Digitala Vetenskapliga Arkivet

Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 10/12-2024, kl 12.00-13.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automation of Kidney Perfusion Analysis from Dynamic Phase-Contrast MRI using Deep Learning
KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
2020 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)Alternativ titel
Automatisering av analys av njurperfusion från faskontrast MRT med djupinlärning (Svenska)
Abstract [en]

Renal phase-contrast magnetic resonance imaging (PC-MRI) is an MRI modality where the phase component of the MR signal is made sensitive to the velocity of water molecules in the kidneys. PC-MRI is able to assess the Renal Blood Flow (RBF), which is an important biomarker in the development of kidney disease. RBF is analyzed with the manual or semi-automatic delineation by experts of the renal arteries in PC-MRI. This is a time-consuming and operator-dependent process. We have therefore trained, validated and tested a fully-automated deep learning model for faster and more objective renal artery segmentation.

The PC-MRI data used in model training, validation and testing come from four studies (N=131 subjects). Images were acquired from three manufacturers with different imaging parameters. The best deep learning model found consists of a deeply-supervised 2D attention U-Net with residual skip connections. The output of this model was re-introduced as an extra channel in a second iteration to refine the segmentation result. The flow values in the segmented regions were integrated to provide a quantification of the mean arterial flow in the segmented renal arteries.

The automated segmentation was evaluated in all the images that had manual segmentation ground-truths that come from a single operator. The evaluation was completed in terms of a segmentation accuracy metric called Dice Coefficient. The mean arterial flow values that were quantified from the auto-mated segmentation were also evaluated against ground-truth flow values from semi-automatic software.

The deep learning model was trained and validated on images with segmentation ground-truths with 4-fold cross-validation. A Dice segmentation accuracy of 0.71±0.21 was achieved (N=73 subjects). Although segmentation results were accurate for most arteries, the algorithm failed in ten out of 144arteries. The flow quantification from the segmentation was highly correlated without significant bias in comparison to the ground-truth flow measurements. This method shows promise for supporting RBF measurements from PC-MRI and can likely be used to save analysis time in future studies. More training data has to be used for further improvement, both in terms of accuracy and generalizability.

Ort, förlag, år, upplaga, sidor
2020. , s. 66
Serie
TRITA-CBH-GRU ; 2020:096
Nyckelord [en]
Deep Learning, Segmentation, Kidney Imaging, MRI, Flow Analysis, Chronic Kidney Disease
Nationell ämneskategori
Medicinsk bildbehandling
Identifikatorer
URN: urn:nbn:se:kth:diva-277752OAI: oai:DiVA.org:kth-277752DiVA, id: diva2:1448646
Externt samarbete
Antaros Medical AB
Ämne / kurs
Medicinsk bildbehandling
Utbildningsprogram
Teknologie masterexamen - Medicinsk teknik
Presentation
2020-06-03, Online Presentation (Zoom), 11:00 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2020-06-29 Skapad: 2020-06-29 Senast uppdaterad: 2022-06-26Bibliografiskt granskad

Open Access i DiVA

Andres_Martinez_Mora_Student_Thesis(3281 kB)292 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3281 kBChecksumma SHA-512
d1ff54e06c3e0c13bb79ce2b753d1c808e879c79be637ce0210afca699a834e6ef7ee252204ada07f099bae1fe75717ef648c5b2c8a657256813108e1f164609
Typ fulltextMimetyp application/pdf

Av organisationen
Skolan för kemi, bioteknologi och hälsa (CBH)
Medicinsk bildbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 292 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 834 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf