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CONTACT HOMOLOGY OF LEGENDRIAN KNOTS IN FIVE-DIMENSIONAL CIRCLE
BUNDLES

JOHAN ASPLUND

Abstract. In this paper we compute the Legendrian contact homology of the two-dimensional Legendrian
unknot Λ in R4 × S1 equipped with its standard contact structure, by perturbing the contact form by a
Morse function. We write down an explicit formula for the differential of the Legendrian contact homology
algebra and show that the homology is generated by one Reeb chord in degree 2, which is the same as the
homology of this knot in R5.

Considering the same knot Λ (with respect to a Darboux chart) in the circle bundle over CP2 with total
space S5, we will make Λ describe a perturbation of Λ which gives that the Legendrian contact homology
of Λ is the same as in R4 × S1.

Contents

1. Introduction 1
1.1. The Legendrian contact homology algebra 2
1.2. Main result and outline of the paper 2
2. Contact geometry and Legendrian knots 3
2.1. Gray stability and Darboux theorem 5
2.2. Basic notions in symplectic geometry 6
2.3. Legendrian knots 6
2.4. Classical invariants of Legendrian knots 8
3. Legendrian contact homology in a contact 3-manifold 10
3.1. The algebra 10
3.2. The differential 11
3.3. Combinatorial description 12
3.4. Invariance under Legendrian isotopy and stable tame isomorphisms 13
4. Legendrian contact homology in a circle bundle 14
4.1. Morse-Bott perturbations and the geometric situation 15
4.2. Combinatorial description 15
5. Legendrian contact homology in five-dimensional circle bundles 20
5.1. Construction and example in R4 × S1 20
5.2. Example in a circle bundle over CP2 25
Appendix A. Maslov index of a path of Lagrangian submanifolds 26
References 27

1. Introduction

A contact manifold (M, ξ) of dimension 2n+1 is a manifold of dimension 2n+1 equipped with a completely
non-integrable plane field ξ. If ξ is given as the kernel of a 1-form α, ξ is completely non-integrable if and
only if α ∧ (dα)n ̸= 0. A submanifold Λn ⊂M is a Legendrian submanifold if Λ is everywhere tangent to ξ.
In the case n = 1, an embedded S1 that is everywhere tangent to ξ is called a Legendrian knot. A Legendrian
isotopy of two Legendrian submanifolds Λ0 and Λ1 is an isotopy taking Λ0 to Λ1 through Legendrian
submanifolds Λt. Assuming that ξ = kerα with a 1-form α, we may define the Reeb vector field Rα as the
unique vector field statisfying α(Rα) = 1 and dα(Rα,−) = 0. A segment of a flow line of the Reeb
vector field with start and endpoints on a given Legendrian submanifold Λ is called a Reeb chord.
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2 JOHAN ASPLUND

A general question in contact topology is to classify Legendrian submanifolds of a given contact mani-
fold up to Legendrian isotopy. One attempt at answering this question is Legendrian contact homology, which
is an invariant of Legendrian submanifolds up to Legendrian isotopy. Legendrian contact homology fits
into the larger framework of symplectic field theory [8]. Legendrian contact homology was first intro-
duced independently by Chekanov [3] and Eliashberg-Givental-Hofer [8]. Chekanov [3] successfully
described the invariant for Legendrian knots combinatorially in (R3, ξstd), which then later was gener-
alized by Ekholm-Etnyre-Sullivan [4] to a geometrical description in (R2n+1, ξstd) for embedded Legen-
drian submanifolds. Ekholm-Etnyre-Sullivan also computed Legendrian contact homology for Legen-
drian submanifolds in (P ×R, dz − θ), where (P, θ) is an exact symplectic manifold [6]. From the work
of Sabloff [19] we have a combinatorial description of Legendrian contact homology in circle bundles
over Riemannian surfaces. In this thesis we use similar techniques to that of Sabloff to explicitly compute
the Legendrian contact homology of the Legendrian unknot in R4 × S1.

1.1. The Legendrian contact homology algebra. In a contact 3-manifold, (M,α) Legendrian con-
tact homology assigns a differential graded algebra (DGA) (A, ∂) to a Legendrian knotΛ ⊂ (M,α). The
algebra is freely generated by Reeb chords a1, . . . , an, whose grading is given by the Conley-Zehnder index
(see section 3.1 and appendix A). The differential is computed by studying moduli spaces of punctured
pseudoholomorphic disks u : (D, ∂D) −→ (M × R, Λ × R) in the symplectization (M × R, d(etα))
of (M,α). The moduli spaces consists of disks whose punctures {w1, . . . , wk} ⊂ ∂D are each one as-
ymptotic to a Reeb chord in the symplectization. This means that, approaching (s,±∞) in M × R,
each puncture wi parametrize a Reeb chord of Λ ⊂ M × {±∞}. We may denote this moduli space by
M(ai1 , . . . , aik

), where
{
ai1 , . . . , aik

}
is the set of Reeb chords that appear as asymptotes of the pseu-

doholomorphic disks in this moduli space. The moduli spaces modulo reparametrization that consists of
a finite number of isolated points contribute to the differential, and such pseudoholomorphic disks are
called rigid.

The homology of (A, ∂) will be an Legendrian isotopy invariant, but is generally hard to compute.
More generally, the stable tame isomorphism class of (A, ∂) (see section 3.4) is an invariant. There are also other
more computable constructions related to (A, ∂) that are Legendrian isotopy invariants of the underlying
knot, such as the linearized homology [3] and the characteristic algebra [17].

Following Sabloff [19], we consider a Riemannian surface F and E, which is a circle bundle over F .
We equip E with a strictly negative curvature 2-form. Then there is a unique tight contact structure α,
that is transverse to the S1 fibers (see section 4). Letting Λ ⊂ E be a Legendrian knot the Reeb vector
field points in the S1 fiber direction. In addition to the usual Reeb chords corresponding to the double
points of π(Λ), there is an infinite family of Reeb chords at every point p ∈ Λ. These Reeb chords are
the ones that start at p, wind around the fiber k ≥ 1 times and end at p again.

By an abstract perturbation αε = α+ εf , where f is a Morse function with one critical point on each
edge of π(Λ) we break this degeneracy. To each double point xi we then have two families of Reeb chords
{ak

i }∞k=0 and {bk
i }∞k=0, and to each critical point ej we have either a family {ck

j }∞k=1 or a family {dk
j }∞k=1

of Reeb chords depending on whether the critical point is a maximum or a minimum.

1.2. Main result and outline of the paper. Consider (R4×S1, dθ−
∑2

i=1 yidxi). We then consider
the Legendrian unknot Λ, whose front projection is shown in fig. 1.

c+

c−

Figure 1. Front projection of the Legendrian unknot Λ.

We perturb the contact form with a Morse function that has one maximum and one minimum on Λ.
Since this knot only has one double point in the Lagrangian projection, which corresponds to the points
c± in the front projection as indicated in fig. 1, we have four families of Reeb chords, which we denote by
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{q⃗ k}∞k=0, { ⃗q k}∞k=1, {qk
±}∞k=1. Then we consider the associative, unital, graded algebra A over Z2 that is

generated by the formal power series

q⃗ =
∞∑

k=0
q⃗ kT k, ⃗q =

∞∑
k=1

⃗q kT k, q± =
∞∑

k=1
qk

±T
k ,

where q⃗ and ⃗q correspond to the only double point of the Lagrangian projection of Λ, and where q±
corresponds to the maximum and minimum respectively, of the perturbing Morse function. The grading
of the generators is given by

|q⃗ k| = 2k + 2, | ⃗q k| = 2k − 2, |qk
±| = 2k ± 1 .

The differential is split up as ∂ = ∂hol +∂MB. In this example we have that ∂hol = 0 and that ∂MB is given
on generators as follows.

∂MBq⃗ = q−q⃗ + q⃗q− + q+

∂MB ⃗q = q− ⃗q + ⃗qq−

∂MBq+ = q−q+ + q+q− + q⃗ ⃗q + ⃗qq⃗

∂MBq− = q−q− + ⃗q .

This differential is computed via an explicit perturbation scheme as in [19, section 5]. The homology is
then easily computed to be

CH∗(Λ) = ⟨q⃗ 0⟩ .
That is, the homology is generated by one generator with grading 2. This is precisely the same result as
in R5, which is what we expect.

First, section 2 is devoted to background notions regarding contact geometry, Legendrian knots and
their classical invariants. In section 3 we discuss in broad terms the geometrical definition of the Legen-
drian contact homology DGA, and the combinatorial description in (R3, ξstd) following [10]. In section 4
we follow [19] to describe how to compute Legendrian contact homology in three-dimensional circle bun-
dles. In section 5 we explicitly compute the Legendrian contact homology of the Legendrian unknot in
R4 × S1 and also consider the same knot in the circle bundle over CP2 with S5 as total space.

Acknowledgments. I would like to thank my supervisor Thomas Kragh for always taking time to discuss
questions and thoughts of mine. I would also like to thank Tobias Ekholm for stimulating discussions.

2. Contact geometry and Legendrian knots

We recall basic definitions and notions of contact geometry. In section 2.1 we prove the Gray stability
theorem which is a key ingredient in proving Darboux theorem which tells us that there are no local
invariants of contact manifolds. The presentation roughly follows [9, 12].

In section 2.3 we define Legendrian knots and discuss the Lagrangian and front projection of Legen-
drian knots. To lift these projections to a Legendrian knot, the projections need to have certain features.
This makes it possible to study Legendrian knots via their projections. In section 2.4 we compute the
Thurston-Bennequin invariant and the rotation number in terms of the Lagrangian and front projections.
Section 2.3 and section 2.4 follows [10].

A pair (M, ξ) of a (2n + 1)-manifold M and a completely non-integrable plane field ξ, is called a
contact manifold. ξ is called a contact structure and if we locally have ξ = kerα, then α is a 1-form such
that

(2.1) α ∧ (dα)n ̸= 0 ,
where (dα)n is understood as the n-fold wedge product of dα with itself. Such 1-form α is called a contact
form and we may sometimes write (M,α), if ξ = kerα globally. If α∧ (dα)n > 0 we say that α is a positive
contact form, and if α ∧ (dα)n < 0 we say that α is a negative contact form. Note that (2.1) automatically
implies thatM has to be orientable, and that α ∧ (dα)n provides us with a volume form. In R2n+1 with
coordinates (xi, yi, z), i ∈ {1, . . . , n}, the standard contact structure is given as the kernel of the 1-form

α = dz −
n∑

i=1
yidxi .
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If ξ = kerα is a contact structure, any other 1-form gα, for a nowhere vanishing function g : M −→ R
also defines the same completely non-integrable plane field, and

(gα) ∧ (d(gα))n = gα ∧ (gdα+ dg ∧ α)n = g2n+1α ∧ (dα)n ̸= 0 .
The last equality holds by expanding the n-fold wedge product and by seeing that it is only one term that
survives.

One can relate contact manifolds by contactomorphisms. A contactomorphism of two contact manifolds
(M, ξ = kerα) and (N, ζ = kerβ) is a diffeomorphism f : M −→ N such that df(ξ) = ζ, or equiva-
lently f∗β = gα, for some nowhere vanishing g : M −→ R.

Example 2.1. In cylindrical coordinates (r, θ, z) onR3, ξstd = ker(dz+r2dθ) and ξot = ker(cos(r)dz+
r sin(r)dθ) are contact structures.

The previous example provides an example of two non-contactomorphic contact structures on R3 [1].
The index of ξot is short for overtwisted. A contact structure is called overtwisted if there is an embedded
diskD which is transverse to ξot at all points except at the boundary, where it is tangent to ξot. A contact
structure that is not overtwisted is called tight. It is called overtwisted, because the plane field of such a
contact structure twists too much in some sense. Going out radially by r = π

2 in (R3, ξot) makes the plane
field twist a full turn, and so the planes makes an infinite number of full turns as r gets big. However, in
(R3, ξstd) the planes never do a full twist. As r →∞, the plane field approaches vertical planes.

There is a special vector field Rα called the Reeb vector field, which is defined uniquely bydα(Rα,−) = 0
α(Rα) = 1

.

From the definition, we see that Rα is transverse to the contact structure, since Rα ̸∈ kerα. In the
standard contact R2n+1, it is easy to see that Rα = ∂z . By the following result, it follows easily from the
definition that the Reeb vector field preserves the contact structure.

Lemma 2.2. Let φt : M −→M be the flow of the Reeb vector field, then φ∗
tα = α.

Proof. It suffices to prove that d
dtφ

∗
tα = 0, because φ∗

0α = α by definition. By Cartan’s formula LXω =
dιXω + ιXdω we immediately have

d
dt
φ∗

tα = φ∗
t (LRαα) = φ∗

t (dιRαα+ ιRαdα) = φ∗
t (d(1) + 0) = 0 .

□
A submanifoldN ⊂M is a contact submanifold with contact structure ξ′ if ξ′ = TN∩ξ|N . A submanifold

N ⊂M is called isotropic if TpN ⊂ ξp for each p ∈ N .

Proposition 2.3. If N ⊂ (M, ξ) is an isotropic submanifold and dimM = 2n+ 1, then dimN ≤ n.

Proof. Let α be a local contact form of ξ and let ι : N −→ M be the inclusion. The condition that
N is isotropic can briefly be described as ι∗α = 0, and hence ι∗dα = 0. It is furthermore a fact that
pointwise

(
ξp, ω ..= dα|ξp

)
is a symplectic vector space. Thus since TpN ⊂ ξp, we have that TpN is an

isotropic subspace of ξp, seen as a symplectic vector space. Pointwise we therefore have TpN ⊂ TpN
ω,

so dimTpN ≤ dimTpN
ω and so

dimTpN + dimTpN
ω = dim ξp = 2n ⇒ dimTpN ≤ n .

□
An isotropic submanifold of maximal dimension is called Legendrian.
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2.1. Gray stability and Darboux theorem. Locally, all contact manifolds look like (R2n+1, ξstd) by
Darboux theorem so it is not possible to find local invariants of contact manifolds.

The elementary proof is essentially pointwise linear algebra, while the more modern and the now
standard proof uses Gray stability and Moser’s trick. Recall that the Lie derivative on vector fields is
defined as LXY = [X,Y ]. By Cartan’s formula we can extend the definition to k-forms ω as LXω =
ιXdω + d(ιXω). Using this definition we have the identitiesLX(dω) = d(LXω)

LX(ω ∧ η) = LXω ∧ η + ω ∧ LXη
,

for differential forms ω and η.

Lemma 2.4 (Lemma 2.2.1 in [12]). Let {ωt}t∈[0,1] be a smooth family of k-forms on a manifoldM and let ψt

be a smooth isotopy onM . Define a family of vector fields Xt,
d
dt
ψt = Xt(ψt) ,

that is, so that ψt is the flow of Xt. Then
d
dt
ψ∗

t ωt

∣∣∣∣
t=t0

= ψ∗
t0

(
ω̇t|t=t0

+ LX0ωt0

)
.

Proof. We first show the formula for functions. Then, given that it holds for differential forms ω, ω′ we also
show that it holds for dω and ω ∧ω′. For a time-independent k-form ω we have d

dtψ
∗
t ω = ψ∗

t (LXtω), so
plugging in t = t0 we see that the formula holds for time -independent k-forms.

(1) For a smooth real valued function f ∈ C∞(M) we have
d
dt

(ψ∗
t f)(p) = d

dt
f(ψt(p)) = d

dt
ψ∗

t (Xtf)(p) = ψ∗
t (LXtf)(p) .

(2) If it holds for differentials ω, ω′ then
d
dt

(ψ∗
t (α ∧ β)) = d

dt
(ψ∗

tα ∧ ψ∗
t β) = d

dt
ψ∗

tα ∧ β + α ∧ d
dt
ψ∗

t β

= ψ∗
t (LXtα) ∧ ψ∗

t β + (ψ∗
tα) ∧ ψ∗

t (LXtβ)
= ψ∗

t (LXt(α ∧ β)) .t
(3) If the formula holds for ω, then

d
dt

(ψ∗
t dα) = d

dt
(d(ψ∗

tα)) = d
(
ψ∗

t LXtα
)

= ψ∗
t LXtdα .

Then for the time-dependent smooth family of forms ωt we have

d
dt

(ψ∗
t ωt) = lim

h→0

ψ∗
t+hωt+h − ψ∗

t ωt

h
= lim

h→0
ψ∗

t+h

ωt+h − ωt

h
+ lim

h→0

ψ∗
t+hωt − ψ∗

t ωt

h

= ψ∗
t (ω̇t) + ψ̇∗

t ωt = ψ∗
t (ω̇t + LXtωt) .

□
This lemma along with the Moser trick, is used in the proof of the Gray stability theorem which is the

following.

Theorem 2.5 (Gray stability, Theorem 2.2.2 in [12]). Let ξt, t ∈ [0, 1] be a smooth family of contact structures
on a closed manifoldM . Then there is an isotopy {ψt}t∈[0,1] ofM such that

dψt(ξ0) = ξt, ,

for each t ∈ [0, 1].

Proof. TheMoser trick is precisely to assume that the isotopyψt is the flow of a vector fieldXt. Equivalently,
we may prove that for some smooth family of smooth positive functions gt : M −→ R+ we have ψ∗

tαt =
gtα0. By differentiating this equation we can use lemma 2.4 to get

ψ∗
t (α̇t + LXtαt) = ġtα0 = ġt

gt
ψ∗

tαt .
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Writing µt
..= d

dt
(log gt)ψ−1

t , and using Cartans formula in the left hand side gives the equation

ψ∗
t (α̇t + d(αt(Xt)) + iXtdαt) = ψ∗

t (µtαt) .
If we pick Xt ∈ ξt we get

α̇t = iXtdαt = µtαt .

Plugging in the Reeb field Rαt we get
α̇t(Rαt) = µt ,

since αt(Rαt) = 1. So if we define µt
..= α̇t(Rαt), then since dαt|ξt

, and since Rαt ∈ ker(µtαt − α̇t).
We choose Xt ∈ ξt, such that dψt(ξ0) = ξt, t ∈ [0, 1]. □
Theorem 2.6 (Darboux theorem, Theorem 2.5.1 in [12]). Let (M,α) be a contact (2n + 1)-manifold. For
each p ∈M there is an open neighborhood p ∈ U ⊂M , and coordinates (xi, yi, z) in U such that

α|U = dz −
n∑

i=1
yidxi .

Remark 2.7. Darboux theorem as stated above is equivalent with saying that there are open neighbor-
hoods p ∈ U ⊂M and 0 ∈ V ⊂ R3 so that with ξ ..= kerα there is a contactomorphism

φ : (M, ξ) −→ (R3, ξstd) ,
with φ(p) = 0.

2.2. Basic notions in symplectic geometry. A pair (M,ω) of a 2n-manifoldM and a closed non-
degenerate 2-form ω is called a symplectic manifold. This means that dω = 0 and ωn is a nowhere vanishing
top form. Pointwise, ωp : TpM × TpM −→ R is a skew-symmetric non-degenerate bilinear map. On
R2n with coordinates (xi, yi), i ∈ {1, . . . , n} the standard symplectic form is

ω =
n∑

i=1
dxi ∧ dyi .

Two symplectic manifolds (M,ω), (N, υ) are said to be symplectomorphic if there is a diffeomorphism
φ : M −→ N such that f∗υ = ω. A submanifold N ⊂ M is called isotropic if ι∗ω = 0, where
ι : N −→M is the inclusion map. If dimN = 1

2 dimM , N is called a Lagrangian submanifold.
A symplectic manifold (M,ω) is called exact if there is a 1-form so that ω = dλ. This 1-form is called

a Liouville form.

2.3. Legendrian knots. This subsection follows the presentation given in [10].
We let (M, ξ = kerα) be a 3-dimensional closed contact manifold. A Legendrian knot is an embedding

K : S1 −→ M such that TpK ⊂ ξp for every p ∈ K. We will often refer to the image of K as the
Legendrian knot, so we let Λ = imK. We will restrict our attention to (R3, ξstd = ker(dz − ydx)) since
it is easier to study Legendrian knots in terms of the front projection and the Lagrangian projection.

We let Λ be parametrized by an (at least) C1-immersion

φ : S1 −→ R3

θ 7→ (x(θ), y(θ), z(θ)) .
The fact that Λ is Legendrian means precisely that

Tφ(θ)Λ = span
{

(x′(θ), y′(θ), z′(θ))
}
⊂ ker(dz − ydx) = ξφ(θ) ,

or equivalently

(2.2) z′(θ)− y(θ)x′(θ) = 0 .
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2.3.A. Front projection. The front projection is

πF : R3 −→ R2

(x, y, z) 7→ (x, z) .
The image of Λ, πF (Λ) is called the front diagram of Λ, and the parametrization of the front diagram is
φF (θ) = (x(θ), z(θ)). Since it is often easier to study knots using knot diagrams, it is useful to work out
how front diagrams of Legendrian knots look like. Assuming that the parametrizationφF is an immersion,
we have x′(θ) ̸= 0 which in turn give that front diagrams do not have any vertical tangencies. Instead
front diagrams have cusps. From (2.2) we can recover y(θ) by y(θ) = z′(θ)

x′(θ) . A final note to further

characterize front diagrams is that with the standard orientation of R3, the y direction is into the page.
Hence, keeping x(θ) fixed at a double point of a front diagram, and moving from the overcrossing to the
undercrossing, y(θ) gets bigger and thus also the slope z′(θ).

Thus the following characterize front diagrams of Legendrian knots
(1) Front diagrams have no vertical tangencies
(2) Any front diagram may be parametrized by a map that is an immersion except at a finite number

of isolated points, at which there is still a well-defined tangent line of Λ ⊂ R3. Such points are
called generalized cusps.

(3) The slope of the overcrossing is smaller than the undercrossing.
In fact, if we assume that we have a diagram satisfying the above conditions with a parametrization f(θ) ..=
(x(θ), z(θ)) and recover the y-coordinate via y(θ) = z′(θ)

x′(θ) , then φ(θ) ..= (x(θ), y(θ), z(θ)) is a C1-

immersion which parametrizes a Legendrian knot in (R3, ξstd).

Figure 2. The figure shows a Legendrian unknot to the left and a Legendrian right trefoil
to the right.

2.3.B. Lagrangian projection. We then consider the Lagrangian projection

πL : R3 −→ R2

(x, y, z) 7→ (x, y) .
We call πL(Λ) the Lagrangian diagram ofΛ, and the parametrization of the Lagrangian diagram is φL(θ) =
(x(θ), y(θ)). This map is always an immersion, because otherwise we would have that there is some
θ ∈ S1 so that x′(θ) = y′(θ) = 0 which would imply z′(θ) ̸= 0, since φ is an immersion. But then
Tφ(θ)Λ = span {∂z} ̸⊂ ξstd, and we have a contradiction.

From a Lagrangian diagram we can recover the z-coordinate by integrating the equation z′ = yx′. If
we choose z0 then

(2.3) z(θ) = z0 +
∫ θ

0
y(ψ)x′(ψ)dψ .

Working with Lagrangian projections is slightly more tricky than working with front projections. One
obstruction is the following. Suppose that z(θ) is defined by (2.3). In order for z(θ) to be well-defined we
need to have z(0) = z(2π) (we parametrize the knot by an angle [0, 2π]), which is equivalent with having∫ 2π

0 y(ψ)x′(ψ)dψ = 0. This is not true for all immersions, and it is not the only obstruction for when an
immersion lifts to a Legendrian knot.

Proposition 2.8. An immersion g : S1 −→ R2 lifts to a Legendrian knot in (R3, ξstd) if
(1)

∫ 2π
0 y(ψ)x′(ψ)dψ = 0, and

(2)
∫ θ1

θ0
y(ψ)x′(ψ)dψ ̸= 0 for every θ0 ̸= θ1 with g(θ0) = g(θ1).
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These conditions are not as easy to interpret diagrammatically as the corresponding conditions for the
front projections. However, the following theorem shouldmake it more clear how to construct Lagrangian
diagrams, based on front diagrams.

Theorem 2.9 (Proposition 2.2 in [17]). Given the front diagram of a Legendrian knotΛ one can obtain a Lagrangian
projection by altering the cusps in the front diagram as in fig. 3.

−→

−→

Figure 3. The figure shows how to transform a front diagram to a Lagrangian diagram.

Proof. See [17, prp 2.2]. □

Figure 4. The figure shows a Legendrian unknot on the left and a Legendrian right
trefoil on the right.

2.4. Classical invariants of Legendrian knots. Like in classical knot theory, the main question in
Legendrian knot theory is to determine whether two Legendrian knots are considered to be equivalent.
We want to classify Legendrian knots up to Legendrian isotopy, which is a smooth map

H : S1 × I −→ R3 ,

such that Ki = H(s, i) are two given Legendrian knots for i ∈ {0, 1} and so that Kt = H(s, t) is a
Legendrian knot for each t ∈ I = [0, 1].

In classical knot theory one can determine whether two knots are (ambient) isotopic by checking
whether their knot diagrams are related by a series of Reidemeister moves. For front and Lagrangian dia-
grams of Legendrian knots there are similar results.

Theorem 2.10 (Theorem 2.6 in [10] and Theorem B in [20]). Two front diagrams represent Legendrian isotopic
Legendrian knots if and only if they are related by regular homotopy, and a sequence of Legendrian Reidemeister moves shown
in fig. 5.

←→

←→

←→

Figure 5. Three Legendrian Reidemeister moves of a front diagram.

Proof. See for example [20, section 3]. □
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Remark 2.11. It can also be shown that if two Lagrangian diagrams represent Legendrian isoptopic
Legendrian knots, then the Lagrangian diagrams are related by a sequence of the Reidemeister moves
shown in fig. 6.

←→

←→

Figure 6. Two Legendrian Reidemeister moves of a Lagrangian diagram.

As in proposition 2.8, any immersion of S1 into R2 with the appropriate area conditions will lift to a
Legendrian knots. So in order to perform the Reidemeister moves shown in fig. 6 one has to make sure it
is possible to maintain the area conditions. For a more precise formulation of this, see [16, thm. 4.1].

For Legendrian knots, there are three invariants that are referred to as classical invariants. We will
assume that we have a Legendrian knot Λ which is oriented. The first classical invariant is the topological
type of the knot when we simply forget about the contact structure. The two others are the Thurston-
Bennequin invariant tb(Λ) and the rotation number r(Λ). The Thurston-Bennequin invariant roughly mea-
sures how much the contact structure twists around Λ, and the rotation number is intuitively the winding
number of the knot. The rotation number is only defined for oriented and homologically trivial knots.
That is knots that is the boundary of a 2-chain.

2.4.A. Thurston-Bennequin invariant. Wemay define the Thurston-Bennequin invariant as follows. Let v be
a non-zero vector field along Λ, transverse to ξ. Define Λ′ as a copy of Λ which has been slightly pushed
in the direction of v. Then we can define tb(Λ) = lk(Λ,Λ′).

This defintion is not very convenient to work with in computations, so we translate this into the front
and Lagrangian diagrams. v = ∂z is a vector field transverse to ξ. So we consider πF (Λ) and shift a copy
of Λ slightly in this direction to obtain πF (Λ′). The Thurston-Bennequin number can then be computed
via the front diagram of a Legendrian knot as

tb(Λ) = wr(πF (Λ))− 1
2
(
# of cusps in πF (Λ)

)
.

In the Lagrangian projection we see that

tb(Λ) = wr(πL(Λ)) ,
where wr is the writhe of the knot.

2.4.B. Rotation number. The Legendrian knot Λ is homologically trivial in (R3, ξ), and so we may choose
a Seifert surfaceΣ, which is a surface so that ∂Σ = Λ. The restriction ξ|Σ is a trivial plane bundle, which
restricts to the boundary with a trivialization so that ξ|Λ = Λ×R2. If v is a non-zero vector field tangent
to Λ in the direction according to the orientation of Λ, we may think of v as a path of non-zero vectors in
the chosen trivialization of ξ|Λ = Λ × R2. This path has a winding number, which we call the rotation
number. The rotation number is dependent on the orientation of Λ.

Since ξ = span
{
∂y, ∂z + y∂x

}
, w ..= ∂y is a non-zero section of ξ and thus w can be used to trivialize

ξ|Λ independent of finding a Seifert surface of Λ. The winding number in this trivialization is the signed
number of times v points in the same direction as w. In the front diagram, v points in the ±w direction
at cusps. If D is the number of down-cusps (that is cusps that are traveled downwards when traversing Λ
along to its orientation) and U is the number of up-cusps, then

r(Λ) = 1
2

(D − U) .

In the Lagrangian projection, it is simply the winding number

r(Λ) = winding(πL(Λ)) .
Both the Thruston-Bennequin invariant and the rotation numbers are Legendrian isotopy invariants.
That is to say, two Legendrian isotopic Legendrian knots have the same tb and r. In general Legendrian
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isotopy classes are “finer” than toplogical types of knots in the sense that there exist non-Legendrian iso-
topic knots of the same topological type. In fact there are an infinite number of Legendrian unknots that
are of the same topological type. The front diagrams of three of them is shown in fig. 7. Adding more
cusps gives a Legendrian unknot with tb = −n for any n ∈ Z+.

Figure 7. Non-Legendrian isotopic Legendrian unknots with tb = −1, tb = −2 and
tb = −3 respectively.

The classical invariants are enough to study some classes of knots. Namely the Legendrian unknots [7],
torus knots and the figure eight knots [11].

3. Legendrian contact homology in a contact 3-manifold

The classical invariants of Legendrian knots are not sufficient to classify Legendrian knots, as there exist
non-Legendrian isotopic Legendrian knots with the same Thurston-Bennequin invariant and rotation
number [3, section 4]. An attempt at defining a finer Legendrian isotopy invariant of Legendrian knots
is Legendrian contact homology. In this section we will define the Legendrian contact homology DGA
geometrically and consider the combinatorial decsription in (R3, ξstd) following [10].

Throughout this section we consider a contact 3-manifold (M, ξ) with contact form α. We denote by
Rα the Reeb vector field, and let φt

α : M −→ M be the time t-Reeb flow. We assume that Λ ⊂ M is a
Legendrian knot with a finite number of Reeb chords. A segment of a Reeb flow line with endpoints on
Λ is called a Reeb chord.

The symplectization of (M,α) is the symplectic manifold (M × R, ω ..= d(etα)), where t is the co-
ordinate of the R-factor. For the symplectization we fix a vertically invariant almost complex structure
J , compatible with ω that is invariant along the t-coordinate. More precisely, J is an automorphism
J : T (M × R) −→ T (M × R), with J2 = − id and such thatJ(∂t) = Rα

J(ξ) = ξ
.

That J  is compatible with ω means thatω(−, J−) > 0
ω(J−, J−) = ω(−,−)

.

3.1. The algebra. We let A be the associative, unital graded algebra over Z2 which is freely generated
by the Reeb chords of Λ. To define the grading, we need to pick a capping path. For a generating Reeb
chord a parametrized by [0, 1], a path γa : [0, 1] −→ Λ so that γa(0) = a(1) and γa(1) = a(0) is called
a capping path. We then trivialize ξ over a surface Fα with ∂Fα = a(t) ∪ γa(t). A path of Lagrangian
subspaces, E along a ∪ γa is then defined as

E|γa(t) = Tγa(t)Λ

E|a(t) = dφt
α · Ta(0)Λ ,

At each point on a ∪ γt, the fiber of E is a Lagrangian submanifold of R2. We may look at it as a (non-
closed) path Γ of Lagrangian submanifolds in a fixed symplectic vector space. We will make the path of
Lagrangian submanifolds closed by considering the path λ(V0, V1)(τ) ..= eτIV1 for τ ∈ {0, π

2 }, where
I is a complex structure in Ta(1)Λ such that I(V0) = V1. In this case we let V0 = dφ1

α(Ta(0)Λ) and
V1 = Ta(1)Λ. The path λ(V0, V1) is the path which rotates V0 to V1 in the positive direction. We then
consider the concatenation Γ ⋆ λ(V0, V1), which is a closed loop of Lagrangian submanifolds.



CONTACT HOMOLOGY OF LEGENDRIAN KNOTS IN FIVE-DIMENSIONAL CIRCLE BUNDLES 11

As such a path, it has a Maslov index µ(Γ ⋆λ(V0, V1)) (see appendix A). We call this the Conley-Zehnder
index of the Reeb chord a(t), denoted CZγa(a). We then define the grading by

|a| ..= CZγa(a)− 1 .
The grading is extended to all of A as usual by|ab| = |a|+|b|. The grading is dependent on the capping
path chosen. We note that since Λ is 1-dimensional, there are exactly two choices of capping paths. If
γa and γ̃a are two cappings paths then the difference of the Conley-Zehnder indices with respect to these
capping paths is

CZγa(a)− CZγ̃a(a) = µ(γa ⋆ (−γ̃a)) .
−γ̃a is the path γ̃a traversed in the opposite direction. The image of γa⋆(−γ̃a) is precisely our Legendrian
knot Λ, and thus the grading|a| is well-defined up to the Maslov numberm(Λ) which is the Maslov index
of the closed loop

π : [0, 1] −→ L(n)
t 7→ Tp(t)Λ ,

if p : [0, 1] −→ Λ is a parametrization of Λ and where L(n) is the Lagrangian Grassmannian. It is
worth noting that the Maslov number m(Λ) is equal to double the rotation number of the knot, which
also will be evident in section 3.3.A.

With this, A has a well-defined Zm(Λ)-grading.

3.2. The differential. We want to define a map ∂ : A −→ A of degree −1, that is |∂a| = |a| − 1, so
that ∂2 = 0 and that satisfies the Leibniz rule ∂(ab) = ∂ab + (−1)|a|a∂b. This means that (A, ∂) is
turned into a DGA. The idea is to define this differential so that the homology of (A, ∂) is an invariant
of Legendrian knots.

We will consider a punctured 2-disk D∗ ..= D2 \\ {z, w1, . . . , wn} ⊂ C, with the marked points
{z, w1, . . . , wn} lying in ∂D2. We denote by j the restriction of the standard complex structure of C to
D∗. Then we consider a map

f : (D∗, j) −→ (M × R, J) ,
that satisfies f(∂D∗) ⊂ L × R and is J -holomorphic. That is ∂f = 1

2 (df + J ◦ df ◦ j) = 0. The
differential ∂ will be defined as a count of the number of such maps with some added conditions.

We want the map f to tend asympotically to Reeb chords in the symplectization M × R close to a
puncture. A neighborhood inD∗ of a puncture x is conformally equivalent to (0,∞)× [0, 1], so choosing
coordinates in such a neigborhood (s, t) and letting f = (fM , fR), we say that f tends asymptotically to a
Reeb chord a(t) at ±∞ near a puncture x iflims→∞ fM (s, t) = a(t)

lims→∞ fR(s, t) = ±∞
.

We may then define a suitable moduli space of J -holomorphic disks associated to a set of Reeb chords a,
b = (b1, . . . , bn)

M(a, b) =
{
f : (D∗, ∂D∗) −→ (M × R, Λ× R) | (1)-(3) below holds

}
/ ∼ ,

where
(1) f has finite energy,

∫
D∗
f∗dα <∞,

(2) f tends asymptotically to a(t) at +∞ near the puncture z, and
(3) f tends asymptotically to bi(t) at −∞ near the puncture wi for i ∈ {1, . . . , n}.

We say that f ∼ g if there is a biholomorphism h : D∗ −→ D∗ such that f = g ◦ h. Moreover, since the
complex structure J is vertically invariant, there is an R-action t 7→ t + ∆t which we also will mod out,
and thus consider M(a, b)/R. The differential is defined as

∂a =
∑

b1···bn
dimM(a,b)/R=0

#2(M(a, b)/R)b1 · · · bn ,

where #2 is the modulo 2-count. We extend ∂ to all of A by the Leibniz rule ∂(ab) = ∂ab + a∂b. The
pseudoholomorphic disks in M(a, b) so that dimM(a, b)/R = 0 are called rigid.
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The local structure of moduli space is studied via functional analysis and more precisely the implicit
function theorem. Near a J -holomorphic disk f we consider the linearization of the ∂ operator, Df∂,
and assuming a nice enough Sobolev setup, the linearization is surjective and Fredholm. The grading
that is given by the Conley-Zehnder index in the geometric picture, is then related by the Fredholm index
of this linearization. This gives among other results that M(a, b) = ∂

−1(0) is a manifold. We only
count maps which belongs to moduli spaces associated to collections of Reeb chords a, b1, . . . , bn such
that dimM(a, b)/R = 0, so it only contains a finite number of isolated points.

3.3. Combinatorial description. The geometric definition is not very computable, since the non-
linear Cauchy-Riemann equation ∂f = 0 is hard to solve. For knots in (R3, ξstd), Legendrian contact
homology can be defined combinatorially [3] so that the definition coincides with the geometric descrip-
tion [8]. The combinatorial definition makes the Legendrian contact homology computable. This section
follows the structure of [10].

We will consider the Lagrangian projection πL(Λ) of a Legendrian knot Λ ⊂ R3, and we assume
without loss of generality that all the self-intersections of πL(Λ) are orthogonal. Recalling that the Reeb
vector field is Rα = ∂z , we see that double points of πL(Λ) correspond to Reeb chords of Λ.

3.3.A. The algebra. If C ..= {c1, . . . , cn} is the set of double points of πL(Λ), we define the algebra A =
Z2⟨c1, . . . , cn⟩ to be the associative, unital, graded algebra over Z2 freely generated by double points of
πL(Λ). We make the choice to always consider Reeb chords that start on the undercrossing (the point
with smaller z coordinate when πL(Λ) is lifted to a Legendrian knot in R3) and end on the overcrossing
(the point with larger z coordinate) of a double point of πL(Λ).

Each double point c will obtain a grading as follows. First let c± denote the over- and undercrossing
respectively. Then pick a capping path γc : [0, 1] −→ Λ so that γc(0) = c+, γc(1) = c−. We only
consider capping paths that are homotopic to an injective path in Λ, so there are only two choices of
capping paths. With respect to the standard trivialization ofR2, this path has a fractional rotation number
r(γc) which must be an odd multiple of 4, since self-intersections of πL(Λ) are orthogonal by assumption.
We then define the grading of c as

|c| ..= 2r(γc)−
1
2
,

and extend it to all of A by |ab| = |a| + |b|. Note that this is dependent on the choice of capping path,
since if we pick the other possible capping path γ̃c we have r(γc)− r(γ̃c) = 2r(Λ). Thus the grading is
only well-defined modulo 2r(Λ). So A is an algebra over Z2 with grading in Z2r(Λ).

3.3.B. The differential. First we will decorate each double point in πL(Λ) with Reeb signs as in fig. 8.

++

−

−

Figure 8. Reeb signs associated with a crossing.

We let Pk+1 be a (k + 1)-sided convex polygon with vertices v0, . . . , vk labeled counterclockwise. We
then let a, b1, . . . , bk ∈ C be generators of A. We will count the number of such immersed Pk+1 convex
polygons with a positive corner at a, and negative corners at bi. Let b = (b1, . . . , bk) and define

M(a, b) ..=
{
u : (Pk+1, ∂Pk+1) −→ (R2, πL(Λ)) | (1)-(3) below holds

}
/reparametrization ,

where
(1) u is an immersion
(2) u(v0) = a and near a, the image of a small neighborhood of v0 covers a quadrant labeled + (we

say that u has a positive corner at a).
(3) u(vi) = bi, i ∈ {1, . . . , k} and near bi, the image of a small neighborhood of vi covers a quadrant

labeled − (we say that u has a negative corner at bi).
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Then define
∂a ..=

∑
b1···bk

#2M(a, b)b1 · · · bk ,

where #2 is the modulo 2-count. We extend ∂ to all of A by the Leibniz rule ∂(ab) = ∂ab+ a∂b.

Example 3.1. We consider the left handed trefoil with tb = −6, r = 1 with double points labeled as
in fig. 9. The set of double points, {a1, . . . , a6} generate the algebra over Z2, with grading in Z2.

a1

a2
a3

a4

a5

a6

Figure 9. The Lagrangian projection of the left handed trefoil.

The gradings are
|ai| = 1, ∀i ∈ {1, . . . , 6} ,

and the differential is

∂a1 = 1 + a4a3 + a5a4 + a4a4

∂a2 = ∂a4 = ∂a6 = 0
∂a3 = ∂a5 = 1 .

The polygons contributing to the three terms a4a3, a5a4 and a4a4 in ∂a1 are shown in fig. 10.

a1
a3

a4 +
− − a1

a4

a5

+
− −

a1

a4 +
−

−

Figure 10. The three immersed convex polygons contributing to the non-trivial terms
a4a3, a4a5 and a4a4 in ∂a1.

3.4. Invariance under Legendrian isotopy and stable tame isomorphisms. The goal is ulti-
mately to consider the homology of the DGA (A, ∂) and show that it is invariant under Legendrian
isotopies of the underlying Legendrian knot Λ, but there are in fact stronger results, saying that the sta-
ble tame isomorphism class of (A⟨c1, . . . , cn⟩, ∂) is an invariant. From hereon, we may write A instead
of A⟨c1, . . . , cn⟩, but we emphasize that our constructions are dependent on the free generating set
{c1, . . . , cn}.

Fix j ∈ {1, . . . , n}. An algebra automorphism φj : A −→ A defined by

φj(ci) =

ci, i ̸= j

±cj + u, i = j
,

for u ∈ A⟨c1, . . . , ĉj , . . . , cn⟩, is called elementary. A composition of elementary automorphisms is called
a tame automorphism of A. A tame isomorphism of two algebras A⟨c1, . . . , cn⟩ and Ã is an identification
of generators ci ↔ c̃i followed by a tame automorphism. All automorphisms are assumed to respect the
grading of the algebras.
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An index j stabilization of the DGA (A⟨c1, . . . , cn⟩, ∂) is the DGA (Ã⟨c1, . . . , cn, a, b⟩, ∂̃) such that
∂̃(ci) = ∂(ci), ∀i ∈ {1, . . . , n}
∂̃b = a

∂̃a = 0
,

where|a| = |b| − 1 = j. We may use the notation (Ã, ∂̃) = S(A, ∂), and we let Sm(A, ∂) be them-fold
stabilization of (A, ∂), that is applyingm stabilizations to (A, ∂).

Two DGAs (A, ∂) and (Ã, ∂̃) are stably tame isomorphic if there exist stabilizations Sk and Sl and a tame
isomorphism

ψ : Sk(A, ∂) −→ S
l(Ã, ∂̃) ,

such that ψ ◦ ∂ = ∂̃ ◦ ψ.

Theorem 3.2 (Chekanov [3]). The DGA (A, ∂) associated to a Legendrian knot Λ changes by stable tame isomor-
phisms under Legendrian isotopy. Moreover the homology of (A, ∂)

CH∗(Λ) = ker ∂/ im ∂ ,

is invariant under Legendrian isotopy of Λ.

4. Legendrian contact homology in a circle bundle

In this section, we will define the Legendrian contact homology DGA in a circle bundle, while follow-
ing [19]. We will both discuss the geometric situation and how it differs from the situation discussed
in section 3, and the combinatorial description. To this end, we first consider a Hermitian line bundle
E

π−→ F over a closed oriented Riemann surface F . LetE π−→ F be the unit circle bundle with connection
1-form α associated to a Hermitian connection D. We then consider the metric ⟨−,−⟩ on E, which
is induced by the Hermitian structure, which the connection D is compatible with, by definition. If we
choose a frame of sections {ei} with

⟨
ei, ej

⟩
= δij such thatD = d+α in this trivialization, then we can

use compatability with ⟨−,−⟩ to get
d ⟨ξ, η⟩ = ⟨Dξ, η⟩+ ⟨ξ,Dη⟩ ⇔ d(ξiηi)eiei = d(ξi)ηieiei + ξid(ηi)eiei + αξiηieiei + ξiαηieiei ,

that is to sayα+α = 0, whichmeans that we canwriteD = d+iα and assume that our connection 1-form
α takes real values. The curvature 2-form Ω ∈ Ω2(F,C) of this connection in a suitable trivialization is
such that π∗Ω = idα. Assuming that Ω < 0, is the same as to say that idα < 0 in Ω1(F, iR). We then
see that

α ∧ dα = −i(α ∧ idα) > 0 ,
so (E,α) forms a contact manifold with positive contact form. The unit circle bundle E π−→ F equipped
with such α is called a contact circle bundle. The Euler number is then strictly negative

e(E) = c1(E) = 1
2π

∫
F
Ω < 0 .

It is sufficient to consider non-degenerate curvature forms in order for α to be a contact form, but we
want the Euler number of E to be negative, since results from Giroux and Honda [14, 13] ensures the
existence of a unique tight contact structure that is transverse to the fibers when e(E) < 0. The results
can be summarized in the following two theorems.

Theorem 4.1 (Theorem 3.8 (3) in [14]). Let E −→ F be a circle bundle over a closed orientable Riemann surface,
with genus g ≥ 1 and e(E) ≤ 2g − 2. Then E supports a unique transverse contact structure that is tight.

Theorem 4.2 (Proposition 3.2 in [13]). Let E −→ S2 be a circle bundle and suppose that e(E) < 0. Then E
supports a unique transverse contact structure

These two results combined removes the ambiguity that Legendrian contact homology depends on the
contact structure.
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4.1. Morse-Bott perturbations and the geometric situation. Let (E,α) be a contact circle bun-
dle, with its unique transverse contact structure and let Λ ⊂ E be a Legendrian knot with projection π(Λ)
in F . The first thing we note is that for a transverse α, the Reeb vector field points in the fiber direction,
and there are two types of Reeb chords on Λ. The first type is the long Reeb chord. At any point p ∈ Λ
there is a Reeb chord that start and end at p and winds around the fiber k times. The second type is the
short Reeb chord, which starts and ends at different points of Λ that corresponds to a double point in π(Λ)
and dont wind around the fiber.

So at any point that is not a double point of π(Λ) there is a family of long Reeb chords, parametrized
by how many times they wind around the fiber. At double points there is a family of Reeb chords which
are compositions of a short and a long Reeb chord. The Reeb chords are therefore not isolated but they
rather come in a continuous family of families parametrized by Λ, and hence we are in a Morse-Bott-type
situation.

To describe the perturbation, first think of the projection π(Λ) as a 4-valent graphs with vertices being
precisely the double points. Then we will consider a Morse function g : F −→ R such that g|π(Λ) has
exactly one critical point at each edge. When following the knot around, the types of the critical points
will alternate between maxima and minima. We let j be the S1-invariant lift of a complex structure on
F . Then we consider the S1-invariant lift ĝ : E −→ R of g. We then perturb α to get the contact form

αε = α+ εĝα ,

where ε > 0 is small. The resulting perturbed Reeb vector field is

Rαε = Rα + jε∇ĝ .
At each critical point for g, we have ∇ĝ = 0, and thus there is a family of long Reeb chords at each
critical point for g. Moreover, we still have a family of Reeb chords at the double points of π(Λ), since
ĝ is invariant along the S1-fibers. The perturbation thus breaks our degeneracy of having a S1-family of
families of Reeb chords.

4.2. Combinatorial description. In this subsection we describe Legendrian contact homology in cir-
cle bundles E π−→ F over a Riemann surface combinatorially, and our presentation follows the one given
in [19].

The combinatorial description relies on perturbating the contact form α on E by a function which is
invariant under the free S1-action along the fibers. This introduces additional decorations in the diagram
π(Λ).

The knot diagram π(Λ) consists of the following
(1) A choice of short Reeb chord at each double point of π(Λ), and
(2) An integer vector n with one component for each connected component of F \\ π(Λ).

Since the lift of π(Λ) to E is along a circle, it is ambiguous which strand goes over or under the other in
π(Λ), and hence there is not a canonical choice of a short Reeb chord, as in section 3.3. Also, depending
on these choices, it determines how much the knot winds around in the fiber direction which is recorded
in the integer vector n.

Let {x1, . . . , xn} be the set of double points in π(Λ) and let Σ be an oriented surface with non-empty
boundary and let {z1, . . . , zm} be marked points on ∂Σ. Let f : Σ −→ F be an orientation preserving
embedding on the interior of Σ. Assume that f extends smoothly to ∂Σ away from {z1, . . . , zm} and
that f(zj) = xij for each j ∈ {1, . . . ,m}. Use the notation ∂Σ∗ ..= ∂Σ \\ {z1, . . . , zm}

With respect to the orientation of the quadrant that is covered by f(Σ), We let the strands of π(Λ) be
the incoming and outgoing strand respectively, as in fig. 11.
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zi
f−→

O
utgoing

In
co
mi
ng

f(zi)

Figure 11. The figure shows how to mark the double points, depending on the choice
of short Reeb chord.

If the choice of short Reeb chord is the one going from the incoming strand to the outgoing strand, we
decorate the quadrant with a +, else we decorate it with a − (or leave it undecorated, to reduce clutter).
Conversely, the decorated diagram indicate which short Reeb chord is chosen.

Let Ri be the (chosen) short Reeb chord at the double point f(zi) of π(Λ). Let l(Ri) be the length of
Ri, and assume without loss of generality that l(Ri) ∈ (0, 2π). Define εi as

εi
..=

1, if Ri flows from the incoming to the outgoing strand,
−1, otherwise

.

Then we define the defect of the embedding f with respect to the short Reeb chords {R1, . . . , Rm} as the
integer

n(f ;R1, . . . , Rm) ..= 1
2π

∫
Σ
f∗Ω +

m∑
j=1

εjl(Rj)

 .

We extend n linearly to formal chains of embeddings.
Here is a geometric description of the defect. Assume that ∂Σ is connected. Lift the component of

∂Σ∗ that lies between z1 and z2 to a Legendrian curve in f∗E. Start to lift the next component of ∂Σ∗,
at a length ε2l(R2) away from the first. The curve obtained in this way, together with the lifted Reeb
chords is a closed curve in f∗E, and the defect is the winding number around the fiber of this curve. This
geometric description justifies the fact that n is an integer.

Lemma 4.3. Assume thatm ≤ n. Then we have
n(f ;R1, . . . , Rm) ≤ n− 1 .

Proof. We have Ω < 0 by assumption, so
∫

Σ f
∗Ω < 0. Also εj ≤ 1, l(Rj) < 2π andm ≤ n. So

n(f ;R1, . . . , Rm) = 1
2π

∫
Σ
f∗Ω +

m∑
j=1

ejl(Rj)

 ≤ 1
2π

n∑
j=1

l(Rj) < 1
2π

n∑
j=1

2π = n .

□
The integer vector n has one component ni for each connected component Σi of F \\ π(Λ). If we

let Σi be a connected component of F \\ π(Λ) so that the boundary of Σi containsm double points, the
short Reeb chords of which are {R1, . . . , Rm}. Then we define

(4.1) ni
..= n(Σi;R1, . . . , Rm) .

This defect is the defect of an embedding f as above so that im f = Σi. The signs εi are positive if Σi

covers a quadrant of a double point, decorated with a +.

Proposition 4.4. Let n = (n1, . . . , nk) be the integer vector of defects of the connected components of F \\ π(Λ).
Then

(4.2)
k∑

i=1
ni = e(E) .
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Proof. Summing the ni over each connected component of F \\ π(Λ), each term ejl(Rj) will cancel out,
since there are exactly two positive and two negative quadrants around each double point of π(Λ). Then
the result follows almost immediately from the Gauss-Bonnet theorem. Letting fi be a parametrizatrion
of the i-th component of F \\ π(Λ) we have

k∑
i=1

ni = 1
2π

 k∑
i=1

∫
Σ
f∗

i Ω

 = 1
2π

n∑
i=1

∫
Σi

Ω = 1
2π

∫
F
Ω = e(E) .

□
A diagram π(Λ) (which is equipped with the choice of Reeb chord at each double point and with the

integer vector n) lifts to a Legendrian knot Λ inE if each component of n satisfies (4.1) and (4.2). A more
precise formulation can be found in [19, prp 2.6].

4.2.A. The algebra and grading. To define the algebra we will introduce a few more generators, than in the
case we encountered in section 3.3. Let {x1, . . . , xn} be the set of double points of π(Λ). To each double
point xi we associate two countable sets {ak

i }
∞
k=0, {bk

i }
∞
k=0. Thinking of π(Λ) as a 4-valent graph, we

enumerate the edges by {ei}2n
i=1 by picking an arbitrary edge and calling it e1, then we go along the knot

and call the next edge e2 and continue until all edges have been enumerated by some ei. At the interior
of each edge ei we pick a point pi. To the edge points p2i−1 we associate a countable set {ck

i }
∞
k=1, and to

the edge points p2i we associate a countable set {dk
i }

∞
k=1.

We say that the double points {xi}ni=1 and edge points {pi}2n
i=1 are special points of π(Λ). At each double

point, we label the quadrants according to fig. 12.

a+
b−

a−
b+

a+
b−

a−
b+

c

c

d

d

Figure 12. Reeb signs of gener-
ators ai and bi.

ci di ci+1

Figure 13. Marked edge points
with a transverse direction cho-
sen at the c labels.

Furthermore, we choose a direction at each edge point marked with ci, transverse to π(Λ) as in fig. 13.
Let AΛ be the unital associative algebra over Z2, freely generated by the letters ak

i , b
k
i , c

k′
i , dk′

i for
i ∈ {1, . . . , n}, k ∈ N, k′ ∈ Z+.

The generators a0
i , b

0
i correspond to the two possible choices of short Reeb chord, at a given double

point xi. The generators ak
i , b

k
i for k ≥ 1, correspond to Reeb chords which are the concatenation

of a short Reeb chord and a long Reeb chord that winds around the fiber k times. The length of the
concatenation is what one would expect, namely

l(ak
i ) = l(a0

i ) + 2πk

l(bk
i ) = l(b0

i ) + 2πk .

Since the families ck
i and dk

i correspond to Reeb chords that start and end at the same point, their lengths
are integer multiples of 2π,

l(ck
i ) = l(dk

i ) = 2πk .
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Instead of working directly with AΛ we will consider AΛJT K of formal power series that is generated by

ai =
∞∑

k=0
ak

i T
k, bi =

∞∑
k=0

bk
i T

k

ci =
∞∑

k=1
ck

i T
k di =

∞∑
k=1

dk
i T

k .

To describe the grading, we will first describe the grading for all the ak
i by considering a capping path

in Λ. This is similar to how we define the grading in section 3.3, but we have to take the holonomy (the
winding around the fiber) of the capping path into account. The grading of the other generators will be
in terms of the grading for ak

i (or independent of it).
Define a capping path γi for ai at a double point xi to be one of the two paths that start at xi, run

along π(Λ) until it first hits xi again. To a capping path we will associate two quantities. Its holonomy
and its rotation number. Assume without loss of generality 1 that γi (concatenated with the Reeb chord
that corresponds to xi) bounds a (disjoint union of) connected component of F \\ π(Λ) that is decorated
with a ai+ label (if it was decorated with a bi+ label, the construction is carried out analogously). Let
{Σ1, . . . , Σn+2} be the connected components of F \\π(Λ). Then consider a chain of embedded surfaces
Σ(i) =

∑n+2
k=1 c

(i)
k Σk such that ∂Σ(i) = γi. This chain is called a capping surface of γi and may be

constructed via the Seifert circle algorithm. Define the holonomy of γi to be the defect

ki
..= −n(Σ(i); ai) = −

n+2∑
k=1

ckn(Σk) ,

Where n(Σk) is the defect for the connected componentΣk of F \\ π(Λ). Assume γi lies in an embedded
disk2 γi ⊂ D ⊂ F , it is possible to describe the grading combinatorially. If this is the case, we may pick a
trivialization of TD, so that the fractional rotation number of γi may be computed (we first perturb the
diagram π(Λ) so that double points are orthogonal). We denote this number by rD(γi). In general we
do not have Σ(i) ⊂ D in which case, we can not say that Σ(i) gets an induced trivialization from D. We
have to correct for this, and we define the rotation number of γi as

r(γi) = rD(γi) + χ(F )(p ·Σ(i)) ,

where p ∈ F \\ (π(Λ)∪D) is any point. To describe the grading of ak
i , we let µE

..= −χ(F )
e(E) be the Maslov

index of a fiber, and we need to include a term, taking the k number of windings around the fiber into
account in addition to the term involving the rotation number. This holonomy term is proportional to

2µE . The term involving the rotation number of γi is denoted
∣∣∣∣a−n(Σ(i);ai)

i

∣∣∣∣ and is defined as∣∣∣∣a−n(Σ(i);ai)
i

∣∣∣∣ = 2r(γi)−
1
2
.

Then for any k ∈ N we define

|ak
i | =

∣∣∣∣a−n(Σ(i);ai)
i

∣∣∣∣+ 2µE(k + n(Σ(i); ai))

|bk
i | = 2µE(2k + 1)− 1− |ak

i |

|ck
i | = 2kµE

|dk
i | = 2kµE − 1 .

As in the case with (R3, ξstd), the grading is only well-defined up to the choice of capping path. If π(Λ)
is contractible in F , the difference of two capping paths is a path that winds around the knot an integer
number of times.

1If not, we may suppose that γi ∪ Ri is homologous to −k · [fiber] ∈ H1(E), where Ri is one of the short Reeb chord
corresponding to the double point xi. Adding k circuits around the fiber to Ri, to yield Rk

i , we get that γi ∪ Rk
i is null-

homologous in E, and we may carry out the construction with this Reeb chord instead.
2Actually it suffices to assume that γi is null-homotopic.
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Proposition 4.5. If π(Λ) is contractible in F , the grading is well-defined modulo 2r(Λ) + 2µEn(Λ) where r(Λ)
is the rotation number and n(Λ) is the holonomy of the knot.

Proposition 4.6. Let γ be a capping path associated with a double point a of π(Λ). Then |ak| is independent of the
choice of capping surface Σ, and r(γ) is independent of the point p.

Proof. Let Σ =
∑n+2

k=1 ckΣk be the capping surface, where Σi are disjoint embedded surfaces which
exhaust F \\ π(Λ). Any other capping surface must be of the form Σ̃ =

∑n+2
k=1(ck + l)Σk, for l ∈ Z since

difference
∣∣ci − cj

∣∣ must be constant.
That r(γi) does not depend on the choice of p amounts to showing that ci = cj for regionsΣi andΣj

whose common boundary is not a point and does not belong to the image of γ. But this is clear since if
Σi and Σj has common boundary α, which is a segment of π(Λ) not belonging to the image of γ, then
ci and cj must be so that the orientation along α cancels, and hence ci = cj .

To show that |ak| does not depend on the choice of capping surface, we want to show that |ãk|−|ak| =
0, where |ãk| is the grading associated to the capping surface Σ̃. We have that

p · Σ̃ = p ·Σ + l ,

and

n(Σ̃; a) =
n+2∑
k=1

(ck + l)n(Σk) = n(Σ; a) + l
n+2∑
k=1

n(Σk) .

By proposition 4.4 we thus obtain n(Σ̃; a) = n(Σ; a) + le(E). Therefore
|ãk| − |ak| = 2χ(F )(p · Σ̃ − p ·Σ) + 2µE(n(Σ̃; a)− n(Σ; a)) = 2χ(F )l − 2χ(F )l = 0 .

□
4.2.B. The differential. Since we are in aMorse-Bott-type situation with a long Reeb chord at every point of
Λ, the differential is split up into the external and the internal part, ∂ = ∂ext +∂int. The external differential
comes from counting embedded marked disks (corresponding to punctured pseudoholomorphic disks in
the symplectization E \\ {zero section} in the geometric picture), and the internal differential comes from
counting “Morse flow lines” within the Morse-Bott critical submanifolds, of which the generators ci and
di correspond to maxima and minima respectively.

Let D be a disk with non-empty boundary, and let {z, w1, . . . , wm} be marked points (labeled coun-
terclockwise around the boundary) on ∂D. D∗ will denote the disk with the same interior as D and
∂D∗ = ∂D \\ {z1, . . . , zm}. Consider labels

α ∈ {x1, . . . , xn, p2, p4, . . . , p2n}
β = (β1, . . . , βm) ⊂ {x1, . . . , xn, p1, p3, . . . , p2n−1}m ,

that is α is either a double point or an edge point with label dj and each βi for i ∈ {1, . . . ,m}, is either
a double point or an edge point with label cj . We then define the space of embedded marked disks

M(α; β) =
{
f : D −→ π(Λ) orientation preserving embedding | (1)-(4) below holds

}
,

where
(1) f(∂D) ⊂ π(Λ), and f is smooth on D∗. Moreover f |∂D∗

is an embedding.
(2) f(z) = α and f(wj) = βj for j ∈ {1, . . . ,m}.
(3) Near each marked point zk such that f(zk) = βk is a double point, the image of f covers exactly

one quadrant of the double point.
If α is a double point, then f covers one of the two quadrants labeled with α+. If βj is a double

point, then f covers one of the two quadrants labeled with βj−.
(4) If an edge point with label ck in π(Λ) is covered by f |∂D∗

, then ck is the image of some zj .
Two embeddings f, g ∈M(α; β) are equivalent if there is a smooth automorphism φ, so that f = g ◦ φ.

Let α, β1, . . . , βm be labels as above. Then Sabloff computes the exterior differential to be

∂extx =
∑
β

∑
f∈M(α;β)

ỹ1 · · · ỹmT
−n(f ;α,β) ,
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where

ỹ =


1 + y, y = cj and the transversal direction at cj points into im f

(1 + y)−1, y = cj and the transversal direction at cj points out of im f

y, otherwise

.

Remark 4.7. The notation for the defect n(f ;α, β1, . . . , βm) in the formula for ∂ext above, is a slight
abuse of notation, since the labels α, β1, . . . , βm may be an edge point. In any case, the defect is easily
computed by summing up the components of n in the connected components of F \\ π(Λ) that is covered
by im f .

The internal differential is defined on generators as

∂inta = ad′ + da

∂intb = bd + d′b + babT

∂intc = (1 + c)(d′
1 + b1a1T ) + (d′

2 + b2a2T )(1 + c)
∂intd = dd ,

when labels are as in fig. 14.

c

c′

d′

da

b

d′
1

c′
1

d1

d2

c′
2

c d′
2a1

b1

a2

b2

Figure 14. The configuration of labels used in the definition of the interior differential ∂int.

5. Legendrian contact homology in five-dimensional circle bundles

In this section we provide an explicit calculation of the Legendrian contact homology of the Legendrian
unknot inR4×S1. We will use a similar perturbation scheme to explicitly compute the differential, similar
to what is found in [19, section 5].

5.1. Construction and example in R4×S1. Let Λ be an embedded Legendrian knot in R4×S1 π−→
R4 with the standard contact form

α = dθ −
2∑

i=1
yidxi ,

using coordinates (x1, y1, x2, y2, θ). In fact (R4, ω) is an exact symplectic manifold with the standard
Liouville form λ =

∑2
i=1 yidxi on R4. The Reeb field is precisely ∂θ in this setting, and hence double

points of the projection π(Λ) corresponds to Reeb chords of Λ. The projection π(Λ) is a Lagrangian
immersion, and we will assume that Λ is generic in the sense that π(Λ) has finitely many isolated double
points. Sometimes one says that Λ is chord generic in this situation.

Conversely, from the Lagrangian immersion π(Λ)wemay recover the Legendrian embedding. Namely,
pick p ∈ π(Λ) and choose any θ coordinate for p. The coordinate θ′ along the S1-factor at any other
point p′ ∈ π(Λ) is then determined by

θ′ =
∫

γ
λ ,

where γ is any path joining p and p′. The Lagrangian immersion lifts to a Legendrian embedding if the
above integral is independent of γ, that is, if the pullback of λ via π|Λ is an exact 1-form. In fact if we
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pick any loop γ̃ in π(Λ) then it suffices to assume
∫

γ̃ λ ∈ Z, in order for π(Λ) to lift to a Legendrian
embedding. The front projection

Π : R4 × S1 −→ R2 × S1

(x1, y1, x2, y2, θ) 7→ (x1, x2, θ) ,
is easier to work with, since the target is a three-dimensional space. Front projections of higher dimensional
Legendrian knots will contain other types of singularities than just cusp singularities, but any map into
R2×S1 that has the appropriate singularities lifts to an embedding inR4×S1. Hence, in order to work in
the front projection we need to identify double points of the Lagrangian projection in the front projection.

Proposition 5.1. Let c1, c2 ∈ Π(Λ) be any two non-singular points in the front projection. Then the following are
equivalent

(1) c1 and c2 correspond to a double point in the Lagrangian projection π(Λ)
(2) Tc1Π(Λ) = Tc2Π(Λ) and the xi-coordinates of c1 and c2 are the same.

Sketch of proof. If we pick two non-singular points c1, c2 ∈ Π(Λ) that has the same xi-coordinates and the

same tangent spaces, the lift of c1 and c2 to Λ ⊂ R4×S1 is given by (y1, y2) =
(
∂θ

∂x1
,
∂θ

∂x2

)
, since Λ is

Legendrian. Since they have the same tangent spaces, they also project down to the same point through
the Lagrangian projection and hence they correspond to a double point of π(Λ).

Conversely, a double point c ∈ π(Λ) lifts (up to translation along theS1-fiber) to two points inΛ ⊂ R4×
S1 that has the same xi- and yi-coordinates, but different θ-coordinates. Through the front projection,
they thus project down to two points c1, c2 ∈ Π(Λ) that has the same tangent spaces sinceΛ is Legendrian.

□
Example 5.2. We consider the Legendrian sphere Λ, whose front projection is shown in fig. 15. In the
Lagrangian projection, there is only one double point c, which corresponds to the points c± in the front
projection shown in fig. 15 and which has two families of Reeb chords assigned to it.

c+

c−

Figure 15. Front projection in R2 × S1 of a Legendrian sphere.

We may perturb the contact form with the Morse function f(x1, x2, y1, y2) = εx1. To break the
S2-family of Reeb chords coming from the fact that the Reeb vector field points in the S1-fiber direction.

Lemma 5.3. The only Reeb chords of Λ are the four families corresponding to the double point c of the Lagrangian
projection, and the two critical points of f .

Sketch of proof. The function f(x1, x2, y1, y2) = εx1 for some small ε > 0 is a Morse function with exactly
two critical points when restricted to π(Λ). Using this Morse function, the perturbed Reeb vector field is

Rε = ∂z + i∇f = ∂z + (0, 0, ε, 0, 0) .
To find the new Reeb chords, we may perturb the knot by pushing it in the direction of (0, 0, ε, 0, 0).
Namely if p ∈ Λ is arbitrary, then the corresponding point on the perturbed Λ, denoted by Λ̃, is given
by p̃ = p + (0, 0, ε, 0, 0). Let f±(x1, x2, θ) = ±(1 − x2

1 − x2
2)

3
2 . Then the graph of the two functions

f± together make up a model for Π(Λ). Adding ε to the y1-coordinate of Λ is equivalent to slightly tilt
Π(Λ) since y1 = dθ

dx1
. Namely, Π(Λ̃) may be described by the graphs of the functions

f̃±(x1, x2, θ) = ±(1− x2
1 − x2

2)
3
2 + εx1 .
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As discussed in proposition 5.1, we will look for points on the graph of f− and on the graph of f̃+ with the
same xi-coordinates and the same gradients (and hence tangent spaces). We will thus solve for (x1, x2)
in the equation∇f− = ∇f̃+ = ∇f+ + (ε, 0). This equation leads to the system6x1

√
1− x2

1 − x2
2 = ε

6x2

√
1− x2

1 − x2
2 = 0

.

The second equation gives x2 = 0, since otherwise the first equation can not be solved. Solving for x1
finally gives

x1 = ±

√√√√1
2
±

√
1
4
− ε2

6
.

So for small enough ε > 0, we break the S1-family of Reeb chords, and obtain only 4. Two of which lie
near the double point of π(Λ), and the other two lie close to the generalized cusps of Π(Λ). The latter
two points correspond to the maximum and minimum of f when restricted to π(Λ). The Reeb chords
that correspond to these four points in the front projection, are the lowest energy ones, q⃗ 0, ⃗q 1 and q1

±
(see notation below). To examine the ones with higher energy, we make ε even smaller, and we can carry
out the same process to find four more Reeb chords. Making ε arbitrarily small makes it possible to find
arbitrarily many Reeb chords, coming in precisely these four families. □

The perturbing function f = εx1 has exactly one maximum and one minimum on π(Λ) which lifts to
the two points m± on Λ. Then we have that away from the double points the long Reeb chords at each
point p ∈ Λ will correspond to two families of generators at two pointsm±.

To the double point, we assign two families of generators {q⃗ k}∞k=0 and { ⃗q k}∞k=1. The elements q⃗ 0 and
⃗q 1 correspond to the two different short Reeb chord at the double point c, that pass through a fixed point

in the S1-fiber. At m± we have two more generators {qk
±}

∞
k=1. Arranging the generators into formal

power series, we let A be the associative unital algebra over Z2 generated by the power series

q⃗ =
∞∑

k=0
q⃗ kT k, ⃗q =

∞∑
k=0

⃗q kT k, q± =
∞∑

k=1
qk

±T
k .

The grading of these generators is given by the Conley-Zehnder index, and we may compute the
Conley-Zehnder by the following lemma

Lemma 5.4. Let c± ∈ Π(Λ) be two points which correspond to a Reeb chord q⃗ k of Λ in the Lagrangian projection
as described above. Let U± ⊂ Λ be a neighborhood around c± and let f± be a function with graph U±. Also let γ be a
capping path, starting at c+ and ending at c− (which is generic in the sense that it intersects cusp edges ofΠ(Λ) transversally
and meets no other singularity).

Then the Conley-Zehnder index of the Reeb chord c is given by the formula

CZ(c) = indc+(f+ − f−) +D(γ)− U(γ) + 2k ,
where ind denotes the Morse index,D is the number of down-cusps of γ (a down-cusp is a point on a cusp edge that γ passes
through and for which the θ-coordinate locally decreases when traversed), and U the number of up-cusps of γ.

Sketch of proof. The case k = 0 is proven in [5, lemma 3.4]. If k > 0, and if we consider R4×S1 to be the
contact boundary ofR4×D2, then a trivialization of T (R4×S1) is induced by the canonical trivialization
on T (R4 ×D2). In this induced trivialization, the Maslov index of the path Γ ⋆ λ(V0, V1) as described
in section 3.1, has an additional term which is proportional to the Maslov number of the S1 fibers and
hence the term 2k appears in the Conley-Zehnder index. □
Remark 5.5. If we were to choose the “trivial” trivialization for T (R4 × S1), then the term 2k will not
appear in the grading.
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The grading is then given by|T | = 0 and∣∣∣q⃗ k
∣∣∣ = CZ(c)− 1 = 2k + 2∣∣∣ ⃗q k
∣∣∣ = 1− CZ(c) = 2k − 2∣∣∣qk

±

∣∣∣ = 2k ± 1 .

As in [19] and similar to [2, section 8], the differential is split up as ∂ = ∂hol + ∂MB. ∂hol is the part
coming from punctured pseudoholomorphic disks that only has punctures asymptotic in the symplecti-
zation to Reeb chords corresponding to double points. The rest of the differential is caputured in ∂MB.
Some disks captured in ∂MB can be thought of as Morse flow lines inside Morse-Bott submanifolds, but
perhaps a better picture is to compare it to counting cascades in Morse-Bott homology [15, p. 12].

Since punctured pseudoholomorphic disks u : (D2, ∂D2) −→ (R4×C∗, Λ×R) projects down viaΠ
to pseudoholomorphic disks ũ : (D2, ∂D2) −→ (R2 × S1,Π(Λ)), it is easy to see that any disk (modulo
reparametrization by a biholomorphism) with boundary on Π(Λ) that is asymptotic to the Reeb chord
at the double point c ∈ π(Λ), in the symplectization come as a part of a 1-parameter family in Π(Λ).
Hence there are no rigid punctured pseudoholomorphic disks, whereas ∂hol = 0.

The only contribution to the differential thus come from the Morse-Bott part of the differential. We
will count these disks using the explicit perturbation scheme with f = εx1 considered as above, which
also is similar to the schemes used in [19, section 5]. To this end, we first consider the lift of the front
projection of Λ to R3. The lift is a Z-family of copies of Λ as indicated in fig. 16.

q⃗ 0

q⃗ 1

q⃗ 2

⃗q 1

⃗q 2

Figure 16. Some components of the lift of the front projection of Λ to R3, with genera-
tors indicated in the figure.

We may assume that the rigid disks lie in the slice x2 = 0, because otherwise one can show that if a disk
is not contained in the slice x2 = 0, they can not be rigid. The Lagrangian projection after perturbing
and projecting is shown in fig. 17.

Figure 17. A projection of the Lagrangian projection (in R2) of Λ after perturbing the
contact form with a Morse function f .

In order to locate the disks, we will draw a more schematic picture which will depict the same situation
as in fig. 17, as also seen in [19, Section 5].
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q⃗ 0 q⃗ 1 q⃗ 2⃗q 1⃗q 2⃗q 3

q1
−

q2
−

q3
−

q1
+

q2
+

q3
+

Figure 18. Each vertex along each dotted line represents a Reeb chord of Λ.

Using fig. 18, we may compute ∂MB. Two disks that can be found in this diagram is shown in fig. 19.

+−

−
+ −

Figure 19. The two disks giving the differentials ∂MBq
3
+ = q⃗ 1 ⃗q 2 and ∂MBq

2
− = ⃗q 2

The complete differential is given on generators as

∂q⃗ = q−q⃗ + q⃗q− + q+

∂ ⃗q = q− ⃗q + ⃗qq−

∂q+ = q−q+ + q+q− + q⃗ ⃗q + ⃗qq⃗

∂q− = q−q− + ⃗q .

We see that the only contribution to ker ∂ is given by∂q⃗ 0 = 0
∂ ⃗q 1 = 0

,

but ⃗q 1 appears in the image since ∂q1
− = ⃗q 1 and hence the homology is only generated by q⃗ 0, which has

degree 2
CH∗(Λ) = ⟨q⃗ 0⟩ .

Example 5.6. If we now consider the Legendrian unknot as in example 5.2, but we make it large enough
so that it forms a link with itself, if we consider the lift to R5. We call this knot Λ′. The front projection of
the lift of Λ′ to R5 is viewed in fig. 20.
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Figure 20. The front projection of the lift of Λ′ to R5.

Similar to the above example we have ∂hol = 0, and we may compute the Morse-Bott part of the
differential in a similar way. We decompose ∂ = ∂MB = ∂1 + ∂2, where

∂1q⃗ = q⃗q− + q−q⃗ + q+

∂1 ⃗q = 0
∂1q− = q−q−

∂1q+ = q+q− + q−q+

,

and 

∂2q⃗
k = ⃗q 1qk+1

− + qk+1
− ⃗q 1, k ≥ 0

∂2 ⃗q k =
∑

l+s=k
l≥2

⃗q lqs
− + qs

− ⃗q l, k ≥ 3

∂2q− = 0
∂2q+ = 0

.

From this, we get that the homology is

CH∗(Λ) = ⟨ ⃗q 1, q1
−⟩/⟨q1

−q
1
−, q

1
− ⃗q 1 + ⃗q 1q1

−⟩ .

5.1.A. Another type of perturbation of the contact form. One can compute the Legendrian contact homology of
Λ as in example 5.2, by using a Morse-Bott perturbation as described in section 4.1. We first shrink Λ
and make it small so that

l(q⃗ 0) = ε

l( ⃗q 1) = 2π − ε ,

for some small ε > 0. Then we perturb the contact form by a function f on R4 × S1 so that i∇f is
transverse to the S1-fibers. As in section 4.1, the perturbed Reeb flow is R̃ = R + i∇f . The idea is to
choose ε small, and an appropriate f so that q⃗ 0 is the only Reeb chord of R̃. The Reeb chords q⃗ k+1 and
⃗q k for k ≥ 0 will all have length which is greater or equal to 2π − ε and will vanish, since those Reeb

chords will get pushed off from Λ far enough so they are not Reeb chords anymore. We may for example
choose f = x where (x, y, z, w, θ) are coordinates on R4 × S1. Then i∇f = (0, 0, 0, 1, 0) with the
standard complex structure i on R4. Letting ε be small enough, all Reeb chords except for q⃗ 0 will get
pushed off far enough, and therefore the Legendrian contact homology algebra of the Legendrian unknot
in R4 × S1 is the same as in R5 with the only generator being the short Reeb chord q⃗ 0.

5.2. Example in a circle bundle over CP2. On S5 ⊂ C3 there is a free action given by

ρ : S5 × S1 −→ S5

(z1, z2, z3, e
iθ) 7→

(
eiθz1, e

iθz2, e
iθz3

)
.

The quotient S5/S1 gives CP2 via this action. Hence we have a circle bundle over CP2 with total space
S5 ∼= R5∪{∞} and Lagrangian projection π : S5 −→ CP2. We consider the standard contact structure
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on S5

α = ι∗

1
2

3∑
i=1

xidyi − yidxi

 ,

where ι : S5 −→ R6 is the inclusion, and (xi, yi)3
i=1 are coordinates in R6. The Reeb vector field is

Rα = 1
2

3∑
i=1

xi∂yi − yi∂xi .

Example 5.7. We let Λ be a Legendrian knot, which is small enough so that it is contained in a Darboux
chart, in which Λ is the Legendrian 2-unknot in S5 as in example 5.2. We may then perturb Λ so that it
is small enough for π(Λ) to be contained in the neighborhood

U =
{

[z1, z2, 1] ∈ CP2 | (z1, z2) ∈ C
}
⊂ CP2 .

If necessary, we may shrink Λ so that it is contained in an even smaller neighborhood V ⊂ U , which lifts
to V × S1 ⊂ CP2 × S1 in S5. Then we may consider the front projection

Π : U −→ Ũ ,

where Ũ =
{

[x1, x2, 1] ∈ RP2 | (x1, x2) ∈ R2
}
⊂ U . Again if necessary, we shrink Π(Λ) to Ṽ ⊂ Ũ

so that it lifts to Ṽ × S1 ⊂ RP2 × S1 in S5. The front projection in RP2 × S1 of the perturbed Λ can
be made so it looks like the Legendrian sphere in fig. 15. This motivates the fact that Legendrian contact
homology of the 2-unknot in the fibration S5 π−→ CP2 is the same as in R4 × S1.

Appendix A. Maslov index of a path of Lagrangian submanifolds

For this section we follow [18]. We let (R2n, ω) be a symplectic vector space. To any Lagrangian subspace
V ⊂ R2n we may define Σk(V ) as the set of Lagrangian subspaces of R2n which intersect V in a k-
dimensional subspace of R2n. Σk(V ) is a connected subspace of the Lagrangian Grassmannian L(n).
The Maslov cycle associated to V is

Σ(V ) ..= Σ1(V ) =
n∪

k=1
Σk(V ) .

can pick a Lagrangian complementW , R2n = V ⊕W . Any Lagrangian subspace transverse toW may
be viewed as the graph of a quadratic form A : V −→W . In fact we have a canonical isomorphism

TV L(n) −→ S2(V )

(V, V̂ ) 7→ Q = Q(V, V̂ ) ,

where S2(V ) is the set of quadratic forms on V . The quadratic form Q is defined as follows.
Let Γ : [0, 1] −→ L(n) be a smooth curve of Lagrangian subspaces with Γ (0) = V and Γ̇ (0) = V̂ .

If W is a fixed Lagrangian complement of V and for v ∈ V define the path w(t) ∈ W such that
v + w(t) ∈ Γ (t) for small t. Then

Q(V, V̂ ) = d
dt
ω(v, w(t))

∣∣∣
t=0

.

Proposition A.1. Q is independent of the Lagrangian complementW chosen.

Proof. We choose coordinates so that Γ (0) = Rn × {0} ⊂ R2n. Then any Lagrangian complement of
Γ (0) is the graph of a symmetric matrix B ∈ Rn×n,

W =
{
(By, y) | y ∈ Rn} .

For small t, the Lagrangian subspace Γ (t) is the graph of a symmetric matrix A(t) ∈ Rn×n,

Γ (t) =
{
(x,A(t)x) | x ∈ Rn} .
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In these coordinates, write v = (x, 0),w(t) = (By(t), y(t)) so that v+w(t) = (x+By(t), y(t)) ∈ Γ (t).
So for some z ∈ Rn, we have y(t) = A(t)z and x+By(t) = z, so y(t) = A(t)(x+By(t)). So

Q(Γ (0), Γ̇ (0)) = d
dt
ω(v, w(t))

∣∣∣
t=0

= d
dt
⟨
x, y(t)

⟩∣∣∣
t=0

=
⟨
x, ẏ(0)

⟩
.(A.1)

From y(t) = A(t)(x+By(t)) we see y(0) = 0 and ẏ(0) = Ȧ(0)x, so from (A.1) we get

Q(Γ (0), Γ̇ (0)) =
⟨
x, Ȧ(0)x

⟩
,

which is independent of B and hence the Lagrangian complementW . □
Now, the Maslov index of a closed loop of Lagrangian subspaces is the intersection number of the loop

with the Maslov cycle. More precisely, if Γ : [0, 1] −→ L(n) is a loop of Lagrangian subspaces and
V ⊂ R2n we consider the quadratic form

g(Γ (t), V, t) ..= Q(Γ (t′), Γ̇ (t′))|Γ (t′)∈Σ(V ) = d
dt
ω(v, w(t))

∣∣∣
t=t′

,

for t near t′, where v and w(t) as as above for a Lagrangian complementW . The Maslov index is then
the sum of signatures of the quadratic form g(Γ (t), V, t), over such t so that Γ (t) ∈ Σ(V ), that is Γ (t)
intersects V non-trivially. Namely

µ(Γ ) ..=
∑

t∈[0,1] : Γ (t)∈Σ(V )
sign

(
g(Γ (t), V, t)

)
.
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