Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards Machine Learning Inference in the Data Plane
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
2019 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

Recently, machine learning has been considered an important tool for various networkingrelated use cases such as intrusion detection, flow classification, etc. Traditionally, machinelearning based classification algorithms run on dedicated machines that are outside of thefast path, e.g. on Deep Packet Inspection boxes, etc. This imposes additional latency inorder to detect threats or classify the flows.With the recent advance of programmable data planes, implementing advanced function-ality directly in the fast path is now a possibility. In this thesis, we propose to implementArtificial Neural Network inference together with flow metadata extraction directly in thedata plane of P4 programmable switches, routers, or Network Interface Cards (NICs).We design a P4 pipeline, optimize the memory and computational operations for our dataplane target, a programmable NIC with Micro-C external support. The results show thatneural networks of a reasonable size (i.e. 3 hidden layers with 30 neurons each) can pro-cess flows totaling over a million packets per second, while the packet latency impact fromextracting a total of 46 features is 1.85μs.

sted, utgiver, år, opplag, sider
2019.
Emneord [en]
Machine learning Data Plane SmartNIC Artificial Neural Network Inference Flow Classification
HSV kategori
Identifikatorer
URN: urn:nbn:se:kau:diva-72875OAI: oai:DiVA.org:kau-72875DiVA, id: diva2:1328601
Fag / kurs
Computer Science
Utdanningsprogram
Engineering: Computer Engineering (300 ECTS credits)
Presentation
2019-06-03, 10:00 (engelsk)
Veileder
Examiner
Prosjekter
HITS, 4707Tilgjengelig fra: 2019-06-26 Laget: 2019-06-21 Sist oppdatert: 2020-02-14bibliografisk kontrollert

Open Access i DiVA

fulltext(738 kB)1435 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 738 kBChecksum SHA-512
2b1c74034fccf3484070ee4afab6336fb276afc94f7fc28d6caa8ddefd0eda73f26d567f61a1ad2dd803751e9e1be3b940353d3730364a6ff4aabb8a915ac01d
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Langlet, Jonatan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1435 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 2583 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf