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Abstract 

 

Finite precision error in digital signal processing creates a threshold of quality of the 

processed signal. It is very important to agree on the outcome while paying in terms 

of power and performance. 

This project deals with the design and implementation of digital filters FIR and IIR, 

which is further utilized by a measurement system in order to correctly measure 

different parameters. Compared to analog filters, these digital filters have more 

precise and accurate results along with the flexibility of expected hardware and 

environmental changes. The error is exposed and the filters are implemented to meet 

the requirements of a measurement system using finite precision arithmetic and the 

results are also verified through MATLAB. Moreover with the help of simulations, a 

comparison between FIR and IIR digital filters have been presented. 
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1 Introduction 

1.1 Background 

Digital signal processing is concerned with the digital representation of a signal and 

the use of the digital processors to study, transform or extract information from the 

signal. Most signals in the nature are analog in form, often meaning that they vary 

continuously with time and represents the variations of physical quantities such as 

sound waves. The signals used in most popular forms of DSP are derived from analog 

signals, which have been sampled at regular intervals and converted into digital form. 

The specific reason for processing of a digital signal by a filter is to remove 

interference or noise from the signal, to obtain the spectrum of the data, or to 

transform the signal into a more suitable form DSP signals are described by real time 

operations with importance on high rate and the use of algorithms requiring arithmetic 

operations like multiplication, addition and multiply accumulate [1]. 

Digital filters play very important role in DSP, as compared with the analog filters 

they are used in a number of wide applications. A filter is a device which is use to 

change the waveform, amplitude and phase of a signal. A filtering involves improving 

the quality of a signal, to remove or reduce noise, to extract information from the 

signal and use to separate one or more signals that combined together. A digital filter 

is a mathematical algorithm applied in hardware or software that works on the digital 

input signal to produce the output of a signal for the purpose of achieving filtering. 

Digital filters are widely known for their wide range of application like data 

compression, biomedical signal processing, speech processing, image processing, data 

transmission, digital audio, digital radio, multimedia, wireless communication, radar 

imaging and measurement systems [2]. We have selected the application area of 

measurement system for our digital filters due to increasing number of non-linear 

loads and their hazards due to inference of harmonics at the power levels [3]. 

1.2 Problem Definition 

This project is practical work in the field of embedded systems for the implementation 

of a highly efficient digital filtering system and also comparison between both types 

of filters such as FIR and IIR. This filtering system further covers major industrial 

applications as nowadays almost all the industrial equipment’s depend on the use of 

computers, directly or indirectly. So measurement of current, moisture, power, 

pressure, temperature, voltage, frequency, phase, amplitude in the industry were 

challenging problems in the past but applications of computers have made this easier 

now.  
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The main parts of the project are: 

 Design & Implementation of digital filters (FIR & IIR) using MATLAB. 

 Structure design of digital filters for FPGA & its Implementation (in 

Verilog/Xilinx). 

 Verification of digital filters by comparing the results of Xilinx and 

MATLAB. 

 Investigate or optimize filter performance 

 Its applications in the measurement systems. 

1.3 Methodology 

We will use Field Programmable Gate Arrays (FPGA) as an embedded system to 

implement our filter structures. We will first implement the digital filters for their 

improved efficiency and other outstanding characteristics like stability etc. They are 

simulated in MATLAB and their frequency responses are verified, as MATLAB 

provides the facility of fda tool with the help of which we will verify whether we are 

getting the desired frequency response or not (for both FIR and IIR filters). Here 

digital filters are used instead of analog filters due to their linear phase response, easy 

implementation and re-programmability. They are modified with the help re-

programming, which is not possible for analog filters.  

After designing the filters we will select and construct the structure with the help of 

filter coefficients. These filter structures are then implemented in the FPGA (Xilinx) 

and their results are verified with the structure equations in MATLAB by giving a 

same sequence as an input. In the end we will propose these filters (FIR and IIR) as 

an application in the measurement systems.  

Our project work follows two main stages. The first stage comprises of design and 

implementation of digital filters and the second stage mainly constitutes of utilizing 

these filters as a major part of a metering system. This metering system is meant to 

measure fundamental and harmonic power, which includes a number of modules to 

successfully build a measurement system. 
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2 Digital Filters 

2.1 Introduction: 

A filter is a system or a network that is used to changes wave shape, amplitude-

frequency and phase-frequency characteristics of a signal. The purpose of filtering is 

to improve the quality of a signal for example; to remove noises to get information of 

the signal or separate two or more signals combined together i.e. efficient use in 

communication channel. Digital filters have been implemented mathematically in a 

suitable hardware or software that operates on a digital input to produce digital output 

to get our required filtering. Digital filters often operate on analog signal, presenting 

some variables stored in a computer memory. 

Digital filters play significant role in digital signal processing (DSP) as compared 

with the analog filters the digital filters are more preferable as digital filters are used 

in many applications like data compression, biomedical signal processing, image 

processing, data processing, digital audio systems and communication systems. 

A simplified block diagram of a real time digital filter with analog input and output 

signals is shown in figure 2.1. The analog inputs are sampled periodically and 

converted into series of digital samples at 𝑥(𝑛), 𝑛 = 0,1,2, …..The digital processor 

implements the filtering operations, mapping the input sequences 𝑥(𝑛), into output 

sequences 𝑦(𝑛), in accordance with the computational algorithm for the filter. The 

digital-analog converter (DAC) converts digitally filtered output into analog values 

which are then analog filtered to smooth and remove unwanted frequency components 

[3]. 

 

Figure 2.1: Block diagram of digital filter system 

There are some types of filter given below: 

 Low pass filter: It is an electronics circuit that is used to stop high frequencies 

than the cutoff frequency and it’s varied from filter to filter so it is also called 

high-cutter filter. 

 High pass filter: Filters that allows only high frequencies to pass and 

attenuates frequencies lower than a cutoff frequency.  

 Band pass filter: It is a filter that allows only certain ranges of frequencies to 

pass and rejects other out of the range. 

 Band stop filter: It is a filter that passes every frequency but attenuates 

frequencies of certain ranges. 
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2.1.1 Advantages and disadvantages of Digital Filters 

Digital filters are more superior to analog filter because of some advantages. 

 Digital filters have some properties which are not possible with analog filters 

such as they can be designed to give truly linear phase response. 

 Digital filters are programmable as a program stored in a processors memory 

determines their operations. It means that we should easily change our digital 

filters without affecting the hardware and in analog filters we can change them 

by redesigning the circuit.  

 Digital filters should be easily designed, tested and implemented on a general-

purpose computer or workstation. 

 The environment change does not affect the performance of digital filters like 

thermal variations but in a case of analog filters environment changes affect 

them. 

 We can automatically adjust the frequency response of the digital filters as 

they are implemented using programmable processor so that is why they are 

use in adaptive filters. 

 In the case of digital filters we need less hardware because using only one 

digital filter can filter several input signals or channel. 

 In digital filters we can save filtered and unfiltered data for further use. 

  In VLSI (very large scale integration) we have fabricate digital filters to make 

them in small size, to consume low power and to keep cost low. 

 In practical digital filters are more precise than analog filters. 

 Digital filters can be used in very low frequency applications like biomedical 

applications where the use of analog filters is impractical [4]. 

The following are the disadvantages of digital filters as compared with the analog 

filters: 

 In the case of bandwidth in real time the analog filters can handle much more 

bandwidth than digital filters. 

 As compared with analog filters the speed of digital filters depends upon the 

speed of digital processor used and arithmetic operations that should be 

performed for filtering process, which increases as the filter response, become 

tighter. 

 The design and development process of digital filters are much longer than 

analog filters [4]. 

2.1.2 Design of Digital Filters 

The design of filters involves five steps: 

Specifications: 

Before designing the digital filter the designer have the specification of the required 

filter such as signal characteristics (types of signal source, input and output interface, 

data rates and width), characteristics of a filter, the desired amplitude, phase 
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responses, their tolerances, speed of operation, cost of filter, choice of signal 

processor, specific software and modes of filtering. The designers have not known the 

entire requirement but as many of the filter requirement to simplify the design. 

Calculation of suitable filter coefficient: 

We have select a number of approximation method calculate the values of coefficients 

such that the filter characteristics are satisfied. The methods for the calculating filter 

coefficients depend on the types of filter. The IIR filter coefficients are calculated by 

the transforming of analog filter characteristics into digital filter. There are some 

methods for calculating the coefficients of IIR filter are impulse invariant method, 

pole placement method, matched z-transform and bilinear transformation method 

should be explained later. As with IIR there are several methods for calculating the 

coefficients of FIR filters such as window method, optimal method and frequency 

sampling method. 

Realization of filter structure: 

Realization of a filter with a suitable structure converts the given transfer function 

𝐻(𝑧) into suitable filter structure. Filter structures are in a form of block or flow 

diagrams, which shows the whole procedure of filter implementation, the structure of 

filters also depends on the type of filters as FIR or IIR.  

Analysis the effects of finite word length on filter performance: 

A finite numbers of bits affect the filter performance and sometime make it 

inappropriate. In this case the designer have to analyze these affects and select 

appropriate word length (number of bits) for the coefficients of filter. And all 

arithmetic operations should be done within the filter length. 

Implementation: 

Implementation of filter in software and hardware, after having filter coefficients, 

chosen a suitable structure and verified the filter performance after quantizing the 

coefficients and filter variables to the selected filter word length is acceptable and 

implement in a suitable software or hardware. 

2.2 Types of Digital Filters 

There are two types of digital filters, namely infinite impulse response (IIR) and finite 

impulse response (FIR). These types of filter should be represented in their basic form 

as its impulse response sequence is ℎ(𝑘), 𝑘 = 0,1,2, … . .. the input and output signals 

should be presented by the following equations 

𝑦(𝑛) =  ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)     𝑘 = 0,1,2 … … ∞     (2.1) 

𝑦(𝑛) =  ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)    𝑘 = 0,1,2, … … 𝑁 − 1    (2.2) 

We can see from the equations 2.1 & 2.2 that for the impulse response of the IIR filter 

have infinite duration whereas the impulse response of the FIR filter have finite 

respectively. It is not possible to compute the output of IIR filter by the using the 
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equation 2.1 because the length of its impulse response is at infinite. So in the case of 

IIR filtering we have used the expression in equation 2.3. 

𝑦(𝑛) =  ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘) = ∑ 𝑏𝑘 𝑥(𝑛 − 𝑘) − ∑ 𝑎𝑘 𝑦(𝑛 − 𝑘)     𝑘 = 0,1, … , ∞   (2.3) 

where 𝑎𝑘& 𝑏𝑘 are the coefficients of the filter, and equation 2.1, 2.2 shows the 

difference equation for FIR and IIR filters respectively. We have observe from 

equation 2.3 that the current output sample 𝑦(𝑛) is a function of past outputs as well 

as present and past input samples, as compared with the FIR filter 𝑦(𝑛) is the function 

of past and present values of the input samples [4]. 

2.2.1 FIR (Finite Impulse Response) Filters: 

FIR filters can be designed to have linear phase response and easy to implement. Due 

to non-recursive nature of FIR filters they offer significant computational advantages 

as compared to IIR. FIR filters suffer less from the effects of finite word length than 

IIR filters. FIR filters should be used whenever there is requirement to exploit any of 

the advantages above, in particular the advantage of linear phase. Specifications of the 

FIR filter contain to maintain the maximum pass band ripple, maximum stop band 

ripple, pass band edge frequency and stop band edge frequency. For the calculations 

of FIR filter coefficients requires large amount of computations. The coefficients can 

be calculated by using different software and tools such as FDA analysis tool in 

MATLAB. Filter design and analysis tool (FDA) is one of the most important tools of 

MATLAB, which is used to design the digital filter blocks more accurate and fast [2]. 

The most important property to design FIR filter is that its phase response should be 

linear. For this reason we shall look more closely at this property. When we have to 

pass any signal through the filter we see the changing in its amplitude and phase. The 

nature and amount of the variation of the signal is dependent on the amplitude and 

phase characteristics. We have modified the characteristics of the phase of filter by 

knowing its group delay. If a signal consists of several frequency components (such 

as speech waveform or a modulated signal) the phase delay of the filter is the amount 

of time delay each frequency component of the signal undergoes through the filter. 

The group delay on the other hand is the average time delay of the composite signal 

suffers at each frequency. Mathematically the phase delay is the negative of the phase 

angle divided by frequency is shown in equation (2.4) and the group delay is the 

negative of the derivative of the phase with respect to frequency is shown in equation 

(2.5). 

  𝑇𝑝 = −𝜃(𝜔)/𝜔        (2.4) 

 𝑇𝑔 = −𝑑𝜃(𝜔)/𝑑𝜔         (2.5) 

A filter is said to have a linear phase response if its phase response satisfies one of the 

following relationships 

𝜃(𝜔) = −𝛼𝜔         (2.6) 
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𝜃(𝜔) = 𝛽 − 𝛼𝜔         (2.7)     

If a filter satisfies the condition given in the above equation it will have both constant 

group and constant phase delay responses. It can be show that from the equation 2.8 

to be satisfied the impulse response of the filter must have positive symmetry and α 

and β are constants.   

ℎ(𝑛) = ℎ(𝑁 − 𝑛 − 1)      (2.8) 

when the condition given in equation 2.9 satisfied the filter will have a constant group 

delay only. In this case we have the negative symmetry of the filter. 𝑛 =

0 , 1 , … . (
𝑁−1

2
) where N is odd and 𝑛 = 0 , 1 , … . (

𝑁

2
) − 1, where N is even [3]. 

𝛼 = (𝑁 − 1)/2        (2.9)                                                      

A nonlinear phase characteristic filter will cause a phase distortion in the signal that 

passes through it. This is because the frequency components in the signal will each be 

delayed by an amount not proportional to frequency thereby altering their harmonic 

relationships. Such a distortion is undesirable in many applications, for example 

music, data transmission, video and biomedicine and can be avoided by using filters 

with linear phase characteristics over the different frequency bands. However linear 

filters have low performance during the existence of noise, which is not preservative 

as well as in problem where system nonlinear information is encountered. For 

example in image processing applications linear filters are used to blur the edges but 

cannot eliminate impulsive noises efficiently, and cannot perform well in the presence 

of signals that depends on noise. It is also known that for the precise properties of our 

visual system are not well understood this shows that our visual system requires 

nonlinear property. 

Linear Phase FIR Filters 

There are four types of linear phase FIR filters: 

Type 1: These types of filters are more flexible and also non-zero value at ω=0 and 

also non-zero value at the normalized frequency ω/π = 1 which is corresponds to 

Nyquist frequency.  

Type 2: Frequency response is always 0 at ω=π and it is not appropriate for high pass 

filter. 

Type 3/4: It introduces a π/2 phase shift and its frequency response is also 0 at ω=π 

and it is not appropriate for high pass filter [5]. 

Coefficient calculation methods for FIR filters: 

There are three different methods for the FIR filter designing.  
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 Window method 

Windowed filters are the simplest method use to design FIR filters and method 

used well-known frequency-domain transition functions know as windows. 

This method is very simple and easy to implement and require less 

computational efforts and should be implemented using suitable software like 

MATLAB [2]. 

In window method, the desired frequency response 𝐻𝑑(𝜔) corresponding unit 

sample response ℎ𝑑(𝑛) is determined using the following relation. 

ℎ𝑑(𝑛) =  
1

2𝜋
∫ 𝐻𝑑(𝜔)

𝜋

−𝜋
𝑒𝑗𝑤𝑛𝑑𝑤     (2.10) 

𝐻𝑑(𝑤) =  ∑ ℎ𝑑(𝑛)𝑒−𝑗𝑤𝑛∞
𝑛=−∞       (2.11) 

Steps of the window method of calculating FIR filter coefficients are: 

 Specify the 'ideal' or desired frequency response of filter 𝐻𝑑(𝜔). 

 Obtain the impulse response ℎ𝑑(𝑛), of the desired filter by evaluating 

the inverse Fourier transform. 

 Select a window function that satisfies the pass band or attenuation 

specifications and then determine the number of filter coefficients 

using the appropriate relationship between the filter length and the 

transition width. 

 Obtain values of 𝑤(𝑛) for the chosen window function and the values 

of the actual FIR coefficients, ℎ(𝑛) by multiplying ℎ𝑑(n) by 𝑤(𝑛). 

ℎ(𝑛) = ℎ𝑑(𝑛)𝜔(𝑛)      (2.12) 

Here are some advantages and disadvantages of window method: 

Simplicity This method is simple to understand and implement and it involves 

less computational efforts. 

Lack of flexibility: It is inflexible. Both the peak pass band and stop band 

ripples of the filter are equal, so that the designer may end up with either too 

small a pass band ripple or too large a stop band attenuation. 

Frequency response: The effect of convolution of the spectrum of the window 

function and the desired response, the pass band and stop band edge 

frequencies cannot be precisely specified. 

Fixed attenuation: For all window methods (except the Kaiser) the maximum 

ripple amplitude in the filter response is fixed regardless of how large we 

make N. Thus the stop band attenuation for a given window is fixed. Thus, for 

a given attenuation specification, the filter designer must find a suitable 

window. 
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 Optimal method 

The optimal filter design method is used to design FIR filter, different 

methods are used to design FIR filter to minimize error in optimal method like 

least square method, equiripple method, maximally flat, generalized equiripple 

and constrained band equiripple [2]. 

In least square method we have not any constraint in the response between 

points and sample and for this we will get poor results. When the number of 

samples is greater than the order of the filter then the least square method used 

to control response between the sample points. The frequency sample 

technique is more interpolation technique than approximation. The optimal 

method of calculating FIR filter coefficients are very powerful, flexible and 

easy to implement because of an excellent design program. For these reasons 

and because the method yields excellent filters it has become the method of 

first choice in many FIR applications. 

Following are the steps for calculating filter coefficients by the optimal 

method 

 Specify the band edge frequencies (that is, pass band and stop band 

frequencies), pass band ripple and stop band attenuation (in decibels or 

ordinary units), and sampling frequency. 

 Normalize each band edge frequency by dividing it by the sampling 

frequency, and determine the normalized transition width. 

 Use the pass band ripple, stop band attenuation and the normalized 

transition width to estimate the filter length 𝑁. The value of 𝑁 required 

to meet the specifications would be slightly higher than the values 

determined. 

 Input the parameters to the optimal design program to obtain the 

coefficients  𝑁 , band edge frequencies and weights for each band, 

together with a suitable grid density (typically 13 or 32). 

 Check the pass band ripple and stop band attenuation produced by the 

program. 

If the specifications are not satisfied, increase the value of 𝑁  and 

repeat steps again and again until they obtain and check the frequency 

response to satisfy the specifications. 

 It is noted that in the optimal program, we considers only the pass band 

and stop band during its approximation stage, treating the transition 

region as depletion region. To avoid failure or problems with 

convergence of the algorithm, it is best to set the transition regions 

equal to the width of the smallest transition region when designing 

band pass or multiple-band filters. If unequal transition widths are 

used, the frequency response should always be checked to ensure that 
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the specification is met. Local maxima and minima may occur in the 

transition bands, giving unexpected filter characteristics [4]. 

 Frequency sampling method 

The frequency sampling method allows us to design non-recursive FIR filters 

for both standard frequency selective filters like low pass, high pass, band pass 

filters and filters with arbitrary frequency response. A main attraction of the 

frequency sampling method is that it also allows recursive implementation of 

FIR filters, leading to computationally efficient filters. With some restrictions, 

recursive FIR filters whose coefficients are simple integers may be designed, 

which is attractive when only arithmetic operations are possible, as in systems 

implemented with standard microprocessors [5]. 

Following are the steps for calculating filter coefficients by frequency 

sampling method. 

 Specify the ideal or desired frequency response, the stop band attenuation 

and band edge frequencies of the target filter. 

 From the specification, we select a type 1 frequency sampling filter, where 

frequency samples are taken at intervals of 𝑘 𝐹𝑠/𝑁 or a type 2 frequency 

sampling filter, where frequency samples are taken at intervals of (k + 1/2) 

Fs/N. 

 Use the specification in step 1 to determine the number of frequency 

samples of the ideal frequency response, 𝑀, the number of transition band 

frequency samples, BW, the number of frequency samples in the pass band 

and the values of the transition band frequency samples (𝑖 =  1, 2, . , . , 𝑀). 

 Use the appropriate equation to calculate the filter coefficients. 

Structure of FIR Filters 

The most widely used structures of FIR filters are parallel and cascade because these 

are simple to implement, require simpler filtering algorithm and less sensitive to the 

finite word length. A causal FIR filter of order 𝑁  is characterized by a transfer 

function 𝐻(𝑧) [4]. 

𝐻(𝑧) =  ∑ ℎ[𝑘]𝑧−𝑘𝑁
𝑘=0        (2.13) 

which is a polynomial in 𝑧−1 of degree 𝑁 in time domain the input-output relation of 

the above FIR filter is given  

Direct Form: It is the most widely form of FIR filters because it is simple to 

implement and understand.  In this form, FIR filter sometime should be called a 

tapped delay line as it resembles a tapped delay line or transversal filter. A structure 

in which the multipliers coefficients are the coefficients of the transfer function is said 

to be direct form structure. A FIR filter with the order 𝑁 is characterized by 𝑁 +

 1 coefficient and requires 𝑁 + 1 multiplier and 𝑁 two input adders. 
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𝑦[𝑛] =   ∑ ℎ[𝑘]𝑥[𝑛 − 𝑘]𝑁
𝑘=0        (2.14) 

where 𝑥[𝑛] and 𝑦[𝑛] are the inputs and output sequences respectively. Due to the                          

linear phase response of FIR filters in different frequency ranges theses filters are 

characterized by different realization methods. 

A realization structure of an FIR filter can be obtained from the equation 2.14 and for 

example 𝑁 = 4 an analysis of structure yields as in equation 2.15. 

𝑦[𝑛] = ℎ[0]𝑥[𝑛] + ℎ[1]𝑥[𝑛 − 1] + ℎ[2]𝑥[𝑛 − 2] + ℎ[3]𝑥[𝑛 − 3] + ℎ[4]𝑥[𝑛 − 4]

 (2.15) 

 

Figure 2.2: Direct form of FIR filter 

Frequency Sampling Structure: As compared with the transversal structure, the 

frequency sampling structure is more efficient to be compute as it require less 

coefficients but the drawback is that it require more storage and difficult to 

implement. 

 

Figure 2.3: Frequency Sampling Structure of FIR filter 
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Fast convolution structure: The fast convolution structure uses the computational 

advantages of fast Fourier transform (FFT) and it should be use where power 

spectrum is required. 

Lattice structure: It is used in both types of filters FIR and IIR. A single input and a 

pairs of outputs characterized the lattice structure. 

 

Figure 2.4: Lattice structure of FIR and IIR filter 

Linear phase form: When the impulse response of an FIR filter exhibits a certain 

symmetry conditions, then it is said to be that FIR has linear phase response. 

2.2.2 2.2.2 IIR (Infinite Impulse Response) Filters: 

The practical design methods for digital infinite impulse response (IIR) filters include 

popular methods which permit analog filters to be converted into equivalent digital 

filters. IIR digital filters are given by the following equation: 

 𝑦(𝑛) = ∑ℎ(𝑘)𝑥(𝑛 − 𝑘)       (2.16) 

𝑦(𝑛) =  ∑𝑏𝑘 𝑥(𝑛 − 𝑘) − ∑𝑎𝑥  𝑦(𝑛 − 𝑘)     (2.17) 

where ℎ(𝑘) is the impulse response of the filter which is infinite in nature where 𝑎𝑘& 

𝑏𝑘  are the coefficients of the filter, 𝑥(𝑛) and 𝑦(𝑛) are the input and output of the 

filter. An important thing in the design process is to find the suitable values for the 

coefficients. 

An IIR filters have normally requires less coefficients than an FIR filter for the same 

specifications so we have use IIR filter when we requires sharp cutoff. As compared 

to the IIR filters, the FIR filters required more coefficients because of the sharper 

cutoff. FIR filters require more processing time and storage for their implementation 

for a specific given amplitude. However one can readily take advantage over the 

computational speed of the FFT and multi-rate technique has used to improve the FIR 

filters. A plot of the poles and zeros of the transfer function is known as pole zero 

diagrams and provide a very useful way of representing and analyzing the filter in 

complex z plane. For the filter to be stable its entire poles must be lie inside the unit 

circle and there are no restrictions on the zero location. If we have zeros on the unit 

circle that means your filter will cancel any signal with that frequency completely 

because the transfer function is zero and if the zero are outside, then the unit circle are 

non-minimum phase zero and minimum phase zero when zeros lies inside the unit 

𝑍−1 + + 

+ + 

𝑤1(𝑛) 

𝑦1(𝑛) 

𝑘1 

𝑘1 𝑥(𝑛) 
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circle. The system, which does not have, zeros in the right half s-plane, are called 

minimum phase systems. If a transfer function has poles and/or zeros in right half of 

s-plane then it is called non-minimum phase. The phase response is always larger than 

for systems, which have minimum phase behavior with same amplitude response. 

Many applications such as microwave, radar and optical communications, video 

signal processing and digital image processing often used digital filters in order to 

manage the constant group delays to overcome the large signal delays, distortion and 

disturbances. Infinite impulse response digital filters are mostly preferred against 

finite impulse response filters because of their computational performance, frequency 

selectivity, and low group delays [6]. 

But along with this, the designing of IIR filters is much challenging task than FIR 

filters since their group delays are non-uniform, and optimization problems becomes 

non-convex in result. Transformation of the non-convex IIR filter design had been 

achieved by using the Semi-definite programming (SDP), linear programming (LP) 

and quadratic programming (QP) which shows better efficiencies by approaching 

optimal solution in mini-max and least-squares and least error norm sense. 

Design of IIR Filters 

The design of IIR filters can be consist of five main stages 

 Filter specification at which stage the designer gives the function of the filter 

and desired performance. 

 Approximation or coefficient calculations where we select the methods and 

calculate the values of coefficient in the transfer function 𝐻(𝑍). 

𝐻(𝑍) =
𝑌(𝑍)

𝑋(𝑍)
        (2.18) 

 Realization, which is simply converting the transfer, functions into a suitable 

filter structure. The structure for IIR filters is parallel and cascaded of second 

and first filter section. 

 Analysis of errors that would arise from representing filter coefficient and 

carrying out the arithmetic operations involved in filtering with only a finite 

number of bits. 

 Implementation that involves building the hardware or writing the software 

codes and carrying out the actual filtering operation [6]. 

Performance Specification: 

The design of the digital IIR filters starts with the specifications of the 

performance requirements. These should include: 

 Characteristics of a signal source or sink. 

 The frequency response of the filter (the desired amplitude and phase 

response and their tolerance. 
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 The method of implementation such as a high-level language routine in a 

computer or as in a DSP processor based system, choice of a signal 

processor and modes of a filtering in real time. 

 Other design limits such as cost and permissible signal degradation of the 

filter. 

In general most of the above requirements are application dependent the 

designer may not have enough information to specify the filter completely at 

the start but as many as the filter requirements as possible should be specified 

to simplify the design process. 

For frequency selective filters such as low pass and band pass filters the 

frequency response specifications are often in the form of tolerance scheme 

The following parameters are normally used to specify the frequency response 

ℇ2= Passband ripple parameter 

𝛿𝑝= Passband deviation 

𝛿𝑠= Stopband deviation 

The band-edge frequencies are occasionally given in a normalized form that is 

a fraction of the sampling frequencies but we have specified them in standard 

units of hertz or kilohertz. Pass-band and stop-band deviations may be 

expressed as ordinary number or in decibels the pass-band ripples in decibels 

is  

𝐴𝑝 = 10 log 10 (1 + ℇ2) = −20 log 10 (1 − 𝛿𝑝)  (2.19) 

And the stop-band attenuation in decibels is  

𝐴𝑠 = −20 log 10 (𝛿𝑠)       (2.20) 

Hence the pass-band ripple is the difference between the minimum and 

maximum deviation in the pass-band [5]. 

Coefficient calculation methods for IIR filters: 

There are several ways to design the filters but the most efficient way is that first 

designed the analog filter because analog filters can be transform into equivalent IIR 

digital filters with similar specifications and then convert the require filter into digital 

filter. Following are the different methods to convert analog IIR filters into digital IIR 

filters: 

 Pole Zero Placement Technique 

Many applications of the of signal processing contain improve or attenuate 

some part of the signal’s frequency spectrum as leaving the remainder of the 
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spectrum unaffected. This effect obtained by using band pass or band stop 

filters have frequency response, which considered by gain increasing or 

decreasing center frequency𝑓𝑐. 

An IIR filter can be calculated by using the formula which combines the 

inputs x[n] and outputs y[n] as given below. 

𝑦[𝑛] =  ∑ 𝑏𝑘
𝑀
𝑘=0 𝑥[𝑛 − 𝑘] + ∑ 𝑎𝑘

𝑀
𝑘=1 𝑦[𝑛 − 𝑘]   (2.21) 

where the coefficient 𝑏𝑘 is feed forward coefficient as which is only act on the 

input signal x[n] as well as 𝑎𝑘   is the feedback coefficient which act on the 

output signal y[n]. In Z-transform we know that the input and out relationship 

which is  

 𝑌(𝑧) = 𝐻(𝑧)𝑋(𝑧)      (2.22) 

The transfer function of the IIR filter is given as: 

𝐻(𝑧) =
𝑏0+𝑏1 𝑧−1+⋯+𝑏𝑀 𝑧−𝑀

1−𝑎1 𝑧−1−⋯−𝑎𝑁 𝑧−𝑁       (2.23) 

Note that the numerator and denominator both are polynomials as all the 

polynomials have roots. The roots of the numerator are called “Zeros” of the 

filters and the roots of the denominators are called “poles” of the filters [7]. 

 Impulse invariant method 

Impulse invariant method is used to find coefficients of IIR filter, first of all 

we have to determine analog filter response 𝑯(𝒔) satisfying the specification 

then we have to use partial fraction for the expansion of 𝑯(𝒔), obtain the z-

transform of each partial fraction 𝒛 and 𝑯(𝒛) by combining z-transforms of 

partial fraction. The main advantages of impulse invariant method is that we 

should preserve the stability and order of the analog filter and its disadvantage 

is that it is not preferable for high pass and band stop filters and have 

distortion in the shape of frequency response due to aliasing [5]. 

Consider an analog filter 

𝐻(𝑠) =
𝐶

𝑠−𝛼
         (2.24) 

The impulse response of the filter is given by 

ℎ(𝑡) = 𝐶𝑒𝛼𝑡        (2.25) 

Sampled impulse response 

ℎ(𝑛) = 𝐶𝑒𝛼𝑛𝑇        (2.26) 

Now compute the z-transform 



 16 

𝐻(𝑧) =
𝐶

1−𝑒𝛼𝑇𝑧−1       (2.27) 

The location of the poles of the filter 

𝛼 ⟶ 𝑒𝛼𝑇        (2.28) 

In general form 

𝛼𝑘 ⟶ 𝑒𝛼𝑘𝑇        (2.29) 

The numerator degree should be less than any denominator degree in any 

rational transfer function 

𝐻(𝑠) = ∑
𝐶

𝑠−𝛼𝑘
       (2.30) 

Similarly 

𝐻(𝑧) =  ∑
𝐶

1−𝑒𝛼𝑘𝑇𝑧−1
       (2.31) 

 The impulse response of the discrete filter ℎ(𝑛𝑇)  is same as that of the 

analog filter ℎ(𝑡) at the discrete time instants 𝑡 =  𝑛𝑇, 𝑛 =  0, 1, . . .. it is 

for this reason that the method is called impulse invariant method. 

 The sampling frequency affects the frequency response of the impulse 

invariant discrete filter. A suitably high sampling frequency is necessary 

for the frequency response to be close to that of the equivalent analog 

filter. 

 As is the case of sampled data systems, the spectrum of the impulse 

invariant filter equivalent to 𝐻(𝑧) would be the same as that of the original 

analog filter, 𝐻(𝑠)  but repeats at multiples of the sampling frequency 

leading to aliasing. However, if the roll-off of the original analog filter is 

sufficiently sharp or if the analog filter is band limited before the impulse 

invariant method is applied, the aliasing will be low. Low aliasing can also 

be achieved by making the sampling frequency high [5]. 

 Matched Z-transform method 

The Matched Z-transform method directly plots the poles and zeros of an 

analog filter directly into poles and zeros of the z-plane. This method looks to 

work well for some types of analog filters but not in others but it was soon 

discovered that improved results could be obtained by adding number of zeros 

at the Nyquist point. Matched z-transform method simply to apply as well as 

design can be calculated by using calculator and works moderately well not 

for low pass and band pass but also for high pass and band stop filters 

including elliptic filters. The disadvantages of this method are that the pass 

band loss characteristic of digital filter is seriously distorted relative to that of 

the analog filter. The high sampling frequency is necessary to obtain good 

results, which can introduce certain problems. Z-transform method is very 
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simple that is used to convert analog filter to digital filter by using following 

equation: 

𝐻(𝑠) =  
∑ (𝑠−𝑧𝑘)𝑀

𝑘=1

∑ (𝑠−𝑝𝑘)𝑀
𝑘=1

⟶ 𝐻(𝑧) =
∑ (1−𝑒𝑧𝑘𝑇𝑧−1)𝑀

𝑘=1

∑ (1−𝑒𝑝𝑘𝑇𝑧−1)𝑁
𝑘=1

   (2.32) 

Poles and zeros are transformed with equation 

𝑧𝑘 ⟶ 𝑒𝑧𝑘𝑇 , 𝑝𝑘 ⟶ 𝑒𝑝𝑘𝑇      (2.33) 

where T is the sampling time, poles are the same as in impulse invariance 

method and zeros should be at new position but this method suffers aliasing 

[10]. 

 Bilinear Z- transformation method 

The bilinear Z-transformation is important method to obtain IIR filter 

coefficients. In this method the main operation required to convert an analog 

filter, 𝑯(𝒔) into an equivalent digital filter. The bilinear transform generate a 

digital filter whose frequency response has the same characteristics as well as 

the frequency response of the analog filter but its phase response may be quite 

different. In case of bilinear z-transformation the following equation can be 

used for analog to digital conversion.       

𝑠 =
2

𝑡0

1−𝑧−1

1+𝑧−1        (2.34) 

The ratio 
(𝑧−1)

(𝑧+1)
 should be used when we want to convert our transfer function 

into digital filter and the factor 
2

𝑡𝑜
 is an optional scaling and it should be cancel 

without affecting the final result [5][9]. 

With the impulse invariant method, after digitizing the analog filter, the impulse 

response of the original analog filter is well-maintained but not its magnitude-

frequency response. Because of inherent aliasing the method is unsuitable for high 

pass or band stop filters. The bilinear z-transform method on the other hand produces 

very efficient filters and is well suited for calculating the coefficients of frequency 

selective filters. The impulse invariant method is good for simulating analog systems 

with low-pass characteristics, but the bilinear method is best for frequency selective 

IIR filters. The matched z-transform shares most of the inherent problems of the 

impulse invariant method. 

Structure of IIR Filters: 

IIR filters consist of three types of structures. 

Direct form: This form represents transfer function 𝐻(𝑧) of a filter in a simpler way. 

The transfer function 𝐻(𝑧)  of 𝑁𝑡ℎ  order IIR filter is characterized by 2𝑁 + 1 

coefficients. A direct form structure of IIR filter is defined as if the coefficients of 
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multipliers are the coefficients of transfer function. Consider the transfer function 

𝐻(𝑧) of first order IIR filter in equation 2.35. 

𝐻(𝑧) =  
𝑃(𝑧)

𝐷(𝑧)
=  

𝑝0+𝑝1𝑧−1

1+𝑑1𝑧−1         (2.35) 

Consider fourth order IIR filter in figure 2.4 

𝐻(𝑧) =
∑ 𝑏𝑘𝑧−𝑘4

𝑘=0

1+∑ 𝑎𝑘𝑧−𝑘4
𝑘=0

        (2.36) 

𝑦(𝑛) =  ∑ 𝑏𝑘𝑥(𝑛 − 𝑘) − ∑ 𝑎𝑘𝑦(𝑛 − 𝑘)4
𝑘=1

4
𝑘=4     (2.37) 

 

Figure 2.5: Direct form of IIR filter 

Cascade form: A digital filter is realized to be cascade when the numerator and 

denominator polynomial of the transfer function 𝐻(𝑧) is a product of polynomials of 

a lower degree. Consider a transfer function in equation 2.38 

𝐻(𝑧) =  
𝑃(𝑧)

𝐷(𝑧)
=

𝑃1(𝑧)𝑃2(𝑧)𝑃3(𝑧)

𝐷1(𝑧)𝐷2(𝑧)𝐷3(𝑧)
      (2.38) 

Now, consider an example for cascaded form of IIR filter in figure 2.5 

𝐻(𝑧) = 𝐶 ∏
1+𝑏1𝑘𝑧−1+𝑏2𝑘𝑧−2

1+𝑎1𝑘𝑧−1+𝑎2𝑘𝑧−2
2
𝑘=1        (2.39) 

𝑤1(𝑛) = 𝐶𝑥(𝑛) − 𝑎11𝑤1(𝑛 − 1) − 𝑎21𝑤1(𝑛 − 2)    (2.40) 

𝑦1(𝑛) = 𝑏01𝑤1(𝑛) + 𝑏11𝑤1(𝑛 − 1) + 𝑏21𝑤1(𝑛 − 2)   (2.41) 

𝑤2(𝑛) = 𝑦1(𝑛) − 𝑎12𝑤2(𝑛 − 1) − 𝑎22𝑤2(𝑛 − 2)    (2.42) 

𝑦(𝑛) = 𝑏02𝑤2(𝑛) + 𝑏12𝑤2(𝑛 − 1) − 𝑏22𝑤2(𝑛 − 2)    (2.43) 
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Figure 2.6: Cascaded form of IIR filter 

Parallel form: In parallel form the transfer function 𝐺(𝑧) have expanded by using 

partial fractions. A partial-fraction expansion of the transfer function 𝐺(𝑧) is given by 

the following equation 2.44. 

𝐺(𝑧) =  ∑
ƿ𝜄

1−𝜆𝜄𝑧−1
𝑁
𝑙=1          (2.44) 

where ƿ𝜾 is a constant and is called residue is given by equation 2.45. 

ƿ𝜾 = (1 − 𝝀𝜾𝑧−1)𝐺(𝑧)       (2.45) 

Representation of parallel form in figure 2.6 

𝐻(𝑧) = 𝐶 + ∑
𝑏1𝑘+𝑏1𝑘𝑧−1

1+𝑎1𝑘𝑧−1+𝑎2𝑘𝑧−2
2
𝑘=1        (2.46) 

𝑤1(𝑛) = 𝑥(𝑛) − 𝑎11𝑤2(𝑛 − 1) − 𝑎22𝑤2(𝑛 − 2)    (2.47) 

𝑤2(𝑛) = 𝑥(𝑛) − 𝑎12𝑤2(𝑛 − 1) − 𝑎22𝑤2(𝑛 − 2)     (2.48) 

𝑦1(𝑛) = 𝑏01𝑤1(𝑛) + 𝑏11𝑤1(𝑛 − 1)      (2.49) 

𝑦2(𝑛) = 𝑏02𝑤2(𝑛) + 𝑏12𝑤2(𝑛 − 2)      (2.50) 

𝑦3(𝑛) = 𝐶𝑥(𝑛)        (2.51) 

𝑦(𝑛) = 𝑦1(𝑛) + 𝑦2(𝑛) + 𝑦3(𝑛)      (2.52) 
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Figure 2.7: Parallel form of IIR filter 

Nyquist effect: 

The three methods for converting analog filters into equivalent discrete-time filters 

are the matched z-transform, the impulse invariant and the bilinear z-transform 

methods and have a significant effect on the filter characteristics (e.g. magnitude 

phase and group delay responses), in certain cases. The frequency band for analog 

filters spreads from zero to infinity, whereas for digital filters it is from zero to the 

Nyquist frequency (i.e. half the sampling frequency). 

Thus the magnitude-frequency response of digital filters designed using either of three 

methods may be significantly different from those of the analog filter because the 

entire analog frequency band (zero to infinity) is now compressed into a narrow band 

(zero to Nyquist frequency). This difference represents a distortion, which is stated as 

Nyquist effect. 

In many applications, the Nyquist effect is not harmful besides the provision of 

greater attenuation than specified. However, in applications where it is desirable to 

hold the analog filter response, such as in professional and semi-professional audio 

work, the effect represents an undesirable distortion. In such applications, the extent 
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of the distortion would be a factor in the choice of a transform for converting an 

analog filter into an equivalent discrete-time filter. The influence on other filter 

characteristics, such as group delay and impulse responses, may also be a factor in the 

choice of a method [5]. 

Finite Word Length Affects in IIR filters: 

The coefficients, 𝑎𝑘  and 𝑏𝑘  obtained earlier are of infinite or very high precision, 

typically six to seven decimal places. When an IIR digital filter is implemented in a 

small system, such as an 8-bit microcomputer, errors arise in representing the filter 

coefficients and in performing the arithmetic operations specified by the difference 

equation. These errors reduce the performance of the filter and filter should be 

unstable. Before the implementation of an IIR filter, it is important to determine the 

amount to which its performance will be reduced by finite word length effects and to 

find a remedy if the reduction is not suitable. In general, the effects of these errors can 

be reduced to acceptable levels by using more bits but this may be at the expense of 

increased cost. 

The main errors in digital IIR filters are as follows: 

 ADC quantization noise which results from presenting the samples of the input 

data, 𝑥(𝑛), by only a small number of bits. 

 Coefficient quantization errors caused by presenting the IIR filter coefficients by a 

finite number of bits. 

 Overflow errors which result from the additions or accumulation of partial results 

in a limited register length. 

 Product round off errors caused when the output 𝑦(𝑛), and results of internal 

arithmetic operations are rounded to the allowed word length 

The extent of filter degradation depends on: 

(i) The word length and type of arithmetic operations used to perform the 

filtering operation.  

(ii) The method used to quantize the filter coefficients and variables. 

(iii) The filter structure. 

From knowledge of these factors, the designer can calculate the effects of finite word 

length on the filter performance and take corrective action if necessary. Depending on 

how the filter should be implemented some of the effects may be irrelevant. For 

example, when implemented as a high-level language program on most large 

computers, coefficient quantization and round off errors are not important. For real-

time processing, finite word lengths (typically 8 bits, 12 bits, and 16 bits) are used to 

represent the input and output signals, filter coefficients and the results of arithmetic 

operations. In these cases, it is always necessary to study the effects of quantization 

on the filter performance. The effects of finite word length on performance are more 

difficult to analyze in IIR filters than in FIR filters because of their feedback arrange 

[5]. 
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Quantization Errors Effects on Coefficients: 

The primary effect of quantizing filter coefficients using a finite number of bits is to 

change the positions of the poles and zeros of 𝐻(𝑧) in the z-plane. This could lead to: 

 Instability or potential instability for high-order filters, with sharp transition 

widths and poles close to the unit circle. 

 A change in the desired frequency response, the quantized filter should he 

analyzed to confirm that its word length is sufficient for both stability and 

satisfactory frequency response. 

Computational Requirements: 

The designer must analyze the impact of the computational requirements of a digital 

filter on the processor that will be used. The primary requirements for digital fillers 

are multiplication, additions, accumulation and delays or shifts. For example, a filter 

consisting of a second-order section would require typically four multiplications, four 

additions, and some shifts and storage. If the filtering is performed in real time, for 

example at 44.1 kHz (or digital audio) the arithmetic operations must be performed 

once every 1 / (44.1 kHz). Allowance must also be made for other overheads such as 

fetching the input data or saving or outputting the filtered data samples as well as 

other housekeeping operations [5]. 

2.2.3 Comparison between FIR and IIR Filters 

The choice between FIR and IIR mainly depends on their comparisons: 

Linear phase response: 

FIR filters have linear phase response because there is not any phase distortion in the 

signal generated from a filter and this is very important in many signal-processing 

applications like data transmission, biomedical, digital audio and image processing. 

As compared to FIR filter the IIR filter have non-linear phase response especially at 

band edges. 

Stability: 

As compared to the IIR filters, FIR filters have always-stable response. 

Round off noise: 

The limited number of bits used to implements the filter such as round off noise and 

quantization of coefficients errors is much less in FIR than in IIR. 

Coefficient requirement: 

As compared to the IIR filters, the FIR filters required have more coefficients because 

of the sharper cutoff. FIR filters require more processing time and storage for their 

implementation for a specific given amplitude. However one can readily take 

advantage over the computational speed of the FFT and multi-rate techniques have 

been used to improve the FIR filters. 
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Analog filter transformation:   

We can transform analog filters into IIR digital filters with the similar specifications 

but it is not possible in the case of FIR filter as they have no analog counterpart. 

Easy synthesis: 

The arbitrary frequency of the FIR filter should be easy to synthesize. 
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3 Design and Implementation of Filters (MATLAB) 
Designing of filters involves following five basic steps as described earlier in section 

2.1.2. Figure 3.1 shows the flow chart of the design stages for digital filters. 

 Filter Specification 

 Calculation of Filter Coefficient  

 Realization of Structure 

 Analysis of finite word length effects 

 Implementation 

   

Figure 3.1 Summary of Design Stages for Digital filters (FIR & IIR) 

3.1 FIR Filter 

Filter specification involves following four parameters: 

 Pass band attenuation 

 Stop band attenuation 

 Pass band edge frequency 

 Stop band edge frequency 

Considering electrical power systems we choose pass-band frequency of 50 Hz, 

which is basically used as a standard for power systems [8]. Similarly the harmonic 
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components are the multiples of pass-band frequency so the first harmonics will have 

frequency of 100 Hz therefore the stop-band edge frequency is selected as 90 Hz. 

Now stop band attenuation should be as large as possible and pass band attenuation 

should be as small as possible in order to have more precise and accurate 

measurements. The sampling frequency was chosen to be 300 Hz and pass-band and 

stop band frequencies must be converted in radians as the signal processing toolbox 

operates with normalized frequencies in filter design functions. To convert these pass 

band and stop band frequencies to normalized frequencies we will divide them by one 

half of the sampling frequencies. Similarly these normalized frequencies are 

multiplied by π to get angular frequency around the unit circle. We have calculated 40 

dB and 1 dB stop band and pass band attenuation respectively from equations 2.19 

and 2.20. 

Ωp = 
50𝐻𝑧

150𝐻𝑧
=  0.33*π = Pass band edge frequency in Radians 

Ωs = 
90𝐻𝑧

150𝐻𝑧
= 0.6*π = Stop band edge frequency in Radians 

As = 40 dB = Stop band attenuation 

Rp = 1 dB = Pass band ripples or attenuation 

Fs = 300 samples/sec 

Since the equation the FIR filter is given by 

𝑦(𝑛) = ∑ℎ(𝑘)𝑥(𝑛 − 𝑘)                         0 ≤ 𝑘 ≤ 𝑁 − 1   (3.1) 

Now the next step is to calculate the filter coefficient ℎ(𝑛) so filter meets the design 

specifications. Several methods are used to calculate the filter coefficients as 

discussed in chapter 2, but we chose window method which is easy to calculate and 

implement without using any software as in case of optimal method. 

The basic idea behind the window method is to choose proper ideal filter, which has a 

non-casual, infinite duration impulse response, and then truncate its impulse response 

to obtain the linear phase and casual FIR filter. In the window methods we actually 

multiply the ideal response by a window function to obtain the finite impulse 

response. 

Now among different window function we select Kaiser window function for this 

application because its provides maximum stop band attenuation as compared to other 

window functions and also has a ripple control parameter and it is also more efficient 

in terms of the number of coefficients to meet the same specifications. Kaiser window 

is one of the useful and optimum window, optimum in sense of providing large main 

lobe width for the given stop-band attenuation which gives the sharpest transition 

width and it also provide flexible transition bandwidth. 
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We implemented the Kaiser Window function 𝑤(𝑛) in MATLAB, and then obtained 

the impulse response ℎ(𝑛) of our filter by multiplying the window function by the 

ideal response ℎ𝑑(𝑛) of the low pass filter. This is given by the simple equation 

ℎ(𝑛) = ℎ𝑑(𝑛) ∗ 𝑤(𝑛)       (3.2) 

Figure 3.2 shows the impulse response before and after windowing. The impulse 

response becomes finite after windowing that why it is called finite impulse response 

filter. 

 

Figure 3.2: Plot of coefficients obtained or impulse response h(n) 

Coefficients of ℎ(𝑛) at M=19 

0.0029, -0.0077, -0.0121, 0.0162, 0.0340, -0.0253, -0.0854, 0.0323, 0.3109, 0.4650, 

0.3109, 0.0323, -0.0854, -0.0253, 0.0340, 0.0162, -0.0121, -0.0077, 0.0029 

The filter function 𝐻(𝑧) is obtained by taking the Fourier transform of the impulse 

response is given by 

𝐻(𝑧) = ∑ℎ(𝑛)𝑧 − 𝑛                0 ≤ 𝑛 ≤ 𝑁 − 1    (3.3) 

The filter function thus obtained was plotted to check the filter performance and is 

shown in the figure 3.3. 
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Figure 3.3: Frequency response of low pass FIR filter 

From the figure 3.3 we obtained the results as given in specifications, that is cut off 

frequency 0.33π and stop band is 0.6π radians. 

 

Figure 3.4: Phase reponse of low pass FIR filter 

From the figure 3.4 we see that the phase response of our designed filter is linear and 

so it is prove that FIR filters have a linear phase response. 

3.2 IIR Filter 

IIR low pass filter specification involves the same four steps as of FIR low pass filter. 

So here we have selected the same specification of IIR low pass filter as selected in 
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Ωp = 0.33*π = Pass band edge frequency in Radians 

Ωs = 0.6*π = Stop band edge frequency in Radians 

As = 40 dB = Stop band attenuation 

Rp = 1 dB = Pass band ripples or attenuation 

Fs = 300 samples/sec 

Since IIR filter is characterized by the following equation 

𝑦(𝑛) =  ∑ℎ(𝑘)𝑥(𝑛 − 𝑘)          0 ≤ 𝑘 ≤ ∞     (3.4) 

𝑦(𝑛) = ∑𝑏𝑘𝑥(𝑛 − 𝑘) − ∑𝑎𝑘𝑦(𝑛 − 𝑘)         0 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀 (3.5) 

Next step is to calculate the filter coefficients 𝑎𝑘 & 𝑏𝑘 

For coefficient calculations we have choose impulse invariant method is best suited 

for the low filtering because the impulse response of the original analog filter is 

preserved. In this method starting with suitable analog transfer function 𝐻(𝑠), the 

impulse response ℎ(𝑡) is obtained using Laplace transform. The ℎ(𝑡) thus obtained is 

suitably sampled to produce ℎ(𝑛𝑇), and the desired transfer function 𝐻(𝑧) is thus 

obtained by z-transforming ℎ(𝑛𝑇) where T is the sampling interval. Impulse invariant 

method has been used to calculate the coefficient where 𝑎𝑘 & 𝑏𝑘 after calculating the 

coefficients the frequency response was plotted in MATLAB to check whether the 

design meets the requirements. 

Coefficients at M=9 

b= 0.0000, 0.0000, 0.0036, 0.0284, 0.0491, 0.0242, 0.0034, 0.0001, 0.0000 

a= 1.0000, -3.0110, 4.8837, -5.1117, 3.7117, -1.9067, 0.6856, -0.1651, 0.0240, -

0.0016 
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Figure 3.5: Frequency reponse of low pass IIR filter 

From the figure 3.5 we see that we have desired results as given in specifications, that 

is cut off frequency is 0.33π and stop band is 0.6π Radians. 

 

Figure 3.6: Phase response of IIR low pass filter 

From figure 3.6 we see that the phase responses of IIR low pass filter. It is seen that 

the phase response is non-linear thus proving the fact that IIR filters are non-linear in 

nature. 
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4 Structure Design for Field Programmable Gate Array 

(FPGA) through Digital Filters 

4.1 Introduction: 

A FPGA (Field programmable gate array) is a semiconductor device, which is used to 

process digital information by utilizing gate array technology and should be re-

programmed after it is manufactured. A FPGA consists of programmable logic 

components called logic blocks and programmable interconnects. We can 

programmed logic blocks to perform the functions of basic logic gates such as AND, 

and XOR, or simple mathematical functions or complex combinational functions such 

as decoders. In most FPGAs the logic blocks also consist of memory elements, which 

may be, flip flops or more complete blocks of memories. 

In the previous years, for the purpose of designing in VLSI areas FPGA (Field 

Programmable Gate Arrays) increased importance. Now a day FPGAs offer a large 

number of applications such as equivalent gates, which can be clocked at high 

frequencies. Moreover, because of the re-configurability, FPGA provide the fastest 

approach to system prototype and reliable instruments to match in hardware but the 

performance of systems are too much complicated to be simulating in software. For 

these reasons, it can make sense to extract information on a system by its 

implementation on FPGAs followed by measurements on the hardware, instead of 

simulations [9]. 

4.2 FPGA Structure:  

Xilinx is the biggest manufacturer of FPGA and the Xilinx FPGA consist of three 

blocks: 

 CLB: It is the configurable logic block of FPGA, which is used to calculate 

the specific functions defined by the users. The CLBs should be found on the 

center of the chip. It is used for the implementation of combinational and 

sequential logic, for this purpose CLBs consist of lookup table (LUT) which 

can be controlled by 4-inputs for the implementation of combinational logics 

and used D-flip flops for sequential logics. MUX should be used to select 

between the output of combinational and sequential logics. We can program 

CLBs by using the truth table of LUT and control bit of MUX (multiplexer) 

and these both structures are useful for the implementation of combinational 

and sequential logics. 

 IOB: The input/output block of the FPGA used to connect it to the other 

elements of the applications and IOBs are located on the periphery. 

 Interconnect: This part is used for the writing between CLB and between IOBs 

and CLBs and interconnects are used to implement different programs on the 

FPGA. IOBs are used to get signals in the and out of the FPGA, means it 

should be used as input and output [10]. 
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4.2.1 Modern FPGAs 

In modern FPGA we have additional information units, which are easier and efficient 

for the designing of applications, as well as arithmetic units and small memories are 

very difficult to implement on CLB (configurable logic block). Therefore in modern 

FPGAs embedded memories and embedded logic blocks are used for arithmetic 

operations and the most common is multiplications. With the use of embedded blocks 

in FPGA we get more memory and speed therefore embedded memories are easy to 

interface than external memories. DSP applications are very useful in the 

implementation of FPGA like multipliers are the function on FPGA for the 

implementation of DSP applications. Furthermore embedded processor cores are also 

the part of FPGA for the purpose of better communication between microprocessor 

and FPGA and the main advantages of embedded processor is that it reduces the 

latency of communication between FPGA and microprocessor. In comparison with 

the embedded processors the soft cores should be directly the part of FPGA fabric as 

soft cores are easy to configurable and have the same clock as that of FPGA, and its 

main advantage is that it is easy to interface and drawback is that they have slower 

clock rate [11]. 

4.2.2 Configuring FPGA 

FPGAs should not be programmed directly so synthesis tools are used to program 

FPGAs, which are used to translate code into bit stream, and downloaded to FPGAs; 

commonly hardware description language is used to configure the devices. 

Furthermore high-level languages and library-based solutions are also possible to use 

for the configuration of the FPGAs. 

Hardware description language is the most common language used for the 

programming of FPGAs, there are also two other languages like VHDL and Verilog 

both languages are internationally recognized and are powerful. VHDL was 

developed in 1980 and is the extension of ADA and should be used for describing the 

hardware and Verilog is like C programming language to design hardware and have 

recognized internationally like VHDL. To configure FPGA with HDL a developer 

require two programs, one tool which is used to test and simulate the configurations 

on pc and a synthesis tool which is used to convert code into bit stream and 

downloaded into the FPGA. 

High-level languages are also used for the designing and implementation of FPGA 

applications more like software development. SystemC is a C++ library, which is 

used to implement and simulate the processing of hardware in C++ syntax. By using 

Accel-chip it is easy to implement VHDL and Verilog code block for MATLAB DSP 

function. 

In library-based solutions to designing FPGAs, the FPGAs developer Xilinx and 

Altera provide macros with parameterized solutions, which is used for arithmetic 

operations and required less development time [11]. 



 32 

4.2.3 Applications of FPGA 

 FPGAs include digital signal processor, software defined radio, aerospace, 

defense system, ASIC prototyping, medical imaging, computer vision, speech 

recognition, bioinformatics and computer hardware emulation [12]. 

 FPGAs originally began as competitor to CPLDs and due to their size, 

capabilities and speed they began to take over larger and larger function and 

are now marketed as full systems on chip (SOC). 

 FPGAs are increasingly used in conventional high performance computing 

applications where computational kernels such as FFT or Convolution are 

performed on the FPGA instead of a microprocessor and the use of FPGA for 

computing tasks is known as reconfigurable computing. 

4.2.4 Advantages of FPGA 

 FPGA consist of large number of logic blocks which is used for larger 

memory, FPGA computers have no given processor structure but they offer a 

large amount of logic gates, registers, RAM and routing resources. It is used to 

perform large number of logical and arithmetic operations for variable storage 

and to transfer data between different parts of the computer. Typically 

thousands of operation can be done on FPGA computers during every clock 

cycle. 

 When the applications of FPGA were specific, then specialized tools were 

used to access them but by using hard and configurable soft cores, FPGAs are 

now controlled to perform in mainstream embedded applications and it means 

the accessibility of embedded software and tools becomes a necessity. 

 FPGA are controlling programmable logic integrated circuits and is use to 

design digital logic as you can design your circuit on your computer and run it 

on FPGA. 

 FPGA are quick devices. 

4.3 Design of Structures for FPGA: 

We will design the structure for both filters that are FIR and IIR, which we will, 

further use in FPGAs.  

4.3.1 Using FIR Filter: 

After calculating the coefficients in section 3.1, we will choose suitable structure for 

FIR filter realization and the order of the filter is 𝑀 − 1 where 𝑀 is the number of 

coefficients and the length of the filter is equal to 𝑀. 

Among different structures like direct form, cascade form, parallel form and linear 

phase structure, we have chosen linear phase structure because the impulse response 

in our FIR filter is symmetric as shown in figure 3.2 and due to symmetrical response 

in the impulse response of linear phase FIR filter to reduce the computational 

complexity of the filter implementation, it is more efficient and reduce the number of 

additions and multiplications. Linear phase structure is same as direct form but it 

should be implemented differently as it reduces the multiplication process to half. The 
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linear phase structure provides no delay distortion but only fixed amount of delay. For 

the filter of length 𝑀 − 1  the minimum operations are  𝑀/2 . The linear phase 

structure is shown in figure 4.1 by using the coefficients of FIR filter. 

 

Figure 4.1: Linear Phase FIR filter structure 

The number of blocks formed in our structure in figure 4.1 can be calculated by using 

the formula 𝐾 = 𝑀/2 so in our case𝐾 = 19/2 = 9. This structure also forms a sort 

of systolic structure in which input should be pumped in, in the form of continuous 

input samples. In the first block the coefficient 𝑏𝑜  is multiplied by  𝑥(𝑛)  and the 

delayed version of 𝑥(𝑛) coming from the last block that is 𝑥(𝑛 − 𝑀 + 1), where 𝑀 is 

the length. Similarly the second coefficient 𝑏1  is multiplied by 𝑥(𝑛 − 1)  and the 

delayed version of 𝑥(𝑛) coming from the second last block that is 𝑥(𝑛 − 𝑀 + 2). The 

multiplication process goes on for the all the coefficients but reduced to half further 

all these products are added up to give the accumulated output 𝑦(𝑛). 

4.3.2 Using IIR Filter: 

Similarly we construct the structure of IIR filter from the coefficients calculated in 

section 3.2 for IIR filter. Like FIR filters, the IIR filters can also be realized using 

different structure as discussed earlier. We will implement direct form structure for 

the realization of our filter in FPGA because direct form structure involves simple 

multiplications, additions and delays that is shown in figure 4.2. 

On the left hand side in the figure 4.2 we see that the inputs are being delay and 

multiplied by each of the coefficients and all the products should be added together 

and similarly the right hand side is the mirror image of left hand side. Thus all the 

coefficients are multiplied one by one leading to the number of multiplications equal 

to the total number of coefficient and then further added all the products to get the 

required output 𝑦(𝑛). 
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Figure 4.2: Structure for direct form IIR filter
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5 Results and Verification of Structures 

5.1 Introduction 

In this chapter we have implemented the structures designed for FPGAs in previous 

chapter, both of FIR and IIR and then verify them with MATLAB. Later we have also 

discussed their use as an application in measurement systems. 

5.2 Implementation & Verification: 

In this section we verified the results after implementing the structure in Xilinx and its 

equation in MATLAB by giving a same symmetric input sequence as: 0,2,4,6…. 

Figure 5.1 shows the input sequence for both FIR & IIR filters in MATLAB, which 

are used in section 5.2.1 and 5.2.2. 

 

Figure 5.1: Input sequences of FIR and IIR filter using MATLAB 

5.2.1 Verification of FIR filter 

The structure in figure 4.1 gives the mathematical equation of the FIR filter as: 

𝑦(𝑛) = ℎ(0)𝑥(𝑛) + ℎ(1)𝑥(𝑛 − 1) + ⋯ + ℎ(𝑁 − 1)𝑥(𝑛 − 𝑁 + 1)  (5.1) 

where 𝑁 = 19, is the order or length of the filter, if the input samples are given to 

linear phase FIR filter in a sequence as stated above the output waveform generated 

by MATLAB is shown in figure 5.2 which is basically in time domain. Its result 

exactly matches with the mathematical calculation. Similarly figure 5.3 shows the 

simulation of the FIR filter in Xilinx where the same input sequence as stated above 

was given and the output extracted clearly seems to be the same as from the 

MATLAB. 
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Figure 5.2a: Output sequence of pulses of FIR filter 

 

Figure 5.3b: Output sequence of pulses of FIR filter using convolution  

          
Figure 5.4c: Scaled Output sequence of pulses of FIR filter using convolution 

Here figure 5.2a shows the FIR filter output using filter function of MATLAB and 

figure 5.2b shows the convolved output using convolution function of MATLAB. 

Both outputs are same as the convolution results in mirroring the sequence in reverse 

0 2 4 6 8 10 12 14 16 18
-1

0

1

2

3

4

5

6

Output 

y
 

n 



 37 

order after middle sample. The figure 5.2c shows the scaled output of convolution 

between 0 - 255 for improved visibility.   

 

Figure 5.5: Test bench of waveform obtained from verilog simulation for FIR structure 

Here xin[35:0] is the 36 bit input of the structure and out[19:0] shows the output at 

the given input sequence which is further discussed in section 5.2.3. CLK and rst is 

the clock and reset buttons respectively.   

5.2.2 Verification of IIR filter 

Similarly the structure shown in figure 4.2 is implemented in the Verilog (Xilinx) and 

the results obtained from the simulation of the Verilog code on Xilinx are compared 

with the MATLAB simulation. The input sequence applied here are same as 

mentioned earlier like used for FIR inputs. Figure 5.4 shows the output sequence in 

time domain, which matches with the simulation result obtained from the Xilinx that 

is figure 5.5. 

𝑦(𝑛) =  ∑ 𝑏𝑘 𝑥(𝑛 − 𝑘) − ∑ 𝑎𝑘𝑦(𝑛 − 𝑘)    0 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀  (5.2) 

 

Figure 5.6a: Output sequence of IIR filter using MATLAB 
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Figure 5.7b: Scaled Output sequence of IIR filter using MATLAB 

The IIR filter is implemented using impulse invariance method so figure 5.4a shows 

the output sequence of the filter for the given input and figure 5.4b shows the scaled 

output of IIR filter between 0 – 255 for improved visibility. 

 

Figure 5.8: Test bench of waveform obtained from verilog simulation for IIR filter 

5.2.3 Comparing: 

The comparison of our results between MATLAB and FPGA, which clearly shows 

that the outputs obtained from the Xilinx are verified with the MATLAB. But FIR 

structure gives more accurate than the IIR based structure. 

Now if you look at the output sequence of FIR filter obtained from MATLAB results 

we get 0,2, 4.3, 5.5, 4.3, 2, 0.4, 2 …and same is the case with the output of the 

structure designed in Verilog coding, here as the output is represented in bits form so 

they are shown in integer values as one can see from the figure 5.3 that is 0, 2, 4, 6, 4, 

2, 1, 2 … which is also symmetric and can be verified from the MATLAB output 

sequence of FIR filter.  

Similarly for IIR sequence we obtain the sequence 5, 3, 2, 1, 2, 4, 5, 3 … from 

designed structure which can be easily verified from the MATLAB output sequence 
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that is 0.5, 1.5, 2.5, 4.3, 4.5, 3, 2, 1 … shown in figure 5.4a. Here if one can see the 

output sequence of FIR gives better results, but the performance of both filters is 

degraded by finite word length effect, because accuracy is not achieved in this case. 

The degradation is more severe in IIR than FIR. This effect can be mitigated by using 

more number of bits or by using floating-point arithmetic for coefficients. 

5.3 Digital Filters as a part of Measuring System: 

Digital filters can be made a part of a power measuring system, which makes use of 

digital filtering to separate the fundamentals components from harmonics. Thus active 

power and reactive power are measured separately. From the power measurements 

one can estimate the efficiency of power distribution unit. As the harmonics generated 

by non-linear loads are hazardous for entire power system and are inevitable, there is 

an ultimate need to develop a measuring and testing system for the real time loads, as 

these are non-linear in nature most of the times. 

A typical measuring system consists of following main modules. 

 Analog-to-Digital conversion 

 5V to 3.3V conversion 

 Digital filters and calculations on FPGA 

 Display 

 

Figure 5.9: Block Diagram of multi-measuring system 

The description of all these modules is described below: 

5.3.1 Analog-to-Digital conversion 

Analog-to-Digital conversion is necessary for the analog data to be processed on 

FPGA. Analog-to-Digital conversion is done by chip AD 0808. AD0808 is a 

monolithic CMOS (Complementary Metal Oxide Semiconductor) is a data acquisition 

component with the resolution of 8-bits conversion, 8-channel multiplexer and a 

compatible processor which is used for logic control. By the means of three select 

lines we can select any 1 of 8 analog inputs to be converted into digital 8-bits output 

at a time. Its main features are that it is easy to interface to all microprocessors; it 

Voltage 

(V) 
PRE LPF 

PRE LPF 

I/V CONV 

ADC 

IIR HPF 

ADC 

IIR LPF 

IIR LPF 

IIR HPF 

Multipler 

Multipler 

Display 

Display 

Current 

(I) 

FPGA 
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operates at 5𝑣𝐷𝐶  with adjustable voltage reference, no zero or full scale adjusts 

required, 0𝑉 − 𝑉𝑐𝑐 input range, 8-channel multiplexer with logic control and its output 

meets TTL (Transistor-Transistor logic) voltage level specifications. 

Table 5.1: Specs of Analog to Digital Converter 

Its operation time is normally on clock 

frequency is 640 kHz and uses 

approximation technique for the 

conversion and it is available in 28-pin 

DIP package (ADC0808CCN). It 

provides high speed and accuracy with 

minimal temperature dependence for 

this it is used in many control and 

automatic applications. 

Its pin configurations are as follow [13]: 

 Pins 1, 2, 3,4,5,27,28 are the seven input pins which are not connected. 

 Pins 6(start) and Pin 7(end of conversion) are short-circuited. 

 Pin 9(output enable) is at logic 1. 

 Pin 10 is for clock. 

 Pin 11(Vcc) & Pin 12(Vref+) are short-circuited and at logic 1. 

 Pin 13 (GND) & Pin 16(Vref-) are short-circuited and at logic 0. 

 Pin 22 (ALE) is enabled only when address on the select lines changes 

however it is set at logic 1. 

 Pin 17, 14, 15,8,18,19,20,21 are8-bits of digital output where Pin 17 is LSB 

and Pin 21 is MSB. 

As 28 = 256 so input signal is quantized in 256 discrete levels where the size of each 

level is 0,02V. 

5.3.2 The 5V to 3.3V conversion 

The output samples of the ADC assumes logic1 at 5V while the logic1 on FPGA 

board (SPARTAN 3) is equal to 3.3V, so some additional circuitry is required for the 

transformation of voltage levels of ADC samples. Using LM348 chip, which consist 

of Quad operational amplifier package, does the additional transformation. The 8-bit 

digital output of ADC is fed into two LM348 chips while each individual bit of ADC 

is provided to non-inverting input of operational amplifier whose gain is unity. The 

supply voltages are given as 3.3V and -3.3V instead of +15V in order to get the 

output logic1 of the operational amplifier equal to 3.3V. 

The analog input is fed into ADC to convert the analog input into digital current and 

voltage samples which are then fed into the FPGA filter after passing through the 

regulator of 3.3V, FPGA here also serve the purpose of current and voltage samples 

multiplications in order to measure power and output should be displayed. 

Resolution 8 bits 

Total unadjusted error ±
1

2
𝐿𝑆𝐵 𝑎𝑛𝑑 ± 1 𝐿𝑆𝐵 

Single supply 5𝑉𝐷𝐶 

Low power 15mW 

Conversion time 100 us 
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Thus our both filters FIR & IIR can be efficiently utilized as a part of our 

measurement system to accurately measure active, harmonics and other related 

parameters.  
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6 Conclusion 
 

This report concludes with the application of the digitals filters in measuring systems 

and shows an expected error threshold level. It gives an advanced maturity and 

estimation of quality for implementing high resolution and high quality applications 

of digital signal processing. Due to the implemented precision and accuracy, the 

presented filters can also be made an integral part of many modern applications, 

where ever a high accuracy and finite error is required. The design can also be 

implemented in Application Specific Integrated Circuit (ASIC), which will reduce the 

overall cost on the filters. 
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7 Appendix A (Code) 

A.1 FIR LOW-PASS FILTER (MATLAB, M=19) 
Clc; 
Clear all; 
Close all; 

  
WP=.33*pi; 
ws=.6*pi; 
tr_width=ws-wp; 
As=40; 
M=ceil((As-7.95)/(14.36*tr_width/(2*pi))+1)+1; 
M=19; 
n=[0:1:M-1]; 
if As>=50 beta=0.1102*(As-8.7); 
else beta=(.5842*((As-21)^.4))+(.7886*(As-21)); 
end 
wc=(ws+wp)/2; 
alpha=(M-1)/2 
m=n-alpha+eps; 
hd=sin(wc*m)./(pi*m); 
subplot(2,1,1); 
stem(n,hd); 
xlabel('n'); 
ylabel('Hd'); 
title('ideal response');grid 
w_kai=(kaiser(M,beta))'; 
h=hd.*w_kai; 
H=freqz(h,1,500); 
k=0:499; 
w=(pi/500)*k; 
subplot(2,1,2); 
stem(n,h); 
xlabel('n'); 
ylabel('n'); 
title('window response'); 
grid 
db=20*log10(abs(H)/max(abs(H))); 
figure; 
subplot(2,1,1); 
plot(w/pi,abs(H)); 
xlabel('freq in pi units'); 
ylabel('magnitude of H'); 
title('amplitude spectrum'); 
grid 
subplot(2,1,2); 
plot(w/pi,db); 
xlabel('freq in pi units'); 
ylabel('mag of H(dB)'); 
title('amplitude spectrum'); 
grid 
xin=cos(.2*pi*n)+cos(.4*pi*n)+cos(.6*pi*n); 
X=xin*(exp(-j*pi/500)).^(n'*k); 
y=filter(h,1,xin); 
Y=y*(exp(-j*pi/500)).^(n'*k); 
figure; 
subplot(2,1,1); 
plot(w/pi,abs(X)); 
xlabel('freq in pi units ');ylabel('|X|');title('input signal 

spectrum'); 
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grid 
subplot(2,1,2); 
plot(w/pi,abs(Y)); 
xlabel('freq in pi units'); 
ylabel('|Y|'); 
title('filtered signal spectrum'); 
grid 
db=20*log10(abs(Y)/max(abs(Y))); 
db1=20*log10(abs(X)/max(abs(X))); 
figure; 
subplot(2,1,1);plot(w/pi,db1); 
xlabel('freq in pi units'); 
ylabel('|X|(dB)'); 
title('input signal spectrum'); 
grid 
subplot(2,1,2);plot(w/pi,db); 
xlabel('freq in pi units'); 
ylabel('|Y|(dB)'); 
title('filtered signal spectrum');grid 
figure; 
subplot(2,1,1); 
plot(w/pi,angle(H)/pi); 
xlabel('freq in pi units'); 
ylabel('radians'); 
title('filtered signal phase spectrum'); 
grid 

  
db=20*log10(abs(H)/max(abs(H))); 
figure; 
subplot(2,1,1); 
plot(w/pi,abs(H)); 
xlabel('freq in pi units'); 
ylabel('magnitude of H'); 
title('amplitude spectrum'); 
grid 
subplot(2,1,2); 
plot(w/pi,db); 
xlabel('freq in pi units'); 
ylabel('mag of H(dB)'); 
title('amplitude spectrum');grid 
xin=cos(.2*pi*n)+cos(.4*pi*n)+cos(.6*pi*n); 
X=xin*(exp(-j*pi/500)).^(n'*k); 
y=filter(h,1,xin); 
Y=y*(exp(-j*pi/500)).^(n'*k); 
figure; 
subplot(2,1,1);plot(w/pi,abs(X)); 
xlabel('freq in pi units'); 
ylabel('|X|'); 
title('filtered signal spectrum'); 
grid 
db=20*log10(abs(Y)/max(abs(Y))); 
db1=20*log10(abs(X)/max(abs(X))); 
subplot(2,1,2); 
plot(w/pi,db); 
xlabel('freq in pi units'); 
ylabel('|Y|(dB)'); 
title('filtered signal spectrum');grid 
figure; 
plot(w/pi,angle(H)/pi); 
xlabel('freq in pi units'); 
ylabel('radians'); 
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title('filtered signal phase spectrum');grid 

A.2 IIR LOW PASS FILTER (MATLAB, M=9) 
wp=0.33*pi; 
ws=0.6*pi; 
Rp=1; 
As=40; 
T=1; 
OmegaP=wp/T;OmegaS=ws/T; 
[cs,ds]=afd_butt(OmegaP,OmegaS,Rp,As); 

  
[b,a]=imp_invr(cs,ds,T); 

  
function[b,a]=afd_butt(wp,ws,rp,As); 
if wp<=0 
    error('passband edge must be larger than zero') 
end 

  
if wp<=wp 
    error('stopband edge must be larger than passband edge') 
end 

  
if(rp<=0)|(As<0) 
    error('PB ripple and/or SB attenuation must be larger than zero') 
end 

  
N=ceil((log10((10^(rp/10)-1)/(10^(As/10)-1)))/(2*log10(wp/ws))) 
fprintf('\n***Butterworth filter order=%2.0f\n',N) 
omegac=wp/((10^(rp/10)-1)^(1/(2*N))) 
[b,a]=u_buttap(N,omegac); 

  
function [b,a]=imp_invr(c,d,T); 
[R,p,k]=residue(c,d); 
p=exp(p*T); 
[b,a]=residuez(R,p,k); 
b=real(b'); 
a=real(a'); 

  
function [b,a]=u_buttap(N,omegac); 
[z,p,k]=buttap(N); 
p=p*omegac; 
k=k*omegac^N; 
B=real(poly(z)); 
b0=k; 
b=k*B; 
a=real(poly(p)); 
 

A.3 FIR LOW PASS FILTER (VERILOG) 

module multiply(a,b,out); 

input [35:0] a; 

input [35:0] b;  

output [35:0] out; 

assign out = a*b;  

endmodule 

module add(a,b,out); 

input [35:0] a; 
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input [35:0] b;  

output [35:0] out; 

assign out = a + b; 

endmodule 

module register (a,b,clk,load,rst); 

input [35:0]a; 

output [35:0]b; 

reg[35:0]b; 

input load; 

input clk,rst 

always@(posedge clk)  

begin 

  if(load==1 && rst==0) 

b=a; 

if(rst==1) 

b=0; 

end 

endmodule 

module block(out,x_inout,x_delayout,xin,add_in,x_delayin,co,clk,load,rst);  

output[35:0]out,x_inout,x_delayout; 

input[35:0]xin,x_delayin,co,add_in; 

input clk ,rst; 

input load; 

wire [35:0] mul_out, xwidin,add_out; 

register r1(xin,xwidin,clk,load,rst); 

assign x_inout = xwidin; 

register r2(x_delayin,x_delayout,clk,load,rst); 

add a1(xwidin,x_delayin,add_out); 

multiply m(add_out,co,mul_out);  

add a2(mul_out,add_in,out); 

endmodule 

module first(xin,x_delayout1,c0,add_in1); 

input [35:0]xin,x_delayout1,c0; 

output [35:0]add_in1; 

wire [35:0] add _out; 

add b(xin,x_delayout1,add_out); 

multiply m(add_out,c0,add_in1); 

endmodule 

module last(x_inout,clast,olast,delaylast,outlast,clk,load,rst); 

input[35:0]x_inout,clast,olast; 

output[35:0]outlast,delaylast; 

wire [35:0]w1,mul_out; 

input clk,rst; 

input load; 

register r1(x_inout,w1,clk,load,rst);  

register2(w1,delaylast,clk,load,rst); 

multiply m(wl,clast,mul_out); 

add a(olast,mul_out,outlast); 

endmodule 

module fir(xin,clk,load,rst,outi,outf); 
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input [35:0] xin; 

output [19:0] outi; 

output [15:0] outf; 

input clk,load,rst; 

 

wire [35:0] c0,c1,c2,c3,c4,c5,c6,c7,c8,c9; 

wire [35:0] temp; 

assign outi=temp[35:16]; 

assign outf=temp[15:0]; 

 

assign c0= 36'd190; 

assign c1= 36'd68719476232; 

assign c2= 36'd68719475944; 

assign c3= 36'd1061; 

assign c4= 36'd2228; 

assign c5= 36'd68719475078; 

assign c6= 36'd68719471140;  

assign c7= 36'd2116;  

assign c8= 36'd20480;  

assign c9= 36'd30720; 

wire[35:0]add_in1,x_delayoutl,x_delayout2,x_delayout3,x_delayout4,x_delayout5,x_

delayout6,x_delayout7,x_delayout8,x_delayout9,delaylast; 

wire [35:0]o1,o2,o3,o4,o5,o6,o7,o8,o9; 

wire 

[35:0]x_inout1,x_inout2,x_inout3,x_inout4,x_inout5,x_inout6,x_inout7,x_inout8; 

first fl(xin,x_delayout1,c0,add_in1); 

last  l1(x_inout8,c9,o8,delaylast,temp,clk,load,rst); 

block b1(o1,x_inout1,x_delayoutl,xin,add_in1,x_delayout2,c1,clk,load,rst); 

block b2(o2,x_inout2,x_delayout2,x_inout1,01,x_delayout3,c2,clk,load,rst);  

block b3(o3,x_inout3,x_delayout3,x_inout2,02,x_delayout4,c3,clk,load,rst);  

block b4(o4,x_inout4,x_delayout4,x_inout3,03,x_delayout5,c4,clk,load,rst);  

block b5(o5,x_inout5,x_delayout5,x_inout4,04,x_delayout6,c5,clk,load,rst);  

block b6(o6,x_inout6,x_delayout6,x_inout5,05,x_delayout7,c6,clk,load,rst);  

block b7(o7,x_inout7,x_delayout7,x_inout6,06,x_delayout8,c7,clk,load,rst);  

block b8(o8,x_inout8,x_delayout8,x_inout7,07,delaylast,c8,clk,load,rst); 

endmodule 

A.4 IIR LOW PASS FILTER (VERILOG) 

`timescale 1ns/1ps 

module multiply(a,b,out); 

input[35:0]a; 

input[35:0]b; 

output[35:0]out; 

//wire[51:0]x; 

assign out=a*b; 

endmodule 

module add(a,b,out); 

input[35:0]a; 

input[35:0]b; 

output[35:0]out; 
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assign out=a+b; 

endmodule 

module register(a,clk,load,rst,b); 

input[35:0]a; 

output[35:0]b; 

input load; 

input clk,rst; 

always@(posedge clk) 

begin 

if(load==1&&rst==0) 

if(rst==1) 

b=a; 

end 

endmodule 

module first(xin,x_delayin,c0,c1,clk,load,rst,x_delayout,zout); 

input[35:0]xin,x_delayin,c0,c1; 

output[35:0]x_delayout,zout; 

input clk,rst;  

input load; 

wire [35:0]wmul1,wmul2,wadd,x_delayout1; 

assign x_delayout=x_delayout1; 

multiply m1(xin,co,wmul1); 

multiply m2(x_delayout,c1,wmul2); 

register r1(xin,clk,load,rst,x_delayout1); 

add a1(x_delayin,wmul2,wadd); 

add a2(wadd,wmul1,zout); 

endmodule 

module block(xin,x_delayin,c,clk,load,rst,x_delayout,bout); 

input[35:0]xin,x_delayin,c; 

input clk,rst; 

input load; 

output[35:0]x_delayout,bout; 

assign x_delayout=x_delayout1; 

register r1(xin,clk,load,rst,x_delayout); 

multiply m1(x_delayout,c,wmul); 

add a1(wmul,x_delayin,bout); 

endmodule 

module first(xin,x_delayin,a,clk,load,rst,y,x_delayout); 

output[35:0]y,x_delayout; 

input[35:0]xin,x_delayin,a; 

input clk,rst; 

input load; 

wire[35:0]x_delayout,wmul,wadd; 

assign x_delayout=x_delaout1; 

register r1(xin,clk,load,rst,x_delayout1); 

multiply m1(x_delayout1,a,wmul); 

add a1(wmul,x_delayin,wadd); 

add a2(wadd,xin,y); 

endmodule 

module block1(xin,x_delayin,c,clk,load,rst,x_delaout,bout); 
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input[35:0]xin,x_delayin,c; 

input clk,rst; 

input load; 

output[35:0]x_delayout,bout;  

wire[35:0]wmul,x_delayout1; 

assign x_delayout=x_delayout1; 

register r1(xin,clk,load,rst,x_delayout1); 

multiply m1(x_delayout1,c,wmul); 

add a1(wmul,x_delayin,bout); 

endmodule 

module IIR1(xin,clk,load,rst,zout); 

//parameter 

b0=2,b1=2,b2=2,b3=2,b4=2,b5=2,b6=2,b7=2,b8=2,b9=2,b10=2,b11=2,b12=2; 

 

input[35:0]xin; 

input clk,rst; 

input load; 

output[35:0]zout; 

wire[35:0]x_delayout,x_delayout1,x_delayout2,x_delayout3,x_delayout4,x_delayout

5,x_delayout6,x_delayout7; 

wire[35:0]bout1,bout2,bout3,bout4,bout5,bout6,bout7; 

wire[35:0]bo,b1,b2,b3,b4,b5,b6,b7,b8; 

assign bo=26'b00000000000000000000000000; 

assign b1=26'b00000000000000000000000000; 

assign b2=26'b00000000000000000011101011; 

assign b3=26'b00000000000000011101000101; 

assign b4=26'b00000000000000110010010001; 

assign b5=26'b00000000000000011000110001; 

assign b6=26'b00000000000000000011011110; 

assign b7=26'b00000000000000000000000110; 

assign b8=26'b00000000000000000000000000; 

first f1(xin,bout1,b0,b1,clk,load,rst,x_delayout,zout); 

block c1(x_delayout,bout2,b2,clk,load,rst,x_delayout1,bout1); 

block c2(x_delayout1,bout3,b3,clk,load,rst,x_delayout2,bout2); 

block c3(x_delayout2,bout4,b4,clk,load,rst,x_delayout3,bout3); 

block c4(x_delayout3,bout5,b5,clk,load,rst,x_delayout4,bout4); 

block c5(x_delayout4,bout6,b6,clk,load,rst,x_delayout5,bout5); 

block c6(x_delayout5,bout7,b7,clk,load,rst,x_delayout6,bout6); 

block c7(x_delayout6,bout8,b8,clk,load,rst,x_delayout7,bout7); 

endmodule 

module IIR2(xin1,clk,load,rst,zout); 

input[35:0]xin1; 

input clk,rst; 

input load; 

output[35:0]zout; 

//parameter a1=2,a2=2,a3=4,a5=2,a6=2,a7=2,a8=2,a9=2,a10=2,a11=2,a12=2,a13=2; 

wire[35:0]bout12,bout1,bout2,bout3,bout4,bout5,bout6,bout7,bout8; 

 

wire[235:0]x_delayout,x_delayout12,x_delayout1,x_delayout2,x_delayout3,x_delayo

ut4,x_delayout5,x_delayout6,x_delayout7,x_delayout8; 
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wire[35:0]a1,a2,a3,a4,a5,a6,a7,a8,a9; 

assign a1=26'b00000000110000001011010000; 

assign a2=26'b11111110110100000000000000; 

assign a3=26'b00000001010001110010011000; 

assign a4=26'b11111111000100100111001111; 

assign a5=26'b00000000011100000000000000; 

assign a6=26'b11111111110101000001111101; 

assign a7=26'b00000000000010101001000011; 

assign a8=26'b11111111111111100111011100; 

assign a9=26'b00000000000000000001101000; 

first f1(xin1,bout1,a1,clk,load,rst,zout,x_delayout); 

block b1(x_delayout,bout2,a2,clk,load,rst,x_delayout1,bout1); 

block b2(x_delayout1,bout3,a3,clk,load,rst,x_delayout2,bout2); 

block b3(x_delayout2,bout4,a4,clk,load,rst,x_delayout3,bout3); 

block b4(x_delayout3,bout5,a5,clk,load,rst,x_delayout4,bout4); 

block b5(x_delayout4,bout6,a6,clk,load,rst,x_delayout5,bout5); 

block b6(x_delayout5,bout7,a7,clk,load,rst,x_delayout6,bout6); 

block b7(x_delayout6,bout8,a8,clk,load,rst,x_delayout7,bout7); 

block b8(x_delayout7,0,a9,clk,load,rst,x_delayout8,bout8); 

endmodule 

module IIR(x,clk,load,rst,y); 

input[35:0]x; 

input clk,rst; 

input load; 

output[35:0]y; 

wire[35:0]zout; 

IIR1 I1(x,clk,load,rst,zout); 

IIR2 I2(zout,clk,load,rst,y); 

Endmodule 
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