Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Embracing the data flood: integrating diverse data to improve phenotype association discovery in forest trees
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. (Nathaniel Street)ORCID-id: 0000-0002-9771-467x
2020 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Complex traits represent valuable research targets as many highly desirable properties of plants and animals (such as growth rate and height) fall into this group. However, associating biological markers with these traits is incredibly challenging, in part due to their small effect sizes. For the two species at the core of our research, European aspen (Populus tremula) and Norway spruce (Picea abies), association studies are even more challenging, primarily due to the fragmented state of their genome assemblies. These assemblies represent the gene space well, but poorly represented inter-genic regions hinder variant discovery and large scale association studies.

In this thesis, I present my work to improve association discovery of complex traits in forest trees. Firstly, to overcome the issues with assembly fragmentation, I have created an updated version of the P. tremula genome, which is highly contiguous and anchored in full chromosomes. To calculate the dense linkage map required to order and orient the aspen assembly, I developed "BatchMap", a parallel implementation of linkage mapping software. BatchMap has been successfully applied to several dense linkage maps, including aspen and Norway spruce, and was essential to the progress in improving the aspen genome assembly. Further, I developed seidr, which represents a starting point in multi-layer, network-based systems biology, an analysis technique with promising prospects for complex trait association analysis. As a case study, I applied some of the methods developed to the analysis of leaf shape in natural populations of European aspen, a complex, omnigenic trait.

The multi-layer model of systems biology and related analysis techniques offer promise in the analysis of complex traits, and this thesis represents a starting point toward an intricate, holistic model of systems biology that may help to unravel the overwhelmingly complicated nature of complex traits.

sted, utgiver, år, opplag, sider
Umeå: Umeå University , 2020. , s. 83
Emneord [en]
Systems Biology, Association Discovery, Genomics, Transcriptomics, Genome Assembly, Gene Networks, Forest Tree, Aspen, Spruce
HSV kategori
Forskningsprogram
biologi
Identifikatorer
URN: urn:nbn:se:umu:diva-170643ISBN: 978-91-7855-273-3 (tryckt)ISBN: 978-91-7855-274-0 (digital)OAI: oai:DiVA.org:umu-170643DiVA, id: diva2:1429905
Disputas
2020-06-12, KBE303 - Stora hörsalen, Umeå, 10:00 (engelsk)
Opponent
Veileder
Merknad

2020-06-10: Errata spikblad - Ny tid för disputation. 

Tilgjengelig fra: 2020-05-20 Laget: 2020-05-13 Sist oppdatert: 2020-06-10bibliografisk kontrollert
Delarbeid
1. Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen
Åpne denne publikasjonen i ny fane eller vindu >>Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen
Vise andre…
2018 (engelsk)Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 115, nr 46, s. E10970-E10978Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The Populus genus is one of the major plant model systems, but genomic resources have thus far primarily been available for poplar species, and primarily Populus trichocarpa (Torr. & Gray), which was the first tree with a whole-genome assembly. To further advance evolutionary and functional genomic analyses in Populus, we produced genome assemblies and population genetics resources of two aspen species, Populus tremula L. and Populus tremuloides Michx. The two aspen species have distributions spanning the Northern Hemisphere, where they are keystone species supporting a wide variety of dependent communities and produce a diverse array of secondary metabolites. Our analyses show that the two aspens share a similar genome structure and a highly conserved gene content with P. trichocarpa but display substantially higher levels of heterozygosity. Based on population resequencing data, we observed widespread positive and negative selection acting on both coding and noncoding regions. Furthermore, patterns of genetic diversity and molecular evolution in aspen are influenced by a number of features, such as expression level, coexpression network connectivity, and regulatory variation. To maximize the community utility of these resources, we have integrated all presented data within the PopGenIE web resource (PopGenIE.org).

sted, utgiver, år, opplag, sider
NATL ACAD SCIENCES, 2018
Emneord
genome assembly, natural selection, coexpression, population genetics, Populus
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-154950 (URN)10.1073/pnas.1801437115 (DOI)000449934400020 ()30373829 (PubMedID)2-s2.0-85056516875 (Scopus ID)
Tilgjengelig fra: 2019-01-07 Laget: 2019-01-07 Sist oppdatert: 2020-05-13bibliografisk kontrollert
2. BatchMap: A parallel implementation of the OneMap R package for fast computation of F-1 linkage maps in outcrossing species
Åpne denne publikasjonen i ny fane eller vindu >>BatchMap: A parallel implementation of the OneMap R package for fast computation of F-1 linkage maps in outcrossing species
2017 (engelsk)Inngår i: PLOS ONE, E-ISSN 1932-6203, Vol. 12, nr 12, artikkel-id e0189256Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

With the rapid advancement of high throughput sequencing, large numbers of genetic markers can be readily and cheaply acquired, but most current software packages for genetic map construction cannot handle such dense input. Modern computer architectures and server farms represent untapped resources that can be used to enable higher marker densities to be processed in tractable time. Here we present a pipeline using a modified version of OneMap that parallelizes over bottleneck functions and achieves substantial speedups for producing a high density linkage map (N = 20,000). Using simulated data we show that the outcome is as accurate as the traditional pipeline. We further demonstrate that there is a direct relationship between the number of markers used and the level of deviation between true and estimated order, which in turn impacts the final size of a genetic map.

HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-144110 (URN)10.1371/journal.pone.0189256 (DOI)000418564200037 ()29261725 (PubMedID)2-s2.0-85038843145 (Scopus ID)
Tilgjengelig fra: 2018-01-23 Laget: 2018-01-23 Sist oppdatert: 2023-03-24bibliografisk kontrollert
3. An improved genome assembly of the European aspen Populus tremula
Åpne denne publikasjonen i ny fane eller vindu >>An improved genome assembly of the European aspen Populus tremula
Vise andre…
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-170640 (URN)
Tilgjengelig fra: 2020-05-12 Laget: 2020-05-12 Sist oppdatert: 2020-05-14
4. Leaf shape in Populus tremula is a complex, omnigenic trait
Åpne denne publikasjonen i ny fane eller vindu >>Leaf shape in Populus tremula is a complex, omnigenic trait
Vise andre…
2020 (engelsk)Inngår i: Ecology and Evolution, E-ISSN 2045-7758, Vol. 10, nr 21, s. 11922-11940Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Leaf shape is a defining feature of how we recognize and classify plant species. Although there is extensive variation in leaf shape within many species, few studies have disentangled the underlying genetic architecture. We characterized the genetic architecture of leaf shape variation in Eurasian aspen (Populus tremula L.) by performing genome‐wide association study (GWAS) for physiognomy traits. To ascertain the roles of identified GWAS candidate genes within the leaf development transcriptional program, we generated RNA‐Seq data that we used to perform gene co‐expression network analyses from a developmental series, which is publicly available within the PlantGenIE resource. We additionally used existing gene expression measurements across the population to analyze GWAS candidate genes in the context of a population‐wide co‐expression network and to identify genes that were differentially expressed between groups of individuals with contrasting leaf shapes. These data were integrated with expression GWAS (eQTL) results to define a set of candidate genes associated with leaf shape variation. Our results identified no clear adaptive link to leaf shape variation and indicate that leaf shape traits are genetically complex, likely determined by numerous small‐effect variations in gene expression. Genes associated with shape variation were peripheral within the population‐wide co‐expression network, were not highly connected within the leaf development co‐expression network, and exhibited signatures of relaxed selection. As such, our results are consistent with the omnigenic model.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2020
Emneord
complex trait, GWAS, leaf shape, natural variation, omnigenic, Populus tremula
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-170641 (URN)10.1002/ece3.6691 (DOI)000578291300001 ()2-s2.0-85092478395 (Scopus ID)
Merknad

Originally included in thesis in manuscript form.

Tilgjengelig fra: 2020-05-12 Laget: 2020-05-12 Sist oppdatert: 2024-01-17bibliografisk kontrollert
5. Enhanced ensemble gene networks in systems biology
Åpne denne publikasjonen i ny fane eller vindu >>Enhanced ensemble gene networks in systems biology
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-170642 (URN)
Tilgjengelig fra: 2020-05-12 Laget: 2020-05-12 Sist oppdatert: 2020-05-14

Open Access i DiVA

fulltext(11523 kB)190 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 11523 kBChecksum SHA-512
ea3c94fe88d7dec219195684a964871747ede8c6211302691b9da09fc968c89132cc4da2284afadbad5e9e3daa1c6b8f54d1d1bc977868fd87757f1921a58b71
Type fulltextMimetype application/pdf
spikblad(186 kB)47 nedlastinger
Filinformasjon
Fil SPIKBLAD02.pdfFilstørrelse 186 kBChecksum SHA-512
be8721f5d59755d2f2ee6a516d7a1bbd9c17305baf2ef5713e60704bc04c6b2e7301110510f5d8235618349389f263d1282eb3b736f21425deb6711c30509b89
Type spikbladMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Schiffthaler, Bastian
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 190 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 1629 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf