Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hierarchical Multi-class Classification for Fault Diagnosis
Högskolan i Halmstad, Akademin för informationsteknologi. (CAISR)ORCID-id: 0000-0001-5395-5482
Högskolan i Halmstad, Akademin för informationsteknologi.ORCID-id: 0000-0002-7796-5201
Högskolan i Halmstad, Akademin för informationsteknologi.ORCID-id: 0000-0003-3272-4145
2021 (Engelska)Ingår i: Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021) / [ed] Bruno Castanier; Marko Cepin; David Bigaud; Christophe Berenguer, Singapore: Research Publishing Services, 2021, s. 2457-2464Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper formulates the problem of predictive maintenance for complex systems as a hierarchical multi-class classification task. This formulation is useful for equipment with multiple sub-systems and components performing heterogeneous tasks. Often, the data available describes the whole system's operation and is not ideal for accurate condition monitoring. In this setup, specialized predictive models analyzing one component at a time rarely perform much better than random. However, using machine learning and hierarchical approaches, we can still exploit the data to build a fault isolation system that provides measurable benefits for technicians in the field. We propose a method for creating a taxonomy of components to train hierarchical classifiers that aim to identify the faulty component. The output of this model is a structured set of predictions with different probabilities for each component. In this setup, traditional machine learning metrics fail to capture the relationship between the performance of the models and its usefulness in the field.We introduce a new metric to evaluate our approach's benefits; it measures the number of tests a technician needs to perform before pinpointing the faulty component. Using a dataset from a real-case problem coming fro the automotive industry, we demonstrate how traditional machine learning performance metrics, like accuracy, fail to capture practical benefits. Our proposed hierarchical approach succeeds in exploiting the information in the data and outperforms non-hierarchical machine learning solutions. In addition, we can identify the weakest link of our fault isolation model, allowing us to improve it efficiently.

Ort, förlag, år, upplaga, sidor
Singapore: Research Publishing Services, 2021. s. 2457-2464
Nyckelord [en]
Fault diagnosis, Multi-class classification, Hierarchical classification, Automotive industry, Integral fault diagnosis, Structure prediction
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:hh:diva-46343DOI: 10.3850/978-981-18-2016-8_524-cdISBN: 978-981-18-2016-8 (tryckt)OAI: oai:DiVA.org:hh-46343DiVA, id: diva2:1637392
Konferens
European Safety and Reliability Conference (ESREL 2021), 19-23 September, 2021
Tillgänglig från: 2022-02-14 Skapad: 2022-02-14 Senast uppdaterad: 2025-10-01Bibliografiskt granskad
Ingår i avhandling
1. Hierarchical Methods for Self-Monitoring Systems: Theory and Application
Öppna denna publikation i ny flik eller fönster >>Hierarchical Methods for Self-Monitoring Systems: Theory and Application
2022 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Self-monitoring solutions first appeared to avoid catastrophic breakdowns in safety-critical mechanisms. The design behind these solutions relied heavily on the physical knowledge of the mechanism and its fault. They usually involved installing specialized sensors to monitor the state of the mechanism and statistical modeling of the recorded data. Mainly, these solutions focused on specific components of a machine and rarely considered more than one type of fault.

In our work, on the other hand, we focus on self-monitoring of complex machines, systems composed of multiple components performing heterogeneous tasks and interacting with each other: systems with many possible faults. Today, the data available to monitor these machines is vast but usually lacks the design and specificity to monitor each possible fault in the system accurately. Some faults will show distinctive symptoms in the data; some faults will not; more interestingly, there will be groups of faults with common symptoms in the recorded data.

The thesis in this manuscript is that we can exploit the similarities between faults to train machine learning models that can significantly improve the performance of self-monitoring solutions for complex systems that overlook these similarities. We choose to encode these similarity relationships into hierarchies of faults, which we use to train hierarchical supervised models. We use both real-life problems and standard benchmarks to prove the adequacy of our approach on tasks like fault diagnosis and fault prediction.

We also demonstrate that models trained on different hierarchies result in significantly different performances. We analyze what makes a good hierarchy and what are the best practices to develop methods to extract hierarchies of classes from the data. We advance the state-of-the-art by defining the concept of heterogeneity of decision boundaries and studying how it affects the performance of different class decompositions. 

Ort, förlag, år, upplaga, sidor
Halmstad: Halmstad University Press, 2022. s. 66
Serie
Halmstad University Dissertations ; 93
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:hh:diva-48138 (URN)978-91-88749-98-7 (ISBN)978-91-88749-97-0 (ISBN)
Disputation
2022-10-14, Wigforssalen, Hus J (Visionen), Kristian IV:s väg 3, Halmstad, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2022-09-23 Skapad: 2022-09-23 Senast uppdaterad: 2025-10-01Bibliografiskt granskad

Open Access i DiVA

fulltext(136 kB)382 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 136 kBChecksumma SHA-512
e2b96732e5dce4ba950d4a2faca5f63a90506645517bec2668a183de143be57848a07cbe3e989bbee7d17d7fc0b5631756a5cd2b596792f4512140a2686c861e
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Del Moral, PabloNowaczyk, SławomirPashami, Sepideh
Av organisationen
Akademin för informationsteknologi
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 383 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 517 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf