Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Exploring feasibility of reinforcement learning flight route planning
Linköpings universitet, Institutionen för datavetenskap. Linköpings universitet, Filosofiska fakulteten.
2021 (engelsk)Independent thesis Basic level (degree of Bachelor), 12 poäng / 18 hpOppgaveAlternativ tittel
Undersökning av använding av förstärkningsinlärning för flyruttsplannering (svensk)
Abstract [en]

This thesis explores and compares traditional and reinforcement learning (RL) methods of performing 2D flight path planning in 3D space. A wide overview of natural, classic, and learning approaches to planning s done in conjunction with a review of some general recurring problems and tradeoffs that appear within planning. This general background then serves as a basis for motivating different possible solutions for this specific problem. These solutions are implemented, together with a testbed inform of a parallelizable simulation environment. This environment makes use of random world generation and physics combined with an aerodynamical model. An A* planner, a local RL planner, and a global RL planner are developed and compared against each other in terms of performance, speed, and general behavior. An autopilot model is also trained and used both to measure flight feasibility and to constrain the planners to followable paths. All planners were partially successful, with the global planner exhibiting the highest overall performance. The RL planners were also found to be more reliable in terms of both speed and followability because of their ability to leave difficult decisions to the autopilot. From this it is concluded that machine learning in general, and reinforcement learning in particular, is a promising future avenue for solving the problem of flight route planning in dangerous environments.

sted, utgiver, år, opplag, sider
2021. , s. 36
Emneord [en]
SAAB, flight route planning, autorouting, auto-routing, auto routing, AI, machine learning, fighter jet, convolution, PPO, DQN, Astar, A*, C++, Python, LibTorch, PyTorch, multi threading, multi-threading, simulation, aerodynamics, world generation, Perlin noise, investigation, reward
Emneord [sv]
Flygplanering, flygruttsplannering, maskininlärning, AI, SAAB, faltning, faltningslager, belöning
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-178314ISRN: LIU-IDA/KOGVET-G–21/031—SEOAI: oai:DiVA.org:liu-178314DiVA, id: diva2:1585642
Eksternt samarbeid
Dynorobotics AB
Fag / kurs
Cognitive science
Veileder
Examiner
Tilgjengelig fra: 2021-09-01 Laget: 2021-08-17 Sist oppdatert: 2021-09-01bibliografisk kontrollert

Open Access i DiVA

fulltext(9076 kB)704 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 9076 kBChecksum SHA-512
90ce138bb1176555b7d2bba9237d0e95feef4ac48b5bdd689c8d640a5d282949cae15d7a8f31e9ed06fbe18e8f06112767881c3982d8add07013f201b4e142d7
Type fulltextMimetype application/pdf

Andre lenker

Alternativ nerladdning
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 704 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 654 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf