllability.
All current electric steering servos have the drawback that it is impossible to use them on anything but small or medium sized cars. Since a parking system can be seen as a premium accessory, which is more likely to attract customers who buy larger cars, this is a major hindrance for the success of automatic parking systems.
A solution to the problem is to construct a controllable variant of the hydraulic steering servo, the Active Pinion. In this concept a small electric pilot motor is added to the traditional hydraulic valve, which adds one additional degree of freedom to the servo, accomplishing full four-quadrant operations.
The project discusses how the Active Pinion concept is introduced in the Parking Pilot parking system and how different demands on the parking system relates to the performance of the actuator. The parking system is installed in a prototype car and simulation of the Active Pinion concept is accomplished with HWIL simulation in a load simulator.