Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Earning management estimation and prediction using machine learning: A systematic review of processing methods and synthesis for future research
Department of Accounting Faculty of Business, Economics and Social Development, University Malaysia Terengganu.
Universal Business School, India.
Department of Computer Science Aligarh Muslim University Aligarh, India.
Department of Accounting Faculty of Business, Economics and Social Development, University Malaysia Terengganu.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: 2021 International Conference on Technological Advancements and Innovations (ICTAI): IEEE, IEEE, 2021, s. 291-298Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The present study highlights earning management optimization possibilities to constrain the events of earning management and financial fraud. Our study investigates the existing stock of knowledge and strand literature available on earning management and fraud detection. It aims to review systematically the methods and techniques used by prior research to determine earning management and fraud detection. The results indicate that prior research in earning management optimization is diverged among several techniques and none of these techniques has provided an ideal optimization for earning management. Further, the results reveal that earning management determinants are complex based on the type and size of business entities which complicate the optimization possibilities. The current research brings useful insights for predicting and optimization of earnings management and financial fraud. The present study has significant implications for policymakers, stock markets, auditors, investors, analysts, and professionals.

Ort, förlag, år, upplaga, sidor
IEEE, 2021. s. 291-298
Nyckelord [en]
Technological innovation;Systematics;Bibliographies;Estimation;Machine learning;Mathematical models;Stock markets;Accrual earning management;real earning management;machine learning
Nationell ämneskategori
Företagsekonomi
Identifikatorer
URN: urn:nbn:se:liu:diva-183300DOI: 10.1109/ICTAI53825.2021.9673157Scopus ID: 2-s2.0-85125347881ISBN: 9781665420884 (tryckt)ISBN: 9781665420877 (digital)OAI: oai:DiVA.org:liu-183300DiVA, id: diva2:1641410
Konferens
2021 International Conference on Technological Advancements and Innovations (ICTAI), Tashkent, Uzbekistan, 10-12 November 2021
Tillgänglig från: 2022-03-01 Skapad: 2022-03-01 Senast uppdaterad: 2024-08-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Mishra, Nandita
Av organisationen
FackspråkFilosofiska fakulteten
Företagsekonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 2456 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf