
RESEARCH REPORT

Luleå University of Technology
Department of Computer Science and Electrical Engineering

Division of EISLAB

:|: -|: - -- ⁄ -- 

:

Time for Timber

Per Lindgren

Johan Nordlander

Linus Svensson

Joakim Eriksson

Time for Timber

Per Lindgren, Johan Nordlander,
Linus Svensson and Joakim Eriksson

Luleå University of Technology
Department of Computer Science and Electrical Engineering

Division of EISLAB
Luleå, Sweden

Luleå, December 2004

 2

 3

Time for Timber

Abstract - Embedded systems are often operating under hard real-time constraints, while at
the same time being constrained by severe restrictions on power consumption. For such
systems, robustness and reliability can be a question of life and death, which calls for rig-
orous system design and methodologies for validation. In this paper we advocate a design
methodology for low-power, real-time systems, based on Timber; a pure reactive system
model that allows for formal reasoning about various system properties. We outline how
system specifications in Timber can be "compiled" into efficient standalone executables
for general light-weight microcontroller based target platforms. Methods for resource
analysis and implications to system dimensioning and validation are further discussed.

1 Background
Embedded systems are often operating under hard real-time constraints, while at the same
time being constrained by severe restrictions on power consumption. The increasing mar-
ket of mobile devices makes out for a wide range of battery powered, real-time systems.
Other examples can be found in industrial measurement and control systems. For such sys-
tems, robustness and reliability can be a question of life and death, which calls for rigorous
system design and methodologies for validation. In this paper we set out on a search for
the “holy grail” of real-time embedded system design. On our journey, we will come
across and challenge daemons of real-time embedded system design. Luckily, to our ad-
vantage, we come equipped with a design methodology that combines theoretical com-
puter science with hands on applicability of today's commercially deployed tools.

1.1 Challenges of Real-Time Embedded System Design
Scavenging the field of real-time embedded system design, we come across a number of
identifiable key problems;

• Capturing the timely behaviour of a reactive system

• Ensuring state integrity while avoiding unintended blocking

• Correctly managing dynamic memory

• Performing system dimensioning and verification

The following subsections further elaborate on the mentioned problems.

1.2 Capturing the Specification
Real-time system design is usually identified with the concept of using a Real-Time Oper-
ating Systems (RTOS) for concurrency and process management. A quick survey gives at
hand a number of RTOS approaches, ranging from minimalistic OS cores such as TinyOS
[1] and Contiki [2], to fully fledged systems such as VxWorks, RT-Linux and QNX [3, 4,
5].

Traditional C/C++ coding for RTOS lacks the ability to natively capture the timely be-
haviour of a system. Whereas the real-time behaviour of the system is often specified in
terms of reaction deadlines, the common RTOS programming model requires the reactions
to be translated into processes or threads, and the deadlines to be translated into priorities.

4 TIME FOR TIMBER

Even if we can derive appropriate thread priorities, the problem of mapping a concept of
time constrained reactions onto traditional language constructs remains.

To remedy this fundamental problem, a number of language-based approaches have
been suggested. Real-Time Specification for Java (RTSJ) is an example of a concurrent
language with a real-time extension [6]. Although RTSJ introduces the notion of dead-
lines, the current priority-based scheduler implemented in the Real-Time Java Virtual Ma-
chine (RTJVM) requires the programmer to assign priorities to each thread. Deadlines are
currently intended mainly for on-line schedulability analysis and detection of missed dead-
lines and time budget (cost) over-runs.

In the realm of experimental, real-time programming languages we find designs that do
provide general forms of timing constraints that, at least in principle, could open up for
deadline-based scheduling. Examples are Real-time Euclid [7], RTC++ [8], and CRL [9].
Hooman and van Roosmalen describe a generic language extension in the same spirit, ex-
emplified with an unnamed language design that even comes with a formal definition [10].
However, a general remark regarding these approaches is that timing constraints apply to
very fine grain program units (statement blocks in RTC++, individual statements in CRL
and the Hooman/van Roosmalen design); which, by the presence of general threads and
blocking constructs, do not correspond very well to the actual schedulable units as they
appear at run-time. However, even if the mentioned languages allow timely properties to
be defined in the program specification, there is no direct correspondence to events man-
aged by the underlying operating system. Hence, the basic problem of formal system
analyses remains.

1.3 State Integrity
Concurrent programming in itself constitutes a complex and delicate matter. One major
obstacle is ensuring state integrity in the presence of concurrent access. The traditional ap-
proach is to enforce state protection by the use of mutexes, semaphores and monitors; con-
structs that, in effect, reduce the parallelism of the system by silently blocking threads that
risk violating state integrity.

Outmost care must be taken in how these blocking constructs are applied; otherwise
the system might suffer from deadlock or other similar situations where the system is un-
able to respond unless some specific external event first occurs. What the programmer
might hope for are guidelines or so-called programming patterns that enforce a sound
blocking structure. To strictly obey these rules is a tedious and error-prone task, as neither
programming languages nor operating system interfaces offer much help in detecting pos-
sible problems with unexpected blocking. This pinpoints a fundamental problem of con-
current programming in traditional languages: blocking is both a transparent code property
and the corner-stone on which event-driven programs are built, all at the same time!

1.4 Memory Management
Another problem facing the user of modern heap based languages is the task of correctly
managing dynamic memory. Although not a problem specific to embedded systems, the
scarce memory resources of embedded systems make memory leakage an urgent and in-
tolerable problem.

One commonly suggested solution is to lessen the burden on the programmer by apply-
ing some form of automatic garbage collection. However, if the system is supposed to op-
erate under hard real-time constraints, special requirements are imposed on the garbage
collection (GC) mechanism [11]. Firstly, the latency of memory allocation must still be

1.5 SYSTEM DIMENSIONING AND VERIFICATION 5

predictable, to allow for accurate execution-time analysis. Secondly, the garbage collector
itself must be scheduled so as to never violate any deadlines in the system.

In the general case, events can occur at any time, which suggests that the GC should be
interruptible. That is, in the case the GC is running when an event occurs, there is a risk its
deadline will be missed if handling it is suspended until the GC has finished. Thus, it must
be possible to interrupt the GC and handle the event immediately. However, this kind of
real-time GC has not yet reached wide-spread acceptance, and traditional RTOS design
typically excludes automatic memory management altogether in favour of the traditional
"malloc/free" memory management interface

An illustrative example of this dilemma is found in the Real-Time Specification for
Java. Java threads operating under real-time conditions are restricted to use only non-GC
memory (which might be either static or scoped). This is to guarantee that memory alloca-
tions by real-time threads will never invoke the garbage collector, which would risk violat-
ing real-time properties. The effect is that even though RT Java is a garbage collected lan-
guage, the programmer is forced to resort to manual memory management for all real-time
threads.

1.5 System Dimensioning and Verification
When designing and dimensioning hard real-time systems it is crucial to ensure that reac-
tion deadlines will be met by the implementation at all times. However, as mentioned in
Section 1.2, it is hard to capture reaction deadlines into traditional programming language
constructs. This precludes formal verification to be directly based on the system descrip-
tion. Hence, over the years, a number of indirect approaches have been developed.

One simple but obviously less satisfactory approach is to validate the system through
simulation. Only in cases where the system (and its environment) has a totally predictable
behaviour this is an acceptable solution. A prominent example thereof is a statically (off-
line) scheduled system handling periodic inputs. However, such systems are quite inflexi-
ble and cumbersome to design and update. Another drawback is that these systems are ac-
tive (opposed to reactive) in turn leading to higher power consumption than a reactive
counterpart.

Dynamically scheduled systems offer many advantages, e.g. they are responsive to
sporadic events (events that can occur at any time with a least interval), they are more
flexible, hence easier to design and update and they can efficiently be put to sleep when
awaiting further events. System verification may be done through formal schedulability
analysis (given reaction deadlines, reaction execution times, and a timely event model).

Rate- monotonic (RM) scheduling is a popular and well understood simplification of
the general case. It indicates the use of priority based scheduling together with the assump-
tion that reaction deadlines equal the inter-arrival times of periodic events. Priorities are
computed online (inverse proportional to deadline). Although applicable in many cases,
RM suffers from suboptimal CPU utilization (down to about 70% for a large number of
simultaneously executing periodic processes). However, a more fundamental problem
concerns establishing reliable execution times for the event reactions – a requirement for
formal schedulability analysis. Encoding event reactions in the form of RTOS and mid-
dleware services complicates such analyses, as formal descriptions of all system compo-
nents might be hard to obtain.

6 TIME FOR TIMBER

2 Time for Timber
In order to meet the challenges of real-time embedded system design we advocate a design
methodology based on Timber; a pure reactive system model that allows for formal rea-
soning about various system properties. Timber (the name is derived from the words time,
embedded and reactive) is a system description language that captures the sought real-time
system behaviour as events and their reactions in the form of reactive objects. The rigor-
ous type system and formal semantics ensure the description to be concise and well de-
fined. Timber descriptions preserve all native parallelism of the system, without burdening
the designer with any need of explicit coding of the parallel behaviour. Under the Timber
execution model, an event causes a reaction that in turn can generate further events. A cen-
tral property of Timber semantics is that each reaction will terminate (run to end) inde-
pendent of further events, hence a system described in Timber will be responsive at all
times (under the limitation of available CPU resources) and free of deadlocks. This pro-
vides for meaningful reasoning about lower and upper time bounds for the system reac-
tions. These time bounds make out the foundation for further system analyses.

A system description in Timber can be viewed as a platform independent model, which
for a given target system can be translated to an efficient executable (consisting of a real-
time scheduler, memory manager and code that implements the system's reactions). Thus,
the generated software is a complete implementation of the initial system description and
does not add any components of uncertainty that external code such as operating systems
and device drivers may invoke. This leads to the conclusion that properties derived from
system analyses will hold also for the target system. Given appropriate tools for analyses,
we may derive a minimal, custom-made target system that meet the resource demands of
the initial specification.

2.1 Capturing the Specification in Timber
Here we will just briefly overview the constructs of Timber that are most relevant to the
rest of the paper. For an in depth description, we refer to the draft language report [12], the
formal semantics definition [13] and previous work on reactive objects [14, 15] and func-
tional languages [16].

2.1.1 Objects in Timber
On the top level, a Timber program is a set of bindings of names to expressions. In the be-
low example, the template keyword indicates the definition an object generator (class)
with the identifier counter, the instantiation code val := i and a public interface consisting
of a record with labels inc and read.

An object consists of state variables and action (asynchronous)/request (synchronous)
methods used to update/inspect the state (Figure 1).

 counter(i) = template
 val := i
 return {
 inc(j) = action val := val + j
 read = request return val
 }

Figure 1. Example object: counter.

 test (env) = action

2.1 CAPTURING THE SPECIFICATION IN TIMBER 7

 c <- counter(1)
 c.inc(5)
 n <- c.read
 env.putStr(show(n))

Figure 2. Example use of object counter.

Figure 2 defines a client method test, that given env (an i/o interface to the environment)
will perform the following operations in sequential order;

• c <- counter(1)
An instance c of counter will be created, and the initialization code of c will be
executed with the parameter i equal to 1.

• c.inc(5)
An asynchronous message inc(5) will be posted to c.

• n <- c.read
Leads to posting the synchronous message c.read and awaitening its result. The
pending event c.inc(5) will now be executed by c, which makes a destructive up-
date to its local state val := 1 + 5. The c.read request thus returns the value 6,
which the client can access under the name n.

• env.putStr(show n)
The function show is invoked with the parameter 6, resulting in the string primitive
“6”. The asynchronous message env.putStr(“6”) will now be posted. The client
method test has run-to-end.

• The event env.putStr(“6”) is now handled, the effect of this action is to output the
string “6” to the environment.

The execution model of Timber ensures mutual exclusion between the methods of an ob-
ject instance, thus relieving the programmer from the burden of explicitly enforcing state
integrity. In the above example, the action inc(j) and the request read will execute under
mutual exclusion. However, the execution model also allows object instances to be fully
parallel, unless involved in a chain of synchronous requests. To ensure that blocking will
not be indefinite, each method must run-to-end, and deadlocks must be detected and
turned into exceptions. Fortunately the latter comes for free as an inherent feature of the
Timber run-time system. The former criterion, a run-to-end semantics, is actually guaran-
teed by the language, as long as methods do not voluntarily step into infinite loops. Infinite
loops are however always degenerate in Timber, and in particular not part of the structure
of an infinite reactive process. Instead, every Timber object is identical to a process, and
objects will exist as long as there are external references to them. Due to the run-to-end
semantics of methods, we may thus say that Timber processes are infinite and reactive by
construction.

2.1.2 Deadlock Avoidance
The problem of deadlocks is closely related to blocking constructs, as illustrated in the ex-
ample below. Two objects o1 and o2 are instantiated as state variables in test. Notice, that
we may use o2 as a parameter in the creation of o1, even if o2 is not yet created. This is
possible since the state initiation does not require the evaluation of parameters. So far so
good, now let us execute the start method of test. This leads to a synchronous message
o1.req, which in turn leads to the synchronous message o2.req, which in turn leads to the

8 TIME FOR TIMBER

synchronous message o1.req. Timber semantics implies mutual exclusion between meth-
ods of the same object, i.e. we cannot execute two invocations of o1.req. The program has
entered a deadlock. However, the run-time semantics of Timber allows detecting circular
events, and the programmer can be presented the circular event chain in the presence of
deadlock. This is opposed to the situation when a deadlock just causes a system to be un-
responsive. In such case it is hard to tell if the system just awaits some specific input, or if
it suffers a deadlock (and if so, what caused the deadlock).

object o =
 template
 obj := o
 return {
 req = request
 r <- obj.req
 return r
 }

test =
 template
 o1 <- object o2
 o2 <- object o1
 return {
 start = action
 r <- o1.req
 }

Figure 3. Deadlock example.

2.1.3 Timber and Time; the After Construct
Periodic processes are expressed using self-addressed messages with time offsets. This can
be exemplified as follows.

 test(env) =
 template
 c <- counter(0)
 let
 poll = action
 r <- env.inport.readData
 case r of
 Nothing -> done
 Just d -> c.inc(d)
 after (50*milliseconds) poll

 printer = action
 r <- c.read
 env.putStr(show r)
 after (5*seconds) printer

 return {
 start = action
 poll
 printer
 }

Figure 4. Polling example.

2.1 CAPTURING THE SPECIFICATION IN TIMBER 9

Invoking test env causes the following operations to be carried out;

• The scheduler will set the baseline to the current value of the system timer, we as-
sume 0ms.

• The creation of a counter c with an initial state val=0.

• The test.start action posts messages to poll and printer.

• The scheduler will now process the posted events, starting with poll. The corre-
sponding action polls the inport by a request env.inport.readData. If data is avail-
able an asynchronous message to the counter is posted c.inc(d). The after construct
posts a message poll, to be scheduled no earlier than base-
line+50*milliseconds=50ms.

• The next event from the event queue is processed, in this case printer which post a
request to c.read, awaits and stores the result in r. The pending event c.inc(d), will
be carried out first, before the c.read is handled. The result r is passed to the func-
tion show, resulting in a primitive string. This string is posted as the parameter to
the asynchronous event env.putStr(show r). The after construct posts a message
printer (env c), to be scheduled no earlier than baseline+5*seconds=5000ms. This
ends the chain of immediately schedulable events caused by invoking test env.

• When the system timer reaches 5ms the previously posted message poll is released,
i.e. the poll action is scheduled for execution. The baseline is updated by adding
5ms. The operations of 3 are carried out periodically, every 5ms.

• After 5 seconds the printer event will be released (since the system timer has
reached 5000ms). The operations of 5 are carried out, periodically, every 5th sec-
ond.

The example above actually shows how two describe a parallel system with two periodic
processes (defined by the actions poll and printer) that are using a shared resource (the
counter c). Notice that no explicit coding for parallelism is required, neither is there any
need to worry about multiple timers, nor any explicit coding for ensuring state integrity.
Since poll and printer are encapsulated in the same object they execute under mutual ex-
clusion. If true parallelism is needed we can implement poll and printer into separate ob-
jects. In this way the object-oriented and parallel execution models go hand in hand.

Another important feature of Timber is that all references to time are referring to the
baseline. The baseline is managed by the scheduler and is free of jitter caused for example
by the actual time for posting events (which indeed might vary due to the actual schedule).
Hence, the timely behaviour will be free of “drift” (besides that of hardware related fluc-
tuations).

Because of the run-to-end requirement of Timber methods, we cannot pause the execu-
tion by a wait(time) statement. Instead we can use the after construct to establish such be-
haviour, e.g. after invoking start, the outport should take the value 1, 2 and 3, after 0, 10
ms and 20 ms respectively.

10 TIME FOR TIMBER

 start = action
 outport.set 1
 after (10*milliseconds) set2
 after (20*milliseconds) set3
 set2 = action
 outport.set 2
 set3 = action
 outport.set 3

Figure 5. Wait encoding in Timber.

Where, both asynchronous events set2 and set3 are posted by the start method. Or alterna-
tively;

 start = action
 outport.set 1
 after (10*milliseconds) set2
 set2 = action
 outport.set 2
 after (10*milliseconds) set3
 set3 = action
 outport.set 3

Figure 6. Wait encoding in Timber, alternative implementation.

Where the asynchronous event set3 is posted by the set2 method. This coding of interme-
diate methods (states) can be avoided by anonymous (unnamed) methods.

 start = action
 outport.set 1
 after (10*milliseconds)
 action
 outport.set 2
 after (20*milliseconds)
 action
 outport.set 3

Figure 7. Wait encoding using anonymous methods.

Or alternatively;

 start = action
 outport.set 1
 after (10*milliseconds)
 action
 outport.set 2
 after (10*milliseconds)
 action
 outport.set 3

Figure 8. Wait encoding using anonymous methods, alternative implementation.

This encoding resembles the sequential programming style commonly adopted among
programmers. The difference however, that a system implemented in Timber will remain
responsive.

2.1 CAPTURING THE SPECIFICATION IN TIMBER 11

2.1.4 Timber and Time; the Before Construct
For each method Timber also allows a deadline (upper time limit) to be defined. In the ex-
ample below, this implies that a correct (i.e. schedulable system) will finish the invocation
of poll within 5*milliseconds from the release of poll, (i.e. before the absolute deadline of
baseline+5*milliseconds). Events produced directly or indirectly by tick will inherit the
absolute deadline of poll. In the below example, the eligible execution window for poll is
set to 1/10th of the period, in effect limiting the jitter of the polling.

 poll = before (5*milliseconds) action
 r <- env.inport.readData
 case r of
 Nothing -> done
 Just d -> c.inc(d)
 after (50*milliseconds) poll

Figure 9. Before and after constructs.

When some asynchronous messages posted by the method invocation are less time critical
we can relax their deadlines. In the below example, reading of data and resetting the data
available signal are still tightly bound by the deadline, but the actual “processing”
c.inc(data) may be postponed until 100*milliseconds, i.e., even passed the period time.
Naturally, relaxing deadlines increases the schedulability of a resource constrained system.

 poll = before (5*milliseconds) action
 r <- env.inport.readData
 case r of
 Nothing -> done
 Just d -> before (100*milliseconds) inc(d)
 after (50*milliseconds) poll

Figure 10. Extending the deadline.

Increasing the deadline of synchronous events, would indeed increase the deadline of the
method itself, hence considered superfluous. The semantics of Timber does not allow the
deadline to be decreased, and this for good reasons. The deadline of a method (action or
request) is defined by the before construct in the method definition, e.g.;

 poll = before (5*milliseconds) action

This deadline is a constant relative to the baseline, and the absolute deadline will be
known to the scheduler when an event to poll is posted. However, defining a deadline by
the before keyword inside a method, may be variable and unknown to the scheduler at the
time an event to poll is posted e.g.;

 t <- getNewDeadline;
 before t c.inc(d)

Figure 11. Dynamic deadline extension.

Decreasing the deadline dynamically would imply dynamically decreasing the dead-
lines of all previous statements in the method. At the time of evaluating this new tighter
deadline, it may already been missed, hence decreasing deadlines is prohibited by the
Timber semantics.

12 TIME FOR TIMBER

2.1.5 Message Tags
We have already seen examples, creating periodic behaviour, where the baseline is in-
creased by the after construct. However, the after construct can be used for other purposes
as well, e.g. to implement timeout. The example below assumes a template set, imple-
menting the actions set.include index, set.exclude index, and the request set.member index.
Furthermore it assumes env.send data ack index, to send data, and use ack index as a call-
back when the send operation has been acknowledged. This specific implementation man-
ages 16 outstanding send events.

 tick_and_timeout(env) =
 template
 s <- set
 index := 0
 let
 send(data) = action
 index := (index + 1) mod 16;
 s.include(index)
 env.send(pack(data,ack(index)))
 after (1*seconds) timeout(index)

 ack(i) = action
 s.exclude(i)

 timeout(i) = action
 if (s.member(i)) then
 “timeout!!!”
 else
 “OK”
 return {
 sendTimeout(data)= send(data)
 }

Figure 12. Creating a Timeout.

In the above example, each send is given a unique identifier by annotating it with index. In
timeout(index), we explicitly check if this specific timeout has already been ack:ed, by
checking s.member(index). However, Timber allows this to be managed in a more elegant
manner, by in effect cancelling the timeout message whenever the corresponding ack is
received. Each message is given a unique message tag, implementing the method cancel.

 tag <- after t timeout
 …
 tag.cancel

 Figure 13. Message tags.

2.1 CAPTURING THE SPECIFICATION IN TIMBER 13

We can utilize this to implement timeout with message tags;

 tick_and_timeout(env) =
 template
 let
 send(data) = action
 fix tag <- env.send(pack(data,ack(tag)))
 after (1*seconds) timeout(tag)
 ack(t) = action
 t.cancel
 timeout(t) = action
 env.putStr(“timeout” ++ show(t))
 return {
 sendTimeout = send
 }

Figure 14. Creating a Timeout using message tags.

Notice, the recursive use of tag; it is created (tag <-) and used in the same statement as a
parameter to env.send. The call by value semantics of Timber normally requires parame-
ters to be evaluated first, since tag is not yet created this statement would be illegal. How-
ever, the keyword fix, allows overriding this semantic rule. In this case it is safe, since tag
is used only as a parameter to the asynchronous message ack. At the time of posting
ack(tag), the value of tag will be known, hence the statement is sound. The above imple-
mentation can handle any number of outstanding send/ack messages (limited only by the
amount of memory available for the message queue).

2.1.6 Interfacing the Environment
The examples so far have been limited to handling events internal to the Timber system. In
the following example, we show how the Timber program can be interfaced to the physi-
cal environment, through the use of interrupts and hardware registers. The below example
consists of the sonar class, the alarm class (not depicted) and the main class. Sonar peri-
odically sends a pulse and listens to the echo to determine if an alarm should be alerted.
The pulse is generated by writing to a hardware register (port). The echo and alarm reset
are received as interrupts, sonarIRQ and buttonIRQ bound to the methods s.sonar and
a.off respectively.

14 TIME FOR TIMBER

 sonar (port,alarm) =
 template
 t := baseline
 let
 ping = before (50*microseconds) action
 port.write(beepOn)
 t := baseline
 after (2*milliseconds) stop
 after (1*seconds) ping
 stop = action
 port.write(beepOff)
 echo = before (5*milliseconds) action
 let distance = k*(baseline − t)
 if (distance < limit) then
 alarm.on
 return {
 sonar = echo
 start = ping
 }

 main regs =
 template
 s <- sonar ((regs!0xac00) a)
 a <- alarm (regs!0xa3f0)
 return [
 (resetIRQ, s.start),
 (sonarIRQ, s.sonar),
 (buttonIRQ, a.off)
]

Figure 15. Sonar example.

On this level, the interface to the software, as seen from the hardware, is the array of inter-
rupt handlers it provides in the form of a list of pairs. Consequently, the interface to the
hardware as seen by the software, takes the shape of an array of device registers that can
be read or written.

In this section we have demonstrated how sought real-time behaviour of can be cap-
tured by Timber constructs. Recapitulation and conclusions;

• Objects and parallelism: The parallel and object oriented models go hand in hand.
An object instance executes in parallel with the rest of the system, while the state
encapsulated in the object is protected by forcing the methods of the object in-
stance to execute under mutual exclusion. This implicit coding of parallelism and
state integrity coincides with the intuition of a reactive object. In a correct Timber
program, all methods are non-blocking, hence the system will be responsive to in-
coming events at all times.

• Events, methods and time: The semantics of Timber conceptually ties events and
methods in a way that makes is possible to unify the timely requirements for a re-
action to an event, with the run-time demands on the execution of a method. The
baseline states the absolute time for the release of an event, i.e. the point in time
when the corresponding method becomes eligible for scheduling. Before and after
constructs define points in time relative to the method’s baseline, free of jitter due
to the actual scheduling of events. This allows the deadline of a reaction to an
event, to be accurately described by the before construct of the corresponding

2.2 FROM SPECIFICATION TO IMPLEMENTATION 15

method. Moreover, the after construct, can be used to precisely define future points
in time. This is useful for example in generating periodic-, timeout-, and wait-
constructs.

2.2 From Specification to Implementation
A system description in Timber can be viewed as a formal model of the system implemen-
tation. The designer may also choose to model the system’s environment in Timber. This
is especially useful in modelling embedded applications, where the behaviour of the envi-
ronment often allows precise and detailed modelling. Similar approaches are widely ap-
plied in the design, debugging, validation and verification of digital systems. Hardware
description languages (HDLs) such as VDHL, Veriolog, Superlog and SystemC are com-
monly used to describe system specifications and their environment in the form of imple-
mentations and test-benches. Using environment models, stimuli for functional validation
can be automatically generated and the simulation results analyzed. A Timber model of
the inport used in the polling example of Figure 4, is shown below. It realistically mimics
a buffer with internal state being either empty (Nothing) or having a value (Just d).

 inport =
 template
 state := Nothing
 return {
 readData = request
 let r = state
 state := Nothing
 return r
 setData(d) = action
 state := Just d
 }

Figure 16. Modelling the environment.

In the realm of digital design, formal methods are getting increasing attention, this largely
since faults are considered to be so costly that it pays of in the end to use a rigorous, for-
mal, methodology for design verification. In the following we will argue that system and
environment descriptions in Timber opens up for such possibilities in the realm of embed-
ded real-time system design. Hence, we advocate Timber, not as some theoretical tool
merely useful to weird computer scientists, but indeed as an alternative for hands on im-
plementation of real-time embedded systems.

The semantics of Timber does not state in which way the execution mechanisms of
methods, posting of events and management of memory should be devised. It only defines
the expected results, and states the timing properties for a correct implementation. Hence
there is no “single” format for the implementation of Timber. However, with the basis of
today’s available platforms for embedded applications, a practical approach to a “Timber
compiler” is underway.

From a system specification in Timber an executable is generated consisting of;

• real-time scheduler

• dynamic memory manager

• the implementation for all methods (actions/requests) of the specification

16 TIME FOR TIMBER

The real-time scheduler uses a hardware abstraction layer (HAL) to interface the environ-
ment. Fundamental hardware related issues, such a definition of word-length, interrupt
vectors, system timer, the context switch mechanism, memory layout, and power/clock
modes, are managed by the HAL. Once a Timber executable is downloaded, a startup pro-
cedure is carried out. The memory manager is initiated and the object structure together
with the corresponding state variables are created and bound to the environment (i.e., in-
terrupts and registers). In the example below, the sonar and alarm objects s and a are in-
stantiated, and the interrupts resetIRQ, sonarIRQ and buttonIRQ tied to s.start, s.sonar and
a.off respectively. As there are no events eligible for scheduling, the system will be idle.
Hardware specific low-power mode is now entered, allowing the system to deep sleep,
woken only by external events (interrupts).

 main regs =
 template
 s <- sonar ((regs!0xac00) a)
 a <- alarm (regs!0xa3f0)
 return [
 (resetIRQ, s.start),
 (sonarIRQ, s.sonar),
 (buttonIRQ, a.off)
]

Figure 17. Interfacing the environment.

Whenever an interrupt occurs, the corresponding method becomes eligible for execution.
E.g. resetIRQ causes the execution of s.start, which in turn posts messages stop and ping.
The method stop calculates the distance to the object causing the echo, and posts an event
a.on (starting the alarm) if the distance is below a predefined limit. The current Timber
real-time scheduler maintains separate memory stacks and message queues for each object
instance, s and a in this example. When all methods eligible for scheduling has run-to-end
the system is idle. As previously mentioned this can be utilized to put the system into suit-
able hardware specific low-power mode. In the case all message queues are empty, the
system can be put to deep sleep, woken only by external events (interrupts). In the case we
have outstanding timer events (not yet eligible for scheduling) the system can be put to
sleep, woken by external- or internal timer interrupts. Of course, the actual set of low-
power modes varies with the hardware at hand.

 Dynamic (heap) memory is allocated during run-time, e.g. when posting messages and
when creating objects. It is imperative that memory that is no longer reachable will be re-
covered at some point in time. As explained above, a Timber system is either executing
scheduled methods or being idle. Hence, when the system is in idle state, we can safely
perform garbage collection without violating any timing constraints. However, in the gen-
eral case we cannot guarantee that garbage collection will terminate before a method be-
comes schedulable. This calls for the use of interruptible garbage collection schemes. Ob-
serve that in the idle state all method invocations have run-to-end. That implies that all
memory stacks are empty. This fact can be used to simplify garbage collection procedures.
We refer the reader to [17] for a comprehensive overview of garbage collection algorithms
based on their relation to hard real-time systems and Timber in particular. Furthermore,
[17] describes an experimental implementation of an interruptible reference counting gar-
bage collector for Timber.

The current Timber compiler takes a Timber program as input and generates a platform
independent implementation in the form of C code. The C code defines object instantiation

2.3 TOOLS OF THE TRADE 17

procedures and object methods. The generated C code is then compiled and linked with
the hardware specific HAL, the real-time scheduler and the garbage collector. The result is
an executable that runs on a bare system. Thus, the generated software is a complete im-
plementation of the initial system description and does not add any components of uncer-
tainty that external code such as “external” operating systems and “third party” device
drivers may invoke. This lead us to the conclusion that properties derived from system
analyses on the specification will hold also for the target system implementation. We fore-
see implications to many areas; low-power system design, validation, verification and ro-
bustness; system dimensioning and context awareness; fault detection and system mainte-
nance etc.

In this section we have demonstrated how a Timber specification can be turned into a
system implementation. Recapitulation and conclusions;

• Timber Specification: A description in Timber can be viewed as a formal model for
the system implementation. The designer may also choose to model the system’s
environment in Timber. Using environment models, stimuli for functional valida-
tion can be automatically generated and the simulation results analyzed.

• Timber Implementation: A system description in Timber can for a given target sys-
tem be translated to an efficient executable (consisting of a real-time scheduler,
memory manager and code that implements the system's reactions). Thus, the gen-
erated software is a complete implementation of the initial system description and
does not add any components of uncertainty. This leads to the conclusion that
properties derived from system analyses will hold also for the target system. Given
appropriate tools for analyses, we may e.g. derive the least complex target system
that meet the resource demands of the initial specification.

2.3 Tools of the Trade
In previous sections we have presented Timber as a way to capture reactive systems with
hard real-time constraints. We have shown how a Timber specification can be turned into
an efficient executable for a target platform. We have concluded that properties derived
from the specification will hold also for the implementation. In the following section we
give an example showing how theoretical program analysis has direct implication to deriv-
ing worst case execution time (WCET) for the schedulable units of a Timber program.

It is common that embedded systems are designed as hard real-time systems and the
only way to guarantee that a system has enough capacity to ensure functionality even un-
der extreme conditions is through analysis. One approach is to apply schedulability analy-
sis on the system and use that information as a basis for safe system dimensioning. Sched-
ulability analysis requires knowledge about the worst-case execution time (WCET) for the
schedulable units as well as a timely model of the environment. An important part of
WCET analysis is the problem of establishing loop bounds, recursion depth and execution
paths automatically.

In [18, 18, 20] Liu and Gómez introduce a language-based approach to solve the prob-
lem with loop bounds, recursion depth and execution paths automatically. They use trans-
formations to create time-bound functions which together with partially known input struc-
tures can accurately estimate the WCET for a program. This is conveniently done at the
source-language level. However, the language used by Liu and Gómez is a purely func-
tional language, lacking support for e.g. state variables, parallelism and interrupt handling;
features typically used in real-time systems. Timber, on the other hand, captures state vari-

18 TIME FOR TIMBER

ables and parallelism by the concept of reactive objects. The schedulable units of a Timber
program are the reactions caused by events, and the reactive behaviour of a program is a
direct result from the reactive behaviour of the programs individual schedulable units. In
[21] we have extended the language based approach [18, 19] to a sufficient subset of Tim-
ber to create a number of time-bound functions that will give the execution time for each
schedulable unit.

Architectures for Embedded Internet Systems (EIS) are being developed at EISLAB,
Luleå University of Technology [20]. This work includes an experimental platform based
on the Renesas M16 microcontroller [21]. The experiments conducted in [21] show that
the theoretical WCET (derived through program analysis and cycles/instruction taken
from [24]), give a safe and accurate estimation of actual WCET (derived through worst-
case simulations using [25]. Language based WCET analysis is an important step towards
full system schedulability analysis and system dimensioning.

3 Conclusions
Embedded systems are often operating under hard real-time constraints, while at the same
time being constrained by severe restrictions on power consumption. For such systems,
robustness and reliability can be a question of life and death which calls for rigorous sys-
tem design and methodologies for dimensioning and validation. In this paper we have dis-
cussed a number of key problems associated with traditional design of low-power embed-
ded real-time systems; specification, state integrity/blocking, memory management and
system dimensioning/verification.

We have presented an alternative design methodology for low-power, real-time sys-
tems based on Timber; a pure reactive system model that allows for formal reasoning
about various system properties. Timber allows the timely behaviour to be captured into
reactive objects that represent a unification of the object-oriented and parallel program-
ming paradigms. Timber offers dynamic (heap based) memory management, such reveal-
ing the programmer from the heavy burden of correct manual memory management.

We have outlined how a Timber specification can be turned into an efficient executa-
ble for a target platform and that properties derived from the specification will hold also
for the implementation. A method for WCET resource analysis has been reviewed and the
implication to system dimensioning and validation has been further discussed.

We conclude that Timber holds the potential to challenge the daemons of traditional
design methodology. Ongoing research further explores compiler design, memory man-
agement and the potential of formal methods.

REFERENCES 19

 19

References
[1] TinyOS official homepage, http://www.tinyos.net/, 2004.

[2] A. Dunkels, B. Grönvall, T. Voigt, “Contiki - a Lightweight and Flexible Operating System for Tiny
Networked Sensors”, Proceedings of the First IEEE Workshop on Embedded Networked Sensors
2004, Tampa, Florida, USA, November 2004.

[3] VxWorks documentation, http://www.windriver.com/, 2004

[4] RTLinux official homepage, http://www.fsmlabs.com/, 2004

[5] QNX official homepage, http://www.qnx.com/, 2004

[6] Java Community Press (JCP), Java Specification Request (JSP), “http://www.jcp.org/jsr/detail/1.jsp”,
2004

[7] E. Kligerman, A. D. Stoyenko, “Real-Time Euclid: A Language for Reliable Real-ime Systems”,
IEEE Transactions on Software Engineering, SE-12(9), 1986.

[8] Y. Ishikawa et al, “Object-Oriented Real-Time Language Design: Constructs for Timing Con-
straints”, SIGPLAN Notices, 25(10):289–298, Oct 1990.

[9] A. D. Stoyenko, T. J. Marlowe, M. F. Younis, “A Language for Complex Real-Time Systems”, The
Computer Journal, 38(4), 1995.

[10] J. Hooman, O. van Roosmalen, “An Approach to Platform Independent Real-Time Programming”,
Real-Time Systems, Journal of Time-Critical Computing Systems, 19(1):61–112, 2000.

[11] T. Ritzau, “Memory Efficient Hard Real-Time Garbage Collection”, Ph.D. Thesis, Department of
Computer and Information Science, Linköping University, Linköping, Sweden, 2003.

[12] A. P. Black, M. Carlsson, M. P. Jones, R. Kieburtz, J. Nordlander, “Timber: A Programming Lan-
guage for Real-Time Embedded Systems”, Technical Report, CSE-02-002, 2002.

[13] M. Carlsson, J. Nordlander, D. Kieburtz, “The semantic layers of Timber”, In Atsushi Ohori, editor,
Programming Languages and Systems, First Asian Symposium, APLAS 2003, Beijing, China, vol-
ume 2895 of Lecture Notes in Computer Science. Springer, November 2003.

[14] J. Nordlander, “Reactive Objects and Functional Programming”, Ph.D. Thesis, Department of Com-
puting Science, Chalmers University of Technology, Göteborg, Sweden, ISBN 91-7197-823-2, May
1999.

[15] J. Nordlander, M. P. Jones, M. Carlsson, R. B. Kieburtz, A. Black, “Reactive Objects”, Proceedings
of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing,
2002.

[16] The Haskell Home Page, http://www.haskell.org/, Last visited 31 October 2004.

[17] J. Mattsson, supervisors P. Lindgren and J. Nordlander, “Garbage collection with hard real-time re-
quirements”, Master Thesis SSN 1402-1617 / ISRN LTU-EX--04/262--SE / NR 2004:262,
http://epubl.luth.se/1402-1617/2004/
262/index.html, 2004.

[18] Y. A. Liu, G. Gómez, “Automatic Accurate Time-Bound Analysis for High-Level Languages”, Pro-
ceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Sys-
tems, pp. 31-40, June 1998.

[19] Y. A. Liu, G. Gómez, “Automatic Accurate Cost-Bound Analysis for High-Level Languages”, IEEE
Transactions on Computers, Volume 50, Issue 12, pp. 1295-1390, December 2001.

[20] G. Gómez, Y. A. Liu, “Automatic Time-Bound Analysis for a Higher-Order Language”, Proceedings
of the 2002 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Ma-
nipulation, pp. 75-86, 2002.

20 TIME FOR TIMBER

[21] L. Svensson, J. Eriksson, P.Lindgren, J. Nordlander, “Language-Based WCET Analysis of Reactive
Programs”, Submitted to the 17th Euromicro Conference on Real-Time Systems, Palma de Mallorca,
Spain, June 2005.

[22] Å. Östmark, “Embedded Internet System Architectures”, Licentiate Thesis, Department of Computer
Science and Electrical Engineering, Luleå University of Technology, Luleå, Sweden, ISSN 1402-
1757, July 2004.

[23] Mitsubishi Electric Corporation, “M16C/62M Group (Low voltage version) Data Sheet REV.B1”,
2001.

[24] Sales Strategic Planning Div. Renesas Technology Corp., “Renesas 16-Bit Single-Chip Microcom-
puter Software Manual M16C/60, M16C/20, M16C/Tiny Series, rev.4.00”, 21 January 2004.

[25] Renesas, Simulator debugger, M3T-PD30SIM, version 5.20, release 1, 2003.

