Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biomechanical analyses of flywheel resistance exercise: From a space- and ground-based perspective
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Environmental Physiology.ORCID iD: 0000-0002-2055-3847
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Astronauts suffer degradation of postural muscles and weight-bearing bones during long-duration spaceflight. Resistance exercise is used as a primary countermeasure against these degradations. However, it has proven difficult to predict appropriate exercise loads, and the countermeasure regimens in current use are not fully preventing bone and muscle loss. It is likely that gravity-independent exercise devices, based on flywheel inertial resistance, will be implemented in future musculoskeletal countermeasure regimens.

In this thesis, biomechanical analyses of external and internal exercise loads during flywheel leg resistance exercises, were performed through experimental data collection and musculoskeletal modelling. The thesis is based on four separate studies with the collective aim to provide knowledge that can be implemented when designing flywheel-based strength-training regimens to be used both in terrestrial settings and as countermeasures against musculoskeletal deconditioning in weightlessness.

The first study analyzed computed joint kinematics and kinetics, and relative muscle forces in the lower limb during maximal effort flywheel leg press (FWLP) and flywheel squat (FWS) exercises. Results showed that total exercise load was slightly higher during FWS than FWLP, whereas relative muscle force did not differ between the two exercises, suggesting that they may have similar strength training effects.

The second study investigated the effect of gravity on internal joint load distribution during leg resistance exercise. This was done in two steps: 1) by comparing joint kinetics during FWLP and FWS at a given submaximal exercise load (80% of the isometric maximum load in FWLP), and 2) by simulating both FWLP and FWS in zero gravity and studying changes in joint loads. The first step revealed greater hip extension moment and lumbar joint-contact forces in FWLP than in FWS, indicating a notable effect of the direction of motion relative to the gravity vector, on body load distribution. Step two showed similar, or lower, joint loads in FWLP when gravity was removed, whereas in FWS, removal of gravity resulted in increased hip extension moment and lumbar force. Collectively, the results suggest that FWLP is a better ground-based analogue than FWS for leg-resistance exercise in space.

The third study examined the accuracy of a pressure insole system regarding measurements of centre of pressure and ground reaction force during resistance exercises. The results showed that insoles are capable of accurately measuring centre of pressure at loads higher than 250 N and that force measurements are accurate in exercises involving mainly vertical ground reaction forces, but appears to overestimate ground reaction force for exercises involving greater portions of shear force.

The fourth study analyzed low-back loads during FWLP, FWS and barbell back squat. Lumbar compression forces were high and similar in the three exercises, suggesting that the flywheel exercises are capable of stimulating vertebral bone regeneration without inflicting risk of vertebral fractures. Muscle engagement in the investigated back extensors were lower in FWLP than in the other two exercises, although presumed high enough to counteract space-induced atrophy if implemented in countermeasure training regimens.

Abstract [sv]

Vid långvariga rymdresor drabbas astronauter av att kropssviktsbärande muskler och skelett förtvinas respektive urkalkas. Den huvudsakliga åtgärden för att motverka denna nedbrytning är styrketräning, men det har visat sig vara svårt att förutsäga hur belastningen från en specifik träningsövning kommer att bli i tyngdlöshet. Den typen av träning som utförs vid rymdresor idag är inte tillräckligt bra för att helt motverka nedbrytningen av det muskuloskelettala systemet. Därför behövs ytterligare forskning för att förbättra förutsättningarna för astronauterna att bibehålla styrka och funktion under långvariga rymdfärder.

I denna avhandling undersöktes externa och interna belastningar vid styrketräningsövningar för benen som utfördes med svänghjulsapparat, en gravitationsoberoende träningsutrustning som genererar motstånd via trögheten hos ett svänghjul. Fyra studier, baserade på experimentell datainsamling och muskuloskelettal modellering, ligger till grund för avhandlingen. Det övergripande syftet med studierna var att generera kunskap som kan utnyttjas vid utveckling av nya svänghjulsbaserade styrketräningsrutiner som kan användas inte enbart på jorden utan även i rymden, för att förhindra nedbrytning av astronauternas muskel- och benvävnad.

I den första studien undersöktes ledvinklar och moment samt relativa muskelkrafter i benen vid två maximala styrketräningsövningar utförda med svänghjulsutrustning: benpress (FWLP) och knäböj (FWS). Försökspersonerna uppnådde högre krafter i FWS än i FWLP men de relativa muskelkrafterna var lika i de båda övningarna, vilket indikerar att de torde framkalla jämförbara träningseffekter.

Den andra studien undersökte gravitationens effekt på belastningsfördelningen i kroppen vid styrketräning av benen. Detta gjordes i två steg: 1) genom att jämföra belastningen i leder vid de två övningarna FWLP och FWS som utfördes med samma totala belastning (motsvarande 80% av isometriskt maximum i FWLP) och 2) genom att simulera FWLP och FWS i tyngdlöshet och jämföra skillnaderna i ledbelastning med då övningarna utförs vid normal gravitation. Steg 1 visade högre belastning i höftled och ländrygg vid FWLP jämfört med vid FWS, vilket tyder på att övningens rörelseriktning i förhållande till gravitationsvektorn har betydelse för belastningsfördelningen i kroppen. Steg 2 visade att belastningen vid FWLP till största del var oförändrad när gravitationen togs bort, medan vid FWS ökade belastningen i höftled och ländrygg. Baserat på dessa resultat verkar FWLP vara en bättre modell än FWS för en styrketräningsövning för benen utförd i tyngdlöshet.

I den tredje studien undersöktes mätnoggrannheten hos trycksensor-sulor med avseende på registrering av reaktionskraften och dess angreppspunkt vid styrketräning; mätvärdena relaterades till referensvärden som uppmättes med kraftplattor. Resultaten visade att uppmätt angreppspunkt var korrekt vid reaktionskrafter överstigande 250 N. Mätningen av reaktionskrafterna var exakta för övningar där kraftriktningen i stort sett är vertikal, men föreföll överskatta krafter innehållande signifikanta skjuvkraftskomponenter.

Den fjärde studien undersökte ländryggsbelastningen vid FWLP, FWS samt benböj utfört med skivstång. Kompressionskraften mellan ländryggskotorna var höga och lika i de tre övningarna, vilket pekar på att svänghjulsträning stimulerar regenerering av benmassa utan att innebära risk för kotfraktur. Aktiviteten i ryggsträckarmusklerna var lägre i FWLP än i de andra två övningarna, men förmodligen tillräckligt hög för att motverka muskelförtvining om övningen implementeras i träningsprogram i tyngdlöshet.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2020. , p. 52
Series
TRITA-CBH-FOU ; 2020:53
Keywords [en]
AnyBody Modeling System, concentric, eccentric, eccentric overload, inverse dynamics, knee extensors, microgravity, musculoskeletal deconditioning, net-joint moment
Keywords [sv]
AnyBody Modeling System, excentrisk, excentrisk överbelastning, invers dynamik, knäextensorer, koncentrisk, ledmoment, mikrogravitation, muskuloskeletal nedbrytning
National Category
Other Medical Engineering
Research subject
Technology and Health
Identifiers
URN: urn:nbn:se:kth:diva-284319ISBN: 978-91-7873-673-7 (print)OAI: oai:DiVA.org:kth-284319DiVA, id: diva2:1477600
Public defence
2020-11-13, https://kth-se.zoom.us/webinar/register/WN_zlBBkKYxS4Gyatyg8aiYVQ, 09:00 (English)
Opponent
Supervisors
Note

QC 2020-10-20

Available from: 2020-10-20 Created: 2020-10-19 Last updated: 2022-09-05Bibliographically approved
List of papers
1. Comparison of joint and muscle biomechanics in maximal flywheel squat and leg press
Open this publication in new window or tab >>Comparison of joint and muscle biomechanics in maximal flywheel squat and leg press
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Other Engineering and Technologies
Identifiers
urn:nbn:se:kth:diva-284230 (URN)
Note

QC 20210203

Available from: 2020-10-19 Created: 2020-10-19 Last updated: 2025-02-10Bibliographically approved
2. Influence of gravity on biomechanics in flywheel squat and leg press.
Open this publication in new window or tab >>Influence of gravity on biomechanics in flywheel squat and leg press.
Show others...
2023 (English)In: Sports Biomechanics, ISSN 1476-3141, E-ISSN 1752-6116, Vol. 22, no 6, p. 767-783Article in journal (Refereed) Published
Abstract [en]

Resistance exercise on Earth commonly involves both body weight and external load. When developing exercise routines and devices for use in space, the absence of body weight is not always adequately considered. This study compared musculoskeletal load distribution during two flywheel resistance knee-extension exercises, performed in the direction of (vertical squat; S) or perpendicular to (horizontal leg press; LP) the gravity vector. Eleven participants performed these two exercises at a given submaximal load. Motion analysis and musculoskeletal modelling were used to compute joint loads and to simulate a weightless situation. The flywheel load was more than twice as high in LP as in S (< 0.001). Joint moments and forces were greater during LP than during S in the ankle, hip and lower back (< 0.01) but were similar in the knee. In the simulated weightless situation, hip and lower-back loadings in S were higher than corresponding values at Earth gravity (≤ 0.01), whereas LP joint loads did not increase. The results suggest that LP is a better terrestrial analogue than S for knee-extension exercise in weightlessness and that the magnitude and direction of gravity during resistance exercise should be considered when designing and evaluating countermeasure exercise routines and devices for space.

Place, publisher, year, edition, pages
Informa UK Limited, 2023
Keywords
Space flight, countermeasure exercise, inverse dynamics, musculoskeletal unloading, strength training
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:kth:diva-275655 (URN)10.1080/14763141.2020.1761993 (DOI)000542768100001 ()32500840 (PubMedID)2-s2.0-85086846905 (Scopus ID)
Note

QC 20210203

Available from: 2020-06-07 Created: 2020-06-07 Last updated: 2023-10-02Bibliographically approved
3. Foot centre of pressure and ground reaction force during quadriceps resistance exercises; a comparison between force plates and a pressure insole system.
Open this publication in new window or tab >>Foot centre of pressure and ground reaction force during quadriceps resistance exercises; a comparison between force plates and a pressure insole system.
2019 (English)In: Journal of Biomechanics, ISSN 0021-9290, E-ISSN 1873-2380, Vol. 87, p. 206-210, article id S0021-9290(19)30182-4Article in journal (Refereed) Published
Abstract [en]

The study compared the centre of pressure measurements (COP) and vertical ground reaction forces (vGRF) from a pressure insole system to that from force plates (FP) during two flywheel quadriceps resistance exercises: leg press and squat. The comparison was performed using a motion capture system and simultaneous measurements of COP and vGRF from FP and insoles. At lower insole-vGRF (<250 N/insole) COP accuracy deteriorated and those data were excluded from further analysis. The insoles systematically displaced the COP slightly posteriorly and medially compared to the FP measurements. Pearson's coefficient of correlation (r) between insole- and FP-COP showed good agreement in both the anteroposterior (squat: r = 0.96, leg press: r = 0.97) and mediolateral direction (squat: r = 0.84, leg press: r = 0.90), whereas the root-mean-square errors (RMSE) were lower in the mediolateral (squat: 3.9 mm, leg press: 4.5 mm) than the anteroposterior (squat and leg press: 11.8 mm) direction. Vertical GRF was slightly overestimated by the insoles in leg press and RMSE were greater in leg press (8% of peak force) than in squat (6%). Overall, results were within the range of previous studies performed on gait. The strong agreement between insole and FP measurements indicates that insoles may replace FPs in field applications and biomechanical computations during resistance exercise, provided that the applied force is sufficient.

Keywords
Centre of pressure, Force plates, Leg press, Pressure insoles, Squat
National Category
Other Mechanical Engineering
Research subject
Medical Technology
Identifiers
urn:nbn:se:kth:diva-250891 (URN)10.1016/j.jbiomech.2019.03.004 (DOI)000465051200028 ()30905404 (PubMedID)2-s2.0-85063046754 (Scopus ID)
Note

QC 20190625

Available from: 2019-05-07 Created: 2019-05-07 Last updated: 2024-03-18Bibliographically approved
4. Lumbar loads and muscle activity during flywheel and barbell leg exercises
Open this publication in new window or tab >>Lumbar loads and muscle activity during flywheel and barbell leg exercises
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Other Engineering and Technologies
Identifiers
urn:nbn:se:kth:diva-284232 (URN)
Note

QC 20210203

Available from: 2020-10-19 Created: 2020-10-19 Last updated: 2025-02-10Bibliographically approved

Open Access in DiVA

Kappa(3768 kB)641 downloads
File information
File name FULLTEXT02.pdfFile size 3768 kBChecksum SHA-512
26f3f1f5414bc0a9f65b5b8b480c69d8693b7dc055eab67e08ed7458619aa76b7614efada2fbc94dde4319c04080d746e21de064fba56a90986f4f896a329adb
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Sjöberg, Maria
By organisation
Environmental Physiology
Other Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 645 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2477 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf