Digitala Vetenskapliga Arkivet

Change search
Refine search result
1234567 1 - 50 of 8948
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France..
    Leopold, Alexander
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lundberg, Olof
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Shaheen, Rabia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Shope, David R.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, CH-1211 Geneva 23, Switzerland..
    et al.,
    Study of B-c(+) -> J/psi D-s(+) and B-c(+)-> J/psi D-s*(+)decays in pp collisions at root s=13 TeV with the ATLAS detector2022In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 8, article id 087Article in journal (Refereed)
    Abstract [en]

    A study of B-c(+) -> J/psi D-s(+) and B-c(+)-> J/psi D-s*(+) decays using 139 fb(-1) of in- tegrated luminosity collected with the ATLAS detector from root s = 13 TeV pp collisions at the LHC is presented. The ratios of the branching fractions of the two decays to the branching fraction of the B-c(+) -> J/psi pi(+) decay are measured: B(B-c(+) -> J/psi D-s(+))/B(B-c(+) -> J/psi pi(+)) = 2.76 +/- 0.47 and B(B-c(+)-> J/psi D-s*(+))/B(B-c(+) -> J/psi pi(+)) = 5.33 +/- 0.96. The ratio of the branching fractions of the two decays is found to be B(B-c(+)-> J/psi D-s*(+))/B(B-c(+) -> J/psi D-s(+)) = 1.93 +/- 0.26. For the B-c(+)-> J/psi D-s*(+) decay, the transverse polarization fraction, Gamma(+/-+/-)/Gamma, is measured to be 0.70 +/- 0.11. The reported uncertainties include both the statistical and systematic components added in quadrature. The precision of the measurements exceeds that in all previous studies of these decays. These results supersede those obtained in the earlier ATLAS study of the same decays with root s = 7 and 8 TeV pp collision data. A comparison with available theoretical predictions for the measured quantities is presented.

  • 2.
    Aakash, förnamn
    et al.
    Department of Electronics and Communication Engg., Birla Institute of Technology.
    Nordblad, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Mohan, Rajendra
    Department of Physics, National Institute of Technology Patna.
    Mukherjee, Samrat
    Department of Physics, National Institute of Technology Patna.
    Structural, magnetic and hyperfine characterizations of nanocrystalline Zn-Cd doped nickel ferrites2017In: Journal of Magnetism and Magnetic Materials, ISSN 0304-8853, E-ISSN 1873-4766, Vol. 441, p. 710-717Article in journal (Refereed)
    Abstract [en]

    In our present work, we have synthesized a series of Cd-Zn doped nickel ferrite ((Cd-0.5 Zn-x(x)) Ni0(.5)Fe(2)O(4); x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5) through standard chemical co-precipitation method to study the influence of diamagnetic ions (Cd, Zn) on the magnetic properties of ferrites. XRD and Raman spectroscopy were employed for the structural characterizations. The refinement of the X-ray diffractogram data augmented by the Williamson-Hall plots showed the presence of Cd2+ vacancies and a strained crystal structure. The vibrational spectroscopy indicated the presence of lower space-group symmetry and a distorted crystal structure. Magnetic measurements showed the samples possessed low magnetic anisotropy along with a canted spin structure. The Mossbauer measurements confirmed the cation distribution and gave evidence of super transferred hyperfine interactions arising due to canted spin structure of the system.

  • 3. Abanin, D. A.
    et al.
    Bardarson, Jens H.
    KTH, School of Engineering Sciences (SCI), Physics, Condensed Matter Theory.
    De Tomasi, G.
    Gopalakrishnan, S.
    Khemani, V
    Parameswaran, S. A.
    Pollmann, F.
    Potter, A. C.
    Serbyn, M.
    Vasseur, R.
    Distinguishing localization from chaos: Challenges in finite-size systems2021In: Annals of Physics, ISSN 0003-4916, E-ISSN 1096-035X, Vol. 427, article id 168415Article in journal (Refereed)
    Abstract [en]

    We re-examine attempts to study the many-body localization transition using measures that are physically natural on the ergodic/quantum chaotic regime of the phase diagram. Using simple scaling arguments and an analysis of various models for which rigorous results are available, we find that these measures can be particularly adversely affected by the strong finite-size effects observed in nearly all numerical studies of many-body localization. This severely impacts their utility in probing the transition and the localized phase. In light of this analysis, we discuss a recent study (?untajs et al., 2020) of the behaviour of the Thouless energy and level repulsion in disordered spin

  • 4.
    Abbas, Ghazanfar
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology. COMSATS Institute of Information Technology, Pakistan.
    Raza, Rizwan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology. COMSATS Institute of Information Technology, Pakistan.
    Ahmad, M. Ashfaq
    Khan, M. Ajmal
    Hussain, M. Jafar
    Ahmad, Mukhtar
    Aziz, Hammad
    Ahmad, Imran
    Batool, Rida
    Altaf, Faizah
    Zhu, Bin
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Electrochemical investigation of mixed metal oxide nanocomposite electrode for low temperature solid oxide fuel cell2017In: International Journal of Modern Physics B, ISSN 0217-9792, Vol. 31, no 27, article id 1750193Article in journal (Refereed)
    Abstract [en]

    Zinc-based nanostructured nickel (Ni) free metal oxide electrode material Zn-0.60/CU0.20Mn0.20 oxide (CMZO) was synthesized by solid state reaction and investigated for low temperature solid oxide fuel cell (LTSOFC) applications. The crystal structure and surface morphology of the synthesized electrode material were examined by XRD and SEM techniques respectively. The particle size of ZnO phase estimated by Scherer's equation was 31.50 nm. The maximum electrical conductivity was found to be 12.567 S/cm and 5.846 S/cm in hydrogen and air atmosphere, respectively at 600 degrees C. The activation energy of the CMZO material was also calculated from the DC conductivity data using Arrhenius plots and it was found to be 0.060 and 0.075 eV in hydrogen and air atmosphere, respectively. The CMZO electrode-based fuel cell was tested using carbonated samarium doped ceria composite (NSDC) electrolyte. The three layers 13 mm in diameter and 1 mm thickness of the symmetric fuel cell were fabricated by dry pressing. The maximum power density of 728.86 mW/cm(2) was measured at 550 degrees C.

  • 5.
    Abbas, Ghulam
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science. Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Johansson, Gustav
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Alay-e-Abbas, Syed Muhammad
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science. Computational Materials Modeling Laboratory, Department of Physics, Government College University, Faisalabad 38040, Pakistan.
    Shi, Yijun
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Larsson, J. Andreas
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Quasi Three-Dimensional Tetragonal SiC Polymorphs as Efficient Anodes for Sodium-Ion Batteries2023In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 6, no 17, p. 8976-8988Article in journal (Refereed)
    Abstract [en]

    In the present work, we investigate, for the first time, quasi 3D porous tetragonal silicon–carbon polymorphs t(SiC)12 and t(SiC)20 on the basis of first-principles density functional theory calculations. The structural design of these q3-t(SiC)12 and q3-t(SiC)20 polymorphs follows an intuitive rational approach based on armchair nanotubes of a tetragonal SiC monolayer where C–C and Si–Si bonds are arranged in a paired configuration for retaining a 1:1 ratio of the two elements. Our calculations uncover that q3-t(SiC)12 and q3-t(SiC)20 polymorphs are thermally, dynamically, and mechanically stable with this lattice framework. The results demonstrate that the smaller polymorph q3-t(SiC)12 shows a small band gap (∼0.59 eV), while the larger polymorph of q3-t(SiC)20 displays a Dirac nodal line semimetal. Moreover, the 1D channels are favorable for accommodating Na ions with excellent (>300 mAh g–1) reversible theoretical capacities. Thus confirming potential suitability of the two porous polymorphs with an appropriate average voltage and vanishingly small volume change (<6%) as anodes for Na-ion batteries.

    Download full text (pdf)
    fulltext
  • 6.
    Abd Mutalib, Nor Fariza
    et al.
    Univ Teknol Petronas, Ctr Res Ion Liquids, Dept Chem Engn, Seri Iskandar 32610, Perak, Malaysia..
    Bustam, Mohamad Azmi
    Univ Teknol Petronas, Ctr Res Ion Liquids, Dept Chem Engn, Seri Iskandar 32610, Perak, Malaysia..
    Wirzal, Mohd Dzul Hakim
    Univ Teknol Petronas, Ctr Res Ion Liquids, Dept Chem Engn, Seri Iskandar 32610, Perak, Malaysia..
    Idris, Alamin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    A Prediction for the Conversion Performance of H2S to Elemental Sulfur in an Ionic-Liquid-Incorporated Transition Metal Using COSMO-RS2022In: CHEMISTRY-SWITZERLAND, ISSN 2624-8549, Vol. 4, no 3, p. 811-826Article in journal (Refereed)
    Abstract [en]

    In the present study, the conversion performance of hydrogen sulfide (H2S) to elemental sulfur in ionic-liquid-incorporated transition metals (ILTMs) is predicted using a conductor-like screening model for realistic solvents (COSMO-RS). The predictions were made via the establishment of a correlation between the conversion performance and solubility of H2S in ionic liquids (ILs). All molecules involved were optimized at the DFT/TZVP/M06 computational level and imported on the COSMOtherm program at equimolar conditions. For validation purposes, the solubility of ILs was predicted at 1 bar pressure. Simple regression analysis was used to establish a relationship between the solubility and conversion performance of H2S. The results indicate that the solubility prediction of ILs is accurate (R-2 = 93.40%) with a p-value of 0.0000000777. Additionally, the conversion performance is generally found to be dependent on the solubility value. Furthermore, 1-butyl-3-methylimidazolium chloride [bmim][Cl] was chosen as the base IL for incorporating the transition metal, owing to its solubility and selectivity to H2S. The solubility trend of ILTMs is found to follow the following order: [bmim][NiCl3] > [bmim][FeCl4] > [bmim][CoCl3] > [bmim][CuCl3]. According to the viscosity measurements of ILTMs, [bmim][NiCl3] and [bmim][FeCl4] exhibited the highest and lowest viscosity values, respectively. Therefore, [bmim][FeCl4] is a promising ILTM owing to its higher solubility and low viscosity for the application studied.

  • 7.
    Abdalla, Hassan
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Charge and Energy Transport in Disordered Organic Semiconductors2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Improvement of the performance of organic disordered semiconductors (OSC) is driven by the understanding   of the underlying charge transport mechanisms and systematic exploitation thereof. There exists a multitude of materials and material systems based on polymers and small molecules with promising performance for use in organic light emitting diodes, photovoltaics, organic field-effect transistors and thermoelectrics. However, universal understanding of many classes of these materials has eluded researchers, due to their broad   spectrum of morphologies, molecular structures and electrical properties. Building on the large body of existing models, this thesis deals with charge transport phenomena from the perspective of transport energetics, by studying the interplay between a few but important concepts commonly accepted to play a crucial role in all  OSC materials; energetic disorder, charge carrier hopping and Coulomb interactions. The influence of these concepts on the energetic landscape through which charge carriers move and how this translates to experimentally observed transport phenomena are studied by a combination of experimental work, kinetic Monte Carlo (MC) simulations and empirical and analytical models.

    The universal scaling and collapse of the temperature and electric field dependence of the conductivity of PEDOT:PSS to a single curve is shown to be functionally equivalent to the scaling of the effective temperature, which describes the effect of field heating as a broadening of the charge carrier distribution. From numerical investigation of the energy relaxation, an empirical model is developed that relates the physical meaning   behind both concepts to the heat balance between Joule heating of the carrier distribution via the effective temperature and energy loss to the lattice. For this universal description to be applicable a strongly energy- dependent density of states (DOS) as well as Coulomb interactions and large carrier concentrations are needed.

    Chemical doping is a common way of improving charge transport in OSC and is also beneficial for energy transport, which combined leads to an increased thermoelectric power factor. The ensuing thermoelectric investigations not only showed the potential of these materials for use in thermoelectric generators, but are  also helpful in unraveling charge transport mechanism as they give direct insight into the energetics of a material. Interestingly, doped OSC exhibit the same universal power-law relationship between thermopower and conductivity, independent of material system or doping method, pointing towards a common energy and charge transport mechanism. In this thesis an analytical model is presented, which reproduces said universal power-law behavior and is able to attribute it to Variable Range Hopping (VRH) or a transition between Nearest Neighbour Hopping (NNH) and VRH at higher concentrations. This model builds on an existing three- dimensional hopping formalism that includes the effect of the attractive Coulomb potential of ionized dopants that leads to a broadening of the DOS. Here, this model is extended by including the energy offset between   host and dopant material and is positively tested against MC simulations and a set of thermoelectric measurements covering different material groups and doping mechanisms.

    Organic field effect transistors (OFETs) have become increasingly comparable in electrical mobility to their inorganic (silicon) counterparts. The spatial extent of charge transport in OFETs has been subject to debate since their inception with many experimental, numerical and analytical studies having been undertaken. Here it is shown that the common way of analyzing the dimensionality of charge transport in OFETs may be prone to misinterpretations. Instead, the results in this thesis suggest that charge transport in OFETs is, in fact, quasi- two-dimensional (2D) due to the confinement of the gate field in addition to a morphology-induced preferred in-plane direction of the transport. The inherently large charge carrier concentrations in OFETs in addition to   the quasi-2D confinement leads to increased Coulomb interaction between charge carriers as compared to bulk material, leading to a thermoelectric behavior that deviates from doped organic systems. At very large concentrations interesting charge transport phenomena are observed, including an unexpected simultaneous increase of the concentration dependence and the magnitude of the mobility, the appearance of a negative transconductance, indicating a transition to an insulating Mott-Hubbard phase. The experimental and   numerical results in this thesis relate these phenomena the intricacies of the interplay between Coulomb interactions, energetic disorder and charge carrier hopping.

    Download full text (pdf)
    Charge and Energy Transport in Disordered Organic Semiconductors
    Download (pdf)
    omslag
    Download (png)
    presentationsbild
  • 8.
    Abdalla, Hassan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Investigation of the dimensionality of charge transport in organic field effect transistors2017In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, no 8, article id 85301Article in journal (Refereed)
    Abstract [en]

    Ever since the first experimental investigations of organic field effect transistors (OFETs) the dimensionality of charge transport has alternately been described as two dimensional (2D) and three dimensional (3D). More recently, researchers have turned to an analytical analysis of the temperature-dependent transfer characteristics to classify the dimensionality as either 2D or 3D as well as to determine the disorder of the system, thereby greatly simplifying dimensionality investigations. We applied said analytical analysis to the experimental results of our OFETs comprising molecularly well-defined polymeric layers as the active material as well as to results obtained from kinetic Monte Carlo simulations and found that it was not able to correctly distinguish between 2D and 3D transports or give meaningful values for the disorder and should only be used for quasiquantitative and comparative analysis. We conclude to show that the dimensionality of charge transport in OFETs is a function of the interplay between transistor physics and morphology of the organic material.

    Download full text (pdf)
    fulltext
  • 9.
    Abdalla, Hassan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Zuo, Guangzheng
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Range and energetics of charge hopping in organic semiconductors2017In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 96, no 24, article id 241202Article in journal (Refereed)
    Abstract [en]

    The recent upswing in attention for the thermoelectric properties of organic semiconductors (OSCs) adds urgency to the need for a quantitative description of the range and energetics of hopping transport in organic semiconductors under relevant circumstances, i.e., around room temperature (RT). In particular, the degree to which hops beyond the nearest neighbor must be accounted for at RT is still largely unknown. Here, measurements of charge and energy transport in doped OSCs are combined with analytical modeling to reach the univocal conclusion that variable-range hopping is the proper description in a large class of disordered OSC at RT. To obtain quantitative agreement with experiment, one needs to account for the modification of the density of states by ionized dopants. These Coulomb interactions give rise to a deep tail of trap states that is independent of the materials initial energetic disorder. Insertion of this effect into a classical Mott-type variable-range hopping model allows one to give a quantitative description of temperature-dependent conductivity and thermopower measurements on a wide range of disordered OSCs. In particular, the model explains the commonly observed quasiuniversal power-law relation between the Seebeck coefficient and the conductivity.

  • 10.
    Abdel-Baset, T. A.
    et al.
    Taibah Univ, Fac Sci, Dept Phys, Yanbu 46423, Saudi Arabia.;Fayoum Univ, Fac Sci, Dept Phys, Al Fayyum 63514, Egypt..
    Abdel-Hafiez, Mahmoud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Effect of metal dopant on structural and magnetic properties of ZnO nanoparticles2021In: Journal of materials science. Materials in electronics, ISSN 0957-4522, E-ISSN 1573-482X, Vol. 32, no 12, p. 16153-16165Article in journal (Refereed)
    Abstract [en]

    Zn1-xRxO (R = Li, Mg, Cr, Mn, Fe and Cd) were obtained by using co-precipitation synthesis technique with constant weight percent of 3% from R ions. The phase composition, crystal structure, morphology, density functional theory (DFT), and magnetic properties were examined to comprehend the influence of Zn2+ partial substitution with R ions. X-ray diffraction shows that the ZnO lattice parameters were slightly affected by R doping and the doped sample crystallinity is enhanced. Our results show that introducing Cr, Mn and Fe along with Mg into ZnO induces a clear magnetic moment without any apparent distortion in the structural morphology. The spatial configuration of dopant atoms is determined from first-principles calculations, giving a better understanding of the position of the dopant atom responsible for the magnetism. The magnetic moments obtained from our calculations are 3.67, 5.0, and 4.33 mu B per dopant atom for Cr, Mn, and Fe, respectively, which agree with the experimental values. While Cr and Fe tend to form clusters, Mn has more propensity to remain evenly distributed within the system, avoiding cluster-derived magnetism.

  • 11.
    Abdeldaim, Aly H.
    et al.
    Chalmers Univ Technol, Dept Chem & Chem Engn, Energy & Mat, SE-41296 Gothenburg, Sweden;Univ Liverpool, Dept Chem, 51 Oxford St, Oxford L7 3NY, Merseyside, England;Univ Liverpool, Mat Innovat Factory, 51 Oxford St, Oxford L7 3NY, Merseyside, England;Sci & Technol Facil Council, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England.
    Badrtdinov, Danis, I
    Ural Fed Univ, Theoret Phys & Appl Math Dept, Ekaterinburg 620002, Russia.
    Gibbs, Alexandra S.
    Sci & Technol Facil Council, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England.
    Manuel, Pascal
    Sci & Technol Facil Council, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England.
    Walker, Helen C.
    Sci & Technol Facil Council, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England.
    Le, Manh Duc
    Wu, Chien Hung
    Sci & Technol Facil Council, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England.
    Wardecki, Dariusz
    Chalmers Univ Technol, Dept Chem & Chem Engn, Energy & Mat, SE-41296 Gothenburg, Sweden.
    Eriksson, Sten-Gunnar
    Chalmers Univ Technol, Dept Chem & Chem Engn, Energy & Mat, SE-41296 Gothenburg, Sweden.
    Kvashnin, Yaroslav
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Tsirlin, Alexander A.
    Ural Fed Univ, Theoret Phys & Appl Math Dept, Ekaterinburg 620002, Russia;Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, Expt Phys 6, D-86135 Augsburg, Germany.
    Nilsen, Göran J.
    Sci & Technol Facil Council, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England.
    Large easy-axis anisotropy in the one-dimensional magnet BaMo(PO4)(2)2019In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 100, no 21, article id 214427Article in journal (Refereed)
    Abstract [en]

    We present an extensive experimental and theoretical study on the low-temperature magnetic properties of the monoclinic anhydrous alum compound BaMo(PO4)(2). The magnetic susceptibility reveals strong antiferromagnetic interactions theta(CW) = -167 K and long-range magnetic order at T-N = 22 K, in agreement with a recent report. Powder neutron diffraction furthermore shows that the order is collinear, with the moments near the ac plane. Neutron spectroscopy reveals a large excitation gap Delta = 15 meV in the low-temperature ordered phase, suggesting a much larger easy-axis spin anisotropy than anticipated. However, the large anisotropy justifies the relatively high ordered moment, Neel temperature, and collinear order observed experimentally and is furthermore reproduced in a first-principles calculations by using a new computational scheme. We therefore propose BaMo(PO4)(2) to host S = 1 antiferromagnetic chains with large easy-axis anisotropy, which has been theoretically predicted to realize novel excitation continua.

  • 12.
    Abdel-Hafiez, Mahmoud
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials. Univ Sharjah, Res Inst Sci & Engn, Ctr Adv Mat Res, Sharjah, U Arab Emirates.;Univ Sharjah, Dept Appl Phys & Astron, Sharjah, U Arab Emirates..
    Shi, Li Fen
    Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.;Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.;Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China..
    Cheng, Jinguang
    Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.;Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.;Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China..
    Gorlova, Irina G.
    RAS, Kotelnikov Inst Radioengn & Elect, Moscow 125009, Russia..
    Zybtsev, Sergey G.
    RAS, Kotelnikov Inst Radioengn & Elect, Moscow 125009, Russia..
    Pokrovskii, Vadim Ya.
    RAS, Kotelnikov Inst Radioengn & Elect, Moscow 125009, Russia..
    Ao, Lingyi
    Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210000, Peoples R China.;Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210000, Peoples R China..
    Huang, Junwei
    Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210000, Peoples R China.;Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210000, Peoples R China..
    Yuan, Hongtao
    Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210000, Peoples R China.;Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210000, Peoples R China..
    Titov, Alexsandr N.
    Russian Acad Sci, MN Miheev Inst Met Phys, Ural Branch, Ekaterinburg 620990, Russia..
    Eriksson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Uppsala Univ, WISE Wallenberg Initiat Mat Sci, SE-75120 Uppsala, Sweden..
    Ong, Chin Shen
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    From Insulator to Superconductor: A Series of Pressure-Driven Transitions in Quasi-One-Dimensional TiS3 Nanoribbons2024In: Nano Letters, ISSN 1530-6984, E-ISSN 1530-6992, Vol. 24, no 18, p. 5562-5569Article in journal (Refereed)
    Abstract [en]

    Transition metal trichalcogenides (TMTCs) offer remarkable opportunities for tuning electronic states through modifications in chemical composition, temperature, and pressure. Despite considerable interest in TMTCs, there remain significant knowledge gaps concerning the evolution of their electronic properties under compression. In this study, we employ experimental and theoretical approaches to comprehensively explore the high-pressure behavior of the electronic properties of TiS3, a quasi-one-dimensional (Q1D) semiconductor, across various temperature ranges. Through high-pressure electrical resistance and magnetic measurements at elevated pressures, we uncover a distinctive sequence of phase transitions within TiS3, encompassing a transformation from an insulating state at ambient pressure to the emergence of an incipient superconducting state above 70 GPa. Our findings provide compelling evidence that superconductivity at low temperatures of ∼2.9 K is a fundamental characteristic of TiS3, shedding new light on the intriguing high-pressure electronic properties of TiS3 and underscoring the broader implications of our discoveries for TMTCs in general.

    Download full text (pdf)
    fulltext
  • 13.
    Abdel-Hafiez, Mahmoud
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China;Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA;Natl Univ Sci & Technol MISiS, Moscow 119049, Russia.
    Thiyagarajan, R.
    Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China.
    Majumdar, Arnab
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Ahuja, Rajeev
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Luo, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Vasiliev, A. N.
    Natl Univ Sci & Technol MISiS, Moscow 119049, Russia;Natl Res South Ural State Univ, Chelyabinsk 454080, Russia;Moscow MV Lomonosov State Univ, Moscow 119991, Russia.
    Maarouf, A. A.
    Imam Abdulrahman Bin Faisal Univ, Inst Res & Med Consultat, Dept Phys, Dammam 31441, Saudi Arabia.
    Zybtsev, S. G.
    RAS, Inst Radioengn & Elect, Moscow 125009, Russia.
    Pokrovskii, V. Ya
    RAS, Inst Radioengn & Elect, Moscow 125009, Russia.
    V-Zaitsev-Zotov, S.
    RAS, Inst Radioengn & Elect, Moscow 125009, Russia.
    Pavlovskiy, V. V.
    RAS, Inst Radioengn & Elect, Moscow 125009, Russia.
    Pai, Woei Wu
    Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 106, Taiwan;Natl Taiwan Univ, Dept Phys, Taipei 10610, Taiwan.
    Yang, W.
    Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China.
    Kulik, L. , V
    Pressure-induced reentrant transition in NbS3 phases: Combined Raman scattering and x-ray diffraction study2019In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 99, no 23, article id 235126Article in journal (Refereed)
    Abstract [en]

    We report the evolution of charge density wave states under pressure for two NbS3 phases: triclinic (phase I) and monoclinic (phase II) at room temperature. Raman and x-ray diffraction (XRD) techniques are applied. The x-ray studies on the monoclinic phase under pressure show a compression of the lattice at different rates below and above similar to 7 GPa but without a change in space group symmetry. The Raman spectra of the two phases evolve similarly with pressure; all peaks almost disappear in the similar to 6-8 GPa range, indicating a transition from an insulating to a metallic state, and peaks at new positions appear above 8 GPa. The results suggest suppression of the ambient charge-density waves and their subsequent recovery with new orderings above 8 GPa.

  • 14.
    Abdoshahi, Neda
    et al.
    Univ Leoben, Dept Mat Sci, Franz Josef Str 18, A-8700 Leoben, Austria..
    Dehghani, Mohammad
    Mat Ctr Leoben Forsch GmbH, Roseggerstr 12, A-8700 Leoben, Austria..
    Ruban, Andrei V.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Structures. Mat Ctr Leoben Forsch GmbH, Roseggerstr 12, A-8700 Leoben, Austria..
    Friak, Martin
    Czech Acad Sci, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic.;Brno Univ Technol, Fac Mech Engn, Inst Mat Sci & Engn, Tech 2896-2, CZ-61669 Brno, Czech Republic..
    Sob, Mojmir
    Czech Acad Sci, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic.;Masaryk Univ, Fac Sci, Dept Chem, Kotlarska 2, CZ-61137 Brno, Czech Republic..
    Spitaler, Juergen
    Mat Ctr Leoben Forsch GmbH, Roseggerstr 12, A-8700 Leoben, Austria..
    Holec, David
    Univ Leoben, Dept Mat Sci, Franz Josef Str 18, A-8700 Leoben, Austria..
    On the energetics of the cubic-to-hexagonal transformations in TiAl plus Mo alloys2022In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 240, article id 118268Article in journal (Refereed)
    Abstract [en]

    Diffusionless transformations allow access to metastable phases and enrich the materials design portfolio. They are well suited for atomistic modeling; nonetheless, they are challenging when involving disordered systems or alloys with complex compositions. This work presents a comprehensive study of transforma-tion energetics between bcc and hcp ordered and disordered phases in the TiAl+Mo model alloy system. By employing two complementary techniques I. VASP-SQS, and II. EMTO-CPA, we can show that chemical disorder flattens the energy landscape but may introduce a small barrier. Unlike that, the energetics of ordered phases are barrier-less and hence would suggest a spontaneous transformation. Finally, we show that Mo stabilizes the bcc phases, leading to a barrier-less transformation hcp -+ bcc for both ordered and disordered states when Mo content exceeds ti 12 at.%.

  • 15.
    Abdul-Hafidh, Esam H.
    et al.
    Taibah Univ Yanbu, Phys Dept, Fac Sci, King Khalid Rd, Al Amoedi 51000, Yanbu El Bahr, Saudi Arabia..
    Abdel-Hafiez, Mahmoud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials.
    Incompressibility of face-centered cubic structure in Metallic Nanosolids2021In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. 96, no 12, article id 125717Article in journal (Refereed)
    Abstract [en]

    A simple and general theoretical model has been constructed to study the bulk modulus 'B' of FCC nanoparticles and nanostructures. In order to justify the experimental results of the anomalous behavior of B in nanosolids, this method considers the competing effect of both size and shape of a nanoparticle on B. In this work, the relationship between B and the surface energy has been derived based on the dangling bond energy model. The results show that B depends on size, shape and structure of FCC nanocrystalline solids (nanosolids). Our results show that as the shape changes from spherical to deformed, nanosolids become incompressible and B increases as the size decreases. The obtained theoretical results were compared with the experimental predictions for silver, gold and nickel. A very good agreement between theoretical results and experiments was found for silver and nickel. While in gold, we noticed a deviation from the experiment, which is attributed to extreme deformation of the nanogold.

  • 16.
    Abdullaev, Fatkhulla
    et al.
    Physical-Technical Institute, Uzbek Academy of Sciences, Tashkent, Uzbekistan; Instituto de Fisica Teorica, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil.
    Ögren, Magnus
    Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
    Sørensen, M. P.
    Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
    Faraday waves in quasi-one-dimensional superfluid Fermi-Bose mixtures2013In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 87, no 2, article id 023616Article in journal (Refereed)
    Abstract [en]

    The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered: a variation of the fermion-boson scattering length and the boson-boson scattering length. We predict the properties of the generated Faraday patterns and study the parameter regions where they can be excited.

  • 17. Aberg, D
    et al.
    Hallberg, T
    Svensson, B G
    Lindstrom, J L
    Linnarsson, M K
    KTH, School of Information and Communication Technology (ICT).
    Ultra-shallow thermal donor formation in oxygen-containing ambient1998In: Physica status solidi. B, Basic research, ISSN 0370-1972, E-ISSN 1521-3951, Vol. 210, p. 527-532Article in journal (Refereed)
    Abstract [en]

    Czochralski-grown phosphorus-doped (approximate to 2 x 10(14) cm(-3)) silicon wafers have been annealed in nitrogen, wet nitrogen, argon, oxygen, and vacuum ambients at 470 degrees C for times up to 500 h. Sample characterization was made with capacitance-voltage, four-point probe, DLTS, thermally stimulated capacitance, admittance spectroscopy, secondary ion-mass spectrometry, and Fourier transform infrared spectroscopy. This study finds a strong relation between the previously reported ultra-shallow thermal donors (USTDs) and shallow thermal donors (STDs), and it is shown that the net concentration of thermally formed donors is independent on annealing ambient within the experimental accuracy. It was found that the majority of formed donors for long anneals consisted of either STDs or USTDs, however, it was found that oxygen-containing ambient is indispensable for forming USTDs.

  • 18. Aberg, D
    et al.
    Linnarsson, M K
    KTH, School of Information and Communication Technology (ICT).
    Svensson, B G
    Hallberg, T
    Lindstrom, J L
    Ultrashallow thermal donor formation in silicon by annealing in ambient oxygen1999In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 85, p. 8054-8059Article in journal (Refereed)
    Abstract [en]

    Czochralski-grown silicon wafers doped with phosphorus (similar to 10(14) cm(-3)) have been annealed in nitrogen, wet nitrogen, oxygen, argon, and vacuum ambients at 470 degrees C for times up to 500 h. Sample characterization was made using predominantly electrical techniques such as admittance spectroscopy and thermally stimulated capacitance measurements but also secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy were employed. In all samples, an increasing concentration of free carrier electrons is observed with increasing annealing time, reaching a maximum of similar to 10(16) cm(-3) at 100 h. For durations in excess of 100 h gradual decrease of the free electron concentration takes place except for the samples treated in wet nitrogen and oxygen atmospheres, which display donors stable even after 200 h. These stable centers are found to have shallower donor level positions in the energy band gap (similar to 25 meV below the conduction band edge E-c) than those of the centers formed in vacuum, argon, and nitrogen atmospheres (similar to 35 meV below E-c). The latter centers are associated with the well-established shallow thermal donors (STDs) while the origin of the former ones, which are labeled ultrashallow thermal donors (USTDs) is less known. However, on the basis of a wealth of experimental results we show that the USTDs are most likely perturbated STDs modified through interaction with fast-in diffusing oxygen species, possibly oxygen dimers. Further, comparison between the electrical data and the SIMS measurements reveals unambiguously that neither the STD nor the USTD centers involve nitrogen, in contrast to recent suggestions in the literature. (C) 1999 American Institute of Physics. [S0021-8979(99)06512-3].

  • 19.
    Abergel, David
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Mucha-Kruczynski, Marcin
    Infrared absorption of closely aligned heterostructures of monolayer and bilayer graphene with hexagonal boron nitride2015In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, no 11, article id 115430Article in journal (Refereed)
    Abstract [en]

    We model optical absorption of monolayer and bilayer graphene on hexagonal boron nitride for the case of closely aligned crystal lattices. We show that perturbations with different spatial symmetry can lead to similar absorption spectra. We suggest that a study of the absorption spectra as a function of the doping for an almost completely full first miniband is necessary to extract meaningful information about the moire characteristics from optical absorption measurements and to distinguish between various theoretical proposals for the physically realistic interaction. Also, for bilayer graphene, the ability to compare spectra for the opposite signs of electric-field-induced interlayer asymmetry might provide additional information about the moire parameters.

  • 20.
    Abouelkomsan, Ahmed
    Stockholm University, Faculty of Science, Department of Physics.
    Geometry, Topology and Emergence in Moiré Systems2022Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The experimental discovery of correlated insulators and superconductivity in highly tunable Van der Waals heterostructures, such as twisted bilayer graphene, has highlighted the role of moiré patterns, resulting from tiny relative twists or lattice constant mismatches, in realizing strongly correlated physics. A key ingredient is the existence of very narrow flat bands where interaction effects are dominant.

    In this thesis and the accompanying papers, we theoretically study a number of experimentally relevant moiré systems. We generally show that strong interactions combined with the geometry and the topology of the underlying flat bands can result in a plethora of distinct quantum many-body phases ranging from topological order to multiferroicity. Of particular importance are lattice analogues of the fractional quantum Hall effect known as fractional Chern insulators. They harbour peculiar phenomena such as fractional charge and statistics and provide a route towards realizing topologically ordered states at high temperature. A ubiquitous feature of the many-body physics is the emergence of unique particle-hole dualities driven by the geometry of band-projected interactions.

    Download full text (pdf)
    Geometry, Topology and Emergence in Moiré Systems
    Download (jpg)
    Omslagsframsida
  • 21.
    Abouelkomsan, Ahmed
    Stockholm University, Faculty of Science, Department of Physics.
    Strongly Correlated Moiré Materials2021Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Recent advances in materials science have established Moiré materials as a new highly tunable and versatile form of quantum matter. When two dimensional atomic layers are brought into proximity, a tiny relative twist or a slight lattice mismatch produces Moiré patterns manifested in a superlattice structure with a lattice constant that is much larger than the lattice constants of the constituent layers. The new length scale has dramatic consequences for the underlying properties. A particular distinctive feature of Moiré materials is the emergence of nearly flat bands upon tuning external parameters such as the twist angle or the applied gate voltage. In a flat band, the kinetic energy is quenched, and interactions are enhanced bringing us to the realm of strongly correlated systems. A prime example of Moiré materials is twisted bilayer graphene, formed by taking two graphene layers and twisting them relative to each other.

    On the other hand, a famous class of interaction-induced phases of matter are fractional quantum Hall states and their lattice analogues known as fractional Chern insulators. These topologically ordered phases represent a departure from the conventional Landau symmetry breaking classification of matter, seen in the absence of local order parameters and the presence of global topological properties insensitive to local perturbations. Identifying and manufacturing materials that could host fractional Chern insulator states has a great potential for technological use.

    In this thesis, we provide the necessary background required for understanding the results of the accompanying papers [Phys. Rev. Lett. 124, 106803 & Phys. Rev. Lett. 126, 026801]. The theory of fractional Chern insulators is discussed followed by an introduction to the Moiré models used. In the two accompanying papers, we theoretically study a number of flat band Moiré materials aiming at identifying the possible phases that occur at fractional band fillings using a combination of analytical and numerical techniques. By reformulating the problem in terms of holes instead of electrons, it's possible to identify a variety of emergent weakly interacting Fermi liquids from an initial strongly interacting problem. In addition, our findings also include several high temperature fractional Chern insulator states at different fillings without external magnetic field.

  • 22.
    Abouelkomsan, Ahmed
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson Bergholtz, Emil
    Stockholm University, Faculty of Science, Department of Physics.
    Chatterjee, Shubhayu
    Department of Physics, University of California, Berkeley. .
    Multiferroicity and Topology in Twisted Transition Metal DichalcogenidesManuscript (preprint) (Other academic)
    Abstract [en]

    Van der Waals heterostructures have recently emerged as an exciting platform for investigating the effects of strong electronic correlations, including various forms of magnetic or electrical orders. Here, we perform an unbiased exact diagonalization study of the effects of interactions on topological flat bands of twisted transition metal dichalcogenides (TMDs) at odd integer fillings. We find that Chern insulator phases, expected from interaction-induced spin and valley polarization of the bare band structure, are quite fragile, and give way to spontaneous multiferroic order -- coexisting ferroelectricity and ferromagnetism, in presence of long-range Coulomb repulsion. We provide a simple real-space picture to understand the phase diagram as a function of interaction range and strength. Our findings establish twisted TMDs as a novel and highly tunable platform for multiferroicity, with potential applications to electrical control of magnetism. 

  • 23.
    Abouelkomsan, Ahmed
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Yang, Kang
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson Bergholtz, Emil
    Stockholm University, Faculty of Science, Department of Physics.
    Quantum metric induced phases in Moiré materials2023In: Physical Review Research, E-ISSN 2643-1564, Vol. 5, no 1, article id L012015Article in journal (Refereed)
    Abstract [en]

    We show that, quite generally, quantum geometry plays a major role in determining the low-energy physics in strongly correlated lattice models at fractional band fillings. We identify limits in which the Fubini-Study metric dictates the ground states and show that this is highly relevant for Moiré materials leading to symmetry breaking and interaction driven Fermi liquids. This phenomenology stems from a remarkable interplay between the quantum geometry and interaction which is absent in continuum Landau levels but generically present in lattice models where these terms tend to destabilize, e.g., fractional Chern insulators. We explain this as a consequence of the fundamental asymmetry between electrons and holes for band projected normal ordered interactions, as well as from the perspective of a self-consistent Hartree-Fock calculation. These basic insights about the role of the quantum metric, when dominant, turn an extremely strongly coupled problem into an effectively weakly coupled one, and may also serve as a guiding principle for designing material setups. We argue that this is a key ingredient for understanding symmetry-breaking phenomena recently observed in Moiré materials.

  • 24. Abou-Hamad, E.
    et al.
    Babaa, M. -R
    Bouhrara, M.
    Kim, Y.
    Saih, Y.
    Dennler, S.
    Mauri, F.
    Basset, J. -M
    Goze-Bac, C.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Structural properties of carbon nanotubes derived from (13)C NMR2011In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 84, no 16, p. 165417-Article in journal (Refereed)
    Abstract [en]

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single-and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position d. We show that the isotropic line follows the relation d = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position d is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  • 25. Abou-Hamad, E.
    et al.
    Kim, Y.
    Bouhrara, M.
    Saih, Y.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Luzzi, D. E.
    Goze-Bac, C.
    NMR strategies to study the local magnetic properties of carbon nanotubes2012In: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 407, no 4, p. 740-742Article in journal (Refereed)
    Abstract [en]

    The local magnetic properties of the one dimensional inner space of the nanotubes are investigated using C-13 nuclear magnetic resonance spectroscopy of encapsulated fullerene molecules inside single walled carbon nanotubes. Isotope engineering and magnetically purified nanotubes have been advantageously used on our study to discriminate between the different diamagnetic and paramagnetic shifts of the resonances. Ring currents originating from the pi electrons circulating on the nanotube, are found to actively screen the applied magnetic field by -36.9 ppm. Defects and holes in the nanotube walls cancel this screening locally. What is interesting, that at high magnetic fields, the modifications of the NMR resonances of the molecules from free to encapsulated can be exploited to determine some structural characteristics of the surrounding nanotubes, never observed experimentally. (C) 2011 Elsevier B.V. All rights reserved.

  • 26.
    Abou-Hamad, Edy
    et al.
    Universite Montpellier II.
    Kim, Y
    University of Pennsylvania.
    Talyzin, Alexandr
    Umeå University, Faculty of Science and Technology, Physics.
    Goze-Bac, Christophe
    Universite Montpellier II.
    Luzzi, David
    University of Pennsylvania.
    Rubio, Angelo
    University of Basque Country.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Physics.
    Hydrogenation of C-60 in Peapods: Physical Chemistry in Nano Vessels2009In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 20, p. 8583-8587Article in journal (Refereed)
    Abstract [en]

    Hydrogenation of C-60 molecules inside SWNT was achieved by direct reaction with hydrogen gas at elevated pressure and temperature. Evidence for the C-60 hydrogenation in peapods is provided by isotopic engineering with specific enrichment of encapsulated species and high resolution C-13 and H-1 NMR spectroscopy with the observation of characteristic diamagnetic and paramagnetic shifts of the NMR lines and the appearance of sp(3) carbon resonances. We estimate that approximately 78% of the C-60 molecules inside SWNTs are hydrogenated to an average degree of 14 hydrogen atoms per C-60 molecule. As a consequence, the rotational dynamics of the encapsulated C60Hx molecules is clearly hindered. Our successful hydrogenation experiments open completely new roads to understand and control confined chemical reactions at the nano scale

  • 27.
    Abou-Hamad, Edy
    et al.
    Universite Montpellier 2, France.
    Kim, Y.
    University of Pennsylvania, Philadelphia.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Boesch, D.
    University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory.
    Aloni, S.
    University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory.
    Zettl, Alex
    University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory.
    Rubio, Angelo
    Universidad del Pas Vasco UPV/EHU.
    Luzzi, David E.
    University of Pennsylvania, Philadelphia.
    Goze-Bac, Christophe
    CNRS Universit Montpellier 2.
    Molecular dynamics and phase transition in one-dimensional crystal of C60 encapsulated inside single wall carbon nanotubes2009In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 3, no 12, p. 3878-3883Article in journal (Refereed)
    Abstract [en]

    One-dimensional crystals of 25% 13C-enriched C60 encapsulated inside highly magnetically purified SWNTs were investigated by following the temperature dependence of the 13C NMR line shapes and the relaxation rates from 300 K down to 5 K. High-resolution MAS techniques reveal that 32% of the encapsulated molecules, so-called the C60α, are blocked at room temperature and 68%, labeled C60β, are shown to reversly undergo molecular reorientational dynamics. Contrary to previous NMR studies, spin−lattice relaxation time reveals a phase transition at 100 K associated with the changes in the nature of the C60β dynamics. Above the transition, the C60β exhibits continuous rotational diffusion; below the transition, C60β executes uniaxial hindered rotations most likely along the nanotubes axis and freeze out below 25 K. The associated activation energies of these two dynamical regimes are measured to be 6 times lower than in fcc-C60, suggesting a quiet smooth orientational dependence of the interaction between C60β molecules and the inner surface of the nanotubes.

  • 28.
    Aboulfadl, Hisham
    et al.
    Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden.
    Keller, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Larsen, Jes K
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Thuvander, Mattias
    Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden.
    Riekehr, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Edoff, Marika
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Platzer Björkman, Charlotte
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Microstructural Characterization of Sulfurization Effects in Cu(In,Ga)Se-2 Thin Film Solar Cells2019In: Microscopy and Microanalysis, ISSN 1431-9276, E-ISSN 1435-8115, Vol. 25, no 2, p. 532-538Article in journal (Refereed)
    Abstract [en]

    Surface sulfurization of Cu(In,Ga)Se-2 (CIGSe) absorbers is a commonly applied technique to improve the conversion efficiency of the corresponding solar cells, via increasing the bandgap towards the heterojunction. However, the resulting device performance is understood to be highly dependent on the thermodynamic stability of the chalcogenide structure at the upper region of the absorber. The present investigation provides a high-resolution chemical analysis, using energy dispersive X-ray spectrometry and laser-pulsed atom probe tomography, to determine the sulfur incorporation and chemical re-distribution in the absorber material. The post-sulfurization treatment was performed by exposing the CIGSe surface to elemental sulfur vapor for 20 min at 500 degrees C. Two distinct sulfur-rich phases were found at the surface of the absorber exhibiting a layered structure showing In-rich and Ga-rich zones, respectively. Furthermore, sulfur atoms were found to segregate at the absorber grain boundaries showing concentrations up to similar to 7 at% with traces of diffusion outwards into the grain interior.

  • 29. Aboulfadl, Hisham
    et al.
    Sopiha, Kostiantyn, V
    Keller, Jan
    Larsen, Jes K.
    Scragg, Jonathan J. S.
    Persson, Clas
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Thuvander, Mattias
    Edoff, Marika
    Alkali Dispersion in (Ag,Cu)(In,Ga)Se-2 Thin Film Solar Cells-Insight from Theory and Experiment2021In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 13, no 6, p. 7188-7199Article in journal (Refereed)
    Abstract [en]

    Silver alloying of Cu(In,Ga)Se-2 absorbers for thin film photovoltaics offers improvements in open-circuit voltage, especially when combined with optimal alkali-treatments and certain Ga concentrations. The relationship between alkali distribution in the absorber and Ag alloying is investigated here, combining experimental and theoretical studies. Atom probe tomography analysis is implemented to quantify the local composition in grain interiors and at grain boundaries. The Na concentration in the bulk increases up to similar to 60 ppm for [Ag]/([Ag] + [Cu]) = 0.2 compared to similar to 20 ppm for films without Ag and up to similar to 200 ppm for [Ag]/([Ag] + [Cu]) = 1.0. First-principles calculations were employed to evaluate the formation energies of alkali-on-group-I defects (where group-I refers to Ag and Cu) in (Ag,Cu)(In,Ga)Se-2 as a function of the Ag and Ga contents. The computational results demonstrate strong agreement with the nanoscale analysis results, revealing a clear trend of increased alkali bulk solubility with the Ag concentration. The present study, therefore, provides a more nuanced understanding of the role of Ag in the enhanced performance of the respective photovoltaic devices.

  • 30.
    Abou-Ras, Daniel
    et al.
    Helmholtz Zentrum Berlin Mat & Energie GmbH, Hahn Meitner Pl 1, D-14109 Berlin, Germany..
    Wagner, Sigurd
    Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA..
    Stanbery, Bill J.
    Siva Power, 5102 Calle Sol, Santa Clara, CA 95054 USA..
    Schock, Hans-Werner
    Helmholtz Zentrum Berlin Mat & Energie GmbH, Hahn Meitner Pl 1, D-14109 Berlin, Germany..
    Scheer, Roland
    Martin Luther Univ Halle Wittenberg, Inst Phys, Photovolta Grp, D-06120 Halle, Saale, Germany..
    Stolt, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. Solibro Res AB, Sweden.
    Siebentritt, Susanne
    Univ Luxembourg, Phys & Mat Sci Res Unit, Lab Photovolta, Belvaux, Luxembourg..
    Lincot, Daniel
    CNRS EDF Chim Paristech PSL, Inst Photovolta Ile France IPVF, IRDEP, 6 Quai Watier, F-78401 Chatou, France..
    Eberspacher, Chris
    Solopower Syst Inc, Corp & Mfg Headquarters, 6308 North Marine Dr, Portland, OR 97203 USA..
    Kushiya, Katsumi
    Solar Frontier KK, 123-1 Shimo Kawairi, Atsugi, Kanagawa, Japan..
    Tiwari, Ayodhya N.
    Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland..
    Innovation highway: Breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint2017In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 633, p. 2-12Article in journal (Refereed)
    Abstract [en]

    The present contribution is a summary of an event that was organized as a special evening session in Symposium V "Chalcogenide Thin-Film Solar Cells" at the E-MRS 2016 Spring Meeting, Lille, France. The presentations in this session were given by the coauthors of this paper. These authors present retrospectives of key developments in the field of Cu(In,Ga)(S,Se)(2) solar cells as they themselves had witnessed in their laboratories or companies. Also, anecdotes are brought up, which captured interesting circumstances in that evolutionary phase of the field. Because the focus was on historical perspectives rather than a comprehensive review of the field, recent developments intentionally were not addressed.

  • 31. Abrikosov, I. A.
    et al.
    Olsson, Pär
    Department of Materials and Mechanics of Components, EDF RandD, les Renardières, Moret-sur-Loing, France.
    Ponomareva, A. V.
    Correlation between electronic structure, magnetism and physical properties of Fe-Cr alloys: Ab initio modeling2008In: MATERIALS ISSUES FOR GENERATION IV SYSTEMS: STATUS, OPEN QUESTIONS AND CHALLENGES, 2008, p. 153-168Conference paper (Refereed)
    Abstract [en]

    We review recent developments in the field of ab initio electronic structure theory and its application for studies of phase stability of alloy systems. Basic ideas behind state-of-the-art techniques for first-principles theoretical simulations of the phase stabilities and properties of intermetallic compounds and alloys based on the density functional theory are outlined. We concentrate on methods that allow for an efficient treatment of disorder effects, and illustrate their predictive power for the case of Fe-Cr system. We show that in the ferromagnetic alloys there are peculiarities of the mixing enthalpy in the low-Cr region in the bee phase. Thus the stability of the Cr containing steels stems from the negative mixing enthalpy at low concentrations of chromium. We explain the effect by the strong concentration dependence of the interatomic interactions in Fe-Cr system.

  • 32.
    Abrikosov, Igor A.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Steneteg, Peter
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Hultberg, Lasse
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Hellman, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Yu Mosyagin, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Department of Theoretical Physics and Quantum Technologies, National Research, Technological University MISiS, Moscow, Russia.
    Lugovskoy, Andrey V.
    Department of Theoretical Physics and Quantum Technologies, National Research, Technological University MISiS, Russia.
    Barannikova, Svetlana A.
    Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Science, Tomsk, Russia; Department of Physics and Engineering, Tomsk State University, Tomsk, Russia.
    Finite Temperature, Magnetic, and Many-Body Effects in Ab Initio Simulations of Alloy Thermodynamics2013In: TMS2013 Supplemental Proceedings, John Wiley & Sons, 2013, p. 617-626Chapter in book (Refereed)
    Abstract [en]

    Ab initio electronic structure theory is known as a useful tool for prediction of materials properties. However, majority of simulations still deal with calculations in the framework of density functional theory with local or semi-local functionals carried out at zero temperature. We present new methodological solution.s, which go beyond this approach and explicitly take finite temperature, magnetic, and many-body effects into account. Considering Ti-based alloys, we discuss !imitations of the quasiharmonic approximation for the treatment of lattice vibrations, and present an accurate and easily extendable method to calculate free ,energies of strongly anharmonic solids. We underline the necessity to going beyond the state-of-the-art techniques for the determination of effective cluster interactions in systems exhibiting mctal-to-insulator transition, and describe a unified cluster expansion approach developed for this class of materials. Finally, we outline a first-principles method, disordered local moments molecular dynamics, for calculations of thermodynamic properties of magnetic alloys, like Cr1-x,.AlxN, in their high-temperature paramagnetic state. Our results unambiguously demonstrate importance of finite temperature effects in theoretical calculations ofthermodynamic properties ofmaterials.

  • 33.
    ABUDULIMU, ABASI
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Effectof Growth Time, Growth Temperature and Light  on Growth Mechanism of C60 nanorods2013Independent thesis Advanced level (degree of Master (Two Years)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    In this thesis work C60 nanorods were produced by Liquid-Liquid Interfacial Precipitation method (LLIP) assisted with 10 s of weak sonication. Ethanol and m-dichlorobenzene were used as poor and good solvents of C60, respectively. Five different temperatures, 4, 10, 20, 30, 40 and 50                         , were chosen as growth temperatures of different samples to investigate the effect of temperature on the grown structures. Different samples were prepared in the dark and under the light with various growth time to determine the effect of light and growth time on growth of C60 nanorods. The characterization of the grown C60 nanorods were conducted by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The result of characterization indicated that the sonication introduced smaller C60 nanostructures; light irradiation and temperature increase (till 40 C0) during the growth time resulted in nanorods with smaller diameter, whereas the long growth time lead to the increase of the diameter of C60 nanorods. The as-grown C60 nanorods synthesized at different conditions possess an hcp crystal structure.    

    Download full text (pdf)
    Effect of Growth Time, Growth Temperature and Light on Growth Mechanism of C60 nanorods
  • 34. Achtziger, N
    et al.
    Grillenberger, J
    Witthuhn, W
    Linnarsson, M K
    KTH, School of Information and Communication Technology (ICT).
    Janson, M S
    Svensson, B G
    Hydrogen passivation of silicon carbide by low-energy ion implantation1998In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 73, p. 945-947Article in journal (Refereed)
    Abstract [en]

    implantation of deuterium is performed to investigate the mobility and passivating effect of hydrogen in epitaxial alpha-SiC (polytypes 4H and 6H). To avoid excessive damage and the resulting trapping of hydrogen, the implantation is performed with low energy (600 eV H-2(2)+). The H-2 depth profile is analyzed by secondary ion mass spectrometry. Electrical properties are measured by capacitance-voltage profiling and admittance spectroscopy. In p-type SIG, hydrogen diffuses on a mu m scale even at room temperature and effectively passivates accepters. In n-type SiC, the incorporation of H is suppressed and no passivation is detected. (C) 1998 American Institute of Physics.

  • 35. Achtziger, N
    et al.
    Hulsen, C
    Janson, M
    Linnarsson, M K
    KTH, School of Information and Communication Technology (ICT).
    Svensson, B G
    Witthuhn, W
    Formation of passivated layers in p-type SiC by low energy ion implantation of hydrogen2000In: SILICON CARBIDE AND RELATED MATERIALS - 1999 PTS, 1 & 2, 2000, Vol. 338-3, p. 933-936Conference paper (Refereed)
    Abstract [en]

    The mobility of hydrogen and its passivating effect on accepters in p-type SiC is investigated. Hydrogen (isotope H-1 or H-2 alternatively) is implanted at temperatures between 300 K and 680 K with low energy (300 eV per atom) in order to minimize implantation damage. The depth profiles of 2H and of passivated accepters correspond closely. Up to 500 K, a fully passivated layer with a well defined thickness is formed. Its depth ton the order of 1 micrometer) is investigated as a function of doping level and hydrogen fluence. At higher temperatures, the incorporation drastically increases, but the electrical passivation is partial only. Qualitative explanations are given.

  • 36. Achtziger, N
    et al.
    Hulsen, C
    Witthuhn, W
    Linnarsson, M K
    KTH, School of Information and Communication Technology (ICT).
    Janson, M
    Svensson, B G
    Mobility passivating effect and thermal stability of hydrogen in silicon carbide1998In: Physica status solidi. B, Basic research, ISSN 0370-1972, E-ISSN 1521-3951, Vol. 210, p. 395-399Article in journal (Refereed)
    Abstract [en]

    The diffusion and passivating effect of hydrogen (isotope H-2) in epitaxial p-type SiC is studied by secondary ion mass spectrometry and capacitance-voltage profiling on Schottky diodes. The incorporation of hydrogen is achieved by low-energy ion implantation. The influence of implantation energy, temperature and subsequent annealing is presented. Annealing experiments with an electric field applied reveal a reactivation of passivated accepters and a H+ ion drift at a surprisingly low temperature of 530 K.

  • 37. Adak, Vivekananda
    et al.
    Roychowdhury, Krishanu
    Stockholm University, Faculty of Science, Department of Physics.
    Das, Sourin
    Spin-polarized voltage probes for helical edge state: A model study2022In: Physica. E, Low-Dimensional systems and nanostructures, ISSN 1386-9477, E-ISSN 1873-1759, Vol. 139, article id 115125Article in journal (Refereed)
    Abstract [en]

    Theoretical models of a spin-polarized voltage probe (SPVP) tunnel-coupled to the helical edge states (HES) of a quantum spin Hall system (QSHS) are studied. Our first model of the SPVP comprises Np spin-polarized modes (subprobes), each of which is locally tunnel-coupled to the HES, while the SPVP, as a whole, is subjected to a self-consistency condition ensuring zero average current on the probe. We carry out a numerical analysis which shows that the optimal situation for reading off spin-resolved voltage from the HES depends on the interplay of the probe-edge tunnel-coupling and the number of modes in the probe (Np). We further investigate the stability of our findings by introducing Gaussian fluctuations in (i) the tunnel-coupling between the subprobes and the HES about a chosen average value and (ii) spin-polarization of the subprobes about a chosen direction of the net polarization of SPVP. We also perform a numerical analysis corresponding to the situation where four such SPVPs are implemented in a self-consistent fashion across a ferromagnetic barrier on the HES and demonstrate that this model facilitates the measurements of spin-resolved four-probe voltage drops across the ferromagnetic barrier. As a second model, we employ the edge state of a quantum anomalous Hall state (QAHS) as the SPVP which is tunnel-coupled over an extended region with the HES. A two-dimensional lattice simulation for the quantum transport of the proposed device setup comprising a junction of QSHS and QAHS is considered and a feasibility study of using the edge of the QAHS as an efficient spin-polarized voltage probe is carried out including disorder.

  • 38.
    Adalsteinsson, Sigurbjörn Már
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Moro, Marcos V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Moldarev, Dmitrii
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics. Moscow Engn Phys Inst, Dept Mat Sci, Moscow 115409S, Russia..
    Droulias, Sotiris
    Uppsala University, Disciplinary Domain of Science and Technology, För teknisk-naturvetenskapliga fakulteten gemensamma enheter, Tandem Laboratory.
    Wolff, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics. Moscow Engn Phys Inst, Dept Mat Sci, Moscow 115409S, Russia..
    Primetzhofer, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Sweden.;Uppsala Univ, Tandem Lab, Box 529, S-75120 Uppsala, Sweden..
    Correlating chemical composition and optical properties of photochromic rare-earth oxyhydrides using ion beam analysis2020In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN 0168-583X, E-ISSN 1872-9584, Vol. 485, p. 36-40Article in journal (Refereed)
    Abstract [en]

    We relate the photochromic response of rare-earth oxyhydride thin films (YHO, NdHO, GdHO and DyHO) synthesized by reactive magnetron sputtering to chemical composition. Depth profiles of the sample composition are extracted by a multi-method ion beam analysis approach. The total areal density of the thin films is deduced from Rutherford Backscattering Spectrometry while coincidence Time-of-Flight/Energy Elastic Recoil Detection Analysis provides depth-profiles of the film constituents. High-resolution depth profiles of the concentration of light species, i.e. hydrogen and oxygen, are additionally extracted from Nuclear Reaction Analysis and Elastic Backscattering Spectrometry, respectively. The photochromic response of the films is measured by optical transmission spectroscopy before and after illumination. We report photochromic properties for YHO, NdHO, GdHO and DyHO for chemical compositions described by the formula REH2-delta O delta in the range of 0.45 < 6 < 1.5.

  • 39.
    Adam, Rania Elhadi
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Chalangar, Ebrahim
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering. School of Information Technology, Halmstad University, Halmstad, Sweden.
    Pirhashemi, Mahsa
    Department of Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pettersson, Håkan
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering. School of Information Technology, Halmstad University, Halmstad, Sweden; Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Willander, Magnus
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities2019In: RSC Advances, E-ISSN 2046-2069, Vol. 9, no 52, p. 30585-30598Article in journal (Refereed)
    Abstract [en]

    High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials.

    Download full text (pdf)
    fulltext
  • 40.
    Adamczyk, Krzysztof
    et al.
    Department of Materials Science and Engineering, Trondheim, Norway.
    Søndenå, Rune
    Department for Solar Energy, IFE, Kjeller, Norway.
    Stokkan, Gaute
    Sintef Materials and Chemistry, Trondheim, Norway.
    Looney, Erin
    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
    Jensen, Mallory
    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
    Lai, Barry
    Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA.
    Rinio, Markus
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Di Sabatino, Marisa
    Department of Materials Science and Engineering, NTNU, A. Getz vei 2B, NO-7491 Trondheim, Norway.
    Recombination activity of grain boundaries in high-performance multicrystalline Si during solar cell processing2018In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 123, no 5, p. 1-6, article id 055705Article in journal (Refereed)
    Abstract [en]

    In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.

    Download full text (pdf)
    fulltext
  • 41.
    Adamczyk, Krzysztof
    et al.
    Department of Materials Science and Engineering, Trondheim, Norway.
    Søndenå, Rune
    Department for Solar Energy, IFE, Kjeller, Norway.
    You, Chang Chuan
    Department for Solar Energy, IFE, Kjeller, Norway.
    Stokkan, Gaute
    Sintef Materials and Chemistry, Trondheim, Norway.
    Lindroos, Jeanette
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Rinio, Markus
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Di Sabatino, Marisa
    Department of Materials Science and Engineering, Trondheim, Norway.
    Recombination Strength of Dislocations in High-Performance Multicrystalline/Quasi-Mono Hybrid Wafers During Solar Cell Processing2018In: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 215, no 2, article id 1700493Article in journal (Refereed)
    Abstract [en]

    Wafers from a hybrid silicon ingot seeded in part for High Performance Multicrystalline, in part for a quasi-mono structure, are studied in terms of the effect of gettering and hydrogenation on their final Internal Quantum Efficiency.The wafers are thermally processed in different groups – gettered and hydrogenated. Afterwards, a low temperature heterojunction with intrinsic thin layer cell process is applied to minimize the impact of temperature. Such procedure made it possible to study the effect of different processing steps on dislocation clusters in the material using the Light Beam Induced Current technique with a high spatial resolution. The dislocation densities are measuredusing automatic image recognition on polished and etched samples. The dislocation recombination strengths are obtained by a correlation of the IQE with the dislocation density according to the Donolato model. Different clusters are compared after different process steps. The results show that for the middle of the ingot, the gettering step can increase the recombination strength of dislocations by one order of magnitude. A subsequent passivation with layers containing hydrogen can lead to a decrease in the recombination strength to levels lower than in ungettered samples.

    Download full text (pdf)
    fulltext
  • 42. Adeyev, V.M.
    et al.
    Vasylyev, M.O.
    Pogorelov, Ye.
    Features of auger-investigations of ultrathin periodic metallic film structures2006In: Metallofizika i novejsie tehnologii, ISSN 1024-1809, Vol. 28, no 2, p. 193-200Article in journal (Refereed)
    Abstract [en]

    In the presented work the applicability of Auger Electron Spectroscopy for studying layered metal film structures Fe/(Au, Cu)/Tb on Si substrate with thickness of layers up to 30 Å was shown. It was ascertained that Fe layer is interacting with Si substrate and as a result Fe-silicide is formed. The thickness of buffer layers aimed to protect Fe layer appeared to be insufficient for complete suppression of silicide formation

    Download full text (pdf)
    fulltext
  • 43.
    Adiba, Adiba
    et al.
    Aligarh Muslim Univ, Dept Phys, Aligarh 202002, India..
    Pandey, Vidit
    Aligarh Muslim Univ, Dept Phys, Aligarh 202002, India..
    Ahmad, Tufail
    Aligarh Muslim Univ, Dept Phys, Aligarh 202002, India..
    Nehla, Priyanka
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering.
    Munjal, Sandeep
    Natl Forens Sci Univ, Ponda 403401, Goa, India.;Univ Delhi, Dept Phys & Astrophys, New Delhi 110007, India..
    Multilevel resistive switching with negative differential resistance in Al/ NiO/ZnFe2O4/ITO ReRAM device2023In: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 654, article id 414742Article in journal (Refereed)
    Abstract [en]

    The Resistive Random Access Memory devices have emerged as an energy-efficient alternative to Von Neumann computers by enabling in-memory computing. Here we demonstrate bipolar resistive switching in thin films of Nickel oxide (NiO) and Zinc Ferrite (ZFO) using a simple Al/NiO/ZFO/ITO configuration, making them a possible candidate for the next generation memory devices. The fabricated device demonstrated excellent resistive switching behavior with high endurance for up to 1000 cycles, good retention for more than 10(4) s, and a good resistance ratio of HRS to LRS similar to 10(2). Ohmic conduction was observed in the LRS, while in the HRS, along with ohmic conduction, space charge limited current (SCLC) and Schottky mechanisms were observed. Besides the LRS and HRS, a number of stable intermediate resistance states can also be obtained during the RESET process using different stop voltages, which makes the current device a multilevel resistive switching device.

  • 44.
    Adlmann, Franz Alois
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Opportunities and challenges of surface scattering at next generation neutron sources2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Complex fluids and soft matter are ubiquitously found in the world and all contacts in life are made over surfaces. To describe the mechanical behavior of such substances, rheological methods are used. Flow instabilities are a big challenge in rheology since they will be reflected in the macroscopic variables probed, like e. g. the viscosity. Many such discontinuities may actually originate at the surface. Investigating the properties of liquids in contact with the surface under mechanical load is the main course of the thesis. Neutron reflectometry and GISANS are perfect tools in this context to access the solid liquid interfaces, since they can penetrate many engineering materials and show a comparably large scattering potential at deuterated samples. In this thesis shear was applied on a model solution and neutron scattering techniques were used to investigate the structure under load. The focus was set on the development of the measurement methods themselves to enable new scientific insights in the future. First, by stroboscopic measurements the flux limitations are overcome for oscillatory rheology. By reintegration in the post processing it is shown that kinetic measurements with neutrons are possible with a time resolution below one millisecond. Second, the transformation of grazing incidence data from the laboratory system into q-space is strongly non-linear resulting in a need for re-binning. In this thesis a universal tool has been developed for this purpose. Finally, there is an ongoing discussion on depth sensitive neutron scattering experiments from solid-liquid boundaries. By using emission densities we show that such experiments face severe limitations due to the low absorption cross section of the neutron.

    Download full text (pdf)
    fulltext
    Download (jpg)
    presentationsbild
  • 45.
    Adlmann, Franz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Busch, S.
    Vacaliuc, B.
    Nelson, A.
    Ankner, J.F.
    Browning, J.F.
    Parizzi, A.
    Bilheux, J. -K.
    Halbert, C.E.
    Korolkovas, Airidas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Wolff, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Normalization of stroboscopic neutron scattering experiments2018In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN 0168-583X, E-ISSN 1872-9584, Vol. 434, p. 61-65Article in journal (Refereed)
    Abstract [en]

    Neutron scattering studies of kinetic processes are often flux limited. For processes which can be repeated many times, this can be mitigated by stroboscopic reintegration. The recorded scattering events are assigned to different time slices of the process and corresponding slices from all repetitions are summed up. The normalization of such data with respect to the incident beam spectrum can be challenging since the incident neutron flux may not necessarily be evenly distributed over all time slices. In this paper, we discuss how this can result in misleading information and we expand on a technique to amend these issues.

  • 46.
    Adlmann, Franz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Herbel, Jörg
    ETH Zürich, Zürich, Switzerland.
    Korolkovas, Airidas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Bliersbach, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Toperverg, Boris
    Petersburg Nuclear Physics Institute, Gatchina, Russia.
    Van Herck, Walter
    Forschungszentrum Jülich GmbH, Garching, Germany.
    Pálsson, Gunnar K.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Kitchen, Brian
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Wolff, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Depth resolved grazing incidence neutron scattering experiments from semi-infinite interfaces: a statistical analysis of the scattering contributions2018In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 30, article id 165901Article in journal (Refereed)
    Abstract [en]

    Grazing incidence neutron scattering experiments offer surface sensitivity by reflecting from an interface at momentum transfers close to total external reflection. Under these conditions the penetration depth is strongly non-linear and may change by many orders of magnitude. This fact imposes severe challenges for depth resolved experiments, since the brilliance of neutron beams is relatively low in comparison to e.g. synchrotron radiation. In this article we use probability density functions to calculate the contribution of scattering at different distances from an interface to the intensities registered on the detector. Our method has the particular advantage that the depth sensitivity is directly extracted from the scattering pattern itself. Hence for perfectly known samples exact resolution functions can be calculated and visa versa. We show that any tails in the resolution function, e.g. Gaussian shaped, hinders depth resolved experiments. More importantly we provide means for a descriptive statistical analysis of detector images with respect to the scattering contributions and show that even for perfect resolution near surface scattering is hardly accessible.

  • 47.
    Adranno, Brando
    et al.
    Stockholm Univ, Dept Mat & Environm Chem, Svante Arrhenius vag 16C, S-10691 Stockholm, Sweden..
    Renier, Olivier
    Stockholm Univ, Dept Mat & Environm Chem, Svante Arrhenius vag 16C, S-10691 Stockholm, Sweden..
    Bousrez, Guillaume
    Stockholm Univ, Dept Mat & Environm Chem, Svante Arrhenius vag 16C, S-10691 Stockholm, Sweden.;Linköping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrköping, Sweden..
    Paterlini, Veronica
    Stockholm Univ, Dept Mat & Environm Chem, Svante Arrhenius vag 16C, S-10691 Stockholm, Sweden..
    Baryshnikov, Glib V.
    Smetana, Volodymyr
    Stockholm Univ, Dept Mat & Environm Chem, Svante Arrhenius vag 16C, S-10691 Stockholm, Sweden..
    Tang, Shi
    Umeå Univ, Organ Photon & Elect Grp, S-90187 Umeå, Sweden..
    Ågren, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.
    Metlen, Andreas
    Queens Univ Belfast, QUILL Res Ctr, Sch Chem & Chem Engn, Belfast BT95AG, North Ireland..
    Edman, Ludvig
    Umeå Univ, Organ Photon & Elect Grp, S-90187 Umeå, Sweden..
    Anja-Verena, Mudring
    Stockholm Univ, Dept Mat & Environm Chem, Svante Arrhenius vag 16C, S-10691 Stockholm, Sweden.;Aarhus Univ, Dept Biol & Chem Engn & iNANO, Intelligent Adv Mat iAM, DK-8000 Aarhus, Denmark..
    Rogers, Robin D.
    Stockholm Univ, Dept Mat & Environm Chem, Svante Arrhenius vag 16C, S-10691 Stockholm, Sweden.;Queens Univ Belfast, QUILL Res Ctr, Sch Chem & Chem Engn, Belfast BT95AG, North Ireland.;Univ Alabama, Dept Chem & Biochem, Tuscaloosa, AL 35487 USA..
    The 8-Hydroxyquinolinium Cation as a Lead Structure for Efficient Color-Tunable Ionic Small Molecule Emitting Materials2023In: ADVANCED PHOTONICS RESEARCH, ISSN 2699-9293, Vol. 4, no 3, article id 2200279Article in journal (Refereed)
    Abstract [en]

    Albeit tris(8-hydroxyquinolinato) aluminum (Alq(3)) and its derivatives are prominent emitter materials for organic lighting devices, and the optical transitions occur among ligand-centered states, the use of metal-free 8-hydroxyquinoline is impractical as it suffers from strong nonradiative quenching, mainly through fast proton transfer. Herein, it is shown that the problem of rapid proton exchange and vibration quenching of light emission can be overcome not only by complexation, but also by organization of the 8-hydroxyquinolinium cations into a solid rigid network with appropriate counter-anions (here bis(trifluoromethanesulfonyl)imide). The resulting structure is stiffened by secondary bonding interactions such as pi-stacking and hydrogen bonds, which efficiently block rapid proton transfer quenching and reduce vibrational deactivation. Additionally, the optical properties are tuned through methyl substitution from deep blue (455 nm) to blue-green (488 nm). Time-dependent density functional theory (TDFT) calculations reveal the emission to occur from which an unexpectedly long-lived S-1 level, unusual for organic fluorophores. All compounds show comparable, even superior photoluminescence compared to Alq(3) and related materials, both as solids and thin films with quantum yields (QYs) up to 40-50%. In addition, all compounds show appreciable thermal stability with decomposition temperatures above 310 degrees C.

    Download full text (pdf)
    fulltext
  • 48.
    Adranno, Brando
    et al.
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
    Renier, Olivier
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
    Bousrez, Guillaume
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
    Paterlini, Veronica
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
    Baryshnikov, Glib V.
    Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, SE-60174 Norrköping, Sweden.
    Smetana, Volodymyr
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Ågren, Hans
    Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
    Metlen, Andreas
    The QUILL Research Centre and School of Chemistry and Chemical Engineering The Queen’s University of Belfast Belfast, Northern Ireland BT9 5AG, UK.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Anja-Verena, Mudring
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden; Intelligent Advanced Materials (iAM), Department of Biological and Chemical Engineering and iNANO, Aarhus University, 8000 Aarhus C, Denmark.
    Rogers, Robin D.
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden; The QUILL Research Centre and School of Chemistry and Chemical Engineering The Queen’s University of Belfast Belfast, Northern Ireland BT9 5AG, UK.
    The 8-hydroxyquinolinium cation as a lead structure for efficient color-tunable ionic small molecule emitting materials2023In: Advanced Photonics Research, ISSN 2699-9293, Vol. 4, no 3, article id 2200279Article in journal (Refereed)
    Abstract [en]

    Albeit tris(8-hydroxyquinolinato) aluminum (Alq3) and its derivatives are prominent emitter materials for organic lighting devices, and the optical transitions occur among ligand-centered states, the use of metal-free 8-hydroxyquinoline is impractical as it suffers from strong nonradiative quenching, mainly through fast proton transfer. Herein, it is shown that the problem of rapid proton exchange and vibration quenching of light emission can be overcome not only by complexation, but also by organization of the 8-hydroxyquinolinium cations into a solid rigid network with appropriate counter-anions (here bis(trifluoromethanesulfonyl)imide). The resulting structure is stiffened by secondary bonding interactions such as pi-stacking and hydrogen bonds, which efficiently block rapid proton transfer quenching and reduce vibrational deactivation. Additionally, the optical properties are tuned through methyl substitution from deep blue (455 nm) to blue-green (488 nm). Time-dependent density functional theory (TDFT) calculations reveal the emission to occur from which an unexpectedly long-lived S-1 level, unusual for organic fluorophores. All compounds show comparable, even superior photoluminescence compared to Alq3 and related materials, both as solids and thin films with quantum yields (QYs) up to 40-50%. In addition, all compounds show appreciable thermal stability with decomposition temperatures above 310 °C.

    Download full text (pdf)
    fulltext
  • 49.
    Adranno, Brando
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Renier, Olivier
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bousrez, Guillaume
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Paterlini, Veronica
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Baryshnikov, Glib V.
    Smetana, Volodymyr
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Tang, Shi
    Ågren, Hans
    Metlen, Andreas
    Edman, Ludvig
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Aarhus University, Denmark.
    Rogers, Robin D.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). The Queen's University of Belfast, Northern Ireland; The University of Alabama, USA.
    The 8-Hydroxyquinolinium Cation as a Lead Structure for Efficient Color-Tunable Ionic Small Molecule Emitting Materials2023In: Advanced Photonics Research, E-ISSN 2699-9293, Vol. 4, no 3, article id 2200279Article in journal (Refereed)
    Abstract [en]

    Albeit tris(8-hydroxyquinolinato) aluminum (Alq3) and its derivatives are prominent emitter materials for organic lighting devices, and the optical transitions occur among ligand-centered states, the use of metal-free 8-hydroxyquinoline is impractical as it suffers from strong nonradiative quenching, mainly through fast proton transfer. Herein, it is shown that the problem of rapid proton exchange and vibration quenching of light emission can be overcome not only by complexation, but also by organization of the 8-hydroxyquinolinium cations into a solid rigid network with appropriate counter-anions (here bis(trifluoromethanesulfonyl)imide). The resulting structure is stiffened by secondary bonding interactions such as π-stacking and hydrogen bonds, which efficiently block rapid proton transfer quenching and reduce vibrational deactivation. Additionally, the optical properties are tuned through methyl substitution from deep blue (455 nm) to blue-green (488 nm). Time-dependent density functional theory (TDFT) calculations reveal the emission to occur from which an unexpectedly long-lived S1 level, unusual for organic fluorophores. All compounds show comparable, even superior photoluminescence compared to Alq3 and related materials, both as solids and thin films with quantum yields (QYs) up to 40–50%. In addition, all compounds show appreciable thermal stability with decomposition temperatures above 310 °C.

  • 50.
    Afzal, Muhammad
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology. Hubei University, Faculty of Physics and Electronic Science, Wuhan, Hubei, 430062, China.
    Anwar, M.
    Asghar, M. I.
    Lund, P. D.
    Jhamat, N.
    Raza, R.
    Zhu, B.
    Charge transfer, transportation, and simulation2020In: Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, Wiley , 2020, p. 319-246Chapter in book (Refereed)
    Abstract [en]

    This chapter discusses charge transfer and transportation in energy materials and devices, especially focusing on single layer or electrolyte-free fuel cells (EFFCs). Here, charge means electrons and both positive and negative ions, e.g. H+ and O2-. We will study the factors that affect the charges resulting in conduction either externally for electrons or internally for both electrons and ions in EFFCs. Theoretical simulations are carried out by considering specific characteristics EFFC processes. Moreover, the enhancement in ionic conductivity is discussed leading to superionic conduction.

1234567 1 - 50 of 8948
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf