Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analyzing land use types’ effects on lst using the gwr model and case studies in beijing
School of Art Design and Media, East China University of Science and Technology, Shanghai, China.
Shanghai Tongzeng Planning & Architectural Design Co., Shanghai, China.
School of Architecture and Environmental Arts, Shanghai Urban Construction Vocational College, Shanghai, China.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Urbana och regionala studier.ORCID-id: 0000-0002-7211-8230
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Journal of Environmental Engineering and Landscape Management, ISSN 1648-6897, E-ISSN 1822-4199, Vol. 31, nr 3, s. 196-205Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The development of urbanization and the transformation of green lands into impermeable land increase temperature and create urban heat islands (UHIs). Our observations with remote sensing instruments of Landsat platforms show considerable changes in land use types in Beijing city with the shrinking of green lands, expansion of built envi-ronments, and a slight increase in the temperature during the recent four decades. Using remote sensing instruments of Landsat platforms and registered data from two meteorological stations in Beijing, this study finds the relationship between land surface temperature (LST) and the increasing conversion of cultivated lands into built-up areas. This article presents innovative research that shows the mutual correlation well and recommends revisions in the land use policies for better weather. The geographically weighted regression model (GWR) with a Gaussian weighting kernel function analyzes the impact of various urban land use types on the LST and the increase UHIs. In Beijing city, green lands show fewer standard deviations (SD) in the average temperatures equal to 0.109, while the industrial spaces exhibit a high SD equal to 0.212. The outcomes of this paper contribute to finding optimal land use policies everywhere in the world with the increasing urbanization through simulating its model for a more comfortable life.

Ort, förlag, år, upplaga, sidor
Vilnius Gediminas Technical University , 2023. Vol. 31, nr 3, s. 196-205
Nyckelord [en]
captured images, geographically weighted regression, land surface temperature, land use type, landscape management, remote sensing, urban heat island
Nationell ämneskategori
Fjärranalysteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-336554DOI: 10.3846/jeelm.2023.19469Scopus ID: 2-s2.0-85169289751OAI: oai:DiVA.org:kth-336554DiVA, id: diva2:1798125
Anmärkning

QC 20230918

Tillgänglig från: 2023-09-18 Skapad: 2023-09-18 Senast uppdaterad: 2023-09-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Shahraki, Abdol Aziz
Av organisationen
Urbana och regionala studier
I samma tidskrift
Journal of Environmental Engineering and Landscape Management
Fjärranalysteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 93 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf