Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Earning management estimation and prediction using machine learning: A systematic review of processing methods and synthesis for future research
Department of Accounting Faculty of Business, Economics and Social Development, University Malaysia Terengganu.
Universal Business School, India.
Department of Computer Science Aligarh Muslim University Aligarh, India.
Department of Accounting Faculty of Business, Economics and Social Development, University Malaysia Terengganu.
Vise andre og tillknytning
2021 (engelsk)Inngår i: 2021 International Conference on Technological Advancements and Innovations (ICTAI): IEEE, IEEE, 2021, s. 291-298Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The present study highlights earning management optimization possibilities to constrain the events of earning management and financial fraud. Our study investigates the existing stock of knowledge and strand literature available on earning management and fraud detection. It aims to review systematically the methods and techniques used by prior research to determine earning management and fraud detection. The results indicate that prior research in earning management optimization is diverged among several techniques and none of these techniques has provided an ideal optimization for earning management. Further, the results reveal that earning management determinants are complex based on the type and size of business entities which complicate the optimization possibilities. The current research brings useful insights for predicting and optimization of earnings management and financial fraud. The present study has significant implications for policymakers, stock markets, auditors, investors, analysts, and professionals.

sted, utgiver, år, opplag, sider
IEEE, 2021. s. 291-298
Emneord [en]
Technological innovation;Systematics;Bibliographies;Estimation;Machine learning;Mathematical models;Stock markets;Accrual earning management;real earning management;machine learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-183300DOI: 10.1109/ICTAI53825.2021.9673157Scopus ID: 2-s2.0-85125347881ISBN: 9781665420884 (tryckt)ISBN: 9781665420877 (digital)OAI: oai:DiVA.org:liu-183300DiVA, id: diva2:1641410
Konferanse
2021 International Conference on Technological Advancements and Innovations (ICTAI), Tashkent, Uzbekistan, 10-12 November 2021
Tilgjengelig fra: 2022-03-01 Laget: 2022-03-01 Sist oppdatert: 2024-08-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Mishra, Nandita
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 2489 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf