Digitala Vetenskapliga Arkivet

Change search
Refine search result
1234567 1 - 50 of 333
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aitola, Kerttu
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Domanski, Konrad
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland..
    Correa-Baena, Juan-Pablo
    MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA..
    Sveinbjörnsson, Kári
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Saliba, Michael
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland..
    Abate, Antonio
    Univ Fribourg, Adolphe Merkle Inst, CH-1700 Fribourg, Switzerland..
    Graetzel, Michael
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland..
    Kauppinen, Esko
    Aalto Univ, Dept Appl Phys, POB 15100, Aalto 00076, Finland..
    Johansson, Erik M.J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Tress, Wolfgang
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland..
    Hagfeldt, Anders
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland..
    Boschloo, Gerrit
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact2017In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 29, no 17, article id 1606398Article in journal (Refereed)
    Abstract [en]

    Mixed ion perovskite solar cells (PSC) are manufactured with a metal-free hole contact based on press-transferred single-walled carbon nanotube (SWCNT) film infiltrated with 2,2,7,-7-tetrakis(N, N-di-p-methoxyphenylamine)-9,90-spirobifluorene (Spiro-OMeTAD). By means of maximum power point tracking, their stabilities are compared with those of standard PSCs employing spin-coated Spiro-OMeTAD and a thermally evaporated Au back contact, under full 1 sun illumination, at 60 degrees C, and in a N-2 atmosphere. During the 140 h experiment, the solar cells with the Au electrode experience a dramatic, irreversible efficiency loss, rendering them effectively nonoperational, whereas the SWCNT-contacted devices show only a small linear efficiency loss with an extrapolated lifetime of 580 h.

  • 2.
    Amdursky, Nadav
    et al.
    Technion Israel Inst Technol, Israel.
    Glowacki, Eric
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Meredith, Paul
    Swansea Univ, Wales.
    Macroscale Biomolecular Electronics and Ionics2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, no 3, article id 1802221Article, review/survey (Refereed)
    Abstract [en]

    The conduction of ions and electrons over multiple length scales is central to the processes that drive the biological world. The multidisciplinary attempts to elucidate the physics and chemistry of electron, proton, and ion transfer in biological charge transfer have focused primarily on the nano- and microscales. However, recently significant progress has been made on biomolecular materials that can support ion and electron currents over millimeters if not centimeters. Likewise, similar transport phenomena in organic semiconductors and ionics have led to new innovations in a wide variety of applications from energy generation and storage to displays and bioelectronics. Here, the underlying principles of conduction on the macroscale in biomolecular materials are discussed, highlighting recent examples, and particularly the establishment of accurate structure-property relationships to guide rationale material and device design. The technological viability of biomolecular electronics and ionics is also discussed.

  • 3. Andersson, P
    et al.
    Nilsson, D
    Svensson, P-O
    Chen, M
    Malmström, A
    RISE, Swedish ICT, Acreo.
    Remonen, T
    Kugler T, Berggren
    Active Matrix Displays Based on All-Organic Electrochemical Smart Pixels Printed on Paper2002In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 14, no 20, p. 1460-Article in journal (Refereed)
    Abstract [en]

    An organic electronic paper display technology is presented. The electrochromic display cell together with the addressing electrochemical transistor form simple smart pixels that are included in matrix displays, which are achieved on coated cellulose-based paper using printing techniques. The ion-electronic technology presented offers an opportunity to extend existing use of ordinary paper._x000D_

  • 4.
    Andersson, Peter
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nilsson, David
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Svensson, Per-Olof
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Chen, Miaoxiang
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Malmström, Anna
    ACREO Institute, Norrköping, Sweden.
    Remonen, Tommi
    ACREO Institute, Norrköping, Sweden.
    Kugler, Thomas
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Active Matrix Displays Based on All-Organic Electrochemical Smart Pixels Printed on Paper2002In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 14, no 20, p. 1460-1464Article in journal (Refereed)
    Abstract [en]

    An organic electronic paper display technology (see Figure and also inside front cover) is presented. The electrochromic display cell together with the addressing electrochemical transistor form simple smart pixels that are included in matrix displays, which are achieved on coated cellulose-based paper using printing techniques. The ion-electronic technology presented offers an opportunity to extend existing use of ordinary paper.

     

  • 5.
    Andersson, Peter
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Robinson, Nathaniel D.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Switchable Charge Traps in Polymer Diodes2005In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 17, no 14, p. 1798-1803Article in journal (Refereed)
  • 6. Angel Nino, Miguel
    et al.
    Kowalik, Iwona Agnieszka
    Jesus Luque, Francisco
    Arvanitis, Dimitri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics V. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Miranda, Rodolfo
    Jose de Miguel, Juan
    Enantiospecific Spin Polarization of Electrons Photoemitted Through Layers of Homochiral Organic Molecules2014In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, no 44, p. 7474-7479Article in journal (Refereed)
  • 7.
    Anusuyadevi, Prasaanth Ravi
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Shanker, R.
    Cui, Yuxiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Riazanova, Anastasiia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Järn, M.
    Jonsson, Magnus P.
    Svagan, Anna Justina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Photoresponsive and Polarization-Sensitive Structural Colors from Cellulose/Liquid Crystal Nanophotonic Structures2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 36, p. 2101519-, article id 2101519Article in journal (Refereed)
    Abstract [en]

    Cellulose nanocrystals (CNCs) possess the ability to form helical periodic structures that generate structural colors. Due to the helicity, such self-assembled cellulose structures preferentially reflect left-handed circularly polarized light of certain colors, while they remain transparent to right-handed circularly polarized light. This study shows that combination with a liquid crystal enables modulation of the optical response to obtain light reflection of both handedness but with reversed spectral profiles. As a result, the nanophotonic systems provide vibrant structural colors that are tunable via the incident light polarization. The results are attributed to the liquid crystal aligning on the CNC/glucose film, to form a birefringent layer that twists the incident light polarization before interaction with the chiral cellulose nanocomposite. Using a photoresponsive liquid crystal, this effect can further be turned off by exposure to UV light, which switches the nematic liquid crystal into a nonbirefringent isotropic phase. The study highlights the potential of hybrid cellulose systems to create self-assembled yet advanced photoresponsive and polarization-tunable nanophotonics.

  • 8.
    Anusuyadevi, Prasaanth Ravi
    et al.
    Royal Inst Technol KTH, Sweden.
    Shanker, Ravi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Cui, Yuxiao
    Royal Inst Technol KTH, Sweden.
    Riazanova, Anastasia V
    Royal Inst Technol KTH, Sweden.
    Järn, Mikael
    RISE Res Inst Sweden, Sweden.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Svagan, Anna J.
    Royal Inst Technol KTH, Sweden.
    Photoresponsive and Polarization-Sensitive Structural Colors from Cellulose/Liquid Crystal Nanophotonic Structures2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 36, article id 2101519Article in journal (Refereed)
    Abstract [en]

    Cellulose nanocrystals (CNCs) possess the ability to form helical periodic structures that generate structural colors. Due to the helicity, such self-assembled cellulose structures preferentially reflect left-handed circularly polarized light of certain colors, while they remain transparent to right-handed circularly polarized light. This study shows that combination with a liquid crystal enables modulation of the optical response to obtain light reflection of both handedness but with reversed spectral profiles. As a result, the nanophotonic systems provide vibrant structural colors that are tunable via the incident light polarization. The results are attributed to the liquid crystal aligning on the CNC/glucose film, to form a birefringent layer that twists the incident light polarization before interaction with the chiral cellulose nanocomposite. Using a photoresponsive liquid crystal, this effect can further be turned off by exposure to UV light, which switches the nematic liquid crystal into a nonbirefringent isotropic phase. The study highlights the potential of hybrid cellulose systems to create self-assembled yet advanced photoresponsive and polarization-tunable nanophotonics.

    Download full text (pdf)
    fulltext
  • 9.
    Anusuyadevi, Prasaanth
    et al.
    KTH Royal Institute of Technology, Sweden.
    Shanker, Ravi
    Linköping University, Sweden.
    Cui, Yuxiao
    KTH Royal Institute of Technology, Sweden.
    Riazanova, Anastasia
    KTH Royal Institute of Technology, Sweden.
    Järn, Mikael
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Jonsson, Magnus
    Linköping University, Sweden.
    Svagan, Anna
    KTH Royal Institute of Technology, Sweden.
    Photoresponsive and Polarization-Sensitive Structural Colors from Cellulose/Liquid Crystal Nanophotonic Structures2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 36, article id 2101519Article in journal (Refereed)
    Abstract [en]

    Cellulose nanocrystals (CNCs) possess the ability to form helical periodic structures that generate structural colors. Due to the helicity, such self-assembled cellulose structures preferentially reflect left-handed circularly polarized light of certain colors, while they remain transparent to right-handed circularly polarized light. This study shows that combination with a liquid crystal enables modulation of the optical response to obtain light reflection of both handedness but with reversed spectral profiles. As a result, the nanophotonic systems provide vibrant structural colors that are tunable via the incident light polarization. The results are attributed to the liquid crystal aligning on the CNC/glucose film, to form a birefringent layer that twists the incident light polarization before interaction with the chiral cellulose nanocomposite. Using a photoresponsive liquid crystal, this effect can further be turned off by exposure to UV light, which switches the nematic liquid crystal into a nonbirefringent isotropic phase. The study highlights the potential of hybrid cellulose systems to create self-assembled yet advanced photoresponsive and polarization-tunable nanophotonics. © 2021 The Authors.

  • 10. Aparicio, Francisco J.
    et al.
    Holgado, Miguel
    Borras, Ana
    Blaszczyk-Lezak, Iwona
    Griol, Amadeu
    Barrios, Carlos A.
    Casquel, Rafael
    Sanza, Francisco J.
    Sohlström, Hans
    KTH, School of Electrical Engineering (EES), Microsystem Technology.
    Antelius, Mikael
    KTH, School of Electrical Engineering (EES), Microsystem Technology.
    Gonzalez-Elipe, Agustin R.
    Barranco, Angel
    Transparent Nanometric Organic Luminescent Films as UV-Active Components in Photonic Structures2011In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 23, no 6, p. 761-765Article in journal (Refereed)
    Abstract [en]

    A new kind of visible-blind organic thin-film material, consisting of a polymeric matrix with a high concentration of embedded 3-hydroxyflavone (3HF) dye molecules, that absorbs UV light and emits green light is presented. The thin films can be grown on sensitive substrates, including flexible polymers and paper. Their suitability as photonic active components in photonic devices is demonstrated.

  • 11.
    Apostolopoulou-Kalkavoura, Varvara
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Munier, Pierre
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bergström, Lennart
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Thermally Insulating Nanocellulose-Based Materials2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 28, article id 2001839Article, review/survey (Refereed)
    Abstract [en]

    Thermally insulating materials based on renewable nanomaterials such as nanocellulose could reduce the energy consumption and the environmental impact of the building sector. Recent reports of superinsulating cellulose nanomaterial (CNM)-based aerogels and foams with significantly better heat transport properties than the commercially dominating materials, such as expanded polystyrene, polyurethane foams, and glass wool, have resulted in a rapidly increasing research activity. Herein, the fundamental basis of thermal conductivity of porous materials is described, and the anisotropic heat transfer properties of CNMs and films with aligned CNMs and the processing and structure of novel CNM-based aerogels and foams with low thermal conductivities are presented and discussed. The extraordinarily low thermal conductivity of anisotropic porous architectures and multicomponent approaches are highlighted and related to the contributions of the Knudsen effect and phonon scattering.

  • 12.
    Arjmandi-Tash, Hadi
    et al.
    Leiden Univ, Leiden Inst Chem, Fac Sci, NL-2333 CC Leiden, Netherlands..
    Bellunato, Amedeo
    Leiden Univ, Leiden Inst Chem, Fac Sci, NL-2333 CC Leiden, Netherlands..
    Wen, Chenyu
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Olsthoorn, Rene C.
    Leiden Univ, Leiden Inst Chem, Fac Sci, NL-2333 CC Leiden, Netherlands..
    Scheicher, Ralph H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Zhang, Shi-Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Schneider, Gregory F.
    Leiden Univ, Leiden Inst Chem, Fac Sci, NL-2333 CC Leiden, Netherlands..
    Zero-Depth Interfacial Nanopore Capillaries2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 9, article id 1703602Article in journal (Refereed)
    Abstract [en]

    High-fidelity analysis of translocating biomolecules through nanopores demands shortening the nanocapillary length to a minimal value. Existing nanopores and capillaries, however, inherit a finite length from the parent membranes. Here, nanocapillaries of zero depth are formed by dissolving two superimposed and crossing metallic nanorods, molded in polymeric slabs. In an electrolyte, the interface shared by the crossing fluidic channels is mathematically of zero thickness and defines the narrowest constriction in the stream of ions through the nanopore device. This novel architecture provides the possibility to design nanopore fluidic channels, particularly with a robust 3D architecture maintaining the ultimate zero thickness geometry independently of the thickness of the fluidic channels. With orders of magnitude reduced biomolecule translocation speed, and lowered electronic and ionic noise compared to nanopores in 2D materials, the findings establish interfacial nanopores as a scalable platform for realizing nanofluidic systems, capable of single-molecule detection.

    Download full text (pdf)
    fulltext
  • 13.
    Arseneault, Mathieu
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Granskog, Viktor
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Khosravi, Sara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Heckler, Ilona
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Antunez, Pablo Mesa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Hult, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    The Dawn of Thiol-Yne Triazine Triones Thermosets as a New Material Platform Suited for Hard Tissue Repair2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 52, article id 1804966Article in journal (Refereed)
    Abstract [en]

    The identification of a unique set of advanced materials that can bear extraordinary loads for use in bone and tooth repair will inevitably unlock unlimited opportunities for clinical use. Herein, the design of high-performance thermosets is reported based on triazine-trione (TATO) monomers using light-initiated thiol-yne coupling (TYC) chemistry as a polymerization strategy. In comparison to traditional thiol-ene coupling (TEC) systems, TYC chemistry has yielded highly dense networks with unprecedented mechanical properties. The most promising system notes 4.6 GPa in flexural modulus and 160 MPa in flexural strength, an increase of 84% in modulus and 191% in strength when compared to the corresponding TATO system based on TEC chemistry. Remarkably, the mechanical properties exceed those of polylactide (PLA) and challenge poly(ether ether ketone) PEEK and today's methacrylate-based dental resin composites. All the materials display excellent biocompatibility, in vitro, and are successfully: i) molded into medical devices for fracture repair, and ii) used as bone adhesive for fracture fixation and as tooth fillers with the outstanding bond strength that outperform methacrylate systems used today in dental restoration application. Collectively, a new era of advanced TYC materials is unfolded that can fulfill the preconditions as bone fixating implants and for tooth restorations.

  • 14.
    Atxabal, Ainhoa
    et al.
    CIC NanoGUNE, Spain.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Arnold, Thorsten
    Technical University of Dresden, Germany.
    Sun, Xiangnan
    National Centre Nanosci and Technology, Peoples R China.
    Parui, Subir
    CIC NanoGUNE, Spain.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Gozalvez, Cristian
    University of Basque Country UPV EHU, Spain.
    Llopis, Roger
    CIC NanoGUNE, Spain.
    Mateo-Alonso, Aurelio
    University of Basque Country UPV EHU, Spain; Basque Fdn Science, Spain.
    Casanova, Felix
    CIC NanoGUNE, Spain; Basque Fdn Science, Spain.
    Ortmann, Frank
    Technical University of Dresden, Germany.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Hueso, Luis E.
    CIC NanoGUNE, Spain; Basque Fdn Science, Spain.
    Energy Level Alignment at Metal/Solution-Processed Organic Semiconductor Interfaces2017In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 29, no 19, article id 1606901Article in journal (Refereed)
    Abstract [en]

    Energy barriers between the metal Fermi energy and the molecular levels of organic semiconductor devoted to charge transport play a fundamental role in the performance of organic electronic devices. Typically, techniques such as electron photoemission spectroscopy, Kelvin probe measurements, and in-device hot-electron spectroscopy have been applied to study these interfacial energy barriers. However, so far there has not been any direct method available for the determination of energy barriers at metal interfaces with n-type polymeric semiconductors. This study measures and compares metal/solution-processed electron-transporting polymer interface energy barriers by in-device hot-electron spectroscopy and ultraviolet photoemission spectroscopy. It not only demonstrates in-device hot-electron spectroscopy as a direct and reliable technique for these studies but also brings it closer to technological applications by working ex situ under ambient conditions. Moreover, this study determines that the contamination layer coming from air exposure does not play any significant role on the energy barrier alignment for charge transport. The theoretical model developed for this work confirms all the experimental observations.

  • 15.
    Aziz, Shazed
    et al.
    Univ Queensland, Australia.
    Zhang, Xi
    Univ Queensland, Australia.
    Naficy, Sina
    Univ Sydney, Australia.
    Salahuddin, Bidita
    Univ Queensland, Australia.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Zhu, Zhonghua
    Univ Queensland, Australia.
    Plant-Like Tropisms in Artificial Muscles2023In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095Article in journal (Refereed)
    Abstract [en]

    Helical plants have the ability of tropisms to respond to natural stimuli, and biomimicry of such helical shapes into artificial muscles has been vastly popular. However, the shape-mimicked actuators only respond to artificially provided stimulus, they are not adaptive to variable natural conditions, thus being unsuitable for real-life applications where on-demand, autonomous operations are required. Novel artificial muscles made of hierarchically patterned helically wound yarns that are self-adaptive to environmental humidity and temperature changes are demonstrated here. Unlike shape-mimicked artificial muscles, a unique microstructural biomimicking approach is adopted, where the muscle yarns can effectively replicate the hydrotropism and thermotropism of helical plants to their microfibril level using plant-like microstructural memories. Large strokes, with rapid movement, are obtained when the individual microfilament of yarn is inlaid with hydrogel and further twisted into a coil-shaped hierarchical structure. The developed artificial muscle provides an average actuation speed of approximate to 5.2% s(-1) at expansion and approximate to 3.1% s(-1) at contraction cycles, being the fastest amongst previously demonstrated actuators of similar type. It is demonstrated that these muscle yarns can autonomously close a window in wet climates. The building block yarns are washable without any material degradation, making them suitable for smart, reusable textile and soft robotic devices.

    Download full text (pdf)
    fulltext
  • 16.
    Bao, Chunxiong
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Shenzhen Univ, Peoples R China.
    Yang, Jie
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Southeast Univ, Peoples R China.
    Bai, Sai
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Xu, Weidong
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Yan, Zhibo
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Nanjing Univ, Peoples R China.
    Xu, Qingyu
    Southeast Univ, Peoples R China.
    Liu, Junming
    Nanjing Univ, Peoples R China.
    Zhang, Wenjing
    Shenzhen Univ, Peoples R China.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    High Performance and Stable All-Inorganic Metal Halide Perovskite-Based Photodetectors for Optical Communication Applications2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 38, article id 1803422Article in journal (Refereed)
    Abstract [en]

    Photodetectors are critical parts of an optical communication system for achieving efficient photoelectronic conversion of signals, and the response speed directly determines the bandwidth of the whole system. Metal halide perovskites, an emerging class of low-cost solution-processed semiconductors, exhibiting strong optical absorption, low trap states, and high carrier mobility, are widely investigated in photodetection applications. Herein, through optimizing the device engineering and film quality, high-performance photodetectors based on all-inorganic cesium lead halide perovskite (CsPbIxBr3-x), which simultaneously possess high sensitivity and fast response, are demonstrated. The optimized devices processed from CsPbIBr2 perovskite show a practically measured detectable limit of about 21.5 pW cm(-2) and a fast response time of 20 ns, which are both among the highest reported device performance of perovskite-based photodetectors. Moreover, the photodetectors exhibit outstanding long-term environmental stability, with negligible degradation of the photoresponse property after 2000 h under ambient conditions. In addition, the resulting perovskite photodetector is successfully integrated into an optical communication system and its applications as an optical signal receiver on transmitting text and audio signals is demonstrated. The results suggest that all-inorganic metal halide perovskite-based photodetectors have great application potential for optical communication.

    Download full text (pdf)
    fulltext
  • 17.
    Barbero, David
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Boulanger, Nicolas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Ramstedt, Madeleine
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Yu, Junchun
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Carbon nanotube networks: nano-engineering of SWNT networks for enhanced charge transport at ultralow nanotube loading2014In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, no 19, p. 3164-Article in journal (Refereed)
    Abstract [en]

    Arrays of nano-engineered carbon nanotube networks embedded in nanoscale polymer structures enable highly efficient charge transport as demonstrated by D. R. Barbero and co-workers on page 3111. An increase in charge transport by several orders of magnitude is recorded at low nanotube loading compared to traditional random networks in either insulating (polystyrene) or semiconducting (polythiophene) polymers. These novel networks are expected to enhance the performance of next generation hybrid and carbon based photovoltaic devices.

  • 18.
    Barbero, David
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Boulanger, Nicolas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Ramstedt, Madeleine
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Yu, Junchun
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Nano-engineering of SWNT networks for enhanced charge transport at ultralow nanotube loading2014In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, no 19, p. 3111-3117Article in journal (Refereed)
    Abstract [en]

    We demonstrate a simple and controllable method to form periodic arrays of highly conductive nano-engineered single wall carbon nanotube networks from solution. These networks increase the conductivity of a polymer composite by as much as eight orders of magnitude compared to a traditional random network. These nano-engineered networks are demonstrated in both polystyrene and polythiophene polymers.

  • 19.
    Barbero, David R.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Stranks, Samuel D.
    Functional single-walled carbon nanotubes and nanoengineered networks for organic- and Perovskite-solar-cell applications2016In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, no 44, p. 9668-9685Article in journal (Refereed)
    Abstract [en]

    Carbon nanotubes have a variety of remarkable electronic and mechanical properties that, in principle, lend them to promising optoelectronic applications. However, the field has been plagued by heterogeneity in the distributions of synthesized tubes and uncontrolled bundling, both of which have prevented nanotubes from reaching their full potential. Here, a variety of recently demonstrated solution-processing avenues is presented, which may combat these challenges through manipulation of nanoscale structures. Recent advances in polymer-wrapping of single-walled carbon nanotubes (SWNTs) are shown, along with how the resulting nanostructures can selectively disperse tubes while also exploiting the favorable properties of the polymer, such as light-harvesting ability. New methods to controllably form nanoengineered SWNT networks with controlled nanotube placement are discussed. These nanoengineered networks decrease bundling, lower the percolation threshold, and enable a strong enhancement in charge conductivity compared to random networks, making them potentially attractive for optoelectronic applications. Finally, SWNT applications, to date, in organic and perovskite photovoltaics are reviewed, and insights as to how the aforementioned recent advancements can lead to improved device performance provided.

  • 20. Barriga, Hanna M. G.
    et al.
    Pence, Isaac J.
    Holme, Margaret N.
    Doutch, James J.
    Penders, Jelle
    Nele, Valeria
    Thomas, Michael R.
    Carroni, Marta
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Stevens, Molly M.
    Coupling Lipid Nanoparticle Structure and Automated Single-Particle Composition Analysis to Design Phospholipase-Responsive Nanocarriers2022In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, no 26, article id 2200839Article in journal (Refereed)
    Abstract [en]

    Lipid nanoparticles (LNPs) are versatile structures with tunable physicochemical properties that are ideally suited as a platform for vaccine delivery and RNA therapeutics. A key barrier to LNP rational design is the inability to relate composition and structure to intracellular processing and function. Here Single Particle Automated Raman Trapping Analysis (SPARTA) is combined with small-angle X-ray and neutron scattering (SAXS/SANS) techniques to link LNP composition with internal structure and morphology and to monitor dynamic LNP-phospholipase D (PLD) interactions. This analysis demonstrates that PLD, a key intracellular trafficking mediator, can access the entire LNP lipid membrane to generate stable, anionic LNPs. PLD activity on vesicles with matched amounts of enzyme substrate is an order of magnitude lower, indicating that the LNP lipid membrane structure can be used to control enzyme interactions. This represents an opportunity to design enzyme-responsive LNP solutions for stimuli-responsive delivery and diseases where PLD is dysregulated.

  • 21.
    Benselfelt, Tobias
    et al.
    Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden.
    Shakya, Jyoti
    Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden.
    Rothemund, Philipp
    Robotic Materials Department Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany.
    Lindström, Stefan B
    Department of Management and Engineering Division of Solid Mechanics Linköping University Linköping 58183 Sweden.
    Piper, Andrew
    Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden.
    Winkler, Thomas E.
    Institute of Microtechnology & Center of Pharmaceutical Engineering Technische Universität Braunschweig 38106 Braunschweig Germany.
    Hajian, Alireza
    Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden.
    Wågberg, Lars
    Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden.
    Keplinger, Christoph
    Robotic Materials Department Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany;Paul M. Rady Department of Mechanical Engineering University of Colorado Boulder CO 80309 USA;Materials Science and Engineering Program University of Colorado Boulder CO 80309 USA.
    Hamedi, Mahiar Max
    Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden.
    Electrochemically Controlled Hydrogels with Electrotunable Permeability and Uniaxial Actuation2023In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 35, no 45, article id 2303255Article in journal (Refereed)
    Abstract [en]

    The unique properties of hydrogels enable the design of life-like soft intelligent systems. However, stimuli-responsive hydrogels still suffer from limited actuation control. Direct electronic control of electronically conductive hydrogels can solve this challenge and allow direct integration with modern electronic systems. An electrochemically controlled nanowire composite hydrogel with high in-plane conductivity that stimulates a uniaxial electrochemical osmotic expansion is demonstrated. This materials system allows precisely controlled shape-morphing at only −1 V, where capacitive charging of the hydrogel bulk leads to a large uniaxial expansion of up to 300%, caused by the ingress of ≈700 water molecules per electron–ion pair. The material retains its state when turned off, which is ideal for electrotunable membranes as the inherent coupling between the expansion and mesoporosity enables electronic control of permeability for adaptive separation, fractionation, and distribution. Used as electrochemical osmotic hydrogel actuators, they achieve an electroactive pressure of up to 0.7 MPa (1.4 MPa vs dry) and a work density of ≈150 kJ m−3 (2 MJ m−3 vs dry). This new materials system paves the way to integrate actuation, sensing, and controlled permeation into advanced soft intelligent systems.

  • 22.
    Benselfelt, Tobias
    et al.
    KTH Royal Inst Technol, Sweden.
    Shakya, Jyoti
    KTH Royal Inst Technol, Sweden.
    Rothemund, Philipp
    Max Planck Inst Intelligent Syst, Germany.
    Lindström, Stefan
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Piper, Andrew
    KTH Royal Inst Technol, Sweden.
    Winkler, Thomas E.
    Tech Univ Carolo Wilhelmina Braunschweig, Germany; Tech Univ Carolo Wilhelmina Braunschweig, Germany.
    Hajian, Alireza
    KTH Royal Inst Technol, Sweden.
    Wagberg, Lars
    KTH Royal Inst Technol, Sweden.
    Keplinger, Christoph
    Max Planck Inst Intelligent Syst, Germany; Univ Colorado, CO 80309 USA; Univ Colorado, CO 80309 USA.
    Hamedi, Mahiar Max
    KTH Royal Inst Technol, Sweden.
    Electrochemically Controlled Hydrogels with Electrotunable Permeability and Uniaxial Actuation2023In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 35, no 45, article id 2303255Article in journal (Refereed)
    Abstract [en]

    The unique properties of hydrogels enable the design of life-like soft intelligent systems. However, stimuli-responsive hydrogels still suffer from limited actuation control. Direct electronic control of electronically conductive hydrogels can solve this challenge and allow direct integration with modern electronic systems. An electrochemically controlled nanowire composite hydrogel with high in-plane conductivity that stimulates a uniaxial electrochemical osmotic expansion is demonstrated. This materials system allows precisely controlled shape-morphing at only -1 V, where capacitive charging of the hydrogel bulk leads to a large uniaxial expansion of up to 300%, caused by the ingress of & AP;700 water molecules per electron-ion pair. The material retains its state when turned off, which is ideal for electrotunable membranes as the inherent coupling between the expansion and mesoporosity enables electronic control of permeability for adaptive separation, fractionation, and distribution. Used as electrochemical osmotic hydrogel actuators, they achieve an electroactive pressure of up to 0.7 MPa (1.4 MPa vs dry) and a work density of & AP;150 kJ m-3 (2 MJ m-3 vs dry). This new materials system paves the way to integrate actuation, sensing, and controlled permeation into advanced soft intelligent systems. The unique properties of hydrogels enable the design of life-like soft intelligent systems. This work demonstrates how the swelling of hydrogels from cellulose nanofibrils and carbon nanotubes can be electrochemically controlled to achieve electrochemical osmotic actuation. This new materials system paves the way for integrated actuation, sensing, and controlled permeation in electrotunable separation membranes or soft actuators.image

    Download full text (pdf)
    fulltext
  • 23.
    Berggren, Magnus
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stavrinidou, Eleni
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ion Electron-Coupled Functionality in Materials and Devices Based on Conjugated Polymers2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, no 22, article id 1805813Article, review/survey (Refereed)
    Abstract [en]

    The coupling between charge accumulation in a conjugated polymer and the ionic charge compensation, provided from an electrolyte, defines the mode of operation in a vast array of different organic electrochemical devices. The most explored mixed organic ion-electron conductor, serving as the active electrode in these devices, is poly(3,4-ethyelenedioxythiophene) doped with polystyrelensulfonate (PEDOT:PSS). In this progress report, scientists of the Laboratory of Organic Electronics at Linkoping University review some of the achievements derived over the last two decades in the field of organic electrochemical devices, in particular including PEDOT:PSS as the active material. The recently established understanding of the volumetric capacitance and the mixed ion-electron charge transport properties of PEDOT are described along with examples of various devices and phenomena utilizing this ion-electron coupling, such as the organic electrochemical transistor, ionic-electronic thermodiffusion, electrochromic devices, surface switches, and more. One of the pioneers in this exciting research field is Prof. Olle Inganas and the authors of this progress report wish to celebrate and acknowledge all the fantastic achievements and inspiration accomplished by Prof. Inganas all since 1981.

    Download full text (pdf)
    fulltext
  • 24.
    Berggren, Magnus
    et al.
    Bell Laboratories, Murray Hill, USA.
    Dodabalapur, A
    Bell Laboratories, Murray Hill, USA.
    Bao, ZN
    Bell Laboratories, Murray Hill, USA.
    Slusher, RE
    Bell Laboratories, Murray Hill, USA.
    Solid-state droplet laser made from an organic blend with a conjugated polymer emitter1997In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 9, no 12, p. 968-Article in journal (Refereed)
    Abstract [en]

    Lasers based on organic materials have been produced with a wide range of resonator design and in a variety of geometries. A new strategy is presented for fabricating permanently near-spherical whispering gallery mode (WGM) lasers from a blend of PPV7 and PBD (see Figure) by a melting and resolidification process. The thresholds and quality factors of these resonators are estimated and discussed.

  • 25.
    Berggren, Magnus
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Granström, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Andersson, Mats
    Chalmers Tekniska Högskola.
    Ultraviolet electroluminescence from an organic light emitting diode1995In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 7, no 11, p. 900-903Article in journal (Refereed)
    Abstract [en]

    The extension of the emission region for organic LEDs into the ultraviolet region is reported. Emission at 394 nm is achieved by modifying the geometry of a device based on poly(octylphenyl)bithiophene (PTOPT) and poly(octylphenyl)oxadiazole (PBD) which had previously been shown to emit white light. Through changing the geometry the red and green emission peaks have been suppressed and the UV band (from the PBD) enhanced.

  • 26.
    Berggren, Magnus
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Gustafsson, Göran
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Andersson, Mats
    Chalmers Tekniska Högskola.
    Wennerström, Olof
    Chalmers Tekniska Högskola.
    Hjertberg, Thomas
    Chalmers Tekniska Högskola.
    Green Electroluminescence in Poly-(3-cyclohexylthiophene) light-emitting diodes1994In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 6, no 6, p. 488-490Article in journal (Refereed)
    Abstract [en]

    Electoluminescent devices based on polythiophene-system this films have been demonstrated that together span the entire visible range, steric hindrance being used to vary the bandgap between compunds. Poly-(3-cyclohexylthiophene), see Figures, exhibits green electoluminescence. Possible interpretations of this observation are proposed.

  • 27.
    Berggren, Magnus
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Richter-Dahlfors, Agneta
    Organic bioelectronics2007In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 19, no 20, p. 3201-3213Article, review/survey (Refereed)
    Abstract [en]

    During the last two decades, organic electroactive materials have been explored as the working material in a vast array of electronic devices, promising low-cost, flexible, and easily manufactured systems. The same materials also possess features that make them unique in bioelectronics applications, where electronic signals are translated into biosignals and vice versa. Here we review, in the broadest sense, the field of organic bioelectronics, describing the electronic properties and mechanisms of the organic electronic materials that are utilized in specific biological experiments.

  • 28.
    Berggren, Magnus
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nilsson, D
    Acreo Swedish ICT, Box 787, SE-601 17, Norrköping, Sweden..
    Dyreklev, P
    Acreo Swedish ICT, Box 787, SE-601 17, Norrköping, Sweden..
    Norberg, P
    Acreo Swedish ICT, Box 787, SE-601 17, Norrköping, Sweden..
    Nordlinder, S
    Acreo Swedish ICT, Box 787, SE-601 17, Norrköping, Sweden..
    Ersman, PA
    Acreo Swedish ICT, Box 787, SE-601 17, Norrköping, Sweden..
    Gustafsson, G
    Acreo Swedish ICT, Box 787, SE-601 17, Norrköping, Sweden..
    Wikner, Jacob
    Linköping University, Department of Electrical Engineering, Integrated Circuits and Systems. Linköping University, Faculty of Science & Engineering.
    Hederén, J
    DU Radio, Ericsson AB, SE-583 30, Linköping, Sweden..
    Hentzell, H
    Swedish ICT Research, Box 1151, SE-164 26, Kista, Sweden..
    Browsing the Real World using Organic Electronics, Si-Chips, and a Human Touch.2016In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, no 10, p. 1911-1916Article in journal (Refereed)
    Abstract [en]

    Organic electronics have been developed according to an orthodox doctrine advocating "all-printed, "all-organic and "ultra-low-cost primarily targeting various e-paper applications. In order to harvest from the great opportunities afforded with organic electronics potentially operating as communication and sensor outposts within existing and future complex communication infrastructures, high-quality computing and communication protocols must be integrated with the organic electronics. Here, we debate and scrutinize the twinning of the signal-processing capability of traditional integrated silicon chips with organic electronics and sensors, and to use our body as a natural local network with our bare hand as the browser of the physical world. The resulting platform provides a body network, i.e., a personalized web, composed of e-label sensors, bioelectronics, and mobile devices that together make it possible to monitor and record both our ambience and health-status parameters, supported by the ubiquitous mobile network and the resources of the "cloud".

    Download full text (pdf)
    fulltext
  • 29.
    Berggren, Magnus
    et al.
    Linköping University, Sweden.
    Simon, Daniel T.
    Linköping University, Sweden.
    Nilsson, David
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Dyreklev, Peter
    RISE, Swedish ICT, Acreo.
    Norberg, Petronella
    RISE, Swedish ICT, Acreo.
    Nordlinder, Staffan
    RISE, Swedish ICT, Acreo.
    Andersson Ersman, Peter
    RISE, Swedish ICT, Acreo.
    Gustafsson, Göran
    RISE, Swedish ICT, Acreo.
    Wikner, J. Jacob
    Linköping University, Sweden.
    Hederen, Jan
    Ericsson AB, Sweden.
    Hentzell, Hans
    RISE, Swedish ICT, Acreo.
    Browsing the Real World using Organic Electronics, Si-Chips, and a Human Touch2016In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, no 10, p. 1911-1916Article in journal (Refereed)
    Abstract [en]

    Two different e-labels were developed to explore the feasibility and to identify scientifi c and engineering challenges of the Real-World-Web platform. First was a printed biosensor e-label, comprising Si-chips with an array of different printegrated devices, and second, an e-label to explore the feasibility of transferring data, through the human body, between a mobile device and different distributed e-labels, adhered onto the body or onto dedicated devices and surfaces of one's ambience. The silicon chips utilized in e-labels, include analogue and digital circuitry to receive and handle sensory input, to perform signal processing, and to transmit information to antennas and displays. When used, the e-label is turned on, and a sample is then added onto the sensor area. The display provides simple instructions and updated information to the user. All data handling, electrical probing, and analysis of the sensor is performed by the Si-chips, and the sensing data is finally shown in the printed display. The second e-label exemplifies an ID-tag for body area networks (BAN) communication applications, which, in part, is manufactured and integrated in the same way as the first e-label, but with another choice of Si-chips and capacitive antennas.

    Download full text (pdf)
    fulltext
  • 30.
    Berglund, Lars
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Burgert, Ingo
    Swiss Fed Inst Technol, Inst Bldg Mat, Stefano Franscini Pl 3, CH-8093 Zurich, Switzerland.;EMPA Swiss Fed Labs Mat Testing & Res, Appl Wood Res Lab, CH-8600 Dubendorf, Switzerland..
    Bioinspired Wood Nanotechnology for Functional Materials2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 19, article id 1704285Article in journal (Refereed)
    Abstract [en]

    It is a challenging task to realize the vision of hierarchically structured nanomaterials for large-scale applications. Herein, the biomaterial wood as a large-scale biotemplate for functionalization at multiple scales is discussed, to provide an increased property range to this renewable and CO2-storing bioresource, which is available at low cost and in large quantities. The Progress Report reviews the emerging field of functional wood materials in view of the specific features of the structural template and novel nanotechnological approaches for the development of wood-polymer composites and wood-mineral hybrids for advanced property profiles and new functions.

  • 31.
    Björström Svanström, Cecilia M.
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Rysz, Jakub
    Institute of Physics, Jagiellonian University, Poland.
    Bernasik, Andrzej
    Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Poland.
    Budkowski, Andrzej
    Institute of Physics, Jagiellonian University, Poland.
    Zhang, Fengling
    nic Electronic (COE), Linköping University, Sweden.
    Inganäs, Olle
    IFM and Center of Organic Electronic (COE), Linköping University, Sweden.
    Andersson, Mats R.
    Department of Chemical and Biological Engineering, Chalmers University of Technology.
    Magnusson, Kjell
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Benson-Smith, Jessica
    Department of Physics, Imperial College, London, U.K..
    Nelson, Jenny
    Department of Physics, Imperial College, London, U.K..
    Moons, Ellen
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Device performance of APFO-3/PCBM solar cells with controlled morphology2009In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 21, no 43, p. 4398-4403Article in journal (Refereed)
    Abstract [en]

    Polymer/fullerene solar cells with three different device structures: A) diffuse bilayer, B) spontaneously formed multilayer, and C) vertically homogenous thin films, are fabricated. The photocurrent/voltage performance is compared and it is found that the self-stratified structure (B) yields the highest energy conversion efficiency.

  • 32.
    Bobbert, Peter A.
    et al.
    Eindhoven University of Technology, Netherlands.
    Sharma, Abhinav
    Eindhoven University of Technology, Netherlands.
    Mathijssen, Simon G. J.
    Eindhoven University of Technology, Netherlands; Philips Research Labs, Netherlands.
    Kemerink, Martijn
    Eindhoven University of Technology, Netherlands.
    de Leeuw, Dago M.
    Philips Research Labs, Netherlands.
    Operational Stability of Organic Field-Effect Transistors2012In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 24, no 9, p. 1146-1158Article in journal (Refereed)
    Abstract [en]

    Organic field-effect transistors (OFETs) are considered in technological applications for which low cost or mechanical flexibility are crucial factors. The environmental stability of the organic semiconductors used in OFETs has improved to a level that is now sufficient for commercialization. However, serious problems remain with the stability of OFETs under operation. The causes for this have remained elusive for many years. Surface potentiometry together with theoretical modeling provide new insights into the mechanisms limiting the operational stability. These indicate that redox reactions involving water are involved in an exchange of mobile charges in the semiconductor with protons in the gate dielectric. This mechanism elucidates the established key role of water and leads in a natural way to a universal stress function, describing the stretched exponential-like time dependence ubiquitously observed. Further study is needed to determine the generality of the mechanism and the role of other mechanisms.

  • 33. Bobek, Thomas
    et al.
    Mikuszeit, Nikolai
    Camarero, Julio
    Kyrsta, Stepan
    Yang, Lin
    Nino, Miguel Angel
    Hofer, Christian
    Gridneva, Lidia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Arvanitis, Dimitri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Miranda, Rodolfo
    De Miguel, Juan Jose
    Teichert, Christian
    Kurz, Heinrich
    Self-organized hexagonal patterns of independent magnetic nanodots2007In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 19, no 24, p. 4375-+Article in journal (Refereed)
    Abstract [en]

    A method for producing self-organised arrays of nanometric metallic dots is reported. It consists on developing first the nanodot pattern by ion erosion on a semiconductor cover film and transferring it to a previously buried metallic layer. This procedure has been applied to Co, and the ferromagnetic behaviour of the dots at room temperature is demonstrated.

  • 34.
    Bohme, O
    et al.
    Tech Univ Cottbus, D-03044 Cottbus, Germany Linkoping Univ, Swedish Sensor Ctr, S-58183 Linkoping, Sweden.
    Lloyd-Spets, Anita
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Schmeisser, D
    Tech Univ Cottbus, D-03044 Cottbus, Germany Linkoping Univ, Swedish Sensor Ctr, S-58183 Linkoping, Sweden.
    Nanoparticles as the active element of high-temperature metal-insulator-silicon carbide gas sensors2001In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 13, no 8, p. 597-+Article in journal (Refereed)
    Abstract [en]

    The sensor performance of MISiC (metal-insulator-silicon carbide) diode devices depends on their temperature pretreatment: an activation step at 600 degreesC leads to fast-responding devices with extraordinarily high signals but the devices fail when operated above 700 degreesC. The authors focus on the key role of nanoparticles in high-temperature gas sensor applications of these MISiC devices, presenting a model in which the interface dipole moment of nanoparticles is seen as the driving force and explaining the difference in response of capacitor-configuration and Schottky-diode-configuration devices.

  • 35. Bolin, M
    et al.
    Svennersten, K
    Nilsson, D
    Sawatdee, A
    RISE, Swedish ICT, Acreo.
    Jager, E W H
    Richter-Dahlfors, A
    Berggren, M
    Active Control of Epithelial Cell-Density Gradients Grown Along the Channel of an Organic Electrochemical Transistor2009In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 21, p. 4379-82Article in journal (Refereed)
  • 36.
    Boström, Hanna L. B.
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Emmerling, Sebastian
    Heck, Fabian
    Koschnick, Charlotte
    Jones, Andrew J.
    Cliffe, Matthew J.
    Al Natour, Rawan
    Bonneau, Mickaele
    Guillerm, Vincent
    Shekhah, Osama
    Eddaoudi, Mohamed
    Lopez-Cabrelles, Javier
    Furukawa, Shuhei
    Romero-Angel, Maria
    Marti-Gastaldo, Carlos
    Yan, Minliang
    Morris, Amanda J.
    Romero-Muniz, Ignacio
    Xiong, Ying
    Platero-Prats, Ana E.
    Roth, Jocelyn
    Queen, Wendy L.
    Mertin, Kalle S.
    Schier, Danielle E.
    Champness, Neil R.
    Yeung, Hamish H. -M.
    Lotsch, Bettina V.
    How Reproducible is the Synthesis of Zr-Porphyrin Metal-Organic Frameworks? An Interlaboratory Study2024In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 36, no 15, article id 2304832Article in journal (Refereed)
    Abstract [en]

    Metal-organic frameworks (MOFs) are a rapidly growing class of materials that offer great promise in various applications. However, the synthesis remains challenging: for example, a range of crystal structures can often be accessed from the same building blocks, which complicates the phase selectivity. Likewise, the high sensitivity to slight changes in synthesis conditions may cause reproducibility issues. This is crucial, as it hampers the research and commercialization of affected MOFs. Here, it presents the first-ever interlaboratory study of the synthetic reproducibility of two Zr-porphyrin MOFs, PCN-222 and PCN-224, to investigate the scope of this problem. For PCN-222, only one sample out of ten was phase pure and of the correct symmetry, while for PCN-224, three are phase pure, although none of these show the spatial linker order characteristic of PCN-224. Instead, these samples resemble dPCN-224 (disordered PCN-224), which has recently been reported. The variability in thermal behavior, defect content, and surface area of the synthesised samples are also studied. The results have important ramifications for field of metal-organic frameworks and their crystallization, by highlighting the synthetic challenges associated with a multi-variable synthesis space and flat energy landscapes characteristic of MOFs. It performed an interlaboratory study of the synthesis of the metal-organic frameworks (MOFs) PCN-222 and PCN-224. Ten participants independently synthesized the two MOFs and the products are analyzed, primarily by X-ray diffraction. The success rates are low (one-three samples corresponding to a pure sample of the correct phase), thus highlighting the problems with irreproducibility in MOF synthesis. image

  • 37.
    Campana, Alessandra
    et al.
    CNR-ISMN, Bologna, Italy; University of Bologna, Italy .
    Cramer, Tobias
    CNR-ISMN, Bologna, Italy.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology. null.
    Biscarini, Fabio
    CNR-ISMN, Bologna, Italy; University of Modena and Reggio Emilia, Italy .
    Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold2014In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, no 23, p. 3874-3878Article in journal (Refereed)
    Abstract [en]

    Organic electrochemical transistors are fabricated on a poly(L-lactide-co-glycolide) substrate. Fast and sensitive performance of the transistors allows recording of the electrocardiogram. The result paves the way for new types of bioelectronic interfaces with reduced invasiveness due to bioresorption and soft mechanical properties.

    Download full text (pdf)
    fulltext
  • 38.
    Cao, Danfeng
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Martinez, Jose Gabriel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Hara, Emilio Satoshi
    Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Biohybrid Variable-Stiffness Soft Actuators that Self-Create Bone2022In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, no 8, article id 2107345Article in journal (Refereed)
    Abstract [en]

    Inspired by the dynamic process of initial bone development, in which a soft tissue turns into a solid load-bearing structure, the fabrication, optimization, and characterization of bioinduced variable-stiffness actuators that can morph in various shapes and change their properties from soft to rigid are hereby presented. Bilayer devices are prepared by combining the electromechanically active properties of polypyrrole with the compliant behavior of alginate gels that are uniquely functionalized with cell-derived plasma membrane nanofragments (PMNFs), previously shown to mineralize within 2 days, which promotes the mineralization in the gel layer to achieve the soft to stiff change by growing their own bone. The mineralized actuator shows an evident frozen state compared to the movement before mineralization. Next, patterned devices show programmed directional and fixated morphing. These variable-stiffness devices can wrap around and, after the PMNF-induced mineralization in and on the gel layer, adhere and integrate onto bone tissue. The developed biohybrid variable-stiffness actuators can be used in soft (micro-)robotics and as potential tools for bone repair or bone tissue engineering.

    Download full text (pdf)
    fulltext
  • 39.
    Cao, Fangcheng
    et al.
    Univ South China, Sch Chem & Chem Engn, Lab Optoelect Technol Low Dimens Nanomat, Hengyang 421001, Peoples R China.
    Zhang, Ye
    Univ South China, Sch Chem & Chem Engn, Lab Optoelect Technol Low Dimens Nanomat, Hengyang 421001, Peoples R China.
    Wang, Hongqing
    Univ South China, Sch Chem & Chem Engn, Lab Optoelect Technol Low Dimens Nanomat, Hengyang 421001, Peoples R China.
    Khan, Karim
    Shenzhen Univ, Coll Phyiscs & Optoelect Engn, Shenzhen Engn Lab Phosphorene & Optoelect, Shenzhen 518060, Peoples R China.
    Tareen, Ayesha Khan
    Shenzhen Univ, Coll Phyiscs & Optoelect Engn, Shenzhen Engn Lab Phosphorene & Optoelect, Shenzhen 518060, Peoples R China.
    Qian, Wenjing
    Tongji Univ, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China.
    Zhang, Han
    Shenzhen Univ, Coll Phyiscs & Optoelect Engn, Shenzhen Engn Lab Phosphorene & Optoelect, Shenzhen 518060, Peoples R China.
    Ågren, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Recent Advances in Oxidation Stable Chemistry of 2D MXenes2022In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, no 13, article id 2107554Article, review/survey (Refereed)
    Abstract [en]

    As an emerging star of 2D nanomaterials, 2D transition metal carbides and nitrides, named MXenes, present a large potential in various research areas owing to their intrinsic multilayer structure and intriguing physico-chemical properties. However, the fabrication and application of functional MXene-based devices still remain challenging as they are prone to oxidative degradation under ambient environment. Within this review, the preparation methods of MXenes focusing on the recent investigations on their thermal structure-stability relationships in inert, oxidizing, and aqueous environments are systematically introduced. Moreover, the key factors that affect the oxidation of MXenes, such as, atmosphere, temperature, composition, microstructure, and aqueous environment, are reviewed. Based on different scenarios, strategies for avoiding or delaying the oxidation of MXenes are proposed to encourage the utilization of MXenes in complicated environments, especially at high temperature. Furthermore, the chemistry of MXene-derived oxides is analyzed, which can offer perspectives on the further design and fabrication of novel 2D composites with the unique structures of MXenes being preserved.

    Download full text (pdf)
    fulltext
  • 40.
    Chae, Soosang
    et al.
    Leibniz Inst Polymerforsch Dresden eV, Germany.
    Choi, Won Jin
    Univ Michigan, MI 48109 USA.
    Fotev, Ivan
    Helmholtz Zentrum Dresden Rossendorf eV, Germany; Tech Univ Dresden, Germany.
    Bittrich, Eva
    Leibniz Inst Polymerforsch Dresden eV, Germany.
    Uhlmann, Petra
    Leibniz Inst Polymerforsch Dresden eV, Germany; Univ Nebraska, NE 68588 USA.
    Schubert, Mathias
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Leibniz Inst Polymerforsch Dresden eV, Germany; Univ Nebraska, NE 68588 USA.
    Makarov, Denys
    Helmholtz Zentrum Dresden Rossendorf eV, Germany.
    Wagner, Jens
    Tech Univ Dresden, Germany; Tech Univ Dresden, Germany.
    Pashkin, Alexej
    Helmholtz Zentrum Dresden Rossendorf eV, Germany.
    Fery, Andreas
    Leibniz Inst Polymerforsch Dresden eV, Germany; Tech Univ Dresden, Germany.
    Stretchable Thin Film Mechanical-Strain-Gated Switches and Logic Gate Functions Based on a Soft Tunneling Barrier2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 41, article id 2104769Article in journal (Refereed)
    Abstract [en]

    Mechanical-strain-gated switches are cornerstone components of material-embedded circuits that perform logic operations without using conventional electronics. This technology requires a single material system to exhibit three distinct functionalities: strain-invariant conductivity and an increase or decrease of conductivity upon mechanical deformation. Herein, mechanical-strain-gated electric switches based on a thin-film architecture that features an insulator-to-conductor transition when mechanically stretched are demonstrated. The conductivity changes by nine orders of magnitude over a wide range of tunable working strains (as high as 130%). The approach relies on a nanometer-scale sandwiched bilayer Au thin film with an ultrathin poly(dimethylsiloxane) elastomeric barrier layer; applied strain alters the electron tunneling currents through the barrier. Mechanical-force-controlled electric logic circuits are achieved by realizing strain-controlled basic (AND and OR) and universal (NAND and NOR) logic gates in a single system. The proposed material system can be used to fabricate material-embedded logics of arbitrary complexity for a wide range of applications including soft robotics, wearable/implantable electronics, human-machine interfaces, and Internet of Things.

    Download full text (pdf)
    fulltext
  • 41.
    Chang, Jian
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Shi, Le
    Zhang, Miao
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Li, Renyuan
    Shi, Yifeng
    Yu, Xiaowen
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pang, Kanglei
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Qu, Liangti
    Wang, Peng
    Yuan, Jiayin
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Tailor-Made White Photothermal Fabrics: A Bridge between Pragmatism and Aesthetic2023In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 35, no 41, article id 2209215Article in journal (Refereed)
    Abstract [en]

    Maintaining human thermal comfort in the cold outdoors is crucial for diverse outdoor activities, e.g., sports and recreation, healthcare, and special occupations. To date, advanced clothes are employed to collect solar energy as a heat source to stand cold climates, while their dull dark photothermal coating may hinder pragmatism in outdoor environments and visual sense considering fashion. Herein, tailor-made white webs with strong photothermal effect are proposed. With the embedding of cesium–tungsten bronze (CsxWO3) nanoparticles (NPs) as additive inside nylon nanofibers, these webs are capable of drawing both near-infrared (NIR) and ultraviolet (UV) light in sunlight for heating. Their exceptional photothermal conversion capability enables 2.5–10.5 °C greater warmth than that of a commercial sweatshirt of six times greater thickness under different climates. Remarkably, this smart fabric can increase its photothermal conversion efficiency in a wet state. It is optimal for fast sweat or water evaporation at human comfort temperature (38.5 °C) under sunlight, and its role in thermoregulation is equally important to avoid excess heat loss in wilderness survival. Obviously, this smart web with considerable merits of shape retention, softness, safety, breathability, washability, and on-demand coloration provides a revolutionary solution to realize energy-saving outdoor thermoregulation and simultaneously satisfy the needs of fashion and aesthetics.

    Download full text (pdf)
    fulltext
  • 42. Chen, C.
    et al.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Burgert, I.
    Hu, L.
    Wood Nanomaterials and Nanotechnologies2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 28, article id 2006207Article in journal (Refereed)
  • 43.
    Chen, Desui
    et al.
    Zhejiang Univ, Peoples R China.
    Chen, Dong
    Zhejiang Univ, Peoples R China.
    Dai, Xingliang
    Zhejiang Univ, Peoples R China.
    Zhang, Zhenxing
    Zhejiang Univ, Peoples R China.
    Lin, Jian
    Zhejiang Univ, Peoples R China.
    Deng, Yunzhou
    Zhejiang Univ, Peoples R China.
    Hao, Yanlei
    Zhejiang Univ, Peoples R China.
    Zhang, Ci
    Zhejiang Univ, Peoples R China.
    Zhu, Haiming
    Zhejiang Univ, Peoples R China.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jin, Yizheng
    Zhejiang Univ, Peoples R China.
    Shelf-Stable Quantum-Dot Light-Emitting Diodes with High Operational Performance2020In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 32, article id 2006178Article in journal (Refereed)
    Abstract [en]

    Quantum-dot light-emitting diodes (QLEDs) promise a new generation of high-performance, large-area, and cost-effective electroluminescent devices for both display and solid-state lighting technologies. However, a positive ageing process is generally required to improve device performance for state-of-the-art QLEDs. Here, it is revealed that the in situ reactions induced by organic acids in the commonly used encapsulation acrylic resin lead to positive ageing and, most importantly, the progression of in situ reactions inevitably results in negative ageing, i.e., deterioration of device performance after long-term shelf storage. In-depth mechanism studies focusing on the correlations between the in situ chemical reactions and the shelf-ageing behaviors of QLEDs inspire the design of an electron-transporting bilayer, which delivers both improved electrical conductivity and suppressed interfacial exciton quenching. This material innovation enables red QLEDs exhibiting neglectable changes of external quantum efficiency (>20.0%) and ultralong operational lifetime (T-95: 5500 h at 1000 nits) after storage for 180 days. This work provides design principles for oxide electron-transporting layers to realize shelf-stable and high-operational-performance QLEDs, representing a new starting point for both fundamental studies and practical applications.

  • 44.
    Chen, Haiyang
    et al.
    Soochow Univ, Peoples R China.
    Sun, Weiwei
    Soochow Univ, Peoples R China.
    Zhang, Rui
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Huang, Yuting
    Soochow Univ, Peoples R China.
    Zhang, Ben
    Soochow Univ, Peoples R China.
    Zeng, Guang
    Soochow Univ, Peoples R China.
    Ding, Junyuan
    Soochow Univ, Peoples R China.
    Chen, Weijie
    Soochow Univ, Peoples R China.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Li, Yaowen
    Soochow Univ, Peoples R China; Soochow Univ, Peoples R China; Soochow Univ, Peoples R China.
    Li, Yongfang
    Soochow Univ, Peoples R China; Soochow Univ, Peoples R China; Chinese Acad Sci, Peoples R China.
    Heterogeneous Nucleating Agent for High-Boiling-Point Nonhalogenated Solvent-Processed Organic Solar Cells and Modules2024In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095Article in journal (Refereed)
    Abstract [en]

    High-boiling-point nonhalogenated solvents are superior solvents to produce large-area organic solar cells (OSCs) in industry because of their wide processing window and low toxicity; while, these solvents with slow evaporation kinetics will lead excessive aggregation of state-of-the-art small molecule acceptors (e.g. L8-BO), delivering serious efficiency losses. Here, a heterogeneous nucleating agent strategy is developed by grafting oligo (ethylene glycol) side-chains on L8-BO (BTO-BO). The formation energy of the obtained BTO-BO; while, changing from liquid in a solvent to a crystalline phase, is lower than that of L8-BO irrespective of the solvent type. When BTO-BO is added as the third component into the active layer (e.g. PM6:L8-BO), it easily assembles to form numerous seed crystals, which serve as nucleation sites to trigger heterogeneous nucleation and increase nucleation density of L8-BO through strong hydrogen bonding interactions even in high-boiling-point nonhalogenated solvents. Therefore, it can effectively suppress excessive aggregation during growth, achieving ideal phase-separation active layer with small domain sizes and high crystallinity. The resultant toluene-processed OSCs exhibit a record power conversion efficiency (PCE) of 19.42% (certificated 19.12%) with excellent operational stability. The strategy also has superior advantages in large-scale devices, showing a 15.03-cm2 module with a record PCE of 16.35% (certificated 15.97%). The heterogeneous nucleating agent (BTO-BO) is developed to suppress the excessive aggregation of L8-BO in high-boiling-point nonhalogenated solvents processing, achieving the active layer with high crystallinity and nano-scaled phase separation morphology. The resultant OSCs achieve record power conversion efficiencies of 19.42% (0.062-cm2) and 16.35% (15. 03-cm2) with excellent operational stabilities. image

  • 45. Chen, LC
    et al.
    Godovsky, D
    Linkoping Univ, IFM, S-58183 Linkoping, Sweden Univ Groningen, Stratingh Inst, NL-9747 AG Groningen, Netherlands Eindhoven Univ Technol, Lab Macromol & Organ Chem, NL-5600 MB Eindhoven, Netherlands Chalmers Univ Technol, Dept Organ Chem, S-41296 Gothenburg, Sweden Chalmers Univ Technol, Dept Polymer Technol, S-41296 Gothenburg, Sweden.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Hummelen, JC
    Linkoping Univ, IFM, S-58183 Linkoping, Sweden Univ Groningen, Stratingh Inst, NL-9747 AG Groningen, Netherlands Eindhoven Univ Technol, Lab Macromol & Organ Chem, NL-5600 MB Eindhoven, Netherlands Chalmers Univ Technol, Dept Organ Chem, S-41296 Gothenburg, Sweden Chalmers Univ Technol, Dept Polymer Technol, S-41296 Gothenburg, Sweden.
    Janssens, RAJ
    Linkoping Univ, IFM, S-58183 Linkoping, Sweden Univ Groningen, Stratingh Inst, NL-9747 AG Groningen, Netherlands Eindhoven Univ Technol, Lab Macromol & Organ Chem, NL-5600 MB Eindhoven, Netherlands Chalmers Univ Technol, Dept Organ Chem, S-41296 Gothenburg, Sweden Chalmers Univ Technol, Dept Polymer Technol, S-41296 Gothenburg, Sweden.
    Svensson, M
    Andersson, MR
    Polymer photovoltaic devices from stratified multilayers of donor-acceptor blends2000In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 12, no 18, p. 1367-1370Article in journal (Refereed)
  • 46. Chen, LC
    et al.
    Roman, LS
    Linkoping Univ, Appl Phys Lab, IFM, S-58183 Linkoping, Sweden Chalmers Univ Technol, Dept Organ Chem & Polymer Technol, SE-41296 Gothenburg, Sweden Eindhoven Univ Technol, Lab Macromol & Organ Chem, NL-5600 MB Eindhoven, Netherlands.
    Johansson, DM
    Svensson, M
    Andersson, MR
    Janssen, RAJ
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Excitation transfer in polymer photodiodes for enhanced quantum efficiency2000In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 12, no 15, p. 1110-+Article in journal (Refereed)
    Abstract [en]

    The realization of polymer solar cells is the driving force behind this research. In an idea inspired by photosynthesis, the authors have constructed efficient bilayer photodiodes by a well-chosen combination of conjugated polymers (see Figure) in the donor layer. Forster energy transfer within the donor layer allows the absorbed light to be channeled to the C-60 acceptor layer, improving the total photoconversion of the blend device.

  • 47.
    Chen, Shangshang
    et al.
    Hong Kong Univ Sci and Technol, Peoples R China; Hong Kong Univ Sci and Technol, Peoples R China.
    Wang, Yuming
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Lin
    Xi An Jiao Tong Univ, Peoples R China.
    Zhao, Jingbo
    Hong Kong Univ Sci and Technol, Peoples R China.
    Chen, Yuzhong
    Hong Kong Univ Sci and Technol, Peoples R China.
    Zhu, Danlei
    Chinese Acad Sci, Peoples R China.
    Yao, Huatong
    Hong Kong Univ Sci and Technol, Peoples R China.
    Zhang, Guangye
    Hong Kong Univ Sci and Technol, Peoples R China.
    Ma, Wei
    Xi An Jiao Tong Univ, Peoples R China.
    Friend, Richard H.
    Cavendish Lab, England.
    Chow, Philip C. Y.
    Hong Kong Univ Sci and Technol, Peoples R China; HKUST Shenzhen Res Inst, Peoples R China.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Yan, He
    Hong Kong Univ Sci and Technol, Peoples R China; HKUST Shenzhen Res Inst, Peoples R China.
    Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 45, article id 1804215Article in journal (Refereed)
    Abstract [en]

    State-of-the-art organic solar cells (OSCs) typically suffer from large voltage loss (V-loss) compared to their inorganic and perovskite counterparts. There are some successful attempts to reduce the V-loss by decreasing the energy offsets between the donor and acceptor materials, and the OSC community has demonstrated efficient systems with either small highest occupied molecular orbital (HOMO) offset or negligible lowest unoccupied molecular orbital (LUMO) offset between donors and acceptors. However, efficient OSCs based on a donor/acceptor system with both small HOMO and LUMO offsets have not been demonstrated simultaneously. In this work, an efficient nonfullerene OSC is reported based on a donor polymer named PffBT2T-TT and a small-molecular acceptor (O-IDTBR), which have identical bandgaps and close energy levels. The Fourier-transform photocurrent spectroscopy external quantum efficiency (FTPS-EQE) spectrum of the blend overlaps with those of neat PffBT2T-TT and O-IDTBR, indicating the small driving forces for both hole and electron transfer. Meanwhile, the OSCs exhibit a high electroluminescence quantum efficiency (EQE(EL)) of approximate to 1 x 10(-4), which leads to a significantly minimized nonradiative V-loss of 0.24 V. Despite the small driving forces and a low V-loss, a maximum EQE of 67% and a high power conversion efficiency of 10.4% can still be achieved.

    Download full text (pdf)
    fulltext
  • 48.
    Chen, Shangzhi
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Rossi, Stefano
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Shanker, Ravi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Cincotti, Giancarlo
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gamage, Sampath
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kuhne, Philipp
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Stanishev, Vallery
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Edberg, Jesper
    RISE Res Inst Sweden, Sweden.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tunable Structural Color Images by UV-Patterned Conducting Polymer Nanofilms on Metal Surfaces2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 33, article id 2102451Article in journal (Refereed)
    Abstract [en]

    Precise manipulation of light-matter interactions has enabled a wide variety of approaches to create bright and vivid structural colors. Techniques utilizing photonic crystals, Fabry-Perot cavities, plasmonics, or high-refractive-index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches impede their further development toward flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Here, a novel method is presented to generate structural color images based on monochromic conducting polymer films prepared on metallic surfaces via vapor phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable structural colors from violet to red. Together with grayscale photomasks this enables facile fabrication of high-resolution structural color images. Dynamic tuning of colored surfaces and images via electrochemical modulation of the polymer redox state is further demonstrated. The simple structure, facile fabrication, wide color gamut, and dynamic color tuning make this concept competitive for applications like multifunctional displays.

    Download full text (pdf)
    fulltext
  • 49.
    Chen, Shangzhi
    et al.
    Linköping University, Sweden.
    Rossi, Stefano
    Linköping University, Sweden.
    Shanker, Ravi
    Linköping University, Sweden.
    Cincotti, Giancarlo
    Linköping University, Sweden.
    Gamage, Sampath
    Linköping University, Sweden.
    Kühne, Philipp
    Linköping University, Sweden.
    Stanishev, Vallery
    Linköping University, Sweden.
    Engquist, Isak
    Linköping University, Sweden.
    Berggren, Magnus
    Linköping University, Sweden.
    Edberg, Jesper
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Darakchieva, Vanya
    Linköping University, Sweden.
    Jonsson, Magnus P
    Linköping University, Sweden.
    Tunable Structural Color Images by UV-Patterned Conducting Polymer Nanofilms on Metal Surfaces.2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 33, article id 2102451Article in journal (Refereed)
    Abstract [en]

    Precise manipulation of light-matter interactions has enabled a wide variety of approaches to create bright and vivid structural colors. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive-index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches impede their further development toward flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Here, a novel method is presented to generate structural color images based on monochromic conducting polymer films prepared on metallic surfaces via vapor phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable structural colors from violet to red. Together with grayscale photomasks this enables facile fabrication of high-resolution structural color images. Dynamic tuning of colored surfaces and images via electrochemical modulation of the polymer redox state is further demonstrated. The simple structure, facile fabrication, wide color gamut, and dynamic color tuning make this concept competitive for applications like multifunctional displays.

  • 50.
    Chen, Song
    et al.
    Soochow Univ, Suzhou Med Coll, Sch Biol & Basic Med Sci, Orthoped Inst,Dept Orthopaed Surg,Affiliated Hosp, Suzhou 215006, Jiangsu, Peoples R China..
    Liu, Dachuan
    Soochow Univ, Suzhou Med Coll, Sch Biol & Basic Med Sci, Orthoped Inst,Dept Orthopaed Surg,Affiliated Hosp, Suzhou 215006, Jiangsu, Peoples R China..
    Fu, Le
    Cent South Univ, Sch Mat Sci & Engn, Changsha 410017, Peoples R China..
    Ni, Bing
    Univ Konstanz, Dept Chem, Phys Chem, Univ str 10, D-78457 Constance, Germany..
    Chen, Zongkun
    Univ Konstanz, Dept Chem, Phys Chem, Univ str 10, D-78457 Constance, Germany..
    Knaus, Jennifer
    Univ Konstanz, Dept Chem, Phys Chem, Univ str 10, D-78457 Constance, Germany..
    Sturm, Elena V.
    Univ Konstanz, Dept Chem, Phys Chem, Univ str 10, D-78457 Constance, Germany.;Ludwigs Maximilians Univ Munich, Dept Geo & Environm Sci, Sect Crystallog, Theresienstr 41, D-80333 Munich, Germany..
    Wang, Bohan
    Cent South Univ, Sch Mat Sci & Engn, Changsha 410017, Peoples R China..
    Haugen, Havard Jostein
    Univ Oslo, Inst Clin Dent, Dept Biomat, POB 1109 Blindern, N-0376 Oslo, Norway..
    Yan, Hongji
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. KTH Royal Inst Technol, Karolinska Inst, Ctr Advancement Integrated Med & Engn Sci, AIMES, S-17177 Stockholm, Sweden.;Karolinska Inst, Dept Neurosci, S-17177 Stockholm, Sweden..
    Coelfen, Helmut
    Univ Konstanz, Dept Chem, Phys Chem, Univ str 10, D-78457 Constance, Germany..
    Li, Bin
    Soochow Univ, Suzhou Med Coll, Sch Biol & Basic Med Sci, Orthoped Inst,Dept Orthopaed Surg,Affiliated Hosp, Suzhou 215006, Jiangsu, Peoples R China.;Soochow Univ, Collaborat Innovat Ctr Hematol, Suzhou 215006, Jiangsu, Peoples R China.;Nantong Univ, Dept Orthopaed Surg, Affiliated Haian Hosp, Nantong 226600, Jiangsu, Peoples R China..
    Formation of Amorphous Iron-Calcium Phosphate with High Stability2023In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 35, no 33Article in journal (Refereed)
    Abstract [en]

    Amorphous iron-calcium phosphate (Fe-ACP) plays a vital role in the mechanical properties of teeth of some rodents, which are very hard, but its formation process and synthetic route remain unknown. Here, the synthesis and characterization of an iron-bearing amorphous calcium phosphate in the presence of ammonium iron citrate (AIC) are reported. The iron is distributed homogeneously on the nanometer scale in the resulting particles. The prepared Fe-ACP particles can be highly stable in aqueous media, including water, simulated body fluid, and acetate buffer solution (pH 4). In vitro study demonstrates that these particles have good biocompatibility and osteogenic properties. Subsequently, Spark Plasma Sintering (SPS) is utilized to consolidate the initial Fe-ACP powders. The results show that the hardness of the ceramics increases with the increase of iron content, but an excess of iron leads to a rapid decline in hardness. Calcium iron phosphate ceramics with a hardness of 4 GPa can be achieved, which is higher than that of human enamel. Furthermore, the ceramics composed of iron-calcium phosphates show enhanced acid resistance. This study provides a novel route to prepare Fe-ACP, and presents the potential role of Fe-ACP in biomineralization and as starting material to fabricate acid-resistant high-performance bioceramics.

    Download full text (pdf)
    fulltext
1234567 1 - 50 of 333
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf