Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Delay-Sensitive Resource Allocation for IoT Systems in 5G O-RAN Networks
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.ORCID-id: 0000-0002-2689-6760
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.ORCID-id: 0000-0001-5924-5457
2024 (engelsk)Inngår i: Internet of Things: Engineering Cyber Physical Human Systems, E-ISSN 2542-6605, Vol. 26, artikkel-id 101131Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The rapid advancement in sensors and communications has led to the expansion of the Internet of Things (IoT) services, where many devices need access to the transport network using fixed or wireless access technologies and mobile Radio Access Networks (RAN). However, supporting IoT in RAN is challenging as IoT services may produce many short and variable sessions, impacting the performance of mobile users sharing the same RAN. To address this issue, network slicing is a promising solution to support heterogeneous service segments sharing the same RAN, which is a crucial requirement of the upcoming fifth-generation (5G) mobile network. This paper proposes a two-level network slicing mechanism for enhanced mobile broadband (eMBB) and Ultra-Reliable and Low Latency communications (URLLC) in order to provide end-to-end slicing at the core and edge of the network with the aim of reducing latency for IoT services and mobile users sharing the same core and RAN using the O-RAN architecture. The problem is modeled at both levels as a Markov decision process (MDP) and solved using hierarchical reinforcement learning. At a high level, an SDN controller using an agent that has been trained by a Double Deep Q-network (DDQN) allocates radio resources to gNodeBs (next-generation NodeB, a 5G base station) based on the requirements of eMBB and URLLC services. At a low level, each gNodeB using an agent that has been trained by a DDQN allocates its pre-allocated resources to its end-users. The proposed approach has been demonstrated and validated through a real testbed. Notably, it surpasses the prevalent approaches in terms of end-to-end latency.

sted, utgiver, år, opplag, sider
2024. Vol. 26, artikkel-id 101131
Emneord [en]
IoT, Network slicing, O-ran, Reinforcement learning, Resource allocation
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-220547DOI: 10.1016/j.iot.2024.101131ISI: 001202089500001Scopus ID: 2-s2.0-85187017196OAI: oai:DiVA.org:su-220547DiVA, id: diva2:1792898
Tilgjengelig fra: 2023-08-30 Laget: 2023-08-30 Sist oppdatert: 2024-04-29bibliografisk kontrollert
Inngår i avhandling
1. Distributed Intelligence for IoT Systems Using Edge Computing
Åpne denne publikasjonen i ny fane eller vindu >>Distributed Intelligence for IoT Systems Using Edge Computing
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Over the past decade, the Internet of Things (IoT) has undergone a paradigm shift away from centralized cloud computing to edge computing. Hundreds of billions of things are estimated to be deployed in the rapidly advancing IoT paradigm, resulting in an enormous amount of data. Sending all the data to the cloud has recently proven to be a performance bottleneck, as it causes many network issues, including high latency, high power consumption, security issues, privacy issues, etc. However, the existing paradigms do not use edge devices for decision-making. Distributed intelligence could strengthen the IoT in several ways by distributing decision-making tasks among edge devices within the network instead of sending all data to a central server. All computational tasks and data are shared among edge devices. Edge computing offers many advantages, including distributed processing, low latency, fault tolerance, better scalability, better security, and data protection. These advantages are helpful for critical applications that require higher reliability, real-time processing, mobility support, and context awareness. This thesis investigated the application of different types of intelligence (e.g., rule-based, machine learning, etc.) to implementing distributed intelligence at the edge of the network and the network challenges that arise. The first part of this thesis presents a novel and generalizable distributed intelligence architecture that leverages edge computing to enable the intelligence of things by utilizing information closer to IoT devices. The architecture is comprised of two tiers, which address the heterogeneity and constraints of IoT devices. Additionally, the first part of this thesis identifies a suitable reasoner for two-level distributed intelligence and an efficient way of applying it in the architecture via an IoT gateway. To mitigate communication challenges in edge computing, the second part of the thesis proposes two-level mechanisms by leveraging the benefits of software-defined networking (SDN) and 5G networks based on open radio access network (O-RAN) as part of a communication overlay for the distributed intelligence architecture. The third part of this thesis investigates integrating the two-tier architecture and the communication mechanisms in order to provide distributed intelligence in IoT systems in an optimal manner.

sted, utgiver, år, opplag, sider
Stockholm: Department of Computer and Systems Sciences, Stockholm University, 2023. s. 70
Serie
Report Series / Department of Computer & Systems Sciences, ISSN 1101-8526 ; 23-008
Emneord
Internet of Things (IoT), Edge Computing, Distributed Intelligence, Software Defined Networking (SDN), Federated Learning, 5G, O-RAN, Network Slicing, Reinforcement Learning
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
urn:nbn:se:su:diva-220549 (URN)978-91-8014-476-6 (ISBN)978-91-8014-477-3 (ISBN)
Disputas
2023-10-13, Lilla hörsalen, Borgarfjordsgatan 12, Kista, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-09-20 Laget: 2023-08-30 Sist oppdatert: 2023-09-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Firouzi, RaminRahmani, Rahim
Av organisasjonen
I samme tidsskrift
Internet of Things: Engineering Cyber Physical Human Systems

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 61 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf