Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Post-peak behavior of concrete dams based on nonlinear finite element analyses
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.ORCID iD: 0000-0001-5079-2649
Dept. of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology University, Luleå, 97187, Sweden.
SINTEF Narvik AS, Narvik, 8517, Norway.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.ORCID iD: 0000-0003-3586-8988
2021 (English)In: Engineering Failure Analysis, ISSN 1350-6307, E-ISSN 1873-1961, Vol. 130, p. 105778-105778, article id 105778Article in journal (Refereed) Published
Abstract [en]

Dam failures are catastrophic events and in order to improve safety, engineers must have good tools for analysis and an understanding of the failure process. Since there are few cases of real failures in concrete dams, which can work as validation, physical model tests are a good way of improving numerical models and the understanding of the failure process. In this article, a physical model test of the buttress from a concrete Ambursen type dam is used as a benchmark for calibrating a FE-model. The dam failure is thereafter simulated using the concept of safety commonly used in the design codes. The advantages and drawbacks of performing load- and displacement-controlled simulations are compared. A new method for performing displacement-controlled simulations, using nonlinear springs to introduce the hydrostatic pressure and ice load is thereafter suggested and tested. The proposed method gives results which corresponds to the classical methods of analysis but has some advantages. Primarily, the new method is stable and does not suffer from convergence issues as was the case with the other methods. It is also simple to introduce in most commercial software compared to classical displacement-controlled simulations.

Place, publisher, year, edition, pages
Elsevier BV , 2021. Vol. 130, p. 105778-105778, article id 105778
Keywords [en]
General Engineering, General Materials Science
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Concrete Structures
Identifiers
URN: urn:nbn:se:kth:diva-302793DOI: 10.1016/j.engfailanal.2021.105778ISI: 000709702900004Scopus ID: 2-s2.0-85116009544OAI: oai:DiVA.org:kth-302793DiVA, id: diva2:1611870
Note

QC 20230828

Available from: 2021-10-01 Created: 2021-11-16 Last updated: 2023-09-11Bibliographically approved
In thesis
1. Toward Realistic Failure Evaluations for Concrete Buttress Dams
Open this publication in new window or tab >>Toward Realistic Failure Evaluations for Concrete Buttress Dams
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Concrete dams, complex structures supporting massive loads, have traditionally been assessed using simplified 2D analytical stability analyses based on the rigid body assumption. Previous studies have shown that 3D behavior, such as the interaction between the monoliths and the valley's geology, can greatly impact the load-bearing capacity of gravity dams but remains largely unexplored in buttress dams. Internal failure modes have also been shown to impact the load-bearing capacity and failure modes of concrete dams. 

The dam breach geometry and breach development time are important factors for flooding simulations used for emergency plans. There are no available methods for estimating the breach parameters for concrete dams. Instead, they are usually assumed based on simplified national recommendations, which introduces large uncertainties in the analysis. Thus, developing methods to estimate failure behavior in concrete gravity and buttress dams could significantly enhance flood simulation accuracy.

This licentiate thesis aims to develop more realistic analysis methods for determining the load-bearing capacity and failure behavior of concrete buttress dams. To achieve this aim, studies using physical model tests were conducted to determine the 3D effects of the boundary conditions and the interaction between the monoliths and verify the results from finite element simulations. Numerical studies were performed to examine the failure behavior of concrete buttress dams and to determine suitable methods for such simulations. 

The results from the physical model tests suggest that 3D effects significantly impact the load-bearing capacity and the failure behavior of concrete buttress dams. Therefore, the entire dam should be considered in stability analyses rather than just single monoliths. The numerical studies showed that finite element models could successfully simulate dam failures, including the 3D behavior of concrete buttress dams and internal failure modes. However, there remain questions about the best methods for representing phenomena such as first-order roughness, valley shape, and fracture planes in these models.

The model tests showed that while dam failures can occur abruptly with little to no initial signs of displacement, the presence of rough foundations, cohesion, and rock-strengthening measures in real-world dams suggests actual dam failures may not be as sudden. The results helped establish knowledge in the field to potentially create better alarm limits for automatic monitoring systems. 

Abstract [sv]

Betongdammar är komplexa konstruktioner som bär stora laster, men traditionellt har de utvärderats med förenklade analytiska stabilitetsanalyser i 2D baserat på stelkroppsantagandet. Tidigare studier har visat att 3D-beteende, såsom interaktionen mellan monoliterna och älvdalens topologi, kan ha en betydande inverkan på lastkapaciteten hos gravitationsdammar men är i stort sett outforskat i lamelldammar. Interna brottmoder har också visats påverka bärförmågan och brottmoderna hos betongdammar.

Bräschens form och utvecklingstiden för dammbrott är viktiga faktorer för översvämningssimuleringar som används i beredskapsplanering och riskanalyser. Ingen metod finns för att uppskatta dessa parametrar för betongdammar. Istället utgår analysen från förenklade antaganden, vilka introducerar stor osäkerhet i analysen. Därmed skulle utveckling av metoder för att uppskatta brottbeteende för gravitations- och lamelldammar kunna förbättra tillförlitligheten i översvämnings-simuleringar avsevärt.

Denna licentiatuppsats, som involverar studier med fysiska modellförsök och finita element-simuleringar, syftar till att utveckla mer realistiska analysmetoder för att bestämma bärförmågan och brottbeteendet hos lamelldammar. De fysiska modellförsöken genomfördes för att bestämma 3D-effekterna av randvillkor och interaktionen mellan monoliterna och verifiera resultaten från finita element-simuleringar. Numeriska studier genomfördes för att undersöka brottbeteendet hos lamelldammar och för att bestämma lämpliga metoder för sådana simuleringar.

Resultaten från modellförsöken visade att 3D-effekter avsevärt påverkar lastkapaciteten och brottbeteendet hos lamelldammar, vilket indikerar att hela dammen bör beaktas i stabilitetsanalyser. Numeriska studier visade att finita element-modeller framgångsrikt kunde simulera dammbrott, inklusive 3D-beteendet. Dock återstår frågor om de mest effektiva metoderna för att representera fenomen som ojämn grundläggning och älvdalens topologi.

Modellförsöken visade att dammbrott kan inträffa abrupt, med liten eller ingen initial förskjutning. Dock tyder närvaron av ojämn grundläggning, kohesion och förstärkningsåtgärder i berget i verkliga dammar på att faktiska dammbrott inte är lika plötsliga som observerat i modelltesterna. Resultaten har bidragit till att utveckla kunskap inom området och kan potentiellt leda till förbättrade metoder för att fastställa larmgränser för automatiska övervakningssystem.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 42
Series
TRITA-ABE-DLT ; 2335
Keywords
concrete dams, buttress dams, stability analysis, dam failure behavior, physical model tests, FEM, betongdammar, lamelldammar, stabilitetsanalys, dammbrott, fysiska modellförsök, FEM
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Concrete Structures
Identifiers
urn:nbn:se:kth:diva-335979 (URN)978-91-8040-665-9 (ISBN)
Presentation
2023-10-11, L41, Drottning Kristinas väg 30, KTH Campus, Video conference link https://kth-se.zoom.us/j/69874842225, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20230915

Available from: 2023-09-15 Created: 2023-09-11 Last updated: 2023-09-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusPublished Fulltext

Search in DiVA

By author/editor
Enzell, JonasMalm, Richard
By organisation
Concrete Structures
In the same journal
Engineering Failure Analysis
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 275 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf