Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Neural Novelty — How Machine Learning Does Interactive Generative Literature
Malmö universitet, Fakulteten för kultur och samhälle (KS).
2020 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

Every day, machine learning (ML) and artificial intelligence (AI) embeds itself further into domestic and industrial technologies. Interaction de- signers have historically struggled to engage directly with the subject, facing a shortage of appropriate methods and abstractions. There is a need to find ways though which interaction design practitioners might integrate ML into their work, in order to democratize and diversify the field. This thesis proposes a mode of inquiry that considers the inter- active qualities of what machine learning does, as opposed the tech- nical specifications of what machine learning is. A shift in focus from the technicality of ML to the artifacts it creates allows the interaction designer to situate its existing skill set, affording it to engage with ma- chine learning as a design material. A Research-through-Design pro- cess explores different methodological adaptions, evaluated through user feedback and an-in depth case analysis. An elaborated design experiment, Multiverse, examines the novel, non-anthropomorphic aesthetic qualities of generative literature. It prototypes interactions with bidirectional literature and studies how these transform the reader into a cybertextual “user-reader”. The thesis ends with a discussion on the implications of machine written literature and proposes a number of future investigations into the research space unfolded through the prototype.

Ort, förlag, år, upplaga, sidor
Malmö universitet/Kultur och samhälle , 2020. , s. 61
Nyckelord [en]
machine learning, generative literature, interaction design, cybertext, interactive literature, interactive machine learning, IML, ML, artificial intelligence, postmodern literature, gpt-2
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:mau:diva-21222Lokalt ID: 32510OAI: oai:DiVA.org:mau-21222DiVA, id: diva2:1481128
Utbildningsprogram
KS K3 Interaktionsdesign (master)
Handledare
Examinatorer
Tillgänglig från: 2020-10-27 Skapad: 2020-10-27Bibliografiskt granskad

Open Access i DiVA

fulltext(8098 kB)176 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 8098 kBChecksumma SHA-512
a73a57b2450ad76f6a4783c430a7df763d3b98594e51f9384bfef24202ccc61b55f9048c965ce4e64cab0ea243787af6ff91815a7865b7e6569a73303217a74f
Typ fulltextMimetyp application/pdf

Av organisationen
Fakulteten för kultur och samhälle (KS)
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 176 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1190 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf