Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Urban Network Travel Time Prediction via Online Multi-Output Gaussian Process Regression
Department of Transport Science, KTH Royal Institute of Technology, Stockholm, Sweden.ORCID-id: 0000-0001-9025-6701
Department of Transport Science, KTH Royal Institute of Technology, Stockholm, Sweden.
Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten.
2017 (Engelska)Ingår i: 2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), Institute of Electrical and Electronics Engineers (IEEE) , 2017Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The paper explores the potential of Multi-Output Gaussian Processes to tackle network-wide travel time prediction in an urban area. Forecasting in this context is challenging due to the complexity of the traffic network, noisy data and unexpected events. We build on recent methods to develop an online model that can be trained in seconds by relying on prior network dependences through a coregionalized covariance. The accuracy of the proposed model outperforms historical means and other simpler methods on a network of 47 streets in Stockholm, by using probe data from GPS-equipped taxis. Results show how traffic speeds are dependent on the historical correlations, and how prediction accuracy can be improved by relying on prior information while using a very limited amount of current-day observations, which allows for the development of models with low estimation times and high responsiveness.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2017.
Serie
IEEE International Conference on Intelligent Transportation Systems-ITSC, ISSN 2153-0009
Nationell ämneskategori
Transportteknik och logistik
Identifikatorer
URN: urn:nbn:se:liu:diva-148663DOI: 10.1109/ITSC.2017.8317796ISI: 000432373000201Scopus ID: 2-s2.0-85046289474ISBN: 9781538615263 (digital)OAI: oai:DiVA.org:liu-148663DiVA, id: diva2:1219954
Konferens
IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16-19 Oct. 2017
Tillgänglig från: 2018-06-18 Skapad: 2018-06-18 Senast uppdaterad: 2023-01-20Bibliografiskt granskad
Ingår i avhandling
1. Bayesian Models for Spatiotemporal Data from Transportation Networks
Öppna denna publikation i ny flik eller fönster >>Bayesian Models for Spatiotemporal Data from Transportation Networks
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Bayesianska modeller för spatiotemporal data från transportnätverk
Abstract [en]

Urbanization has caused a historical transformation at a global scale, and humanity is moving towards a fully connected society where cities will concentrate population, infrastructure and economic activity. A key element in the cities’ infrastructure is the transportation system, as it facilitates the mobility of people and goods. Transportation systems are constantly generating data from, e.g., GPS, sensors and cameras, and the statistical modeling is challenging due to the complex structure and dynamics of the system, and the inherent uncertainty. In this thesis, we develop Bayesian models with applications to transportation. We specifically focus on models that can be trained on spatiotemporal data coming from transport networks to make predictions on, e.g., bus delays or the actual network topology. Special attention has been given to model scalability issues and uncertainty quantification. We have used real-world data from transportation systems in every study to keep a balance between statistical rigor, novelty, and applicability. 

The thesis consists of four papers. The first study presents a state-of-the-art probabilistic latent network model to forecast multilayer dynamic graphs. The model uses stochastic blockmodeling to reduce the computational burden, and is illustrated on a sample of 10-year data from four major airlines within the US air transportation system. In the second paper, we develop a robust model for real-time bus travel time prediction that departs from Gaussian assumptions by using Student-t errors, and show how Bayesian inference naturally allows for predictive uncertainty quantification in a highly stochastic environment. Experiments are performed using data from high-frequency buses in Stockholm, Sweden. The third paper shows the potential of multi-output Gaussian processes to tackle network-wide travel time prediction in an urban area. We develop a responsive online model based on a coregionalized covariance and test its accuracy on real data from GPS-equipped taxis. Finally, we propose a novel regularization strategy for the vector autoregressive model that is based on a graphical spike-and-slab prior, and present a case study with real airline delay data to assess its predictive performance and analyze network patterns related to the propagation of delays across airports. 

Abstract [sv]

Urbaniseringen har orsakat en historisk förändring på en global skala, och mänskligheten går mot ett uppkopplat globalt nätverkssamhälle där städer kommer att koncentrera befolkning, infrastruktur och ekonomisk aktivitet. Ett nyckelelement i städernas infrastruktur är transportsystemet, eftersom det underlättar rörligheten av människor och varor. Transportsystem genererar ständigt data från tex. GPS, sensorer och kameror, och den statistiska modelleringen är utmanande på grund av systemets komplexa struktur och dynamik, samt dess naturliga osäkerheter.

I denna avhandling utvecklar vi Bayesianska modeller med tillämpningar för transporter. Vi fokuserar specifikt på modeller som kan tränas på spatiotemporala data från transportnätverk för att göra prediktioner av t ex. bussförseningar eller verklig nätverkstopologi. Särskild uppmärksamhet har ägnats åt modellskalbarhetsfrågor och kvantifiering av osäkerhet. Vi har använt data från riktiga transportsystem i varje studie för att skapa en balans mellan statistisk korrekthet, praktiskt tillämpbarhet och vetenskaplig höjd. Avhandlingen består av fyra artiklar. Den första artikeln presenterar en probabilistisk latent nätverksmodell för att prognostisera dynamiska grafer med multipla lager. Modellen använder stokastisk blockmodellering för att minska beräkningsbördan, och illustreras på ett datamaterial bestånde av tio års data från fyra stora flygbolag inom det amerikanska lufttransportsystemet. I den andra artikeln utvecklar vi en robust modell för realtidsprognoser av bussförseningar genom att använda Student-t fördelning och vi visar hur Bayesiansk inferens ger en naturlig kvantifiering av osäkerhet i en mycket stokastisk miljö. Experiment utförs med hjälp av högfrekventa data från bussar i Stockholm. Den tredje artikeln visar potentialen hos fler-dimensionella Gaussiska processer för att generera nätverksövergripande prediktioner av trafikflöden i en tätortsmiljö. Vi utvecklar en responsiv onlinemodell baserad på en co-regionaliserad kovariansstruktur och utvärderar prognosförmåga på verkliga data från GPS-utrustade taxibilar. Slutligen föreslår vi en ny regularisering av den vektorautoregressiva modellen via en nätverksbaserad variabelsselektionsprior, och presenterar en fallstudie på verkliga data över förseningar i kommersiell flygtrafik där vi utvärderar prediktiv förmåga och analyserar nätverksmönster för hur förseningar sprids mellan flygplatser.  

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2023. s. 38
Serie
Linköping Studies in Arts and Sciences, ISSN 0282-9800 ; 848Linköping Studies in Statistics, ISSN 1651-1700 ; 17
Nyckelord
Bayesian statistics, Transportation networks, Spatiotemporal data, Machine learning, Bayesiansk statistik, Transportnätverk, Spatiotemporal data, Maskininlärning
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:liu:diva-191153 (URN)10.3384/9789180750363 (DOI)9789180750356 (ISBN)9789180750363 (ISBN)
Disputation
2023-02-17, Ada Lovelace, Building B, Campus Valla, Linköping, 13:15 (Engelska)
Opponent
Handledare
Anmärkning

Funding agencies: This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation, Sweden. The computations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC), partially funded by the Swedish Research Council through grant agreement no. 2018-05973.

Tillgänglig från: 2023-01-20 Skapad: 2023-01-20 Senast uppdaterad: 2023-02-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Rodriguez Déniz, HéctorVillani, Mattias
Av organisationen
Statistik och maskininlärningFilosofiska fakulteten
Transportteknik och logistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 328 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf