Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Delay-Sensitive Resource Allocation for IoT Systems in 5G O-RAN Networks
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.ORCID iD: 0000-0002-2689-6760
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.ORCID iD: 0000-0001-5924-5457
2024 (English)In: Internet of Things: Engineering Cyber Physical Human Systems, E-ISSN 2542-6605, Vol. 26, article id 101131Article in journal (Refereed) Published
Abstract [en]

The rapid advancement in sensors and communications has led to the expansion of the Internet of Things (IoT) services, where many devices need access to the transport network using fixed or wireless access technologies and mobile Radio Access Networks (RAN). However, supporting IoT in RAN is challenging as IoT services may produce many short and variable sessions, impacting the performance of mobile users sharing the same RAN. To address this issue, network slicing is a promising solution to support heterogeneous service segments sharing the same RAN, which is a crucial requirement of the upcoming fifth-generation (5G) mobile network. This paper proposes a two-level network slicing mechanism for enhanced mobile broadband (eMBB) and Ultra-Reliable and Low Latency communications (URLLC) in order to provide end-to-end slicing at the core and edge of the network with the aim of reducing latency for IoT services and mobile users sharing the same core and RAN using the O-RAN architecture. The problem is modeled at both levels as a Markov decision process (MDP) and solved using hierarchical reinforcement learning. At a high level, an SDN controller using an agent that has been trained by a Double Deep Q-network (DDQN) allocates radio resources to gNodeBs (next-generation NodeB, a 5G base station) based on the requirements of eMBB and URLLC services. At a low level, each gNodeB using an agent that has been trained by a DDQN allocates its pre-allocated resources to its end-users. The proposed approach has been demonstrated and validated through a real testbed. Notably, it surpasses the prevalent approaches in terms of end-to-end latency.

Place, publisher, year, edition, pages
2024. Vol. 26, article id 101131
Keywords [en]
IoT, Network slicing, O-ran, Reinforcement learning, Resource allocation
National Category
Computer Sciences
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-220547DOI: 10.1016/j.iot.2024.101131ISI: 001202089500001Scopus ID: 2-s2.0-85187017196OAI: oai:DiVA.org:su-220547DiVA, id: diva2:1792898
Available from: 2023-08-30 Created: 2023-08-30 Last updated: 2024-04-29Bibliographically approved
In thesis
1. Distributed Intelligence for IoT Systems Using Edge Computing
Open this publication in new window or tab >>Distributed Intelligence for IoT Systems Using Edge Computing
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Over the past decade, the Internet of Things (IoT) has undergone a paradigm shift away from centralized cloud computing to edge computing. Hundreds of billions of things are estimated to be deployed in the rapidly advancing IoT paradigm, resulting in an enormous amount of data. Sending all the data to the cloud has recently proven to be a performance bottleneck, as it causes many network issues, including high latency, high power consumption, security issues, privacy issues, etc. However, the existing paradigms do not use edge devices for decision-making. Distributed intelligence could strengthen the IoT in several ways by distributing decision-making tasks among edge devices within the network instead of sending all data to a central server. All computational tasks and data are shared among edge devices. Edge computing offers many advantages, including distributed processing, low latency, fault tolerance, better scalability, better security, and data protection. These advantages are helpful for critical applications that require higher reliability, real-time processing, mobility support, and context awareness. This thesis investigated the application of different types of intelligence (e.g., rule-based, machine learning, etc.) to implementing distributed intelligence at the edge of the network and the network challenges that arise. The first part of this thesis presents a novel and generalizable distributed intelligence architecture that leverages edge computing to enable the intelligence of things by utilizing information closer to IoT devices. The architecture is comprised of two tiers, which address the heterogeneity and constraints of IoT devices. Additionally, the first part of this thesis identifies a suitable reasoner for two-level distributed intelligence and an efficient way of applying it in the architecture via an IoT gateway. To mitigate communication challenges in edge computing, the second part of the thesis proposes two-level mechanisms by leveraging the benefits of software-defined networking (SDN) and 5G networks based on open radio access network (O-RAN) as part of a communication overlay for the distributed intelligence architecture. The third part of this thesis investigates integrating the two-tier architecture and the communication mechanisms in order to provide distributed intelligence in IoT systems in an optimal manner.

Place, publisher, year, edition, pages
Stockholm: Department of Computer and Systems Sciences, Stockholm University, 2023. p. 70
Series
Report Series / Department of Computer & Systems Sciences, ISSN 1101-8526 ; 23-008
Keywords
Internet of Things (IoT), Edge Computing, Distributed Intelligence, Software Defined Networking (SDN), Federated Learning, 5G, O-RAN, Network Slicing, Reinforcement Learning
National Category
Computer Sciences
Research subject
Computer and Systems Sciences
Identifiers
urn:nbn:se:su:diva-220549 (URN)978-91-8014-476-6 (ISBN)978-91-8014-477-3 (ISBN)
Public defence
2023-10-13, Lilla hörsalen, Borgarfjordsgatan 12, Kista, 13:00 (English)
Opponent
Supervisors
Available from: 2023-09-20 Created: 2023-08-30 Last updated: 2023-09-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Firouzi, RaminRahmani, Rahim
By organisation
Department of Computer and Systems Sciences
In the same journal
Internet of Things: Engineering Cyber Physical Human Systems
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf