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Abstract 

  
Knowledge on metal release behaviour of stainless steels used in 
food processing applications and cooking utensils is essential 
within the framework of human health risk assessments. Recently, 
a new European test guideline (the CoE protocol) has been 
implemented to ensure safety of metals and alloys in food contact, 
such as stainless steels. This guideline suggests 5 gL-1 citric acid 
(pH 2.4) as a food simulant for acidic foods of pH ≤ 4.5. So far, 
limited assessments exist that investigate the correlation between 
the bioaccessibility, material characteristics, corrosion behaviour 
and surface chemistry of stainless steel for food application tests 
using citric acid. Therefore, this doctoral thesis comprises an  
in–depth interdisciplinary and multi–analytical research effort to 
fill this knowledge gap.  
    This work includes thorough investigations of a range of 
stainless steel grades in simulated food contact as a function of 
different important parameters such as grades, surface finish, 
temperature, pH, solution composition, metal complexation and 
buffering capacity, concentration of the complex forming agents, 
loading, and repeated usage. This is accomplished by kinetic 
studies of metal release, electrochemical, and surface analytical 
investigations. Another focus of this thesis is to assess the 
dominating metal release process in citric acid or chloride 
containing solutions of varying pH. 
    This study suggests protonation (at acidic pH) and surface 
complexation (at weakly acidic and neutral pH) as the 
predominant metal release mechanisms for stainless steel in citric 
acid solutions. Solution complexation may also play a role by 
hindering metal precipitation at weakly acidic and neutral pH, and 
metal release from surface defects / inclusions may initially be 
important for non-passivated surfaces. 
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Sammanfattning 

 
Kunskap om metallfrisättning från rostfritt stål som används i 
livsmedelsapplikationer och köksredskap är avgörande inom 
ramen för hälsoriskbedömningar. En ny europeisk riktlinje (CoE 
protokollet) publicerades 2013 för att garantera säkerheten för 
metaller och legeringar i livsmedelskontakt, t.ex. rostfritt stål. 
Denna riktlinje föreslår 5 gL-1 citronsyra (pH 2.4) som en 
testlösning för sura livsmedel med ett pH ≤ 4.5. Hittills finns ett 
mycket begränsat antal studier som undersöker biotillgänglighet, 
materialegenskaper, korrosionsbeteende och ytkemi av rostfritt 
stål i kontakt med citronsyra. Denna kunskapslucka fylls i denna 
doktorsavhandling genom djupgående tvärvetenskapliga och 
multianalytiska studier. 
    I detta arbete undersöks hur olika rostfria stålsorter beter sig i 
simulerad livsmedelskontakt som funktion av olika parametrar 
som stålsort, ytråhet, temperatur, pH, lösningssammansättning, 
komplexerings- och buffertkapacitet, koncentration av 
komplexbildande komponenter, samt förhållandet mellan yta och 
lösningsvolym, och upprepad användning. Detta görs genom 
kinetiska studier av metallfrisättningsprocessen, elektrokemiska 
undersökningar, och ytanalyser. Dessutom undersöks den 
dominerande metallfrisättningsprocessen i citronsyra och i 
kloridlösningar av varierande pH. 
    Denna studie visar att protonering (vid surt pH) och 
ytkomplexering (vid sura och neutrala pH-värden) är de 
dominerande mekanismerna för metallfrisättning från rostfritt stål 
i lösningar med citronsyra. Komplexering av frisatta metaller i 
lösning kan också spela roll genom att hindra metallutfällning vid 
svagt surt eller neutralt pH. Metallfrisättning från defekter / 
inneslutningar kan initialt påverka icke-passiverade ytor av 
rostfritt stål. 
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1    Introduction 

 
1.1    Motivation and objectives  
 
Knowledge on the metal release behaviour of stainless steels used 
in food processing applications and cooking utensils is essential 
within the framework of human health risk assessment. According 
to the European regulations such as REACH, GHS and CLP, 
stainless steel and other alloys are defined as special mixtures of 
substances [1-3]. However, the fact that these alloys have totally 
different intrinsic properties compared with their corresponding 
alloying constituents (e.g. pure Fe, Cr, Mn or Ni) results in the 
need of cross-reading and new testing for alloys.  
    Recently, a new European test guideline (here referred as the 
“CoE protocol”) [4] has been implemented to ensure food safety of 
metals and alloys, such as stainless steels. This guideline suggests  
5 gL-1 citric acid of pH 2.4 as a food simulant for acidic foods. So 
far, limited assessments exist that investigate the correlation 
between stainless steel surface characteristics and their metal 
release behaviour for food application tests using citric acid.  
Thus, the primary aims of my PhD studies have been to:  

i) quantify the extent of metal release from different 
austenitic, ferritic, and duplex stainless steels exposed 
into different metal complexing and non – complexing 
test solutions 

ii) provide an in-depth understanding of corrosion, surface 
changes and metal release mechanisms in the presence 
of metal complex-forming agents (in particular in the 
presence of citric acid)  

iii) investigate whether or not the manganese content of 
certain types of stainless steel can influence the 
oxidation state of chromium  
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iv) elucidate the combined effect of high chloride 
concentrations and citric acid on the extent of metal 
release from stainless steel with and without prior 
surface passivation by citric acid, and 

v) evaluate the effect of key experimental parameters [e.g. 
surface finish, pH, temperature, buffering and metal 
complexation capacity, surface area to solution volume 
ratio (loading), time, citric acid concentration and 
repeated usage] on the metal release process and 
concomitant changes of the passive oxide. 

    These studies apply a fundamental multi-analytical and 
interdisciplinary approach, schematically shown in Figure 1. 
 

 
 

Figure 1: An overall strategy to assess the extent of corrosion and metal 
release from stainless steels in food contact 
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    The obtained data is expected to be used as a knowledge base 
within the framework of risk assessment of using different grades 
of stainless steels in food contact, or after passivation or cleaning of 
stainless steel with citric acid. Due to the high use of citric acid in 
environments in which stainless steel has major applications, this 
type of knowledge is of importance both for relevant industries and 
end users.  
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2    Background 

 

2.1    Stainless steel: background and classifications 
 
Stainless steel is a remarkable achievement of modern metallurgy 
and was discovered when the identification of chromium as an 
element began [5]. Stainless steel is an iron based alloy with a 
minimum of 11 wt% chromium [6], which can also have several 
other alloying elements such as nickel, molybdenum and 
manganese [7]. Due to the high corrosion resistance of stainless 
steels in combination with their good mechanical properties, they 
are used in a wide range of applications, e.g. food and beverage 
relevant applications, building and construction, biomedical 
applications and jewelleries [4, 8-17].   
    The corrosion resistance of stainless steels is due to the presence 
of a very thin self-healing chromium-rich passive surface oxide, 
with 1 – 3 nm thickness [18-20]. This surface oxide (schematically 
shown in Figure 2) is believed to contain two layers: i) an inner 
layer, predominantly containing iron and chromium oxides, and ii) 
an outermost layer containing chromium hydroxides and/or 
oxyhydroxides [18, 21-24].  

 
Figure 2: Schematic illustration of stainless steel and its outermost 

surface oxide, inspired by G. Herting [11] 
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    However, depending on the environmental conditions, oxides of 
manganese and molybdenum can also be present in the surface 
oxide of some stainless steel grades (Papers II-III and [18, 20, 23, 
25, 26]). In this thesis, the term of “passive film / layer” represents 
the surface oxide.  
    Just beneath the passive layer, in the alloy surface layer 
(schematically shown in Figure 2), nickel, iron and other alloying 
elements such molybdenum and manganese are enriched [18, 24, 
25, 27-30]. Therefore, the presence of defects in the passive film, 
which can vary depending on the environment and with time [18, 
20, 22, 30, 31], can facilitate the release of these metals into 
different media.  
    Based on the alloying constituents and microstructure of 
stainless steels, they are graded into four categories by the AISI 
system: ferritic, austenitic, duplex and martensitic [7, 11], which 
are briefly discussed below.         
 
2.1.1    Ferritic stainless steels 
Ferritic stainless steels (designated as 400 series by AISI [7]) are 
nickel free materials with a 10.5 – 30 wt% chromium content and 
typically used in domestic appliances, kitchenware, containers, 
building and construction [9, 10]. The absence of nickel makes 
these grades a more attractive and cost optimized option [10]. 
 
2.1.2    Austenitic stainless steels 
Austenitic stainless steel grades, with a minimum of 16 wt% 
chromium, are classified as 200 (Fe – Cr – Ni – Mn – N stainless 
steels with ≥ 2 wt% Mn) and 300 series (Fe – Cr – Ni stainless 
steels with ≤ 2 wt% Mn) by AISI [7]. They are the most common 
grades of stainless steel and typically used in a wide range of 
applications such as cutleries, kitchen utensils, transport 
equipment, jewelleries, surgical equipment and as implants [4, 11, 
13-16]. Since 2000, the 200 series has become more popular in 
food contact applications, where manganese (up to 8 wt%), often 
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in combination with nitrogen and copper, have been replaced for 
nickel. In addition, some non – standardized “new 200 series”, 
with reduced chromium content of ≤ 15 wt% and nickel content of 
≤ 1 wt%, have found an increasing usage in food contact 
application in Southeast Asia. However, fundamental knowledge 
of their corrosion and metal release behaviour faces significant 
knowledge gaps [32]. 
  
2.1.3    Duplex stainless steels 
Duplex stainless steels have a mixed structure of austenite and 
ferrite and typically contain chromium (20 – 25 wt%) and nickel 
(1.5 – 7 wt%) as the main alloying elements [9, 11, 32]. Depending 
on their application, other alloying elements such as molybdenum, 
and nitrogen may be added to obtain certain corrosion resistance 
characteristics [9, 33]. They are commonly used in e.g. bridges, 
storage tanks and water heaters [33]. 
 
2.1.4    Martensitic stainless steels 
Martensitic stainless steels (designated as 400 series by AISI [7]) 
are essentially alloys of chromium (10.5 – 18 wt%) and carbon (0.1 
– 1.2 wt%) and typically used in cutlery and knife applications due 
to their hardness [7, 11]. These grades usually show lower 
corrosion resistance in comparison with other stainless steel 
grades, particularly in oxidizing environments [9, 32]. 
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2.2    Risk assessment of stainless steels in food contact 
 
Metals (as ions, complexes, or particles) can if released in certain 
quantities from stainless steels in food contact affect the 
organoleptic properties of the food or pose a risk for the end users 
[4]. Table 1 summarizes the classification of the investigated 
alloying constituents of this thesis plus their corresponding safe 
daily intake levels and the SRL values defined by the CoE protocol 
[4]. 
 
Table 1: Classification of the investigated alloying elements of stainless 

steel, their corresponding safe upper intake levels (for an adult 
with an average body weight of 60 kg consuming 1 kg/day 
foodstuffs) in comparison with food examples, and their 
corresponding SRL values stipulated by the CoE protocol.  

 

Element 
Essential 

trace element 
for humans 

Safe upper 
daily 

intake 
(mg) 

Safe upper 
daily intake of 
this metal is 

equal to: 

SRL 
(mg/kg 

food) [4] 

Fe 

YES 
[34, 35] 

10 – 15 [36] 
100 gr of 

chicken liver 
[37] 

40 

Cr 0.25 [38, 39] 2 kg of turkey 
ham [40] 0.25 

Mn 1 – 10 [41] 100 gr of 
hazelnuts [37] 1.8 

Mo 0.6 [42]  50 gr of lentil 
[43] 0.12 

Ni NO [44] 0.7 [45] 85 gr of cocoa 
[35] 0.14 

 
    Different restrictions and regulations have been implemented to 
ensure the safety and suitability of articles of metals and alloys in 
food contact [4, 46, 47], of which the CoE protocol [4] is the latest 
technical test guideline implemented by the European Union (EU). 
The main differences between the CoE protocol [4] and the earlier 
regulations, such as the Italian Ministerial Decree of 21 March 
1973 [46], are: i) the use of 5 gL-1 citric acid (pH 2.4) as food 
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simulant instead of 31.5 gL-1 acetic acid (pH 2.4), ii) more degrees 
of freedom in the test setup to enable more application-realistic 
examinations and iii) the stipulation of specific maximum metal 
release limits (SRL values) into the test medium for each alloying 
constituent (by considering available toxicological, daily intake, 
and/or sensitization information [36, 38, 39, 41, 42, 45]) to assess 
their compliance. The main experimental procedures of the CoE 
protocol are summarized in Figure 3. 
    

 
Figure 3: Schematic of the main analytical procedures in the CoE 

protocol [4].  
 
    In the following sections, the metal release mechanisms, key 
factors affecting the metal release process, and the effect of citric 
acid on the metal release behaviour of stainless steels are 
introduced.   
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2.3    Metal release mechanisms of stainless steels  
 
Metal release mechanisms for stainless steel can be classified as: i) 
electrochemical corrosion, ii) chemical or electrochemical 
dissolution of the surface oxide, or iii) physical processes 
(schematically illustrated in Figure 4). Typically, more than one 
mechanism occurs at the same time for a stainless steel exposed in 
a food / biological environment. In addition, due to the continuous 
changes in the surface oxide of stainless steel and the 
environmental conditions, the dominancy of the mechanisms can 
change by time [48].      
 

 
Figure 4: Schematic illustration of metal release mechanisms for stainless 

steels exposed into a food / biological environment, inspired by 
[49]. 

 
    The amount of released metals from stainless steel depends on 
many factors, summarized in Table 2. It should be noted that, due 
to the high corrosion resistance and the continuous adjustment of 
the passive surface oxide of stainless steels, the extent of released 
metals (Fe, Cr, Ni, Mn, or Mo in this thesis) from these alloys are 
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generally very low. However, an erroneous usage or grade 
selection of stainless steels for a certain application can cause 
active corrosion and result in a significant increase of metal release 
[48, 50-53].  
 
Table 2: Summary of key factors influencing the metal release behaviour 

of stainless steels in food applications 
 

Important 
factors 

How can they affect the metal 
release process of stainless 

steel? 
References 

Grade 

Total amount of released metals 
decreases with increased the Cr bulk 
content of stainless steel, except for 
non-aggressive solutions. However, 
no direct correlation exists between 
the Cr bulk content and the amount 
of released individual alloying 
elements 

[12, 26, 48, 
54, 55] and 
Papers I-III 

Surface finish 
Increased metal release for abraded 
surfaces in comparison with aged or  
as – received surface finishes 

[11, 53, 56-
59] and 

Papers I-II 

Presence of 
organic ligands, 

phosphate 
and/or proteins 

May either increase ligand-induced 
dissolution by enhancing the metal 
complexation capacity of the solution 
or block surface sites that retards 
dissolution and metal release 

[17, 31, 60-
71] and 
Paper I 

Buffering 
capacity of 

solution 

Increased metal release with 
increased buffering capacity at acidic 
pH 

[72] and 
Paper I 

Loading (surface 
area to solution 

volume ratio) 

Increased loading results in enhanced 
metal release in solution 

[73-76] and 
Paper II 

Pre-usage 
Repeated use of stainless steel 
commonly results in reduced 
amounts of released metals 

[74, 77-80] 
and Papers 

II-III 
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Table 2 Cont. 

Important 
factors 

How can they affect the metal 
release process of stainless 

steel? 
References 

pH 

Changes the 
- charge of the surface (hydr)oxide  
- ligand conformation and their 

adsorption behaviour 
- ionic strength 
- degree of protein aggregation 
- nearly all corrosion and 

dissolution processes 

[48, 60, 64, 
68, 81-83] 
and Papers 

III-IV 

Temperature 

An increased temperature can: 
- significantly enhance metal 

release 
- alter the surface oxide properties 

and increase stainless steel 
tendency towards pitting 

- substantially enhance the 
stability of formed metal 
complexes 

- enhance passivation processes 
and in some cases result in lower 
subsequent metal release  

[7, 51, 84, 
85] 

and Paper II 

Exposure time 

- Increase in passivity with time 
that can strongly reduce the 
amount of released metals 

- In environments of high risk for 
pitting (e.g. high chloride): 
increased probability of pitting 
events and stabilization of pits 

[11, 14, 55, 
56, 59, 86-

90] and 
Papers I-III 

 
2.4    Citric acid – stainless steel interactions  
 
Interactions between citric acid and stainless steel are of high 
importance for food contact risk assessments [4], surface cleaning 
[91], and surface passivation [79, 92]. Citric acid (as a tricarboxylic 
acid with pKa values of 3.1, 4.8 and 6.4 [93]) is a strongly metal 
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complexing agent. It can form different complexes with metals 
present both in solution (solution complexation) and in the surface 
oxide (surface complexation). Depending on the strength of the 
formed complexes and the adjacent bonds, which can vary by 
changes in pH and temperature [60, 84], the formed complexes 
may detach from the surface and enhance the amount of released 
metals. 
    The metal release behaviour of different grades of stainless steel 
(with different surface finishes) exposed to citric acid containing 
solutions (with different concentrations and/or pH values) has 
recently been investigated (Papers II-IV, technical report VIII and 
[94]), as citric acid is one of the suggested test solutions of acid 
food in the newly implemented European test guideline (the CoE 
protocol) [4]. The results suggest that the release of alloying 
constituents from stainless steel into citric acid containing 
solutions (with a preferential Fe release) is mostly governed by the 
chemical and/or electrochemical oxide dissolution (e.g. 
protonation, reductive or oxidative dissolution or complexation – 
induced dissolution) [31, 48, 95] and that usually no active 
corrosion occurs (Papers II-III).  
    A combined metal release and surface wettability study of 
polished stainless steel grade AISI 304 in 5 gL-1 citric acid solution 
suggested a time-dependent adsorption-controlled ligand-induced 
metal release mechanism, Figure 5 [31]. However, it should be 
noted that this study was carried out at pH 2.4, where metal-
citrate complexation is of minor importance in comparison to 
protonation effects, except for chromium species, for which both 
protonation and complexation play an important role independent 
of the pH (Paper V and [48]). Metal release studies of abraded 
stainless steel grade 304 (1200 SiC, 24 h aged/stored at room 
temperature and low humidity) into 5 gL-1 citric acid solution of 
pH 4.8 suggest that the adsorption of citric acid occurs faster at 
this pH when compared to pH 2.4. This is because the metal 
release rapidly enhances during the first hour of exposure, but 
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does not increase further up to 24 h at pH 4.8 (except for Cr), 
Paper V.  
 
 

 

 
 

Figure 5: Changes in the released amount of Fe from grade 304 stainless 
steel and the measured contact angle versus exposure time into 
5 gL-1 citric acid. Data from [31] 
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3    Experimental 

 
 
The described work in this thesis was all performed under 
laboratory conditions. A multidisciplinary approach was employed 
to link the metal release behaviour to surface properties of 
different stainless steel grades after exposure into different metal 
complexing and non – complexing test solutions. 
    The information regarding the investigated stainless steel 
grades, their corresponding microstructure, bulk nominal 
composition, and the investigated surface finishes are summarized 
in Table 3. 
    Table 4 illustrates the summary of all investigated test solutions, 
their corresponding composition, and the exposure parameters 
(consisting the pH, temperature and exposure time) (Papers I –V).  
    Triplicate samples and one blank sample (solution without any 
metal coupon) were exposed in parallel for each investigated 
material, time period, solution, pH, and temperature. Schematic 
illustration of the exposure procedure for metal release and 
surface oxide investigations is shown in Table 5.   
    Detailed information on all experimental information, 
equipment, cleaning procedures, exposure conditions and 
instruments (e.g. furnaces) is given in the respective papers.  
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3.1    Materials  
 
Table 3: Investigated stainless steel massive grades (composition in weight-%) and surface preparation, based on supplier 

information (Papers I –V). Stainless steel powders of Paper I are not discussed / included in this thesis. 
 

Name  
(in this thesis) 

UNS  
(ASTM) EN Surface finish Cr 

wt% 
Mn 
wt% 

Ni 
wt% 

Mo 
wt% 

C 
wt% 

S 
wt% Papers 

EN1.4003 S40977 1.4003 2B 11 1 ˂ 1 - - - III 

430 S43000 1.4016 2B 16 0.3 0.1 0.02 0.03 0.002 III 

430 S43000 1.4016 A 16.0 0.5 0.2 0.06 0.04 0.002 I 

204 S20431 (+Cu) 1.4597 (+Cu) 2B 16 9.1 1.1 0.2 0.1 0.004 III 

201 S20100 1.4372 2D, A 16.9 5.8 3.6 0.2 0.11 0.002 II, III 

316L S31603 1.4404 2B, A [56] 16.6 1.0 10.6 2.1 0.03 0.001 I 

316L S31603 1.4404 2B, SB, N4, SSW, A 17 1.3 10.2 2.0 0.02 - III, IV 

304 S30400 1.4301 2B, SB, N4, SSW, PP, 
A 17.9 1.2 9.0 0.4 0.04 0.003 III – V 

304 S30400 1.4301 A, 2B, 2D, BA (2R) 18.1 1.1 9.0 0.3 0.05 0.002 I, [58] 

310 S31000 1.4841 A 24.2 0.9 19.1 0.2 0.06 0.001 I 

LDX 2101 S32101 1.4162 2B 21.4 4.8 1.6 0.3 0.02 0.001 III 
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Table 3 Cont. 

Name  
(in this thesis) 

UNS  
(ASTM) EN Surface finish Cr 

wt% 
Mn 
wt% 

Ni 
wt% 

Mo 
wt% 

C 
wt% 

S 
wt% Papers 

2205 S32205 1.4462 A 22.5 1.7 5.6 3.1 0.02 0.001 I 
 
 

 ferritic microstructure   austenitic microstructure  duplex microstructure 
 
2B: bright cold rolled, annealed, pickled, and skin-passed;  
2D: dull cold rolled, annealed and pickled;  
SB: abraded using a Scotch-Brite brush;  
N4: polished with a 220 grit grinding belt;  
BA (2R): cold rolled and bright annealed; 
A: ground (abraded) by 1200 grit SiC;  
SSW: abraded by commercially available Stainless Steel Wool, "fixa stålboll", Sweden;  
PP: pre-passivated in 5 gL-1 citric acid (pH 2.4) at 70 ⁰C for 2 h;  
NA: no data available  
 

All coupons were edge ground by 1200 grit SiC, cleaned ultrasonically in ethanol and acetone for 5 min, respectively, dried with 
cold nitrogen gas, and aged for 24 ± 1 h in a desiccator (at room temperature). 
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3.2    Solutions and exposure parameters    
 
Table 4: Summary of the test solutions and exposure parameters (Papers I –V) 
 

Name  
(in this thesis) Composition pH Temperature / 

exposure time Papers 

PBS 8.77 gL-1 NaCl + 1.28 gL-1 Na2HPO4 + 1.36 gL-1 KH2PO4 

7.4 
37 ⁰C 

 
(2 h, 4 h, 8 h,) 24 h  

(1 day); 168 h (1 week) 
 
 

I 

PBS + BSA 8.77 gL-1 NaCl + 1.28 gL-1 Na2HPO4 + 1.36 gL-1 KH2PO4 + 10 gL-1 BSA 

PBS + LSZ 8.77 gL-1 NaCl + 1.28 gL-1 Na2HPO4 + 1.36 gL-1 KH2PO4 + 2.2 gL-1 LSZ 

Na2HPO4 8.84 gL-1 Na2HPO4·2H2O 4.5 

ALF [56, 96] 

0.05 gL-1 MgCl2+ 3.21 gL-1 NaCl + 0.07 gL-1 Na2HPO4 + 0.04 gL-1 Na2SO4 + 
0.13 gL-1 CaCl2·H2O + 6.00 gL-1 NaOH + 20.8 gL-1 C6H8O7 (citric acid)+ 

0.06 gL-1 H2NCH2COOH + 0.08 gL-1 C6H5Na3O7·2H2O + 0.09 gL-1 

C4H4O6Na2·2H2O + 0.09 gL-1 C3H5NaO3 + 0.09 gL-1 C3H3O3Na 

4.5 

CA 5 gL-1 citric acid (0.3 vol%) 2.4 

40 ⁰C, 70 ⁰C, 100 ⁰C 
 

3 x 30 min, 2 h, 26 h, 
240 h (10 days) 

II 

70/40 ⁰C * 
 

6 x 30 min, 2 h, 26 h, 
240 h (10 days) 

III 
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Table 4 Cont. 

Name  
(in this thesis) Composition pH Temperature / 

exposure time Papers 

0CA 7.8 gL-1 acetic acid + 1.84 gL-1 NaOH 

4.5 
40 ⁰C 

 
24 h 

II 
 

0.01CA 0.01 gL-1 citric acid + 7.7 gL-1 acetic acid + 1.83 gL-1 NaOH 

0.1CA 0.1 gL-1 citric acid + 7.7 gL-1 acetic acid + 1.85 gL-1 NaOH 

5CA 5 gL-1 citric acid + 6.2 gL-1 acetic acid + 2.84 gL-1 NaOH 

20.8CA 20.8 gL-1 citric acid + 4.21 gL-1 NaOH 

AA 31.5 gL-1 acetic acid (3 vol%) 2.4 
40 ⁰C, 100 ⁰C 

 
240 h (10 days) 

II 

Artificial tap 
water [97] 0.12 gL-1 NaHCO3 + 0.07 gL-1 MgSO4·7H2O + 0.12 gL-1 CaCl2·2H2O 7.5 

70/40 ⁰C 
 

2 h, 26 h, 240 h (10 days) 

III NaCl 29.22 gL-1 NaCl (0.5 M), pH 2.2 was adjusted by 65% ultrapure HNO3 2.2, 
5,5 70/40 ⁰C 

 
26 h NaCl + CA 29.22 gL-1 NaCl + 5 gL-1 citric acid, pH 5.5 was adjusted with 50% NaOH 2.2, 

5.5 

3.1CA 5 gL-1 citric acid + 850 µgL-1 50% NaOH 3.1 
70/40 ⁰C 

 
26 h 

IV 
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Table 4 Cont. 

Name  
(in this thesis) Composition pH Temperature / 

exposure time Papers 

4.8CA 5 gL-1 citric acid + 2980 µgL-1 50% NaOH 4.8 

70/40 ⁰C 
 

26 h 
IV 

40 ⁰C 
 

30 min, 1 h, 2h 
V 

6.4CA 5 gL-1 citric acid + 4280 µgL-1 50% NaOH 6.4 70/40 ⁰C 
 

26 h 
IV 

11CA 5 gL-1 citric acid + 4550 µgL-1 50% NaOH 11 

KNO3 1.01 gL-1 KNO3 (0.01 M) 

3.1, 
4.8, 
6.4 

40 ⁰C 
 

24 h 
V 

CA + KNO3 5 gL-1 citric acid (0.026 M) + 1.01 gL-1 KNO3 

PAA + KNO3 16.1 gL-1 35 wt% polyacrylic acid (0.078 M) + 1.01 gL-1 KNO3 

5 ppm Fe KNO3 5 ppm Fe + 1.01 gL-1 KNO3 
 

* 70/40 ⁰C means the first 2 h at 70 ⁰C followed by 40 ⁰C (for 0 h, 24 h or 238 h to simulate cooling of food and for short and 
long term applications) 
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3.3    Exposure procedure   
 
Table 5: Schematic illustration of the exposure procedure for metal release and outermost surface oxide investigations presented 

in this thesis 
 

Exposure procedure Exposed surface area / volume of test solution (cm2 mL-1) Papers 
 

 
 

Clear glass with snap-cap 

6 cm2 / 6 mL = 1 I - V 

(6 cm2 / 24 mL = 0.25), (6 cm2 / 12 mL = 0.5), (6 cm2 / 8 mL = 
0.75), (6 cm2 / 4.7 mL = 1.3), (6 cm2 / 3 mL = 2) II 

  

 
 

Special designed plexiglas cells  

π cm2 / 6 mL ≈ 0.5 V 
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4    Techniques 

 
Several complementary analytical techniques (presented in Table 
6) have been employed in order to provide an in-depth 
understanding of surface changes, metal release processes and 
possible corrosion mechanisms of different grades of stainless 
steels when in contact with food simulants.  
    Details of all analytical methods are given in the respective 
papers. Information on selected techniques, indicated in Table 6, 
is briefly given in sections 4.1 – 4.5.    
 
Table 6: Summary of employed techniques in Papers I – V  
 

Technique Used to investigate: Papers 

GF-AAS  
bioaccessibility  
(metal release) 

I - V 

XPS outermost surface oxide chemical 
and elemental composition 

I - V 

OCP 
corrosion studies 

II, III 

Dynamic 
Polarization 

III 

DPAdCSV 
aspects of bioavailability  
(chromium speciation) 

II 

EBSD crystallographic structure III 

(FEG)-SEM  surface morphology I 

BET specific surface area I 

LALLS Particle size distribution I 
    

 Not discussed in the thesis 
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4.1    GF-AAS 
 
The concentration of released, non-precipitated, metals from 
different grades of stainless steels after exposure into different test 
solutions was determined for acidified samples (pH ˂ 2) by means 
of GF-AAS. GF-AAS is a principal tool in analytical chemistry due 
to its high sensitivity to distinguish different elements of a 
complex sample solution [98], with a LOD of typically below 1 µgL-

1. This technique works based on the capacity of an atom to absorb 
very specific wavelengths of light [99]. In this method 
(schematically shown in Figure 6), a substance is decomposed into 
atoms in a graphite furnace and then the quantity of each element 
is measured by absorption of light from the gaseous atoms by 
considering Beer’s Law [98, 99]. Detailed information of this 
method is given in Papers I – V.  
 

 
Figure 6: Schematic illustration of GF-AAS components [98, 99] 
 
4.2    XPS 
 
Compositional analysis of the outermost surface oxide of different 
stainless steel grades (with the information depth of a few 
nanometers [19, 20]) before and after exposures were performed 
by XPS. XPS is one of the most commonly used non-destructive 
surface analysis techniques that enables mapping of elements and 
of chemical states. In XPS, the surface of a sample is irradiated 
with photons of characteristic energy, which interact with core 
electrons of the sample atoms, create ionized states and lead to 
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photoelectron emission [100]. XPS of this study was performed 
using an instrument equipped with an Al Kα radiation source, with 
the X-ray photon energy of 1486.6 eV [100]. More details are given 
in Papers I – V. 
  
4.3    OCP 
 
In order to monitor metal release processes of different stainless 
steel grades during exposure into different test solutions / 
conditions and investigate possible corrosion mechanisms (which 
can largely influence the amount of released metals), OCP analysis 
was performed. OCP is the potential of a working electrode (metal 
sample) with respect to a reference electrode (e.g. Ag/AgCl) when 
no current flows to or from it [101]. By measuring changes in OCP 
of metal samples over time in different test solutions, useful 
information about the corrosion and/or passivation behaviour of 
metals can be provided. In this thesis (Papers II – III), the OCP 
analysis was carried out in order to investigate the corrosion 
behaviour of different stainless steel grades in simulated food 
media and to clarify possible contribution of corrosion processes 
to the metal release from different stainless steel grades. More 
details and experimental set-ups can be found in Papers II – III.  
  
4.4    Dynamic Polarization 
 
Dynamic polarization measurements were conducted to 
investigate the corrosion resistance of different stainless steel 
grades in simulated food media (Paper III). In this method, a three 
electrode electrochemical cell was used, which contains a working 
electrode (metal sample), a reference electrode (Ag/AgCl) and a 
counter electrode (Pt wire). During polarization, the potential was 
anodically swept (starting from the OCP with a scanning rate of 
0.0005 Vs-1). For chloride free solutions, the backward scan 
thereafter started at around 1.3 V (the potential at which oxygen 
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evolution occurs at pH 2.4) and stopped at the starting potential 
(which was the initial OCP potential of the corresponding grade 
and solution). More details are given in Paper III.    
 
4.5    DPAdCSV 
 
DPAdCSV analysis was carried out to speciate the oxidation state 
of released Cr from stainless steel grades after exposure into food 
simulants stipulated in the CoE protocol [4]. This method is based 
on the time-dependent reaction of Cr species in a supporting 
electrolyte that contains the complex forming agent of DTPA, the 
catalytic oxidant of NaNO3 and NaCH3COO as a buffer agent, 
which are known as the most useful agents for the analysis of trace 
levels of Cr and its speciation using stripping voltammetry [102, 
103]. During the measurements, the pH was kept constant at 6.2 ± 
0.1, since at the pH of around 6 and under these electrochemical 
conditions, Cr(VI) does not form complexes with DTPA  and hence 
can be determined. [103]. Information about the experimental set-
up and parameters can be found in Paper II.  
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5    Key Results and Discussions 

This chapter provides a selection of results and discussions chosen 
from Papers I – V, the literature survey findings, the technical 
reports VII – VIII, the conference contributions IX – XIII, and 
some unpublished data.  
   
5.1    All investigated stainless steel grades passed the 
compliance test stipulated in the CoE protocol   
 
The released amount of metals [Fe, Cr, Mn, Ni, and Mo (only 
measured for grade 316L)] from all stainless steel grades 
investigated was below the SRL values stipulated in the CoE 
protocol [4], in both citric acid and artificial tap water solutions 
(Table 7, summary of maximum amounts of released metals and 
their comparison to the SRLs). In the case of non-complex forming 
test solution of artificial tap water, released amounts of metals 
were significantly below the findings in citric acid and were close 
to the LOD of GF-AAS (Papers II – III, technical reports VII – 
VIII).  
  
Table 7: Summary of maximum released amounts of metals from their 

corresponding investigated stainless steel grades during  
0 – 240 h at 70 ⁰C (first 2 h) followed by 40 ⁰C in citric acid (pH 
2.4) compared with the SRLs. The surface area to solution 
volume ratio (loading) was 1 cm2mL-1. 

 

 Fe Cr Ni Mn Mo 
SRL 40 0.25 o.14 1.8 0.12 

released concentration in (mgL-1) 
EN1.4003 7.0 0.14 not available (NA) 

304 1.6 0.21 0.05 0.02 NA 
316L 1.6 0.13 0.06 0.05 0.02 
204 2.2 0.18 0.006 0.35 NA 
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    It should be noted that metal release from the investigated as-
received stainless steel coupons in citric acid predominantly 
occurred during the first 2 hours of exposure, followed by 
considerably reduced release rates. Very low amounts of metals 
were released into citric acid (pH 2.4) during 10 days of exposure 
which quantitatively corresponds to an alloy mass loss of less than 
0.000025 % with the preferential release of Fe and Mn. No active 
corrosion was evident at given exposure conditions (Papers II – 
III, technical reports VII – VIII).  
    Released Cr from stainless steel grades of 304 (with 2B surface 
finish) and 201 (with 2D surface finish) was in trivalent form and 
no hexavalent form was detected either in citric acid (pH 2.4 and 
pH 4.5) or in artificial tap water (pH 7.5) up to 10 days of exposure 
(Paper II and technical report VII). These findings are in 
agreement with previous studies on chromium speciation of 
released Cr from different chromium containing alloys in a range 
of different biological simulants [13, 86, 95, 104, 105]. Cr(III) is 
the thermodynamically expected form of chromium in these 
conditions [48]. 
 
5.2    Surface passivation and chromium enrichment of 
the outermost surface oxide  
 
All investigated stainless steel surfaces (both the as-received and 
abraded grades) gained in passivity (enrichment of chromium in 
the surface oxide) with time upon exposure in citric acid 
(independent of pH). For example, compared to the bulk 
chromium content of grade 304 (which is 18 wt%), the surface 
oxide chromium content was 41 wt% for the as-received surface 
(2B) due to chromium enrichment. After exposure to citric acid 
(pH 2.4), the chromium content of the outermost surface oxide of 
grade 304 further increased (to 48 wt%, 58 wt% and 61 wt% after 2 
h, 26 h and 10 days, respectively), mainly due to preferential Fe 
release, which is well documented at acidic conditions [54-56, 59, 
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64, 74, 86, 95, 96], Figure 7. (Papers I – V, technical reports VII – 
VIII, conference contributions IX – XIII).    
 

 
Figure 7: Changes in surface morphology (SEM images) and chromium 

enrichment of the outermost surface oxide (XPS analysis) of 
as-received grade 304 after different exposure periods (up to 
10 days) in 5 gL-1 citric acid (pH 2.4) for 2 h at 70 ⁰C followed 
by exposure at 40 ⁰C for another 0, 24, and  
238 h. 

 
5.3    Solution and metal composition play an important 
role even for passive surfaces  
 
Figure 8 indicates the comparison between the total amount of 
released metals from different investigated stainless steel grades 
into citric acid (pH 2.4) and artificial tap water (pH 7.5), stipulated 
in the CoE protocol [4] and in PBS solutions with and without 
proteins (Papers I – III, technical reports VII – VIII, [54]).  
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Figure 8: Comparison of the total amount of released metals from different investigated as-received stainless steel grades during 

0-240 h at 70 ⁰C (for the first 2 h) followed by 40 ⁰C into 5 gL-1 citric acid (pH 2.4) and artificial tap water (pH 7.5), 
stipulated in the CoE protocol [4], and abraded (1200 grit SiC) coupons into PBS solutions, with and without LSZ and 
BSA proteins (pH 7.4) after 1 week (168 h) of exposure (Papers I – III, technical reports VII – VIII, [54])
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    For all grades, as expected (Paper II, [48]), released amounts of 
metals were significantly higher in the complex forming solutions 
of citric acid (pH 2.4) and PBS solutions (pH 7.4) compared with 
the tap water solution (pH 7.5). It should though be stressed that 
all released metal concentrations were very low. The total amount 
of released metals from each grade into citric acid and PBS 
solutions was dominated by Fe (77 – 98 %) for all grades (Papers I 
– III, technical reports VII – VIII, [54]), in agreement with 
literature findings in similar solutions [48, 73, 86, 95].  
    As can be seen in Figure 8, an increased bulk content of Cr, 
which generally enhances the corrosion resistance [22], reduce the 
total amount of released metals, dominated by Fe. However, this 
trend is not valid for each individual alloying elements (Papers I – 
III, [48]). Fe (in citric acid and PBS solutions) and Mn (in all test 
solutions) were preferentially released, as compared to their 
corresponding bulk content (Papers I – III). In solutions with a pH 
above 6, the probability of precipitation of Fe and Cr, and to some 
extent Mn, increases (Paper V, [60]), which may result in lower 
levels of released metal in solution. Preferential release of Fe and 
Mn from the stainless steel surface oxide can be partly explained 
by the higher solubility of Fe- and Mn-oxides compared with Cr-
oxides at acidic and neutral pH [69, 70, 106, 107] and can also be 
due to the absence of Ni in the outermost surface oxide [18, 20, 24, 
48, 108].  
    Compared to pure Fe metal , pure Ni metal and Mn(IV) oxide, 
the extent of released Fe, Ni and Mn from different grades of 
stainless steels in the complex forming solutions was lower by far 
[56, 57, 109-111]. Nevertheless, there were still significant 
differences in the amount of released metals detectable between 
the different grades. No active corrosion or stable pitting occurred 
for the investigated stainless steel grades either in citric acid or in 
artificial tap water (Papers II – III).   
    While the test solutions of artificial tap water (pH 7.5) and PBS 
solutions (pH 7.4) were in a similar pH range, the extent of total 
released metals in PBS was significantly higher (Figure 8), 
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especially in the presence of LSZ and BSA proteins. This highlights 
the importance of the presence of proteins and ligand forming 
agents, such as phosphate and chloride ions, which are present in 
PBS. The complexation capacity of these solutions strongly 
depends on the pH [94, 112] and on the metal release process of 
stainless steel (Papers I – V, [12, 54, 94, 95, 113, 114]).       
 
5.4    The surface finish has a considerable effect on the 
metal release behaviour of stainless steels   
  
Surface finish / treatments can noticeably influence the amount of 
released metals from different stainless steel grades at a given 
exposure condition (Papers II, III, technical report VII, [56, 58, 59, 
74, 77]. In addition, it affects the passive film composition, the 
surface roughness, wettability, electrochemically active areas and 
the isoelectric point [58, 74, 115-117].  
    Figure 9 illustrates the importance of the surface finish on the 
extent of released metals from two austenitic grades.  The highest 
amount of metals is released into the test solutions of ALF (pH 
4.5) and citric acid (pH 2.4) from the surface finishes of abraded 
(A), with a 2.7-fold increase compared to 2B surface finish, and 
Scotch-Brite brushed (SB), a 3.7-fold increase. However, while an 
average surface roughness (Ra) of less than 0.8 μm is specified by 
the EHEDG and AMI for the food contact materials to ensure their 
corrosion resistance and cleanability [118], no clear relationship 
could be observed among the surface roughness of different 
surface finishes and the extent of released metals (Table 8), in 
agreement with previous studies [58, 74, 117]. For example, while 
both the abraded (A) and bright annealed (BA) surfaces finishes 
had the lowest surface roughness compared to the other 
investigated surface finishes (Table 8), the extent of released 
metals from grade 304 reached the maximum value for the A 
surface finish and the minimum for the BA surface finish at the 
same exposure condition.  
 

 
 



Key Results and Discussions|33 
 

 
Figure 9: Total amount of released metals from austenitic stainless steel 

grades of 304 and 316L of different surface finish after 
exposure into citric acid containing solutions of different pH 
(Paper III, technical report VII, and [58]) 

 
Table 8: Summary of different surface finishes presented in Figure 9, 

their corresponding Ra values, based on literature findings, and 
examples of their use in food related application [58, 74, 118-
123] 

 

Surface finish Ra (µm) Application examples in food contact 
BA (2R) 0.03 – 0.2 cookers, cookware, cutlery 

A 0.13 not applicable 
SB 0.1 – 0.4 not available 

2B 0.1 – 0.5 
the most commonly used surface finish 
in food industry, e.g. cutlery, beer kegs, 

process vessels and tanks 

N4 0.8 restaurant and kitchen equipment, food 
processing 

2D 0.2 - 1 beer kegs 
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   The OCP investigation of grade 316L with SB surface finish, with 
the highest extent of released metals, Figure 9, indicated an 
increased passivity with time and no active and/or metastable 
corrosion could be observed (technical report VII). Furthermore, 
the OCP values obtained for grade 316L with SB surface finish 
were higher compared to grade 316L with a 2B surface finish, with 
the lowest extent of released metals at the same exposure 
conditions (technical report VII). This suggests that the initially 
more active SB surface could be passivated faster compared with 
the 2B surface, resulting in higher OCP values and initially a 
higher extent of metal release. Since no repeated metal release 
studies were performed for this surface finish, it could not be ruled 
out whether the metal release of the SB surface would be lower or 
equal compared to a 2B surface after the initial passivation 
process. 
 
5.5 The outcome of the compliance test strongly 
depends on the application-specific surface area to 
solution volume ratio  
 
Depending on the food contact application, the surface area to 
solution volume ratio (loading) varies. A higher loading will hence 
result in a higher concentration of metals in solution, as e.g. shown 
for Cr in Figure 10. This is in agreement with other findings (Paper 
II, technical reports VII – VIII, [74, 75]). Since the surface area to 
solution volume ratio is not clearly specified in the CoE protocol 
and defined as application-specific [4], it can be speculated that 
the same material examined at a low ratio may pass the 
compliance test and stipulated SRL concentrations, while possibly 
fail if tested at a significantly higher ratio (Paper II).  
    Therefore, the surface area to solution volume ratio is the single 
most important factor that affects the outcome of a compliance 
test with respect to the SRL concentrations.  
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Figure 10: Changes in observed concentrations of Cr compared with the 

Cr stipulated SRL value in the CoE protocol [4] when 
increasing the surface area to solution volume ratio (loading) 
from 0.25 to 0.5, 0.75, 1, 1.3, and 2 cm2mL-1 for austenitic 
stainless steel grade 201 (surface finish A) after 2 h of 
exposure in citric acid (pH 2.4) at 70 ⁰C (Paper II, technical 
reports VII – VIII). The example loadings for kitchen utensils 
are calculated according to the CoE protocol definition of 
loading: “the total exposed surface area (in contact with 2

3
 

volume) / 2
3
 volume”. Example images of different loadings are 

taken from IKEA webpage (http://www.ikea.com/se/sv/). 

 
 

http://www.ikea.com/se/sv/
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5.6    Repeated exposure of stainless steel to citric acid 
results in strongly reduced released amounts of metals 
 
Metal release upon repeated usage of stainless steels in food 
contact is very important for risk assessment of these alloys. 
However, most studies only investigate the initial extent of 
released metals, which is typically higher compared with 
subsequent exposures [48].   
    Upon repeated exposure of grades 201, 304 and 316L in citric 
acid or acetic acid (for three or six subsequent 30 min exposure at 
100 ⁰C), the amount of all released metals decreased (about 10-
fold) for all grades suggesting enhanced surface passivation at 
these conditions, Figure 11 (Papers II – III, technical reports VII – 
VIII).  
 

 
Figure 11: Schematic illustration of released amount of metals (Fe, Cr, Mn 

and Ni) upon repeated exposure of stainless steel grade 304 for 
six subsequent 30 min exposure in 5 gL-1 citric acid (pH 2.4) at 
100 ⁰C. All samples were abraded by a commercially available 
Stainless Steel Wool (SSW) before the 1st and 4th exposure in 
the sequence (Papers II – III, technical reports VII – VIII).  
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    These findings are consistent with other studies carried out on 
different grades of stainless steels that show reduced metal release 
and strong chromium enrichment in the surface oxide upon 
repeated exposures to different food simulants [74, 77-79]. The 
results show that repeated usage of stainless steel in contact with 
food commonly results in reduced amounts of released metals and 
suggests that stainless steel can be generally considered safe to use 
in contact with food as long as the correct grade is applied. 
However, it should be noted that an incorrect usage or grade 
selection for a given application can result in active corrosion [48, 
50-52]. 
 
5.7  In-depth investigation of possible metal release 
mechanisms induced by citric acid 
 
The metal release behaviour of different stainless steel grades have 
been earlier investigated into citric acid containing solutions from 
a food safety point of view, since citric acid is suggested as one of 
the food simulants (and the most aggressive one) in the relatively 
new European test guideline [4] (Papers II – V, technical reports 
VII – VIII). The results clearly indicate that citric acid induces an 
initial metal release (that mostly occurs during the first 2 h of 
exposure) and concomitant surface passivation that hinders 
further release of alloying elements (Papers II – V, technical 
reports VII – VIII).     
    So far, several mechanisms have been suggested for the release 
of alloying constituents from stainless steels in the presence of 
complex forming agents such as citric acid (Paper I, [31, 48, 62, 63, 
65, 72, 95, 124], of which protonation (at low pH ranges) and 
adsorption-controlled surface complexation followed by complex 
detachment (at weakly acidic and neutral pH ranges) are proposed 
as the predominant metal release mechanisms (Paper V). This is 
suggested to be the case as long as physical processes (e.g. wear) 
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do not take place and can be excluded, and that corrosion 
processes are negligible.  
    Table 9 provides a schematic illustration of changes in the 
predomination of the main metal release mechanisms suggested 
for abraded grade 304 (Paper V). In order to distinguish between 
the effects of pH (that influences protonation, corrosion processes 
and dissolution) and complexation on the metal release behaviour 
of different investigated alloying elements (Fe, Cr, Mn and Ni), 
non-complexing test solution of KNO3 (KNO3) and citric acid 
containing KNO3 solution (CA + KNO3) of varying pH (chosen 
based on the pKa values of citric acid) were used (Paper V). Details 
regarding the test solutions and parameters are presented in the 
“Experimental” section, Tables 4 and 5.  
    The results (Paper V) showed that similar (for Fe and Mn) or 
even less (for Ni) amounts of metals were released into the 
complex forming solution of CA + KNO3 compared with non-
complexing test solution of KNO3 at pH 3.1. This suggests 
protonation and corrosion/dissolution at defects/inclusions as the 
predominant metal release mechanisms.  
    In contrast, at pH values of 4.8 and 6.4, significantly higher 
amounts of released metals were observed from all investigated 
alloying elements in CA + KNO3 compared to KNO3. This proposes 
a dominant complexation-induced metal release mechanism at 
weakly acidic or neutral pH values. This behaviour can be 
explained by the increase in the ionization of citric acid at weakly 
neutral pH range of 4.8, hence more complex formation with 
metal ions, as well as a lower extent of precipitation of released 
metals compared with conditions in the KNO3 solution at these pH 
values.  
    Among the investigated alloying elements, Cr release showed the 
strongest dependency of citric acid at all investigated pH values. 
This is probably related to a higher solubility of Cr species in CA + 
KNO3 compared with KNO3, verified by speciation/precipitation 
modelling of the investigated alloying elements.  

 

 
 



Key Results and Discussions|39 
 

Table 9: Changes in the predomination of the metal release mechanisms 
versus pH and the investigated alloying elements calculated 
based on the difference in the amount of released metals from 
grade 304 into KNO3 and CA + KNO3 test solutions (Paper V)  

 

Element pH Which mechanism is predominant? 

Fe 

3.1 
 

4.8 
 

6.4 
 

Cr 

3.1 
 

4.8 
 

6.4 
 

Mn 

3.1 
 

4.8 
 

6.4 
 

Ni 

3.1 
 

4.8 
 

6.4 
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5.7.1  Complexation-induced metal release in citric acid: 
importance of surface and/or solution complexation 

To assess whether complexation-induced metal release in citric 
acid containing solutions requires surface complexation, or 
solution complexation or both, 16.07 gL-1 (35 wt% in water) 
polyacrylic acid (PAA) of 100 kDa (with pH values of 3.1, 4.8, and 
6.4) was used as a complexation model compound, with the same 
number of carboxylic groups as 5 gL-1 citric acid. PAA was 
separated from the abraded 304 stainless steel surface by means of 
a regenerated organic cellulose mambrane of 3.5 kDa cut off to 
ensure that PAA could not reach the surface (experimental set ups, 
cells and parameters are presented in the “Experimental” Section, 
Tables 4 and 5). Between the stainless steel surface and the 
membrane, KNO3 solution with the pH of interest (3.1, 4.8, or 6.4) 
was used as a non-complexing solution with some ionic 
conductivity to avoid the retention of metal ions within the 
membrane (Paper V).  
    This study clearly indicated that, at given test conditions (pH 
3.1, 4.8, and 6.4; 40 ⁰C; 5 gL-1 citric acid) metal complexation (as 
the main metal release mechanism at weakly acidic / neutral pH) 
is of great importance.However, it could not be ruled out whether 
it is surface adsorption of protons (protonation, [125]) or 
dissolution at inclusions / defects, that are important at pH 3.1 
(Paper V). The results strongly indicate surface complexation 
predominantly governs the metal release process, however, it can 
not be ruled out whether direct surface interaction is required or 
not. Literature findings on Fe and Cr dissolution by complex 
agents suggest ligand adsoption (as a first necessary step) followed 
by the metal-ligand detachment from the surface (which is the rate 
limiting step) [48, 60, 125, 126]. However, it should be noted that 
the adsorption of complex agents are pH- and temperature 
dependent [68, 84], and findings of this study may not be valid at 
lower and/or higher temperatures or pH values.  
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    For instance, pH can have a significant effect on the adsoption 
kinetics of citrate on stainless steel surfaces (Paper V, [31]). While 
adsorption of citric acid at pH 4.8 on the abraded 304 surface 
completed after 1 h (except for Cr) was correlated with an initially 
strong increase in the amount of released metals followe by 
constant levels up to 24 h (Paper V), an earlier study on the same 
grade (results shown in Figure 5, Section 2.4) indicated that citrate 
starts to adsorb after 1 h at pH 2.4, which results in more metal 
release [31]. Therefore, further investigations are necessary in 
order to generalize the proposed metal release mechanisms of this 
study at higher temperatures, different pH values and for different 
alloying elements, which may be very important for risk 
assessment of food contact metals and alloys.       
    The proposed metal release mechanisms for grade 304 stainless 
steel in 5 gL-1 citric acid (pH 3.1, 4.8, and 6.4, at 40 ⁰C) are 
summarized in Figure 12. By considering the presence of surface 
defects and inclusions, which can contribute to the initial metal 
release of alloying elements, specifically Mn release (from 
inclusions) and Ni release (from surface defects), the following 
mechanisms are proposed for grade 304 stainless steel in 5 gL-1 
citric acid at given test conditions (pH 3.1, pH 4.8 and 6.4, at 40 
⁰C): 

i) At pH 3.1, protonation (surface oxide dissoluiton by means 
of adsorbed protons) can be suggested as the main metal 
release mechanism after the initial exposure period. 
Initially, other mechanisms such as dissolution / corrosion 
due to the presence of defects / inclusions may be 
important (Paper V). 

ii) At pH of 4.8 and 6.4, surface complexation is suggested as 
the main metal release mechanism, which is time 
dependent (Paper V, [31]). It cannot be excluded that 
solution complexation may also play a role by hindering 
metal precipitation. However, it can be considered of 
minor importance for the release of Fe and Cr at these pH 
ranges since the passive surface oxide is 
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thermodynamically very stable and cannot be dissolved 
without having direct interaction with adsorbed citrates 
(Paper V).  

 

 
 

Figure 12: Schematic illustration of suggested metal release mechanisms 
for stainless steel grade 304 into citric acid solutions of weakly 
acidic / neutral pH and 40 °C, for abraded, 24h-aged and non-
passivated surfaces.   
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6    Conclusions  

The main objective of this doctoral thesis has been to provide an 
in-depth understanding of metal release processes, corrosion, and 
surface changes of different stainless steel grades in the presence 
of metal complex-forming agents, in particular citric acid. The 
results obtained within the framework of this thesis are expected 
to be used as a knowledge base for risk assessment of using 
different grades of stainless steels in food contact, or after 
passivation or cleaning of stainless steel with citric acid.  
    Based on the results and discussions of this thesis, the following 
main conclusions are drawn: 

• Very low amounts of metals, with the preferential release of 
Fe and Mn, were released into citric acid (pH 2.4) during 
10 days of exposure. These levels quantitatively correspond 
to an alloy mass loss of less than 0.000025 %. Low levels of 
metal release are attributed to the passive surface oxide. 
This oxide becomes enriched in chromium with time upon 
exposure in citric acid. 

• None of the investigated alloying constituents of different 
tested grades of stainless steel were released in amounts 
exceeding their corresponding SRL values, stipulated in the 
CoE protocol 

• An increased surface area to solution volume ratio 
(loading) can significantly enhance the concentration of 
metals in solution. Therefore, the outcome of the 
compliance test strongly depends on the application-
specific surface area to solution volume ratio and must be 
taken into account.  

• Cr was released as Cr3+ and no hexavalent Cr was released 
or detected either in complexing or non-complexing test 
solutions (pH 2.4-7.5). 

• Fe (in citric acid and PBS solutions) and Mn (in all 
solutions) were preferentially released from all investigated 
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stainless steel grades. Ni was released to the lowest extent, 
as compared to its bulk alloy content. 

• The amount of released metals largely depends on the 
surface conditions prior to exposure.  

• Metal release from different grades of stainless steels into 
citric acid-containing solutions of varying pH generally 
followed the typical metal release behaviour of passive 
surfaces in the presence of complex agents; i) metal release 
is not proportional to the bulk composition, ii) initially 
higher release of all alloying elements followed by a 
significantly reduction by time, iii) significant chromium 
enrichment in the outermost surface oxide. 

• At acidic / weakly acidic pH, protonation can be proposed 
as the main important metal release mechanism for 
stainless steels. Other mechanisms such as dissolution / 
corrosion due to the presence of defects / inclusions may 
also induce metal release. 

• At weakly acidic / neutral pH, surface complexation is 
proposed as the main metal release mechanism. Solution 
complexation may also play a role by hindering metal 
precipitation. However, it can be considered of minor 
importance for the release of Fe and Cr at these pH values 
due to the presence of a very stable passive layer that 
cannot be dissolved without direct surface interaction with 
adsorbed citrates. 

• The released amount of all investigated alloying elments in 
metal complexing test solutions of pH 6.4 and pH 11 was 
significantly reduced compared to lower pH values of 2.4, 
3.1 and 4.8. This is most probably due to a more stable 
surface oxide and precipitation of released metals. 
 

 

 
 



Future work|45 
 

7    Future work 

In this thesis, metal release, surface changes and corrosion 
behaviour of different grades of stainless steels, relevant for food 
applications, have been investigated and several important factors 
and mechanisms were proposed. Future aspects that need to be 
taken into account are summarized below: 

• Previous studies for non-passivated 304 coupons indicated 
that the presence of high chloride concentration (0.5 M 
NaCl) combined with citric acid at acidic pH (pH 2.2)  or at 
weakly acidic pH (pH 4.8) (unpublished data), can induce a 
slightly higher amount of metal release compared with 
citric acid (pH 2.4) containing no NaCl (Paper III). SEM 
investigations of abraded 304 grades exposed into 5 gL-1 
citric acid (pH 4.8), 0.5 M NaCl (pH 4.8) and their mixed 
solution showed evident surface changes after exposure 
into the mixed test solution containing both citric acid and 
NaCl, while no visible changes could be observed upon 
exposures in solutions containing only citric acid or NaCl 
(unpublished data). More in-depth investigations are 
needed (e.g. XPS and AES analysis) to provide a better 
understanding of surface changes. This can be important 
for solutions containing both citric acid and chloride ions 
at high concentrations, such as edible seaweeds, which are 
increasingly consumed as part of the modern Western diet. 
Chloride concentrations as high as 3.5-134 g kg-1 have been 
reported for different commercially available seaweeds in 
New Zealand [127].     

• Investigations of the complexation ability of other complex 
forming agents, e.g. food related proteins such as casein, 
alone or in combination with other metal complex agents 
such as citric acid are highly recommended for a better 
understanding of possible metal release mechanisms of 
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large importance for the risk assessment of alloys in food 
contact. 

• This study did not consider the effect of impurities / 
inclusions and defects on the metal release mechanism. 
Therefore, other investigations, (e.g. AFM) are suggested to 
distinguish their possible influence on corrosion / 
dissolution and metal release behaviour of stainless steels.  

• Further studies should further clarify the metal release 
mechanisms, and quantify their individual importance for 
stainless steel in citric acid solutions of varying 
temperature and pH. 
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