

LINNAEUS UNIVERSITY IFE, VÄXJÖ
Department of Physics and Electrical Engineering

Master Thesis of 30 Credits
Finite Precision Error in FPGA Measurement

Submitted By: Shoaib Ahmad

Registration No: 850302-7578

Dated: Jan, 2016

 i

Abstract

Finite precision error in digital signal processing creates a threshold of quality of the

processed signal. It is very important to agree on the outcome while paying in terms

of power and performance.

This project deals with the design and implementation of digital filters FIR and IIR,

which is further utilized by a measurement system in order to correctly measure

different parameters. Compared to analog filters, these digital filters have more

precise and accurate results along with the flexibility of expected hardware and

environmental changes. The error is exposed and the filters are implemented to meet

the requirements of a measurement system using finite precision arithmetic and the

results are also verified through MATLAB. Moreover with the help of simulations, a

comparison between FIR and IIR digital filters have been presented.

 ii

Table of Contents

1 Introduction .. 1

1.1 Background ... 1
1.2 Problem Definition... 1
1.3 Methodology ... 2

2 Digital Filters ... 3

2.1 Introduction: .. 3
2.1.1 Advantages and disadvantages of Digital Filters ... 4
2.1.2 Design of Digital Filters .. 4

2.2 Types of Digital Filters .. 5
2.2.1 FIR (Finite Impulse Response) Filters: .. 6
2.2.2 2.2.2 IIR (Infinite Impulse Response) Filters: .. 12
2.2.3 Comparison between FIR and IIR Filters ... 22

3 Design and Implementation of Filters (MATLAB) ... 24

3.1 FIR Filter ..24
3.2 IIR Filter ...27

4 Structure Design for Field Programmable Gate Array (FPGA) through

Digital Filters ... 30

4.1 Introduction: ..30
4.2 FPGA Structure: ...30

4.2.1 Modern FPGAs ... 31
4.2.2 Configuring FPGA ... 31
4.2.3 Applications of FPGA .. 32
4.2.4 Advantages of FPGA .. 32

4.3 Design of Structures for FPGA: ...32
4.3.1 Using FIR Filter: .. 32
4.3.2 Using IIR Filter: ... 33

5 Results and Verification of Structures .. 35

5.1 Introduction ...35
5.2 Implementation & Verification: ..35

5.2.1 Verification of FIR filter ... 35
5.2.2 Verification of IIR filter .. 37
5.2.3 Comparing: ... 38

5.3 Digital Filters as a part of Measuring System: ..39
5.3.1 Analog-to-Digital conversion .. 39
5.3.2 The 5V to 3.3V conversion ... 40

6 Conclusion ... 42

7 Appendix A (Code) .. 43

A.1 FIR LOW-PASS FILTER (MATLAB, M=19) ..43
A.2 IIR LOW PASS FILTER (MATLAB, M=9) ...45
A.3 FIR LOW PASS FILTER (VERILOG) ...45

 iii

A.4 IIR LOW PASS FILTER (VERILOG) ..47

8 Bibliography ... 51

 iv

List of Figures

Figure 2.1: Block diagram of digital filter system ... 3

Figure 2.2: Direct form of FIR filter .. 11

Figure 2.3: Frequency Sampling Structure of FIR filter .. 11

Figure 2.4: Lattice structure of FIR and IIR filter ... 12

Figure 2.5: Direct form of IIR filter ... 18

Figure 2.6: Cascaded form of IIR filter ... 19

Figure 2.7: Parallel form of IIR filter... 20

Figure 3.1 Summary of Design Stages for Digital filters (FIR & IIR) 24

Figure 3.2: Plot of coefficients obtained or impulse response h(n) 26

Figure 3.3: Frequency response of low pass FIR filter .. 27

Figure 3.4: Phase reponse of low pass FIR filter ... 27

Figure 3.5: Frequency reponse of low pass IIR filter .. 29

Figure 3.6: Phase response of IIR low pass filter .. 29

Figure 4.1: Linear Phase FIR filter structure ... 33

Figure 4.2: Structure for direct form IIR filter ... 34

Figure 5.1: Input sequences of FIR and IIR filter using MATLAB 35

Figure 5.2: Output sequences of pulses of FIR filter ... 36

Figure 5.3: Test bench of waveform obtained from verilog simulation for FIR

structure.. 37

Figure 5.4: Output sequences of IIR filter using MATLAB .. 37

Figure 5.5: Test bench of waveform obtained from verilog simulation for IIR filter . 38

Figure 5.6: Block Diagram of multi-measuring system... 39

 1

1 Introduction

1.1 Background

Digital signal processing is concerned with the digital representation of a signal and

the use of the digital processors to study, transform or extract information from the

signal. Most signals in the nature are analog in form, often meaning that they vary

continuously with time and represents the variations of physical quantities such as

sound waves. The signals used in most popular forms of DSP are derived from analog

signals, which have been sampled at regular intervals and converted into digital form.

The specific reason for processing of a digital signal by a filter is to remove

interference or noise from the signal, to obtain the spectrum of the data, or to

transform the signal into a more suitable form DSP signals are described by real time

operations with importance on high rate and the use of algorithms requiring arithmetic

operations like multiplication, addition and multiply accumulate [1].

Digital filters play very important role in DSP, as compared with the analog filters

they are used in a number of wide applications. A filter is a device which is use to

change the waveform, amplitude and phase of a signal. A filtering involves improving

the quality of a signal, to remove or reduce noise, to extract information from the

signal and use to separate one or more signals that combined together. A digital filter

is a mathematical algorithm applied in hardware or software that works on the digital

input signal to produce the output of a signal for the purpose of achieving filtering.

Digital filters are widely known for their wide range of application like data

compression, biomedical signal processing, speech processing, image processing, data

transmission, digital audio, digital radio, multimedia, wireless communication, radar

imaging and measurement systems [2]. We have selected the application area of

measurement system for our digital filters due to increasing number of non-linear

loads and their hazards due to inference of harmonics at the power levels [3].

1.2 Problem Definition

This project is practical work in the field of embedded systems for the implementation

of a highly efficient digital filtering system and also comparison between both types

of filters such as FIR and IIR. This filtering system further covers major industrial

applications as nowadays almost all the industrial equipment’s depend on the use of

computers, directly or indirectly. So measurement of current, moisture, power,

pressure, temperature, voltage, frequency, phase, amplitude in the industry were

challenging problems in the past but applications of computers have made this easier

now.

 2

The main parts of the project are:

 Design & Implementation of digital filters (FIR & IIR) using MATLAB.

 Structure design of digital filters for FPGA & its Implementation (in

Verilog/Xilinx).

 Verification of digital filters by comparing the results of Xilinx and

MATLAB.

 Investigate or optimize filter performance

 Its applications in the measurement systems.

1.3 Methodology

We will use Field Programmable Gate Arrays (FPGA) as an embedded system to

implement our filter structures. We will first implement the digital filters for their

improved efficiency and other outstanding characteristics like stability etc. They are

simulated in MATLAB and their frequency responses are verified, as MATLAB

provides the facility of fda tool with the help of which we will verify whether we are

getting the desired frequency response or not (for both FIR and IIR filters). Here

digital filters are used instead of analog filters due to their linear phase response, easy

implementation and re-programmability. They are modified with the help re-

programming, which is not possible for analog filters.

After designing the filters we will select and construct the structure with the help of

filter coefficients. These filter structures are then implemented in the FPGA (Xilinx)

and their results are verified with the structure equations in MATLAB by giving a

same sequence as an input. In the end we will propose these filters (FIR and IIR) as

an application in the measurement systems.

Our project work follows two main stages. The first stage comprises of design and

implementation of digital filters and the second stage mainly constitutes of utilizing

these filters as a major part of a metering system. This metering system is meant to

measure fundamental and harmonic power, which includes a number of modules to

successfully build a measurement system.

 3

2 Digital Filters

2.1 Introduction:

A filter is a system or a network that is used to changes wave shape, amplitude-

frequency and phase-frequency characteristics of a signal. The purpose of filtering is

to improve the quality of a signal for example; to remove noises to get information of

the signal or separate two or more signals combined together i.e. efficient use in

communication channel. Digital filters have been implemented mathematically in a

suitable hardware or software that operates on a digital input to produce digital output

to get our required filtering. Digital filters often operate on analog signal, presenting

some variables stored in a computer memory.

Digital filters play significant role in digital signal processing (DSP) as compared

with the analog filters the digital filters are more preferable as digital filters are used

in many applications like data compression, biomedical signal processing, image

processing, data processing, digital audio systems and communication systems.

A simplified block diagram of a real time digital filter with analog input and output

signals is shown in figure 2.1. The analog inputs are sampled periodically and

converted into series of digital samples at 𝑥(𝑛), 𝑛 = 0,1,2, …..The digital processor

implements the filtering operations, mapping the input sequences 𝑥(𝑛), into output

sequences 𝑦(𝑛), in accordance with the computational algorithm for the filter. The

digital-analog converter (DAC) converts digitally filtered output into analog values

which are then analog filtered to smooth and remove unwanted frequency components

[3].

Figure 2.1: Block diagram of digital filter system

There are some types of filter given below:

 Low pass filter: It is an electronics circuit that is used to stop high frequencies

than the cutoff frequency and it’s varied from filter to filter so it is also called

high-cutter filter.

 High pass filter: Filters that allows only high frequencies to pass and

attenuates frequencies lower than a cutoff frequency.

 Band pass filter: It is a filter that allows only certain ranges of frequencies to

pass and rejects other out of the range.

 Band stop filter: It is a filter that passes every frequency but attenuates

frequencies of certain ranges.

Input
y(t)

y(n) x(n)

x(t) Input

filter
ADC

Output

filter

Digital

Processor

DAC

Output

 4

2.1.1 Advantages and disadvantages of Digital Filters

Digital filters are more superior to analog filter because of some advantages.

 Digital filters have some properties which are not possible with analog filters

such as they can be designed to give truly linear phase response.

 Digital filters are programmable as a program stored in a processors memory

determines their operations. It means that we should easily change our digital

filters without affecting the hardware and in analog filters we can change them

by redesigning the circuit.

 Digital filters should be easily designed, tested and implemented on a general-

purpose computer or workstation.

 The environment change does not affect the performance of digital filters like

thermal variations but in a case of analog filters environment changes affect

them.

 We can automatically adjust the frequency response of the digital filters as

they are implemented using programmable processor so that is why they are

use in adaptive filters.

 In the case of digital filters we need less hardware because using only one

digital filter can filter several input signals or channel.

 In digital filters we can save filtered and unfiltered data for further use.

 In VLSI (very large scale integration) we have fabricate digital filters to make

them in small size, to consume low power and to keep cost low.

 In practical digital filters are more precise than analog filters.

 Digital filters can be used in very low frequency applications like biomedical

applications where the use of analog filters is impractical [4].

The following are the disadvantages of digital filters as compared with the analog

filters:

 In the case of bandwidth in real time the analog filters can handle much more

bandwidth than digital filters.

 As compared with analog filters the speed of digital filters depends upon the

speed of digital processor used and arithmetic operations that should be

performed for filtering process, which increases as the filter response, become

tighter.

 The design and development process of digital filters are much longer than

analog filters [4].

2.1.2 Design of Digital Filters

The design of filters involves five steps:

Specifications:

Before designing the digital filter the designer have the specification of the required

filter such as signal characteristics (types of signal source, input and output interface,

data rates and width), characteristics of a filter, the desired amplitude, phase

 5

responses, their tolerances, speed of operation, cost of filter, choice of signal

processor, specific software and modes of filtering. The designers have not known the

entire requirement but as many of the filter requirement to simplify the design.

Calculation of suitable filter coefficient:

We have select a number of approximation method calculate the values of coefficients

such that the filter characteristics are satisfied. The methods for the calculating filter

coefficients depend on the types of filter. The IIR filter coefficients are calculated by

the transforming of analog filter characteristics into digital filter. There are some

methods for calculating the coefficients of IIR filter are impulse invariant method,

pole placement method, matched z-transform and bilinear transformation method

should be explained later. As with IIR there are several methods for calculating the

coefficients of FIR filters such as window method, optimal method and frequency

sampling method.

Realization of filter structure:

Realization of a filter with a suitable structure converts the given transfer function

𝐻(𝑧) into suitable filter structure. Filter structures are in a form of block or flow

diagrams, which shows the whole procedure of filter implementation, the structure of

filters also depends on the type of filters as FIR or IIR.

Analysis the effects of finite word length on filter performance:

A finite numbers of bits affect the filter performance and sometime make it

inappropriate. In this case the designer have to analyze these affects and select

appropriate word length (number of bits) for the coefficients of filter. And all

arithmetic operations should be done within the filter length.

Implementation:

Implementation of filter in software and hardware, after having filter coefficients,

chosen a suitable structure and verified the filter performance after quantizing the

coefficients and filter variables to the selected filter word length is acceptable and

implement in a suitable software or hardware.

2.2 Types of Digital Filters

There are two types of digital filters, namely infinite impulse response (IIR) and finite

impulse response (FIR). These types of filter should be represented in their basic form

as its impulse response sequence is ℎ(𝑘), 𝑘 = 0,1,2, … . .. the input and output signals

should be presented by the following equations

𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘) 𝑘 = 0,1,2 … … ∞ (2.1)

𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘) 𝑘 = 0,1,2, … … 𝑁 − 1 (2.2)

We can see from the equations 2.1 & 2.2 that for the impulse response of the IIR filter

have infinite duration whereas the impulse response of the FIR filter have finite

respectively. It is not possible to compute the output of IIR filter by the using the

 6

equation 2.1 because the length of its impulse response is at infinite. So in the case of

IIR filtering we have used the expression in equation 2.3.

𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘) = ∑ 𝑏𝑘 𝑥(𝑛 − 𝑘) − ∑ 𝑎𝑘 𝑦(𝑛 − 𝑘) 𝑘 = 0,1, … , ∞ (2.3)

where 𝑎𝑘& 𝑏𝑘 are the coefficients of the filter, and equation 2.1, 2.2 shows the

difference equation for FIR and IIR filters respectively. We have observe from

equation 2.3 that the current output sample 𝑦(𝑛) is a function of past outputs as well

as present and past input samples, as compared with the FIR filter 𝑦(𝑛) is the function

of past and present values of the input samples [4].

2.2.1 FIR (Finite Impulse Response) Filters:

FIR filters can be designed to have linear phase response and easy to implement. Due

to non-recursive nature of FIR filters they offer significant computational advantages

as compared to IIR. FIR filters suffer less from the effects of finite word length than

IIR filters. FIR filters should be used whenever there is requirement to exploit any of

the advantages above, in particular the advantage of linear phase. Specifications of the

FIR filter contain to maintain the maximum pass band ripple, maximum stop band

ripple, pass band edge frequency and stop band edge frequency. For the calculations

of FIR filter coefficients requires large amount of computations. The coefficients can

be calculated by using different software and tools such as FDA analysis tool in

MATLAB. Filter design and analysis tool (FDA) is one of the most important tools of

MATLAB, which is used to design the digital filter blocks more accurate and fast [2].

The most important property to design FIR filter is that its phase response should be

linear. For this reason we shall look more closely at this property. When we have to

pass any signal through the filter we see the changing in its amplitude and phase. The

nature and amount of the variation of the signal is dependent on the amplitude and

phase characteristics. We have modified the characteristics of the phase of filter by

knowing its group delay. If a signal consists of several frequency components (such

as speech waveform or a modulated signal) the phase delay of the filter is the amount

of time delay each frequency component of the signal undergoes through the filter.

The group delay on the other hand is the average time delay of the composite signal

suffers at each frequency. Mathematically the phase delay is the negative of the phase

angle divided by frequency is shown in equation (2.4) and the group delay is the

negative of the derivative of the phase with respect to frequency is shown in equation

(2.5).

 𝑇𝑝 = −𝜃(𝜔)/𝜔 (2.4)

 𝑇𝑔 = −𝑑𝜃(𝜔)/𝑑𝜔 (2.5)

A filter is said to have a linear phase response if its phase response satisfies one of the

following relationships

𝜃(𝜔) = −𝛼𝜔 (2.6)

 7

𝜃(𝜔) = 𝛽 − 𝛼𝜔 (2.7)

If a filter satisfies the condition given in the above equation it will have both constant

group and constant phase delay responses. It can be show that from the equation 2.8

to be satisfied the impulse response of the filter must have positive symmetry and α

and β are constants.

ℎ(𝑛) = ℎ(𝑁 − 𝑛 − 1) (2.8)

when the condition given in equation 2.9 satisfied the filter will have a constant group

delay only. In this case we have the negative symmetry of the filter. 𝑛 =

0 , 1 , … . (
𝑁−1

2
) where N is odd and 𝑛 = 0 , 1 , … . (

𝑁

2
) − 1, where N is even [3].

𝛼 = (𝑁 − 1)/2 (2.9)

A nonlinear phase characteristic filter will cause a phase distortion in the signal that

passes through it. This is because the frequency components in the signal will each be

delayed by an amount not proportional to frequency thereby altering their harmonic

relationships. Such a distortion is undesirable in many applications, for example

music, data transmission, video and biomedicine and can be avoided by using filters

with linear phase characteristics over the different frequency bands. However linear

filters have low performance during the existence of noise, which is not preservative

as well as in problem where system nonlinear information is encountered. For

example in image processing applications linear filters are used to blur the edges but

cannot eliminate impulsive noises efficiently, and cannot perform well in the presence

of signals that depends on noise. It is also known that for the precise properties of our

visual system are not well understood this shows that our visual system requires

nonlinear property.

Linear Phase FIR Filters

There are four types of linear phase FIR filters:

Type 1: These types of filters are more flexible and also non-zero value at ω=0 and

also non-zero value at the normalized frequency ω/π = 1 which is corresponds to

Nyquist frequency.

Type 2: Frequency response is always 0 at ω=π and it is not appropriate for high pass

filter.

Type 3/4: It introduces a π/2 phase shift and its frequency response is also 0 at ω=π

and it is not appropriate for high pass filter [5].

Coefficient calculation methods for FIR filters:

There are three different methods for the FIR filter designing.

 8

 Window method

Windowed filters are the simplest method use to design FIR filters and method

used well-known frequency-domain transition functions know as windows.

This method is very simple and easy to implement and require less

computational efforts and should be implemented using suitable software like

MATLAB [2].

In window method, the desired frequency response 𝐻𝑑(𝜔) corresponding unit

sample response ℎ𝑑(𝑛) is determined using the following relation.

ℎ𝑑(𝑛) =
1

2𝜋
∫ 𝐻𝑑(𝜔)

𝜋

−𝜋
𝑒𝑗𝑤𝑛𝑑𝑤 (2.10)

𝐻𝑑(𝑤) = ∑ ℎ𝑑(𝑛)𝑒−𝑗𝑤𝑛∞
𝑛=−∞ (2.11)

Steps of the window method of calculating FIR filter coefficients are:

 Specify the 'ideal' or desired frequency response of filter 𝐻𝑑(𝜔).

 Obtain the impulse response ℎ𝑑(𝑛), of the desired filter by evaluating

the inverse Fourier transform.

 Select a window function that satisfies the pass band or attenuation

specifications and then determine the number of filter coefficients

using the appropriate relationship between the filter length and the

transition width.

 Obtain values of 𝑤(𝑛) for the chosen window function and the values

of the actual FIR coefficients, ℎ(𝑛) by multiplying ℎ𝑑(n) by 𝑤(𝑛).

ℎ(𝑛) = ℎ𝑑(𝑛)𝜔(𝑛) (2.12)

Here are some advantages and disadvantages of window method:

Simplicity This method is simple to understand and implement and it involves

less computational efforts.

Lack of flexibility: It is inflexible. Both the peak pass band and stop band

ripples of the filter are equal, so that the designer may end up with either too

small a pass band ripple or too large a stop band attenuation.

Frequency response: The effect of convolution of the spectrum of the window

function and the desired response, the pass band and stop band edge

frequencies cannot be precisely specified.

Fixed attenuation: For all window methods (except the Kaiser) the maximum

ripple amplitude in the filter response is fixed regardless of how large we

make N. Thus the stop band attenuation for a given window is fixed. Thus, for

a given attenuation specification, the filter designer must find a suitable

window.

 9

 Optimal method

The optimal filter design method is used to design FIR filter, different

methods are used to design FIR filter to minimize error in optimal method like

least square method, equiripple method, maximally flat, generalized equiripple

and constrained band equiripple [2].

In least square method we have not any constraint in the response between

points and sample and for this we will get poor results. When the number of

samples is greater than the order of the filter then the least square method used

to control response between the sample points. The frequency sample

technique is more interpolation technique than approximation. The optimal

method of calculating FIR filter coefficients are very powerful, flexible and

easy to implement because of an excellent design program. For these reasons

and because the method yields excellent filters it has become the method of

first choice in many FIR applications.

Following are the steps for calculating filter coefficients by the optimal

method

 Specify the band edge frequencies (that is, pass band and stop band

frequencies), pass band ripple and stop band attenuation (in decibels or

ordinary units), and sampling frequency.

 Normalize each band edge frequency by dividing it by the sampling

frequency, and determine the normalized transition width.

 Use the pass band ripple, stop band attenuation and the normalized

transition width to estimate the filter length 𝑁. The value of 𝑁 required

to meet the specifications would be slightly higher than the values

determined.

 Input the parameters to the optimal design program to obtain the

coefficients 𝑁 , band edge frequencies and weights for each band,

together with a suitable grid density (typically 13 or 32).

 Check the pass band ripple and stop band attenuation produced by the

program.

If the specifications are not satisfied, increase the value of 𝑁 and

repeat steps again and again until they obtain and check the frequency

response to satisfy the specifications.

 It is noted that in the optimal program, we considers only the pass band

and stop band during its approximation stage, treating the transition

region as depletion region. To avoid failure or problems with

convergence of the algorithm, it is best to set the transition regions

equal to the width of the smallest transition region when designing

band pass or multiple-band filters. If unequal transition widths are

used, the frequency response should always be checked to ensure that

 10

the specification is met. Local maxima and minima may occur in the

transition bands, giving unexpected filter characteristics [4].

 Frequency sampling method

The frequency sampling method allows us to design non-recursive FIR filters

for both standard frequency selective filters like low pass, high pass, band pass

filters and filters with arbitrary frequency response. A main attraction of the

frequency sampling method is that it also allows recursive implementation of

FIR filters, leading to computationally efficient filters. With some restrictions,

recursive FIR filters whose coefficients are simple integers may be designed,

which is attractive when only arithmetic operations are possible, as in systems

implemented with standard microprocessors [5].

Following are the steps for calculating filter coefficients by frequency

sampling method.

 Specify the ideal or desired frequency response, the stop band attenuation

and band edge frequencies of the target filter.

 From the specification, we select a type 1 frequency sampling filter, where

frequency samples are taken at intervals of 𝑘 𝐹𝑠/𝑁 or a type 2 frequency

sampling filter, where frequency samples are taken at intervals of (k + 1/2)

Fs/N.

 Use the specification in step 1 to determine the number of frequency

samples of the ideal frequency response, 𝑀, the number of transition band

frequency samples, BW, the number of frequency samples in the pass band

and the values of the transition band frequency samples (𝑖 = 1, 2, . , . , 𝑀).

 Use the appropriate equation to calculate the filter coefficients.

Structure of FIR Filters

The most widely used structures of FIR filters are parallel and cascade because these

are simple to implement, require simpler filtering algorithm and less sensitive to the

finite word length. A causal FIR filter of order 𝑁 is characterized by a transfer

function 𝐻(𝑧) [4].

𝐻(𝑧) = ∑ ℎ[𝑘]𝑧−𝑘𝑁
𝑘=0 (2.13)

which is a polynomial in 𝑧−1 of degree 𝑁 in time domain the input-output relation of

the above FIR filter is given

Direct Form: It is the most widely form of FIR filters because it is simple to

implement and understand. In this form, FIR filter sometime should be called a

tapped delay line as it resembles a tapped delay line or transversal filter. A structure

in which the multipliers coefficients are the coefficients of the transfer function is said

to be direct form structure. A FIR filter with the order 𝑁 is characterized by 𝑁 +

 1 coefficient and requires 𝑁 + 1 multiplier and 𝑁 two input adders.

 11

𝑦[𝑛] = ∑ ℎ[𝑘]𝑥[𝑛 − 𝑘]𝑁
𝑘=0 (2.14)

where 𝑥[𝑛] and 𝑦[𝑛] are the inputs and output sequences respectively. Due to the

linear phase response of FIR filters in different frequency ranges theses filters are

characterized by different realization methods.

A realization structure of an FIR filter can be obtained from the equation 2.14 and for

example 𝑁 = 4 an analysis of structure yields as in equation 2.15.

𝑦[𝑛] = ℎ[0]𝑥[𝑛] + ℎ[1]𝑥[𝑛 − 1] + ℎ[2]𝑥[𝑛 − 2] + ℎ[3]𝑥[𝑛 − 3] + ℎ[4]𝑥[𝑛 − 4]

 (2.15)

Figure 2.2: Direct form of FIR filter

Frequency Sampling Structure: As compared with the transversal structure, the

frequency sampling structure is more efficient to be compute as it require less

coefficients but the drawback is that it require more storage and difficult to

implement.

Figure 2.3: Frequency Sampling Structure of FIR filter

𝑍−1 𝑍−1 𝑍−1

+ +

ℎ(𝑁 − 1) ℎ(2) ℎ(1) ℎ(0)

𝑥(𝑛)

𝑦(𝑛)

𝑥(𝑛)

𝐻(0)

𝐻(𝑁 − 1)

+ +

𝑍−1

𝑍−1

+ + + +

𝑍−1

+ +

+ +

𝑍−1

𝐻(1) 𝑦(𝑛)

𝑒𝑗2𝜋/𝑁

𝑒𝑗2𝜋(𝑁−1)/𝑁

1

𝑁
 −1

 12

Fast convolution structure: The fast convolution structure uses the computational

advantages of fast Fourier transform (FFT) and it should be use where power

spectrum is required.

Lattice structure: It is used in both types of filters FIR and IIR. A single input and a

pairs of outputs characterized the lattice structure.

Figure 2.4: Lattice structure of FIR and IIR filter

Linear phase form: When the impulse response of an FIR filter exhibits a certain

symmetry conditions, then it is said to be that FIR has linear phase response.

2.2.2 2.2.2 IIR (Infinite Impulse Response) Filters:

The practical design methods for digital infinite impulse response (IIR) filters include

popular methods which permit analog filters to be converted into equivalent digital

filters. IIR digital filters are given by the following equation:

 𝑦(𝑛) = ∑ℎ(𝑘)𝑥(𝑛 − 𝑘) (2.16)

𝑦(𝑛) = ∑𝑏𝑘 𝑥(𝑛 − 𝑘) − ∑𝑎𝑥 𝑦(𝑛 − 𝑘) (2.17)

where ℎ(𝑘) is the impulse response of the filter which is infinite in nature where 𝑎𝑘&

𝑏𝑘 are the coefficients of the filter, 𝑥(𝑛) and 𝑦(𝑛) are the input and output of the

filter. An important thing in the design process is to find the suitable values for the

coefficients.

An IIR filters have normally requires less coefficients than an FIR filter for the same

specifications so we have use IIR filter when we requires sharp cutoff. As compared

to the IIR filters, the FIR filters required more coefficients because of the sharper

cutoff. FIR filters require more processing time and storage for their implementation

for a specific given amplitude. However one can readily take advantage over the

computational speed of the FFT and multi-rate technique has used to improve the FIR

filters. A plot of the poles and zeros of the transfer function is known as pole zero

diagrams and provide a very useful way of representing and analyzing the filter in

complex z plane. For the filter to be stable its entire poles must be lie inside the unit

circle and there are no restrictions on the zero location. If we have zeros on the unit

circle that means your filter will cancel any signal with that frequency completely

because the transfer function is zero and if the zero are outside, then the unit circle are

non-minimum phase zero and minimum phase zero when zeros lies inside the unit

𝑍−1 + +

+ +

𝑤1(𝑛)

𝑦1(𝑛)

𝑘1

𝑘1 𝑥(𝑛)

 13

circle. The system, which does not have, zeros in the right half s-plane, are called

minimum phase systems. If a transfer function has poles and/or zeros in right half of

s-plane then it is called non-minimum phase. The phase response is always larger than

for systems, which have minimum phase behavior with same amplitude response.

Many applications such as microwave, radar and optical communications, video

signal processing and digital image processing often used digital filters in order to

manage the constant group delays to overcome the large signal delays, distortion and

disturbances. Infinite impulse response digital filters are mostly preferred against

finite impulse response filters because of their computational performance, frequency

selectivity, and low group delays [6].

But along with this, the designing of IIR filters is much challenging task than FIR

filters since their group delays are non-uniform, and optimization problems becomes

non-convex in result. Transformation of the non-convex IIR filter design had been

achieved by using the Semi-definite programming (SDP), linear programming (LP)

and quadratic programming (QP) which shows better efficiencies by approaching

optimal solution in mini-max and least-squares and least error norm sense.

Design of IIR Filters

The design of IIR filters can be consist of five main stages

 Filter specification at which stage the designer gives the function of the filter

and desired performance.

 Approximation or coefficient calculations where we select the methods and

calculate the values of coefficient in the transfer function 𝐻(𝑍).

𝐻(𝑍) =
𝑌(𝑍)

𝑋(𝑍)
 (2.18)

 Realization, which is simply converting the transfer, functions into a suitable

filter structure. The structure for IIR filters is parallel and cascaded of second

and first filter section.

 Analysis of errors that would arise from representing filter coefficient and

carrying out the arithmetic operations involved in filtering with only a finite

number of bits.

 Implementation that involves building the hardware or writing the software

codes and carrying out the actual filtering operation [6].

Performance Specification:

The design of the digital IIR filters starts with the specifications of the

performance requirements. These should include:

 Characteristics of a signal source or sink.

 The frequency response of the filter (the desired amplitude and phase

response and their tolerance.

 14

 The method of implementation such as a high-level language routine in a

computer or as in a DSP processor based system, choice of a signal

processor and modes of a filtering in real time.

 Other design limits such as cost and permissible signal degradation of the

filter.

In general most of the above requirements are application dependent the

designer may not have enough information to specify the filter completely at

the start but as many as the filter requirements as possible should be specified

to simplify the design process.

For frequency selective filters such as low pass and band pass filters the

frequency response specifications are often in the form of tolerance scheme

The following parameters are normally used to specify the frequency response

ℇ2= Passband ripple parameter

𝛿𝑝= Passband deviation

𝛿𝑠= Stopband deviation

The band-edge frequencies are occasionally given in a normalized form that is

a fraction of the sampling frequencies but we have specified them in standard

units of hertz or kilohertz. Pass-band and stop-band deviations may be

expressed as ordinary number or in decibels the pass-band ripples in decibels

is

𝐴𝑝 = 10 log 10 (1 + ℇ2) = −20 log 10 (1 − 𝛿𝑝) (2.19)

And the stop-band attenuation in decibels is

𝐴𝑠 = −20 log 10 (𝛿𝑠) (2.20)

Hence the pass-band ripple is the difference between the minimum and

maximum deviation in the pass-band [5].

Coefficient calculation methods for IIR filters:

There are several ways to design the filters but the most efficient way is that first

designed the analog filter because analog filters can be transform into equivalent IIR

digital filters with similar specifications and then convert the require filter into digital

filter. Following are the different methods to convert analog IIR filters into digital IIR

filters:

 Pole Zero Placement Technique

Many applications of the of signal processing contain improve or attenuate

some part of the signal’s frequency spectrum as leaving the remainder of the

 15

spectrum unaffected. This effect obtained by using band pass or band stop

filters have frequency response, which considered by gain increasing or

decreasing center frequency𝑓𝑐.

An IIR filter can be calculated by using the formula which combines the

inputs x[n] and outputs y[n] as given below.

𝑦[𝑛] = ∑ 𝑏𝑘
𝑀
𝑘=0 𝑥[𝑛 − 𝑘] + ∑ 𝑎𝑘

𝑀
𝑘=1 𝑦[𝑛 − 𝑘] (2.21)

where the coefficient 𝑏𝑘 is feed forward coefficient as which is only act on the

input signal x[n] as well as 𝑎𝑘 is the feedback coefficient which act on the

output signal y[n]. In Z-transform we know that the input and out relationship

which is

 𝑌(𝑧) = 𝐻(𝑧)𝑋(𝑧) (2.22)

The transfer function of the IIR filter is given as:

𝐻(𝑧) =
𝑏0+𝑏1 𝑧−1+⋯+𝑏𝑀 𝑧−𝑀

1−𝑎1 𝑧−1−⋯−𝑎𝑁 𝑧−𝑁 (2.23)

Note that the numerator and denominator both are polynomials as all the

polynomials have roots. The roots of the numerator are called “Zeros” of the

filters and the roots of the denominators are called “poles” of the filters [7].

 Impulse invariant method

Impulse invariant method is used to find coefficients of IIR filter, first of all

we have to determine analog filter response 𝑯(𝒔) satisfying the specification

then we have to use partial fraction for the expansion of 𝑯(𝒔), obtain the z-

transform of each partial fraction 𝒛 and 𝑯(𝒛) by combining z-transforms of

partial fraction. The main advantages of impulse invariant method is that we

should preserve the stability and order of the analog filter and its disadvantage

is that it is not preferable for high pass and band stop filters and have

distortion in the shape of frequency response due to aliasing [5].

Consider an analog filter

𝐻(𝑠) =
𝐶

𝑠−𝛼
 (2.24)

The impulse response of the filter is given by

ℎ(𝑡) = 𝐶𝑒𝛼𝑡 (2.25)

Sampled impulse response

ℎ(𝑛) = 𝐶𝑒𝛼𝑛𝑇 (2.26)

Now compute the z-transform

 16

𝐻(𝑧) =
𝐶

1−𝑒𝛼𝑇𝑧−1 (2.27)

The location of the poles of the filter

𝛼 ⟶ 𝑒𝛼𝑇 (2.28)

In general form

𝛼𝑘 ⟶ 𝑒𝛼𝑘𝑇 (2.29)

The numerator degree should be less than any denominator degree in any

rational transfer function

𝐻(𝑠) = ∑
𝐶

𝑠−𝛼𝑘
 (2.30)

Similarly

𝐻(𝑧) = ∑
𝐶

1−𝑒𝛼𝑘𝑇𝑧−1
 (2.31)

 The impulse response of the discrete filter ℎ(𝑛𝑇) is same as that of the

analog filter ℎ(𝑡) at the discrete time instants 𝑡 = 𝑛𝑇, 𝑛 = 0, 1, it is

for this reason that the method is called impulse invariant method.

 The sampling frequency affects the frequency response of the impulse

invariant discrete filter. A suitably high sampling frequency is necessary

for the frequency response to be close to that of the equivalent analog

filter.

 As is the case of sampled data systems, the spectrum of the impulse

invariant filter equivalent to 𝐻(𝑧) would be the same as that of the original

analog filter, 𝐻(𝑠) but repeats at multiples of the sampling frequency

leading to aliasing. However, if the roll-off of the original analog filter is

sufficiently sharp or if the analog filter is band limited before the impulse

invariant method is applied, the aliasing will be low. Low aliasing can also

be achieved by making the sampling frequency high [5].

 Matched Z-transform method

The Matched Z-transform method directly plots the poles and zeros of an

analog filter directly into poles and zeros of the z-plane. This method looks to

work well for some types of analog filters but not in others but it was soon

discovered that improved results could be obtained by adding number of zeros

at the Nyquist point. Matched z-transform method simply to apply as well as

design can be calculated by using calculator and works moderately well not

for low pass and band pass but also for high pass and band stop filters

including elliptic filters. The disadvantages of this method are that the pass

band loss characteristic of digital filter is seriously distorted relative to that of

the analog filter. The high sampling frequency is necessary to obtain good

results, which can introduce certain problems. Z-transform method is very

 17

simple that is used to convert analog filter to digital filter by using following

equation:

𝐻(𝑠) =
∑ (𝑠−𝑧𝑘)𝑀

𝑘=1

∑ (𝑠−𝑝𝑘)𝑀
𝑘=1

⟶ 𝐻(𝑧) =
∑ (1−𝑒𝑧𝑘𝑇𝑧−1)𝑀

𝑘=1

∑ (1−𝑒𝑝𝑘𝑇𝑧−1)𝑁
𝑘=1

 (2.32)

Poles and zeros are transformed with equation

𝑧𝑘 ⟶ 𝑒𝑧𝑘𝑇 , 𝑝𝑘 ⟶ 𝑒𝑝𝑘𝑇 (2.33)

where T is the sampling time, poles are the same as in impulse invariance

method and zeros should be at new position but this method suffers aliasing

[10].

 Bilinear Z- transformation method

The bilinear Z-transformation is important method to obtain IIR filter

coefficients. In this method the main operation required to convert an analog

filter, 𝑯(𝒔) into an equivalent digital filter. The bilinear transform generate a

digital filter whose frequency response has the same characteristics as well as

the frequency response of the analog filter but its phase response may be quite

different. In case of bilinear z-transformation the following equation can be

used for analog to digital conversion.

𝑠 =
2

𝑡0

1−𝑧−1

1+𝑧−1 (2.34)

The ratio
(𝑧−1)

(𝑧+1)
 should be used when we want to convert our transfer function

into digital filter and the factor
2

𝑡𝑜
 is an optional scaling and it should be cancel

without affecting the final result [5][9].

With the impulse invariant method, after digitizing the analog filter, the impulse

response of the original analog filter is well-maintained but not its magnitude-

frequency response. Because of inherent aliasing the method is unsuitable for high

pass or band stop filters. The bilinear z-transform method on the other hand produces

very efficient filters and is well suited for calculating the coefficients of frequency

selective filters. The impulse invariant method is good for simulating analog systems

with low-pass characteristics, but the bilinear method is best for frequency selective

IIR filters. The matched z-transform shares most of the inherent problems of the

impulse invariant method.

Structure of IIR Filters:

IIR filters consist of three types of structures.

Direct form: This form represents transfer function 𝐻(𝑧) of a filter in a simpler way.

The transfer function 𝐻(𝑧) of 𝑁𝑡ℎ order IIR filter is characterized by 2𝑁 + 1

coefficients. A direct form structure of IIR filter is defined as if the coefficients of

 18

multipliers are the coefficients of transfer function. Consider the transfer function

𝐻(𝑧) of first order IIR filter in equation 2.35.

𝐻(𝑧) =
𝑃(𝑧)

𝐷(𝑧)
=

𝑝0+𝑝1𝑧−1

1+𝑑1𝑧−1 (2.35)

Consider fourth order IIR filter in figure 2.4

𝐻(𝑧) =
∑ 𝑏𝑘𝑧−𝑘4

𝑘=0

1+∑ 𝑎𝑘𝑧−𝑘4
𝑘=0

 (2.36)

𝑦(𝑛) = ∑ 𝑏𝑘𝑥(𝑛 − 𝑘) − ∑ 𝑎𝑘𝑦(𝑛 − 𝑘)4
𝑘=1

4
𝑘=4 (2.37)

Figure 2.5: Direct form of IIR filter

Cascade form: A digital filter is realized to be cascade when the numerator and

denominator polynomial of the transfer function 𝐻(𝑧) is a product of polynomials of

a lower degree. Consider a transfer function in equation 2.38

𝐻(𝑧) =
𝑃(𝑧)

𝐷(𝑧)
=

𝑃1(𝑧)𝑃2(𝑧)𝑃3(𝑧)

𝐷1(𝑧)𝐷2(𝑧)𝐷3(𝑧)
 (2.38)

Now, consider an example for cascaded form of IIR filter in figure 2.5

𝐻(𝑧) = 𝐶 ∏
1+𝑏1𝑘𝑧−1+𝑏2𝑘𝑧−2

1+𝑎1𝑘𝑧−1+𝑎2𝑘𝑧−2
2
𝑘=1 (2.39)

𝑤1(𝑛) = 𝐶𝑥(𝑛) − 𝑎11𝑤1(𝑛 − 1) − 𝑎21𝑤1(𝑛 − 2) (2.40)

𝑦1(𝑛) = 𝑏01𝑤1(𝑛) + 𝑏11𝑤1(𝑛 − 1) + 𝑏21𝑤1(𝑛 − 2) (2.41)

𝑤2(𝑛) = 𝑦1(𝑛) − 𝑎12𝑤2(𝑛 − 1) − 𝑎22𝑤2(𝑛 − 2) (2.42)

𝑦(𝑛) = 𝑏02𝑤2(𝑛) + 𝑏12𝑤2(𝑛 − 1) − 𝑏22𝑤2(𝑛 − 2) (2.43)

𝑍−1

𝑦(𝑛) 𝑏0 𝑥(𝑛)

𝑍−1

𝑍−1

𝑍−1

+ +

+ +

+ +

+ +

𝑍−1

𝑍−1

𝑍−1

𝑍−1

+ +

+ +

+ +

+ +
𝑏1

𝑏3

𝑏2

𝑏4

−𝑎1

−𝑎2

−𝑎3

−𝑎4

 19

Figure 2.6: Cascaded form of IIR filter

Parallel form: In parallel form the transfer function 𝐺(𝑧) have expanded by using

partial fractions. A partial-fraction expansion of the transfer function 𝐺(𝑧) is given by

the following equation 2.44.

𝐺(𝑧) = ∑
ƿ𝜄

1−𝜆𝜄𝑧−1
𝑁
𝑙=1 (2.44)

where ƿ𝜾 is a constant and is called residue is given by equation 2.45.

ƿ𝜾 = (1 − 𝝀𝜾𝑧−1)𝐺(𝑧) (2.45)

Representation of parallel form in figure 2.6

𝐻(𝑧) = 𝐶 + ∑
𝑏1𝑘+𝑏1𝑘𝑧−1

1+𝑎1𝑘𝑧−1+𝑎2𝑘𝑧−2
2
𝑘=1 (2.46)

𝑤1(𝑛) = 𝑥(𝑛) − 𝑎11𝑤2(𝑛 − 1) − 𝑎22𝑤2(𝑛 − 2) (2.47)

𝑤2(𝑛) = 𝑥(𝑛) − 𝑎12𝑤2(𝑛 − 1) − 𝑎22𝑤2(𝑛 − 2) (2.48)

𝑦1(𝑛) = 𝑏01𝑤1(𝑛) + 𝑏11𝑤1(𝑛 − 1) (2.49)

𝑦2(𝑛) = 𝑏02𝑤2(𝑛) + 𝑏12𝑤2(𝑛 − 2) (2.50)

𝑦3(𝑛) = 𝐶𝑥(𝑛) (2.51)

𝑦(𝑛) = 𝑦1(𝑛) + 𝑦2(𝑛) + 𝑦3(𝑛) (2.52)

𝑤1(𝑛)

+ + + +

+ +

𝑍−1

𝑍−1

+ +

+ + + +

+ +

𝑍−1

𝑍−1

+ +

−𝑎11

−𝑎21

𝑏11

𝑏21

−𝑎12

−𝑎22

𝑏12

𝑏22

𝑏02 𝑏01

𝑤2(𝑛) 𝑦1(𝑛) 𝑦(𝑛) 𝑥(𝑛)

 20

Figure 2.7: Parallel form of IIR filter

Nyquist effect:

The three methods for converting analog filters into equivalent discrete-time filters

are the matched z-transform, the impulse invariant and the bilinear z-transform

methods and have a significant effect on the filter characteristics (e.g. magnitude

phase and group delay responses), in certain cases. The frequency band for analog

filters spreads from zero to infinity, whereas for digital filters it is from zero to the

Nyquist frequency (i.e. half the sampling frequency).

Thus the magnitude-frequency response of digital filters designed using either of three

methods may be significantly different from those of the analog filter because the

entire analog frequency band (zero to infinity) is now compressed into a narrow band

(zero to Nyquist frequency). This difference represents a distortion, which is stated as

Nyquist effect.

In many applications, the Nyquist effect is not harmful besides the provision of

greater attenuation than specified. However, in applications where it is desirable to

hold the analog filter response, such as in professional and semi-professional audio

work, the effect represents an undesirable distortion. In such applications, the extent

+ +

𝑍−1

𝑍−1

+ +

+ + + + 𝑏01

𝑏11 −𝑎11

−𝑎21

𝑤1(𝑛)

𝑍−1

𝑍−1

+ +

+ + + + 𝑏02

𝑏12 −𝑎12

−𝑎22

𝑤2(𝑛)

𝑦1(𝑛)

𝑦2(𝑛)

𝑦3(𝑛)

𝑦(𝑛)

𝑥(𝑛)

𝐶

 21

of the distortion would be a factor in the choice of a transform for converting an

analog filter into an equivalent discrete-time filter. The influence on other filter

characteristics, such as group delay and impulse responses, may also be a factor in the

choice of a method [5].

Finite Word Length Affects in IIR filters:

The coefficients, 𝑎𝑘 and 𝑏𝑘 obtained earlier are of infinite or very high precision,

typically six to seven decimal places. When an IIR digital filter is implemented in a

small system, such as an 8-bit microcomputer, errors arise in representing the filter

coefficients and in performing the arithmetic operations specified by the difference

equation. These errors reduce the performance of the filter and filter should be

unstable. Before the implementation of an IIR filter, it is important to determine the

amount to which its performance will be reduced by finite word length effects and to

find a remedy if the reduction is not suitable. In general, the effects of these errors can

be reduced to acceptable levels by using more bits but this may be at the expense of

increased cost.

The main errors in digital IIR filters are as follows:

 ADC quantization noise which results from presenting the samples of the input

data, 𝑥(𝑛), by only a small number of bits.

 Coefficient quantization errors caused by presenting the IIR filter coefficients by a

finite number of bits.

 Overflow errors which result from the additions or accumulation of partial results

in a limited register length.

 Product round off errors caused when the output 𝑦(𝑛), and results of internal

arithmetic operations are rounded to the allowed word length

The extent of filter degradation depends on:

(i) The word length and type of arithmetic operations used to perform the

filtering operation.

(ii) The method used to quantize the filter coefficients and variables.

(iii) The filter structure.

From knowledge of these factors, the designer can calculate the effects of finite word

length on the filter performance and take corrective action if necessary. Depending on

how the filter should be implemented some of the effects may be irrelevant. For

example, when implemented as a high-level language program on most large

computers, coefficient quantization and round off errors are not important. For real-

time processing, finite word lengths (typically 8 bits, 12 bits, and 16 bits) are used to

represent the input and output signals, filter coefficients and the results of arithmetic

operations. In these cases, it is always necessary to study the effects of quantization

on the filter performance. The effects of finite word length on performance are more

difficult to analyze in IIR filters than in FIR filters because of their feedback arrange

[5].

 22

Quantization Errors Effects on Coefficients:

The primary effect of quantizing filter coefficients using a finite number of bits is to

change the positions of the poles and zeros of 𝐻(𝑧) in the z-plane. This could lead to:

 Instability or potential instability for high-order filters, with sharp transition

widths and poles close to the unit circle.

 A change in the desired frequency response, the quantized filter should he

analyzed to confirm that its word length is sufficient for both stability and

satisfactory frequency response.

Computational Requirements:

The designer must analyze the impact of the computational requirements of a digital

filter on the processor that will be used. The primary requirements for digital fillers

are multiplication, additions, accumulation and delays or shifts. For example, a filter

consisting of a second-order section would require typically four multiplications, four

additions, and some shifts and storage. If the filtering is performed in real time, for

example at 44.1 kHz (or digital audio) the arithmetic operations must be performed

once every 1 / (44.1 kHz). Allowance must also be made for other overheads such as

fetching the input data or saving or outputting the filtered data samples as well as

other housekeeping operations [5].

2.2.3 Comparison between FIR and IIR Filters

The choice between FIR and IIR mainly depends on their comparisons:

Linear phase response:

FIR filters have linear phase response because there is not any phase distortion in the

signal generated from a filter and this is very important in many signal-processing

applications like data transmission, biomedical, digital audio and image processing.

As compared to FIR filter the IIR filter have non-linear phase response especially at

band edges.

Stability:

As compared to the IIR filters, FIR filters have always-stable response.

Round off noise:

The limited number of bits used to implements the filter such as round off noise and

quantization of coefficients errors is much less in FIR than in IIR.

Coefficient requirement:

As compared to the IIR filters, the FIR filters required have more coefficients because

of the sharper cutoff. FIR filters require more processing time and storage for their

implementation for a specific given amplitude. However one can readily take

advantage over the computational speed of the FFT and multi-rate techniques have

been used to improve the FIR filters.

 23

Analog filter transformation:

We can transform analog filters into IIR digital filters with the similar specifications

but it is not possible in the case of FIR filter as they have no analog counterpart.

Easy synthesis:

The arbitrary frequency of the FIR filter should be easy to synthesize.

 24

Re-Structured

R
e-

D
es

ig
n
ed

Respecify

Re-calculate

3 Design and Implementation of Filters (MATLAB)
Designing of filters involves following five basic steps as described earlier in section

2.1.2. Figure 3.1 shows the flow chart of the design stages for digital filters.

 Filter Specification

 Calculation of Filter Coefficient

 Realization of Structure

 Analysis of finite word length effects

 Implementation

Figure 3.1 Summary of Design Stages for Digital filters (FIR & IIR)

3.1 FIR Filter

Filter specification involves following four parameters:

 Pass band attenuation

 Stop band attenuation

 Pass band edge frequency

 Stop band edge frequency

Considering electrical power systems we choose pass-band frequency of 50 Hz,

which is basically used as a standard for power systems [8]. Similarly the harmonic

START

Filter Specification

Finite word length

effects analysis &

Solution

Calculations for Filter

Coefficients

Structure Realization

STOP

Hardware/Software

Implementation &

Testing

 25

components are the multiples of pass-band frequency so the first harmonics will have

frequency of 100 Hz therefore the stop-band edge frequency is selected as 90 Hz.

Now stop band attenuation should be as large as possible and pass band attenuation

should be as small as possible in order to have more precise and accurate

measurements. The sampling frequency was chosen to be 300 Hz and pass-band and

stop band frequencies must be converted in radians as the signal processing toolbox

operates with normalized frequencies in filter design functions. To convert these pass

band and stop band frequencies to normalized frequencies we will divide them by one

half of the sampling frequencies. Similarly these normalized frequencies are

multiplied by π to get angular frequency around the unit circle. We have calculated 40

dB and 1 dB stop band and pass band attenuation respectively from equations 2.19

and 2.20.

Ωp =
50𝐻𝑧

150𝐻𝑧
= 0.33*π = Pass band edge frequency in Radians

Ωs =
90𝐻𝑧

150𝐻𝑧
= 0.6*π = Stop band edge frequency in Radians

As = 40 dB = Stop band attenuation

Rp = 1 dB = Pass band ripples or attenuation

Fs = 300 samples/sec

Since the equation the FIR filter is given by

𝑦(𝑛) = ∑ℎ(𝑘)𝑥(𝑛 − 𝑘) 0 ≤ 𝑘 ≤ 𝑁 − 1 (3.1)

Now the next step is to calculate the filter coefficient ℎ(𝑛) so filter meets the design

specifications. Several methods are used to calculate the filter coefficients as

discussed in chapter 2, but we chose window method which is easy to calculate and

implement without using any software as in case of optimal method.

The basic idea behind the window method is to choose proper ideal filter, which has a

non-casual, infinite duration impulse response, and then truncate its impulse response

to obtain the linear phase and casual FIR filter. In the window methods we actually

multiply the ideal response by a window function to obtain the finite impulse

response.

Now among different window function we select Kaiser window function for this

application because its provides maximum stop band attenuation as compared to other

window functions and also has a ripple control parameter and it is also more efficient

in terms of the number of coefficients to meet the same specifications. Kaiser window

is one of the useful and optimum window, optimum in sense of providing large main

lobe width for the given stop-band attenuation which gives the sharpest transition

width and it also provide flexible transition bandwidth.

 26

We implemented the Kaiser Window function 𝑤(𝑛) in MATLAB, and then obtained

the impulse response ℎ(𝑛) of our filter by multiplying the window function by the

ideal response ℎ𝑑(𝑛) of the low pass filter. This is given by the simple equation

ℎ(𝑛) = ℎ𝑑(𝑛) ∗ 𝑤(𝑛) (3.2)

Figure 3.2 shows the impulse response before and after windowing. The impulse

response becomes finite after windowing that why it is called finite impulse response

filter.

Figure 3.2: Plot of coefficients obtained or impulse response h(n)

Coefficients of ℎ(𝑛) at M=19

0.0029, -0.0077, -0.0121, 0.0162, 0.0340, -0.0253, -0.0854, 0.0323, 0.3109, 0.4650,

0.3109, 0.0323, -0.0854, -0.0253, 0.0340, 0.0162, -0.0121, -0.0077, 0.0029

The filter function 𝐻(𝑧) is obtained by taking the Fourier transform of the impulse

response is given by

𝐻(𝑧) = ∑ℎ(𝑛)𝑧 − 𝑛 0 ≤ 𝑛 ≤ 𝑁 − 1 (3.3)

The filter function thus obtained was plotted to check the filter performance and is

shown in the figure 3.3.

0 2 4 6 8 10 12 14 16 18
-0.2

0

0.2

0.4

0.6

n

H
d

ideal response

0 2 4 6 8 10 12 14 16 18
-0.2

0

0.2

0.4

0.6

n

n

windowed response

 27

Figure 3.3: Frequency response of low pass FIR filter

From the figure 3.3 we obtained the results as given in specifications, that is cut off

frequency 0.33π and stop band is 0.6π radians.

Figure 3.4: Phase reponse of low pass FIR filter

From the figure 3.4 we see that the phase response of our designed filter is linear and

so it is prove that FIR filters have a linear phase response.

3.2 IIR Filter

IIR low pass filter specification involves the same four steps as of FIR low pass filter.

So here we have selected the same specification of IIR low pass filter as selected in

previous section for FIR low pass filters that are:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

freq in pi units

m
a
g
n
it
u
d
e
 o

f
H

amplitude spectrum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

freq in pi units

m
a
g
 o

f
H

(d
B

)

amplitude spectrum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

freq in pi units

ra
d
ia

n
s

filtered signal phase spectrum

 28

Ωp = 0.33*π = Pass band edge frequency in Radians

Ωs = 0.6*π = Stop band edge frequency in Radians

As = 40 dB = Stop band attenuation

Rp = 1 dB = Pass band ripples or attenuation

Fs = 300 samples/sec

Since IIR filter is characterized by the following equation

𝑦(𝑛) = ∑ℎ(𝑘)𝑥(𝑛 − 𝑘) 0 ≤ 𝑘 ≤ ∞ (3.4)

𝑦(𝑛) = ∑𝑏𝑘𝑥(𝑛 − 𝑘) − ∑𝑎𝑘𝑦(𝑛 − 𝑘) 0 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀 (3.5)

Next step is to calculate the filter coefficients 𝑎𝑘 & 𝑏𝑘

For coefficient calculations we have choose impulse invariant method is best suited

for the low filtering because the impulse response of the original analog filter is

preserved. In this method starting with suitable analog transfer function 𝐻(𝑠), the

impulse response ℎ(𝑡) is obtained using Laplace transform. The ℎ(𝑡) thus obtained is

suitably sampled to produce ℎ(𝑛𝑇), and the desired transfer function 𝐻(𝑧) is thus

obtained by z-transforming ℎ(𝑛𝑇) where T is the sampling interval. Impulse invariant

method has been used to calculate the coefficient where 𝑎𝑘 & 𝑏𝑘 after calculating the

coefficients the frequency response was plotted in MATLAB to check whether the

design meets the requirements.

Coefficients at M=9

b= 0.0000, 0.0000, 0.0036, 0.0284, 0.0491, 0.0242, 0.0034, 0.0001, 0.0000

a= 1.0000, -3.0110, 4.8837, -5.1117, 3.7117, -1.9067, 0.6856, -0.1651, 0.0240, -

0.0016

 29

Figure 3.5: Frequency reponse of low pass IIR filter

From the figure 3.5 we see that we have desired results as given in specifications, that

is cut off frequency is 0.33π and stop band is 0.6π Radians.

Figure 3.6: Phase response of IIR low pass filter

From figure 3.6 we see that the phase responses of IIR low pass filter. It is seen that

the phase response is non-linear thus proving the fact that IIR filters are non-linear in

nature.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-70

-60

-50

-40

-30

-20

-10

0

Normalized Frequency ( rad/sample)

M
a
g
n
itu

d
e
 (

d
B

)

Magnitude Response (dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-2

0

2

4

ra
d
ia

n
s

freq in pi units

phase response

 30

4 Structure Design for Field Programmable Gate Array

(FPGA) through Digital Filters

4.1 Introduction:

A FPGA (Field programmable gate array) is a semiconductor device, which is used to

process digital information by utilizing gate array technology and should be re-

programmed after it is manufactured. A FPGA consists of programmable logic

components called logic blocks and programmable interconnects. We can

programmed logic blocks to perform the functions of basic logic gates such as AND,

and XOR, or simple mathematical functions or complex combinational functions such

as decoders. In most FPGAs the logic blocks also consist of memory elements, which

may be, flip flops or more complete blocks of memories.

In the previous years, for the purpose of designing in VLSI areas FPGA (Field

Programmable Gate Arrays) increased importance. Now a day FPGAs offer a large

number of applications such as equivalent gates, which can be clocked at high

frequencies. Moreover, because of the re-configurability, FPGA provide the fastest

approach to system prototype and reliable instruments to match in hardware but the

performance of systems are too much complicated to be simulating in software. For

these reasons, it can make sense to extract information on a system by its

implementation on FPGAs followed by measurements on the hardware, instead of

simulations [9].

4.2 FPGA Structure:

Xilinx is the biggest manufacturer of FPGA and the Xilinx FPGA consist of three

blocks:

 CLB: It is the configurable logic block of FPGA, which is used to calculate

the specific functions defined by the users. The CLBs should be found on the

center of the chip. It is used for the implementation of combinational and

sequential logic, for this purpose CLBs consist of lookup table (LUT) which

can be controlled by 4-inputs for the implementation of combinational logics

and used D-flip flops for sequential logics. MUX should be used to select

between the output of combinational and sequential logics. We can program

CLBs by using the truth table of LUT and control bit of MUX (multiplexer)

and these both structures are useful for the implementation of combinational

and sequential logics.

 IOB: The input/output block of the FPGA used to connect it to the other

elements of the applications and IOBs are located on the periphery.

 Interconnect: This part is used for the writing between CLB and between IOBs

and CLBs and interconnects are used to implement different programs on the

FPGA. IOBs are used to get signals in the and out of the FPGA, means it

should be used as input and output [10].

 31

4.2.1 Modern FPGAs

In modern FPGA we have additional information units, which are easier and efficient

for the designing of applications, as well as arithmetic units and small memories are

very difficult to implement on CLB (configurable logic block). Therefore in modern

FPGAs embedded memories and embedded logic blocks are used for arithmetic

operations and the most common is multiplications. With the use of embedded blocks

in FPGA we get more memory and speed therefore embedded memories are easy to

interface than external memories. DSP applications are very useful in the

implementation of FPGA like multipliers are the function on FPGA for the

implementation of DSP applications. Furthermore embedded processor cores are also

the part of FPGA for the purpose of better communication between microprocessor

and FPGA and the main advantages of embedded processor is that it reduces the

latency of communication between FPGA and microprocessor. In comparison with

the embedded processors the soft cores should be directly the part of FPGA fabric as

soft cores are easy to configurable and have the same clock as that of FPGA, and its

main advantage is that it is easy to interface and drawback is that they have slower

clock rate [11].

4.2.2 Configuring FPGA

FPGAs should not be programmed directly so synthesis tools are used to program

FPGAs, which are used to translate code into bit stream, and downloaded to FPGAs;

commonly hardware description language is used to configure the devices.

Furthermore high-level languages and library-based solutions are also possible to use

for the configuration of the FPGAs.

Hardware description language is the most common language used for the

programming of FPGAs, there are also two other languages like VHDL and Verilog

both languages are internationally recognized and are powerful. VHDL was

developed in 1980 and is the extension of ADA and should be used for describing the

hardware and Verilog is like C programming language to design hardware and have

recognized internationally like VHDL. To configure FPGA with HDL a developer

require two programs, one tool which is used to test and simulate the configurations

on pc and a synthesis tool which is used to convert code into bit stream and

downloaded into the FPGA.

High-level languages are also used for the designing and implementation of FPGA

applications more like software development. SystemC is a C++ library, which is

used to implement and simulate the processing of hardware in C++ syntax. By using

Accel-chip it is easy to implement VHDL and Verilog code block for MATLAB DSP

function.

In library-based solutions to designing FPGAs, the FPGAs developer Xilinx and

Altera provide macros with parameterized solutions, which is used for arithmetic

operations and required less development time [11].

 32

4.2.3 Applications of FPGA

 FPGAs include digital signal processor, software defined radio, aerospace,

defense system, ASIC prototyping, medical imaging, computer vision, speech

recognition, bioinformatics and computer hardware emulation [12].

 FPGAs originally began as competitor to CPLDs and due to their size,

capabilities and speed they began to take over larger and larger function and

are now marketed as full systems on chip (SOC).

 FPGAs are increasingly used in conventional high performance computing

applications where computational kernels such as FFT or Convolution are

performed on the FPGA instead of a microprocessor and the use of FPGA for

computing tasks is known as reconfigurable computing.

4.2.4 Advantages of FPGA

 FPGA consist of large number of logic blocks which is used for larger

memory, FPGA computers have no given processor structure but they offer a

large amount of logic gates, registers, RAM and routing resources. It is used to

perform large number of logical and arithmetic operations for variable storage

and to transfer data between different parts of the computer. Typically

thousands of operation can be done on FPGA computers during every clock

cycle.

 When the applications of FPGA were specific, then specialized tools were

used to access them but by using hard and configurable soft cores, FPGAs are

now controlled to perform in mainstream embedded applications and it means

the accessibility of embedded software and tools becomes a necessity.

 FPGA are controlling programmable logic integrated circuits and is use to

design digital logic as you can design your circuit on your computer and run it

on FPGA.

 FPGA are quick devices.

4.3 Design of Structures for FPGA:

We will design the structure for both filters that are FIR and IIR, which we will,

further use in FPGAs.

4.3.1 Using FIR Filter:

After calculating the coefficients in section 3.1, we will choose suitable structure for

FIR filter realization and the order of the filter is 𝑀 − 1 where 𝑀 is the number of

coefficients and the length of the filter is equal to 𝑀.

Among different structures like direct form, cascade form, parallel form and linear

phase structure, we have chosen linear phase structure because the impulse response

in our FIR filter is symmetric as shown in figure 3.2 and due to symmetrical response

in the impulse response of linear phase FIR filter to reduce the computational

complexity of the filter implementation, it is more efficient and reduce the number of

additions and multiplications. Linear phase structure is same as direct form but it

should be implemented differently as it reduces the multiplication process to half. The

 33

linear phase structure provides no delay distortion but only fixed amount of delay. For

the filter of length 𝑀 − 1 the minimum operations are 𝑀/2 . The linear phase

structure is shown in figure 4.1 by using the coefficients of FIR filter.

Figure 4.1: Linear Phase FIR filter structure

The number of blocks formed in our structure in figure 4.1 can be calculated by using

the formula 𝐾 = 𝑀/2 so in our case𝐾 = 19/2 = 9. This structure also forms a sort

of systolic structure in which input should be pumped in, in the form of continuous

input samples. In the first block the coefficient 𝑏𝑜 is multiplied by 𝑥(𝑛) and the

delayed version of 𝑥(𝑛) coming from the last block that is 𝑥(𝑛 − 𝑀 + 1), where 𝑀 is

the length. Similarly the second coefficient 𝑏1 is multiplied by 𝑥(𝑛 − 1) and the

delayed version of 𝑥(𝑛) coming from the second last block that is 𝑥(𝑛 − 𝑀 + 2). The

multiplication process goes on for the all the coefficients but reduced to half further

all these products are added up to give the accumulated output 𝑦(𝑛).

4.3.2 Using IIR Filter:

Similarly we construct the structure of IIR filter from the coefficients calculated in

section 3.2 for IIR filter. Like FIR filters, the IIR filters can also be realized using

different structure as discussed earlier. We will implement direct form structure for

the realization of our filter in FPGA because direct form structure involves simple

multiplications, additions and delays that is shown in figure 4.2.

On the left hand side in the figure 4.2 we see that the inputs are being delay and

multiplied by each of the coefficients and all the products should be added together

and similarly the right hand side is the mirror image of left hand side. Thus all the

coefficients are multiplied one by one leading to the number of multiplications equal

to the total number of coefficient and then further added all the products to get the

required output 𝑦(𝑛).

𝑦(𝑛)

𝑧−1

𝑧−1

𝑧−1

𝑧−1

𝑧−1 𝑧−1

𝑥(𝑛)

𝑏0

INTERMIDIATE BLOCK LAST BLOCK FIRST BLOCK

𝑏7 𝑏8 𝑏9

 34

Figure 4.2: Structure for direct form IIR filter

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑍−1

𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6

𝑏7

𝑏8

−𝑎1

−𝑎2

−𝑎3

−𝑎4

−𝑎5

−𝑎6

−𝑎7

−𝑎8

−𝑎9

𝑦(𝑛) 𝑥(𝑛)

 35

5 Results and Verification of Structures

5.1 Introduction

In this chapter we have implemented the structures designed for FPGAs in previous

chapter, both of FIR and IIR and then verify them with MATLAB. Later we have also

discussed their use as an application in measurement systems.

5.2 Implementation & Verification:

In this section we verified the results after implementing the structure in Xilinx and its

equation in MATLAB by giving a same symmetric input sequence as: 0,2,4,6….

Figure 5.1 shows the input sequence for both FIR & IIR filters in MATLAB, which

are used in section 5.2.1 and 5.2.2.

Figure 5.1: Input sequences of FIR and IIR filter using MATLAB

5.2.1 Verification of FIR filter

The structure in figure 4.1 gives the mathematical equation of the FIR filter as:

𝑦(𝑛) = ℎ(0)𝑥(𝑛) + ℎ(1)𝑥(𝑛 − 1) + ⋯ + ℎ(𝑁 − 1)𝑥(𝑛 − 𝑁 + 1) (5.1)

where 𝑁 = 19, is the order or length of the filter, if the input samples are given to

linear phase FIR filter in a sequence as stated above the output waveform generated

by MATLAB is shown in figure 5.2 which is basically in time domain. Its result

exactly matches with the mathematical calculation. Similarly figure 5.3 shows the

simulation of the FIR filter in Xilinx where the same input sequence as stated above

was given and the output extracted clearly seems to be the same as from the

MATLAB.

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

Input Sequence

A
m

p
li

tu
d
e

n

 36

Figure 5.2a: Output sequence of pulses of FIR filter

Figure 5.3b: Output sequence of pulses of FIR filter using convolution

Figure 5.4c: Scaled Output sequence of pulses of FIR filter using convolution

Here figure 5.2a shows the FIR filter output using filter function of MATLAB and

figure 5.2b shows the convolved output using convolution function of MATLAB.

Both outputs are same as the convolution results in mirroring the sequence in reverse

0 2 4 6 8 10 12 14 16 18
-1

0

1

2

3

4

5

6

Output

y

n

 37

order after middle sample. The figure 5.2c shows the scaled output of convolution

between 0 - 255 for improved visibility.

Figure 5.5: Test bench of waveform obtained from verilog simulation for FIR structure

Here xin[35:0] is the 36 bit input of the structure and out[19:0] shows the output at

the given input sequence which is further discussed in section 5.2.3. CLK and rst is

the clock and reset buttons respectively.

5.2.2 Verification of IIR filter

Similarly the structure shown in figure 4.2 is implemented in the Verilog (Xilinx) and

the results obtained from the simulation of the Verilog code on Xilinx are compared

with the MATLAB simulation. The input sequence applied here are same as

mentioned earlier like used for FIR inputs. Figure 5.4 shows the output sequence in

time domain, which matches with the simulation result obtained from the Xilinx that

is figure 5.5.

𝑦(𝑛) = ∑ 𝑏𝑘 𝑥(𝑛 − 𝑘) − ∑ 𝑎𝑘𝑦(𝑛 − 𝑘) 0 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀 (5.2)

Figure 5.6a: Output sequence of IIR filter using MATLAB

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

Output

y

n

 38

Figure 5.7b: Scaled Output sequence of IIR filter using MATLAB

The IIR filter is implemented using impulse invariance method so figure 5.4a shows

the output sequence of the filter for the given input and figure 5.4b shows the scaled

output of IIR filter between 0 – 255 for improved visibility.

Figure 5.8: Test bench of waveform obtained from verilog simulation for IIR filter

5.2.3 Comparing:

The comparison of our results between MATLAB and FPGA, which clearly shows

that the outputs obtained from the Xilinx are verified with the MATLAB. But FIR

structure gives more accurate than the IIR based structure.

Now if you look at the output sequence of FIR filter obtained from MATLAB results

we get 0,2, 4.3, 5.5, 4.3, 2, 0.4, 2 …and same is the case with the output of the

structure designed in Verilog coding, here as the output is represented in bits form so

they are shown in integer values as one can see from the figure 5.3 that is 0, 2, 4, 6, 4,

2, 1, 2 … which is also symmetric and can be verified from the MATLAB output

sequence of FIR filter.

Similarly for IIR sequence we obtain the sequence 5, 3, 2, 1, 2, 4, 5, 3 … from

designed structure which can be easily verified from the MATLAB output sequence

 39

that is 0.5, 1.5, 2.5, 4.3, 4.5, 3, 2, 1 … shown in figure 5.4a. Here if one can see the

output sequence of FIR gives better results, but the performance of both filters is

degraded by finite word length effect, because accuracy is not achieved in this case.

The degradation is more severe in IIR than FIR. This effect can be mitigated by using

more number of bits or by using floating-point arithmetic for coefficients.

5.3 Digital Filters as a part of Measuring System:

Digital filters can be made a part of a power measuring system, which makes use of

digital filtering to separate the fundamentals components from harmonics. Thus active

power and reactive power are measured separately. From the power measurements

one can estimate the efficiency of power distribution unit. As the harmonics generated

by non-linear loads are hazardous for entire power system and are inevitable, there is

an ultimate need to develop a measuring and testing system for the real time loads, as

these are non-linear in nature most of the times.

A typical measuring system consists of following main modules.

 Analog-to-Digital conversion

 5V to 3.3V conversion

 Digital filters and calculations on FPGA

 Display

Figure 5.9: Block Diagram of multi-measuring system

The description of all these modules is described below:

5.3.1 Analog-to-Digital conversion

Analog-to-Digital conversion is necessary for the analog data to be processed on

FPGA. Analog-to-Digital conversion is done by chip AD 0808. AD0808 is a

monolithic CMOS (Complementary Metal Oxide Semiconductor) is a data acquisition

component with the resolution of 8-bits conversion, 8-channel multiplexer and a

compatible processor which is used for logic control. By the means of three select

lines we can select any 1 of 8 analog inputs to be converted into digital 8-bits output

at a time. Its main features are that it is easy to interface to all microprocessors; it

Voltage

(V)
PRE LPF

PRE LPF

I/V CONV

ADC

IIR HPF

ADC

IIR LPF

IIR LPF

IIR HPF

Multipler

Multipler

Display

Display

Current

(I)

FPGA

 40

operates at 5𝑣𝐷𝐶 with adjustable voltage reference, no zero or full scale adjusts

required, 0𝑉 − 𝑉𝑐𝑐 input range, 8-channel multiplexer with logic control and its output

meets TTL (Transistor-Transistor logic) voltage level specifications.

Table 5.1: Specs of Analog to Digital Converter

Its operation time is normally on clock

frequency is 640 kHz and uses

approximation technique for the

conversion and it is available in 28-pin

DIP package (ADC0808CCN). It

provides high speed and accuracy with

minimal temperature dependence for

this it is used in many control and

automatic applications.

Its pin configurations are as follow [13]:

 Pins 1, 2, 3,4,5,27,28 are the seven input pins which are not connected.

 Pins 6(start) and Pin 7(end of conversion) are short-circuited.

 Pin 9(output enable) is at logic 1.

 Pin 10 is for clock.

 Pin 11(Vcc) & Pin 12(Vref+) are short-circuited and at logic 1.

 Pin 13 (GND) & Pin 16(Vref-) are short-circuited and at logic 0.

 Pin 22 (ALE) is enabled only when address on the select lines changes

however it is set at logic 1.

 Pin 17, 14, 15,8,18,19,20,21 are8-bits of digital output where Pin 17 is LSB

and Pin 21 is MSB.

As 28 = 256 so input signal is quantized in 256 discrete levels where the size of each

level is 0,02V.

5.3.2 The 5V to 3.3V conversion

The output samples of the ADC assumes logic1 at 5V while the logic1 on FPGA

board (SPARTAN 3) is equal to 3.3V, so some additional circuitry is required for the

transformation of voltage levels of ADC samples. Using LM348 chip, which consist

of Quad operational amplifier package, does the additional transformation. The 8-bit

digital output of ADC is fed into two LM348 chips while each individual bit of ADC

is provided to non-inverting input of operational amplifier whose gain is unity. The

supply voltages are given as 3.3V and -3.3V instead of +15V in order to get the

output logic1 of the operational amplifier equal to 3.3V.

The analog input is fed into ADC to convert the analog input into digital current and

voltage samples which are then fed into the FPGA filter after passing through the

regulator of 3.3V, FPGA here also serve the purpose of current and voltage samples

multiplications in order to measure power and output should be displayed.

Resolution 8 bits

Total unadjusted error ±
1

2
𝐿𝑆𝐵 𝑎𝑛𝑑 ± 1 𝐿𝑆𝐵

Single supply 5𝑉𝐷𝐶

Low power 15mW

Conversion time 100 us

 41

Thus our both filters FIR & IIR can be efficiently utilized as a part of our

measurement system to accurately measure active, harmonics and other related

parameters.

 42

6 Conclusion

This report concludes with the application of the digitals filters in measuring systems

and shows an expected error threshold level. It gives an advanced maturity and

estimation of quality for implementing high resolution and high quality applications

of digital signal processing. Due to the implemented precision and accuracy, the

presented filters can also be made an integral part of many modern applications,

where ever a high accuracy and finite error is required. The design can also be

implemented in Application Specific Integrated Circuit (ASIC), which will reduce the

overall cost on the filters.

 43

7 Appendix A (Code)

A.1 FIR LOW-PASS FILTER (MATLAB, M=19)
Clc;
Clear all;
Close all;

WP=.33*pi;
ws=.6*pi;
tr_width=ws-wp;
As=40;
M=ceil((As-7.95)/(14.36*tr_width/(2*pi))+1)+1;
M=19;
n=[0:1:M-1];
if As>=50 beta=0.1102*(As-8.7);
else beta=(.5842*((As-21)^.4))+(.7886*(As-21));
end
wc=(ws+wp)/2;
alpha=(M-1)/2
m=n-alpha+eps;
hd=sin(wc*m)./(pi*m);
subplot(2,1,1);
stem(n,hd);
xlabel('n');
ylabel('Hd');
title('ideal response');grid
w_kai=(kaiser(M,beta))';
h=hd.*w_kai;
H=freqz(h,1,500);
k=0:499;
w=(pi/500)*k;
subplot(2,1,2);
stem(n,h);
xlabel('n');
ylabel('n');
title('window response');
grid
db=20*log10(abs(H)/max(abs(H)));
figure;
subplot(2,1,1);
plot(w/pi,abs(H));
xlabel('freq in pi units');
ylabel('magnitude of H');
title('amplitude spectrum');
grid
subplot(2,1,2);
plot(w/pi,db);
xlabel('freq in pi units');
ylabel('mag of H(dB)');
title('amplitude spectrum');
grid
xin=cos(.2*pi*n)+cos(.4*pi*n)+cos(.6*pi*n);
X=xin*(exp(-j*pi/500)).^(n'*k);
y=filter(h,1,xin);
Y=y*(exp(-j*pi/500)).^(n'*k);
figure;
subplot(2,1,1);
plot(w/pi,abs(X));
xlabel('freq in pi units ');ylabel('|X|');title('input signal

spectrum');

 44

grid
subplot(2,1,2);
plot(w/pi,abs(Y));
xlabel('freq in pi units');
ylabel('|Y|');
title('filtered signal spectrum');
grid
db=20*log10(abs(Y)/max(abs(Y)));
db1=20*log10(abs(X)/max(abs(X)));
figure;
subplot(2,1,1);plot(w/pi,db1);
xlabel('freq in pi units');
ylabel('|X|(dB)');
title('input signal spectrum');
grid
subplot(2,1,2);plot(w/pi,db);
xlabel('freq in pi units');
ylabel('|Y|(dB)');
title('filtered signal spectrum');grid
figure;
subplot(2,1,1);
plot(w/pi,angle(H)/pi);
xlabel('freq in pi units');
ylabel('radians');
title('filtered signal phase spectrum');
grid

db=20*log10(abs(H)/max(abs(H)));
figure;
subplot(2,1,1);
plot(w/pi,abs(H));
xlabel('freq in pi units');
ylabel('magnitude of H');
title('amplitude spectrum');
grid
subplot(2,1,2);
plot(w/pi,db);
xlabel('freq in pi units');
ylabel('mag of H(dB)');
title('amplitude spectrum');grid
xin=cos(.2*pi*n)+cos(.4*pi*n)+cos(.6*pi*n);
X=xin*(exp(-j*pi/500)).^(n'*k);
y=filter(h,1,xin);
Y=y*(exp(-j*pi/500)).^(n'*k);
figure;
subplot(2,1,1);plot(w/pi,abs(X));
xlabel('freq in pi units');
ylabel('|X|');
title('filtered signal spectrum');
grid
db=20*log10(abs(Y)/max(abs(Y)));
db1=20*log10(abs(X)/max(abs(X)));
subplot(2,1,2);
plot(w/pi,db);
xlabel('freq in pi units');
ylabel('|Y|(dB)');
title('filtered signal spectrum');grid
figure;
plot(w/pi,angle(H)/pi);
xlabel('freq in pi units');
ylabel('radians');

 45

title('filtered signal phase spectrum');grid

A.2 IIR LOW PASS FILTER (MATLAB, M=9)
wp=0.33*pi;
ws=0.6*pi;
Rp=1;
As=40;
T=1;
OmegaP=wp/T;OmegaS=ws/T;
[cs,ds]=afd_butt(OmegaP,OmegaS,Rp,As);

[b,a]=imp_invr(cs,ds,T);

function[b,a]=afd_butt(wp,ws,rp,As);
if wp<=0
 error('passband edge must be larger than zero')
end

if wp<=wp
 error('stopband edge must be larger than passband edge')
end

if(rp<=0)|(As<0)
 error('PB ripple and/or SB attenuation must be larger than zero')
end

N=ceil((log10((10^(rp/10)-1)/(10^(As/10)-1)))/(2*log10(wp/ws)))
fprintf('\n***Butterworth filter order=%2.0f\n',N)
omegac=wp/((10^(rp/10)-1)^(1/(2*N)))
[b,a]=u_buttap(N,omegac);

function [b,a]=imp_invr(c,d,T);
[R,p,k]=residue(c,d);
p=exp(p*T);
[b,a]=residuez(R,p,k);
b=real(b');
a=real(a');

function [b,a]=u_buttap(N,omegac);
[z,p,k]=buttap(N);
p=p*omegac;
k=k*omegac^N;
B=real(poly(z));
b0=k;
b=k*B;
a=real(poly(p));

A.3 FIR LOW PASS FILTER (VERILOG)

module multiply(a,b,out);

input [35:0] a;

input [35:0] b;

output [35:0] out;

assign out = a*b;

endmodule

module add(a,b,out);

input [35:0] a;

 46

input [35:0] b;

output [35:0] out;

assign out = a + b;

endmodule

module register (a,b,clk,load,rst);

input [35:0]a;

output [35:0]b;

reg[35:0]b;

input load;

input clk,rst

always@(posedge clk)

begin

 if(load==1 && rst==0)

b=a;

if(rst==1)

b=0;

end

endmodule

module block(out,x_inout,x_delayout,xin,add_in,x_delayin,co,clk,load,rst);

output[35:0]out,x_inout,x_delayout;

input[35:0]xin,x_delayin,co,add_in;

input clk ,rst;

input load;

wire [35:0] mul_out, xwidin,add_out;

register r1(xin,xwidin,clk,load,rst);

assign x_inout = xwidin;

register r2(x_delayin,x_delayout,clk,load,rst);

add a1(xwidin,x_delayin,add_out);

multiply m(add_out,co,mul_out);

add a2(mul_out,add_in,out);

endmodule

module first(xin,x_delayout1,c0,add_in1);

input [35:0]xin,x_delayout1,c0;

output [35:0]add_in1;

wire [35:0] add _out;

add b(xin,x_delayout1,add_out);

multiply m(add_out,c0,add_in1);

endmodule

module last(x_inout,clast,olast,delaylast,outlast,clk,load,rst);

input[35:0]x_inout,clast,olast;

output[35:0]outlast,delaylast;

wire [35:0]w1,mul_out;

input clk,rst;

input load;

register r1(x_inout,w1,clk,load,rst);

register2(w1,delaylast,clk,load,rst);

multiply m(wl,clast,mul_out);

add a(olast,mul_out,outlast);

endmodule

module fir(xin,clk,load,rst,outi,outf);

 47

input [35:0] xin;

output [19:0] outi;

output [15:0] outf;

input clk,load,rst;

wire [35:0] c0,c1,c2,c3,c4,c5,c6,c7,c8,c9;

wire [35:0] temp;

assign outi=temp[35:16];

assign outf=temp[15:0];

assign c0= 36'd190;

assign c1= 36'd68719476232;

assign c2= 36'd68719475944;

assign c3= 36'd1061;

assign c4= 36'd2228;

assign c5= 36'd68719475078;

assign c6= 36'd68719471140;

assign c7= 36'd2116;

assign c8= 36'd20480;

assign c9= 36'd30720;

wire[35:0]add_in1,x_delayoutl,x_delayout2,x_delayout3,x_delayout4,x_delayout5,x_

delayout6,x_delayout7,x_delayout8,x_delayout9,delaylast;

wire [35:0]o1,o2,o3,o4,o5,o6,o7,o8,o9;

wire

[35:0]x_inout1,x_inout2,x_inout3,x_inout4,x_inout5,x_inout6,x_inout7,x_inout8;

first fl(xin,x_delayout1,c0,add_in1);

last l1(x_inout8,c9,o8,delaylast,temp,clk,load,rst);

block b1(o1,x_inout1,x_delayoutl,xin,add_in1,x_delayout2,c1,clk,load,rst);

block b2(o2,x_inout2,x_delayout2,x_inout1,01,x_delayout3,c2,clk,load,rst);

block b3(o3,x_inout3,x_delayout3,x_inout2,02,x_delayout4,c3,clk,load,rst);

block b4(o4,x_inout4,x_delayout4,x_inout3,03,x_delayout5,c4,clk,load,rst);

block b5(o5,x_inout5,x_delayout5,x_inout4,04,x_delayout6,c5,clk,load,rst);

block b6(o6,x_inout6,x_delayout6,x_inout5,05,x_delayout7,c6,clk,load,rst);

block b7(o7,x_inout7,x_delayout7,x_inout6,06,x_delayout8,c7,clk,load,rst);

block b8(o8,x_inout8,x_delayout8,x_inout7,07,delaylast,c8,clk,load,rst);

endmodule

A.4 IIR LOW PASS FILTER (VERILOG)

`timescale 1ns/1ps

module multiply(a,b,out);

input[35:0]a;

input[35:0]b;

output[35:0]out;

//wire[51:0]x;

assign out=a*b;

endmodule

module add(a,b,out);

input[35:0]a;

input[35:0]b;

output[35:0]out;

 48

assign out=a+b;

endmodule

module register(a,clk,load,rst,b);

input[35:0]a;

output[35:0]b;

input load;

input clk,rst;

always@(posedge clk)

begin

if(load==1&&rst==0)

if(rst==1)

b=a;

end

endmodule

module first(xin,x_delayin,c0,c1,clk,load,rst,x_delayout,zout);

input[35:0]xin,x_delayin,c0,c1;

output[35:0]x_delayout,zout;

input clk,rst;

input load;

wire [35:0]wmul1,wmul2,wadd,x_delayout1;

assign x_delayout=x_delayout1;

multiply m1(xin,co,wmul1);

multiply m2(x_delayout,c1,wmul2);

register r1(xin,clk,load,rst,x_delayout1);

add a1(x_delayin,wmul2,wadd);

add a2(wadd,wmul1,zout);

endmodule

module block(xin,x_delayin,c,clk,load,rst,x_delayout,bout);

input[35:0]xin,x_delayin,c;

input clk,rst;

input load;

output[35:0]x_delayout,bout;

assign x_delayout=x_delayout1;

register r1(xin,clk,load,rst,x_delayout);

multiply m1(x_delayout,c,wmul);

add a1(wmul,x_delayin,bout);

endmodule

module first(xin,x_delayin,a,clk,load,rst,y,x_delayout);

output[35:0]y,x_delayout;

input[35:0]xin,x_delayin,a;

input clk,rst;

input load;

wire[35:0]x_delayout,wmul,wadd;

assign x_delayout=x_delaout1;

register r1(xin,clk,load,rst,x_delayout1);

multiply m1(x_delayout1,a,wmul);

add a1(wmul,x_delayin,wadd);

add a2(wadd,xin,y);

endmodule

module block1(xin,x_delayin,c,clk,load,rst,x_delaout,bout);

 49

input[35:0]xin,x_delayin,c;

input clk,rst;

input load;

output[35:0]x_delayout,bout;

wire[35:0]wmul,x_delayout1;

assign x_delayout=x_delayout1;

register r1(xin,clk,load,rst,x_delayout1);

multiply m1(x_delayout1,c,wmul);

add a1(wmul,x_delayin,bout);

endmodule

module IIR1(xin,clk,load,rst,zout);

//parameter

b0=2,b1=2,b2=2,b3=2,b4=2,b5=2,b6=2,b7=2,b8=2,b9=2,b10=2,b11=2,b12=2;

input[35:0]xin;

input clk,rst;

input load;

output[35:0]zout;

wire[35:0]x_delayout,x_delayout1,x_delayout2,x_delayout3,x_delayout4,x_delayout

5,x_delayout6,x_delayout7;

wire[35:0]bout1,bout2,bout3,bout4,bout5,bout6,bout7;

wire[35:0]bo,b1,b2,b3,b4,b5,b6,b7,b8;

assign bo=26'b00000000000000000000000000;

assign b1=26'b00000000000000000000000000;

assign b2=26'b00000000000000000011101011;

assign b3=26'b00000000000000011101000101;

assign b4=26'b00000000000000110010010001;

assign b5=26'b00000000000000011000110001;

assign b6=26'b00000000000000000011011110;

assign b7=26'b00000000000000000000000110;

assign b8=26'b00000000000000000000000000;

first f1(xin,bout1,b0,b1,clk,load,rst,x_delayout,zout);

block c1(x_delayout,bout2,b2,clk,load,rst,x_delayout1,bout1);

block c2(x_delayout1,bout3,b3,clk,load,rst,x_delayout2,bout2);

block c3(x_delayout2,bout4,b4,clk,load,rst,x_delayout3,bout3);

block c4(x_delayout3,bout5,b5,clk,load,rst,x_delayout4,bout4);

block c5(x_delayout4,bout6,b6,clk,load,rst,x_delayout5,bout5);

block c6(x_delayout5,bout7,b7,clk,load,rst,x_delayout6,bout6);

block c7(x_delayout6,bout8,b8,clk,load,rst,x_delayout7,bout7);

endmodule

module IIR2(xin1,clk,load,rst,zout);

input[35:0]xin1;

input clk,rst;

input load;

output[35:0]zout;

//parameter a1=2,a2=2,a3=4,a5=2,a6=2,a7=2,a8=2,a9=2,a10=2,a11=2,a12=2,a13=2;

wire[35:0]bout12,bout1,bout2,bout3,bout4,bout5,bout6,bout7,bout8;

wire[235:0]x_delayout,x_delayout12,x_delayout1,x_delayout2,x_delayout3,x_delayo

ut4,x_delayout5,x_delayout6,x_delayout7,x_delayout8;

 50

wire[35:0]a1,a2,a3,a4,a5,a6,a7,a8,a9;

assign a1=26'b00000000110000001011010000;

assign a2=26'b11111110110100000000000000;

assign a3=26'b00000001010001110010011000;

assign a4=26'b11111111000100100111001111;

assign a5=26'b00000000011100000000000000;

assign a6=26'b11111111110101000001111101;

assign a7=26'b00000000000010101001000011;

assign a8=26'b11111111111111100111011100;

assign a9=26'b00000000000000000001101000;

first f1(xin1,bout1,a1,clk,load,rst,zout,x_delayout);

block b1(x_delayout,bout2,a2,clk,load,rst,x_delayout1,bout1);

block b2(x_delayout1,bout3,a3,clk,load,rst,x_delayout2,bout2);

block b3(x_delayout2,bout4,a4,clk,load,rst,x_delayout3,bout3);

block b4(x_delayout3,bout5,a5,clk,load,rst,x_delayout4,bout4);

block b5(x_delayout4,bout6,a6,clk,load,rst,x_delayout5,bout5);

block b6(x_delayout5,bout7,a7,clk,load,rst,x_delayout6,bout6);

block b7(x_delayout6,bout8,a8,clk,load,rst,x_delayout7,bout7);

block b8(x_delayout7,0,a9,clk,load,rst,x_delayout8,bout8);

endmodule

module IIR(x,clk,load,rst,y);

input[35:0]x;

input clk,rst;

input load;

output[35:0]y;

wire[35:0]zout;

IIR1 I1(x,clk,load,rst,zout);

IIR2 I2(zout,clk,load,rst,y);

Endmodule

 51

8 Bibliography

[1] John G. Proakis and Vinay K. Ingle, DIgital Signal Processing Using MATLAB.

[2] Gopal S. Gawande, K.B. Khanchandani, and T.P Marode, "Performance

Analysis of FIR Digital Filter Design Techniques," vol. II, no. 1, Janauary 2012.

[3] Emmanuel C Ifeachor and Barrie W. Jervis, Digital Signal Processing, 2nd, Ed.

[4] Sanjit K Mitra, Digital Signal Processing, 3rd, Ed.

[5] B.A. Shaenoi, Introduction to Digital Signal Processing and Filter Designing.:

Willey, 2005.

[6] Xiaoping Lai and Zhiping Lin, "Design of IIR Digital Filter with Prescribed

Phase Error and Reduced Group-delay Error," in 8th World Congress on

Intelligence and Control and Automation, Jinan, China, 2010.

[8] T.S Sidhu, "Accurate measurement of power system frequency using a digital

signal processing technique," IEEE Instrument and Measurement, vol. 48, no. 1,

pp. 75-81, August 2002.

[7] T. Van Waterschoot and M. Moonen, "A Pole-Zero Placement Technique for

Designing Second-Order IIR Parametric Equalizer Filters," in IEEE Signal

Processing Society, vol. 15, 2007.

[9] Gian Carlo Cardarilli, A Nannarelli, M Re, and A Del Re, "Power

characterization of digital filters implemented on FPGA," in Circuits and System,

2002. IEEE International Symposium , vol. 5, Rome, Italy, 2002.

[10] Christian Baumann, "Field Programmable Gate Arrays (FPGA)," University of

Innsbruck, Seminar 2010.

[11] Stephen Brown and Jonathan Rose, "Architecture of FPGAs and CPLDs: A

Tutorial," Design and Test of Computers, 1996.

[12] Steven J.E. Wilton, "Architecture and Algorithms for Field-Programable Gate

Arrays with Embedded Memory," Department of Electrical and Computer

Engineeringq, University of Toronto, PhD Thesis 1997.

[13] National Semiconductor Coorporation , ADC0808/ADC0809, July 08, 2009,

Data sheet for microprocessors.

[14] Texas Instruments, LM348 QuardRuple Operational Amplifier, December 2002.

 52

