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Preface
In a small village called Gryttje in Gnarp, Hälsingland, in the north of Sweden on 
December 11, 1950, Hans Nyquist was born. Now, 65 years later, we have joined 
to create this festschrift in celebration of the life and career of a great scientist, 
teacher, colleague and friend.

Hans Nyquist started his academic journey in Umeå where he obtained a BStat in 
1975 and a PhD in statistics in 1980 for the thesis entitled “Recent Studies on Lp-
Norm Estimation”. He immediately got a position as a lecturer in statistics at Umeå 
University where he stayed until 1983, when he also gained his docent title (asso-
ciate professor) in statistics. Next followed two periods of postdoc positions, first at 
University of Sydney, Australia, and then at Imperial College London, UK. In 1993 he 
accepted a position as a lecturer in Biometry at the Swedish University of Agricul-
tural Sciences. From 1995 to 2003 he was Professor in Statistics at Umeå University. 
During these years he had another postdoc period, this time at University of South 
Carolina, Columbia, USA. From 2003 until present time he holds a professorship 
here at the Department of Statistics, Stockholm University. In 2013 he stayed as a 
guest professor at University of Riverside, California, USA. 

During the last decades Hans Nyquist has made significant contributions to several 
fields of statistics. Starting with his thesis on robust statistical inference his resear-
ch interests include robust estimation of linear and non-linear models, sensitivity 
analysis and optimal design of experiments. Over the years he has been working 
with applications from forestry, economics, medicine, and educational measu-
rements. His research has resulted in more than thirty articles published in peer 
reviewed journals. A creative and analytical mind, curiosity, diligence, and ability 
to communicate with anyone, are among the qualities making him a successful 
researcher. He is a popular collaborator in research and also a much appreciated 
speaker at conferences, always eager to interact with his audience.  

Hans Nyquist has served science in many ways. He has been Associate Editor for 
several journals, including Journal of Statistical Planning and Inference, Journal of 
Official Statistics and Electronic Journal of Applied Statistical Analysis, reviewer for 
Zentralblatt für Mathematik and referee for a multitude of journals, such as Annals 
of Statistics, Biometrics, Journal of American Statistical Association, Review of 
Economics and Statistics and Scandinavian Journal of Statistics, to name just a few. 
He has acted as external reviewer of applications for research projects for Riksban-
kens Jubileumsfond, DESMI (co-funded by the Republic of Cyprus and the European 
Regional Development Fund), and CONICYT (Chile) as well as been a member of the 
reviewer group at the Swedish Research Council. In addition, Hans Nyquist is devo-
ted to the promotion and development of statistical research and education. He has 
continuously supported the Swedish Statistical Association, where he was elec-
ted president for two periods (1997-1999, 2010-2012). He was also president of the 
European Courses of Advanced Statistics between 2006 and 2009, and head of the 
Department of Statistics, Stockholm University, for a period of six years (2005-2011). 
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Besides this, Hans Nyquist serves society as reserve officer (major) in the Swedish 
Air Force. He is also a keen orienteer, both as practitioner and organizer of oriente-
ering events.

Hans Nyquist is a highly esteemed teacher at all levels, mastering teaching at the 
most basic introductory course as well as any graduate course. Numerous students 
over the years have had the opportunity to experience his dedication, enthusiasm 
and lucid explanations. Moreover, he has written a comprehensive introductory 
compendium for students. To date, he has successfully supervised ten PhD students 
(including myself). As supervisor he is committed, encouraging and willing to help 
at all times. 

Those of us who have had the chance to collaborate with Hans Nyquist know that 
he is not only passionate about research but also truly friendly and humorous. 
Therefore it was no surprise to me that all of you gladly accepted my invitation to 
contribute to this festschrift. My apologies to those I did not manage to contact and 
who would also have liked to be a part of this celebration. 

I would like to sincerely thank all of the authors for generously giving your time 
and ideas, and for adhering to the (often tight) deadlines. It has been a pleasure 
and a privilege to be the editor of this festschrift and you all have made the editing 
process so easy for me. I am also very grateful to Bergrún Magnúsdóttir, Jessica 
Franzén and Sofia Normark for editorial assistance, to Michael Carlson for sharing 
his experiences about editing a festschrift and to Siv Nyquist for providing me with 
background information and keeping this whole project a secret.

November 2015				    Ellinor Fackle-Fornius

Professor Hans Nyquist, 2010
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From optimal design theory to

optimizing designs of clinical trials

Carl-Fredrik Burman1

Abstract

Optimal design theory is applicable to certain aspects of the design
of clinical trials. In this article, we will discuss D-optimal designs for
Emax models in particular. However, several important design features
are outside the scope of classic optimal design theory. One example is
optimisation of the sample size. Solving this type of problems requires
us to move from a narrow view of statistics to an appreciation of the
design as part of a wider scientific context. This may be especially
important when considering trials in rare diseases where few patients
are available for trial inclusion, the cost is relatively large compared
to potential drug sales and where much is at stakes for future patients
and patients in the trial. A particularly challenging problem is that of
programme optimisation, where a dose-finding trial is to be optimised,
not based on a function of its Fisher information matrix, but based on
the expected utility for the optimal design of the following confirmatory
trial.

Key words: D-optimal designs, clinical trials, small population groups,
decision theory

1 Introduction

Since I became docent in ”Biostatistik”, I have felt some obligation to be able
to answer simple questions from lay-men within that field. While the standard
English translation of ”Biostatistik” is Biostatistics, an alternative translation
is ”Cinema Statistics”. I found the latter area more challenging, and therefore
forced myself to study the sales statistics at BoxOfficeMojo.com and watch the
lion part of the best-selling films. In one of them, Mission Impossible - Ghost

1AstraZeneca R & D, Mölndal, Sweden, and Chalmers Univ., Göteborg, Sweden

1
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Protocol, the excellent Swedish actor Nyquist played a professor at Stockholm
University with IQ 190, specialising in game theory. His research centres on
critical decisions and he designs a scenario that he thinks is optimal for the
future of mankind. Such topics, like optimal design and decision-making will
be the subject of this paper. The stakes will not be quite as high as in the
film, but we will still be talking about lives and deaths, as we consider the
development of new pharmaceuticals for serious diseases.

We will start, in Section 2, by outlining some concepts and results from
optimal design theory as it relates to clinical trials. As an example, D-optimal
designs for the Emax model will be provided. In Section 3, we will consider the
design of clinical trials from a more practical point of view, and also discuss
optimisation of design features that are normally not included in optimal
design theory. We will then expand from the level of an individual experiment
and sketch a problem of optimisation of a programme of trials (Section 4).
This problem is especially mathematically challenging as the optimal design
of a dose-finding trial does not depend on a function of the information matrix,
but on what will be the optimal design of confirmatory phase III, and on how
this optimisation will result in an expected value of the goal function. On
the other hand, the optimisation of the confirmatory trial will depend on the
dose-finding trial design and the stochastic outcome of that trial. Finally,
Sections 5 and 6 provide a discussion and conclusions.

2 Optimal design theory relating to clinical tri-
als

In this article, we define optimal design theory as the theory of optimising
a function of the (asymptotic) Fisher information matrix for the parame-
ter vector. This theory is described in, for example, Atkinson et al. (2007);
Fedorov and Leonov (2013). Optimal design theory has been applied to a
number of clinical trial design problems, for example: the choice of doses in
phase IIB dose-finding trials (e.g. Miller et al. (2007)), adaptive dose-finding
(e.g. Bornkamp et al. (2007); Bretz et al. (2010)), sequential designs to esti-
mate the highest dose with acceptable toxicity (e.g. Haines et al. (2003)), the
choice of sample times for longitudinal modelling (e.g. Bazzoli et al. (2009)),
and covariate-balancing allocations (e.g. Atkinson (1982); Burman (1996);
Atkinson (2014)). The most important application is arguably dose-finding
and that is the topic of most of this section.

2
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2

2.1 The Emax model

We will consider the following Emax model, which is the most important
model for dose-response,

η(x, θ) = θ1 + θ2
xθ4

xθ4 + θθ43
, (1)

where θ = (θ1, θ2, θ3, θ4) is the vector of parameters, η is the expected re-
sponse, and the residuals are assumed to be additive and independent nor-
mally distributed with constant variance. The 4-parameter Emax model pre-
dicts that the response is a sigmoid function of the logarithm of the dose.
The parameter θ1 can be interpreted as the expected response in the placebo
group, and θ2 is the maximal expected additional efficacy. The potency pa-
rameter, θ3, corresponds to the dose where half of the maximal additional
efficacy is attained. The shape parameter θ4, often called the Hill coefficient,
is related to the steepness of the function around θ3. In addition to the full
4-parameter model, we will also consider all models resulting when some of
the four parameters are taken to be known. If the value of θ1 is known to
be θC1 we can subtract the constant θC1 from the response. The new response
will then have expectation as in equation 1 with θ1 = 0. Thus, without loss
of generality, we may set θ1 = 0. With similar arguments, we take θ2 = 1,
θ3 = 1 and θ4 = 1 in the expected response η(x, θ) whenever they are known.

Some of the sub-models have their own names in specific areas of bio-
sciences. One example is the Michaelis-Menten model, which we can regard
as an Emax model where θ1 and θ4 are known. Thus, the Michaelis-Menten
model includes only θ2 and θ3 as unknown parameters. Another model is
named after Hill (1910). It is an extension of the Michaelis-Menten model
including also θ4 as unknown parameter. Examples of applications of Emax
models in other areas than dose-finding clinical trials include biochemical en-
gineering using enzyme reactors (Kumar and Nath (1997)), surface adsorption
processes (Naidja and Huang (2002)), population dynamics (Xu and Chaplain
(2002)), and biosensors (Liu et al. (2003)).

2.2 Locally D-optimal designs

A key aspect of designing the experiment consists in choosing the number
of doses, n, the dose levels, xi, (i = 1, . . . , n), and the proportion, wi, (i =
1, . . . , n), of experimental units (patients) allocated to each dose in order to
gain as much information as possible about the parameters in the model.
Optimal designs for non-linear models are especially complicated since they

3
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depend on the true parameter values. A common approach in this case is to
make a Taylor expansion of the model to make it linear around the true, but
unknown value, θ⋆ = (θ⋆1 , θ

⋆
2 , θ

⋆
3 , θ

⋆
4), of the parameter vector.

If we denote by m(xi, θ) the contribution to the information matrix by

one observation, with dose xi, we have m(xi, θ) = [∂η(xi,θ)
∂θ ][∂η(xi,θ)

∂θ ]T , where

[∂η(xi,θ)
∂θ ] is a column vector with the jth element equal to the partial derivative

∂η(xi, θ)/∂θj . The Fisher information matrix for a design ξ with n doses
x1, . . . , xn and Nw1, . . . , Nwn observations per dose is NM(ξ, θ), where

M(ξ, θ) =
n∑

i=1

wim(xi, θ)

is called the standardised information matrix. We will focus on the construc-
tion of a locally D-optimal design, which minimises

ψ(ξ, θ) = ln(detM−1(ξ, θ)) = − ln(detM(ξ, θ)).

It is crucial to be able to check a proposed design for optimality. This
can be done using the General Equivalence Theorem by Kiefer and Wolfowitz
(1960). Let ξx be the one-point design assigning unit mass to the point x.
Define the directional derivative of ψ(ξ, θ) towards ξx as

ϕ(x, ξ, θ) = lim
α→0+

1

α
[ψ((1− α)ξ + αξx, θ)− ψ(ξ, θ)].

A sufficient condition according to the General Equivalence Theorem for
the design ξ to be optimal is that ϕ(x, ξ, θ) ≥ 0 for all x. The theorem also
states that equality is fulfilled at the support points of the optimal design.
If we denote by p the number of parameters, the well known theorem by
Caratheodory says that there exists a D-optimal design with n ≤ p(p + 1)/2
design points. In many models only p design points are needed. In this case
equal weight should be given to each design point. This is the case in 13 of the
15 Emax models we study here. However, for the two models with {θ2, θ4}
and {θ1, θ2, θ4} as unknown parameters, the number of design points in the
optimal design exceeds the number of parameters in the model.

2.3 Locally D-optimal designs for the Emax models

Locally D-optimal designs are given in Table 1 for the 4-parameter model
and for models with only a subset of the parameters. (For clarity, we will
in the table use general values of known parameters, not assuming θ1 = 0,

4
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4

θ2 = 1 etc.) The optimal designs have been deduced by direct studying of the
criterion function and by applying the General Equivalence Theorem. Some of
the results can be found in Hedayat et al. (1997); Duggleby (1979); Bezeau and
Endrenyi (1986). Locally D-optimal designs for all cases are given in Sonesson
and Burman (2004).

The parameters θ1 and θ2 enter the dose-response function linearly. In
the optimal design, they call for design points in x = 0, to estimate θ1,
and formally in x = ∞, to estimate the sum θ1 + θ2, so that θ2 can be
estimated. In theory, we will allow a design point at infinite dose. In practise,
the highest dose depends on previous information about toxicity and ethical
considerations. The optimal design when the dose is constrained by x ≤ xmax

often needs to be determined numerically. Analytic results for the Michaelis-
Menten model for this situation can be found in Duggleby (1979).

For a model with only θ3, the absolute value of the derivative w.r.t. θ3, is
maximised when x = θ⋆3 . Thus, that design point will give most information
to estimate θ3 and the one-point design is D-optimal.

For the model where the Hill coefficient, θ4, is the only unknown parameter,
a one-point design with dose x will have

det(M(ξ, θ4)) |θ4=1=

(
xθ4 lnxθ4

(1 + xθ4)2

)2

.

Using the variable substitution y = xθ4 the determinant is maximised when
(y− 1) ln y = y+1. This equation has two roots: y1 = 1/A and y2 = A where
A ≈ 4.6805. The optimal design points x1 and x2 (where xi = y−θ4

i ) are the
doses where the additional efficacy, as compared with the placebo effect, is
17.6% and 82.4% of θ2. Any of these two design points can be chosen in the
optimal design. Furthermore, since linear combinations of D-optimal designs
are also D-optimal, any 2-point design with x1 and x2 and arbitrary weights is
also optimal. Figure 1 illustrates how the optimal design points are the ones
that best discriminate between models with different values of θ4. In order
to simplify the text in the remainder of this sub-section, we assume that the
problem is rescaled so that θ4 = 1 and θ3 = 1, also when these parameters
are taken to be unknown. The summary table will, however, give solutions
for general parameter values.

When including θ1 in the model, in addition to θ4, a kind of symmetry
(in the logarithmic scale) is introduced in the problem. The optimal design
consists of doses x1 = 1/A and x2 = A with equal weight.

The optimal design for the 2-parameter model with θ3 and θ4 have doses
{1/B,B} where B ≈ 2.84. This design can be understood as a compromise

5
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Figure 1: The Emax model for the case of θ4 being the only unknown param-
eter. As θ4 approaches 1 from above, the vertical lines at the maximum and
minimum of ∆η converge to ± ln(A) = ±1.5434.

between the optimal designs with doses {1} and {1/A,A} for the two corre-
sponding 1-parameter problems. The doses 1/B and B corresponds to 26.0%
and 74.0% of the maximal efficacy compared to placebo.

For the model with unknown parameters θ1, θ2 and θ4, there is an intrinsic
(anti)symmetry in the model, which will appear clearly after a transformation.
Let z = lnx and reparametrise the model by setting θdiff = θ2/2 and θaver =
θ1 + θ2/2 .

The resulting expected value in the model is

ηz(z, θ
′) = θaver + θdiff

exp(θ4z)− 1

exp(θ4z) + 1
(2)

where θ′ = (θdiff, θaver, θ4). The locally D-optimal design for this model will
correspond in an obvious way to the optimal design of the original model.
Note that for the model in formula 2,

1

2
[ηz(z, θ

′) + ηz(−z, θ′)] = θaver,

irrespective of z. This indicates that any symmetric design will lead to an
estimator of θaver which is independent of the estimators of the two other
parameters. Therefore, it is plausible that any non-symmetric 3-point design
can be improved by making it symmetric by increasing the number of design

6
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6

Table 1: D-optimal designs for Emax models
Unknown Optimal Unknown Optimal
parameters design points parameters design points

θ4 θ3/a (Remark 1)
θ1 0 θ1, θ4 θ3/a, a · θ3
θ2 ∞ θ2, θ4 c1 · θ3, c2 · θ3, ∞ (Remark 2)
θ3 θ3 θ3, θ4 θ3/b, b · θ3
θ1, θ2 0, ∞ θ1, θ2, θ4 0, θ3/a, a · θ3, ∞
θ1, θ3 0, θ3 θ1, θ3, θ4 0, θ3/b, b · θ3 (Remark 1)
θ2, θ3 θ3, ∞ θ2, θ3, θ4 θ3/b, b · θ3, ∞
θ1, θ2, θ3 0, θ3, ∞ θ1, θ2, θ3, θ4 0, θ3/b, b · θ3, ∞

Equal weight is given to each design point with one exception; see Remark 2.

a = A1/θ4 , where A ≈ 4.68 solves (A − 1) ln(A) = A + 1.

b = B1/θ4 , where B ≈ 2.84 solves 2(B − 1) ln(B) = B + 1.

Remark 1: There is an alternative D-optimal design with the same number of design points.

Remark 2: The weights are unequal: 0.346, 0.342 and 0.312, respectively. Constants are

c1 ≈ 0.241 and c2 ≈ 5.640.

points. Further, it is easy to see that a symmetric 3-point design cannot be
optimal since the resulting information matrix is in fact singular.

Note that the model with only the two parameters θdiff and θ4, with θaver
taken as a constant, has a 2-point optimal design with design points ± lnA and
±∞. The plus or minus signs can be chosen arbitrarily due to the symmetry
of the problem. In fact, the mass can be split arbitrarily between + lnA and
− lnA and between +∞ and −∞. For the 3-parameter model, the optimal
design for the 2-parameter problem can be applied directly with the only
restriction of symmetry, which is caused by the inclusion of θaver. (Compare
this situation with the inclusion of θ1 to the model with only θ4 above.) The
optimal design is thus the 4-point design −∞, − lnA, + lnA and +∞ with
equal weights. It may be noted that this design is optimal also for the 2-
parameter problem, that is, the inclusion of a third parameter does not make
the estimation of θdiff and θ4 less precise. For the corresponding 3-parameter
model using our original parameter setting, the optimal design thus consists
of the design points 0, 1/A,A,∞, as presented in Table 1. (Recall that we
have taken e.g. θ⋆3 = 1 and θ⋆4 = 1 in the discussion, while we give formulas
for any parameter values in the table.)

Interestingly, there exists no 2-point optimal design for the 2-parameter
model with unknown parameters θ2 and θ4. Turning to a 3 point design for
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this model, one might expect that the optimal design would have doses 1/A,
A and ∞ with equal weights. However, this is not the case. Two of the design
points in this design, as well as the weights, differ slightly from the optimal
design. The optimal design in Table 1 for this model is found by numerical
methods.

2.4 Some remarks

The minimisation of ψ(ξ, θ) as a design criterion is motivated by its connection
to the variance of the estimated parameters. Assuming independent normally
distributed residuals with constant variance σ2 in the linear model η = Xθ,
the variance-covariance matrix of the ordinary least squares estimates of θ
equals σ2(XTX)−1. The volume of the confidence ellipsoid of the estimated
parameters depends on det(XTX). The larger the determinant is the smaller
will the volume be. For the non-linear models, we will get a similar result after
a Taylor approximation around θ⋆. This motivates the D-optimality criterion.
However, for some of the Emax models, the maximum likelihood estimator
has undefined variance. This critique often has limited practical importance,
but care is recommended when the trial has a small sample size.

Another issue is that we have only considered continuous designs, where
the design weights can be chosen in (0, 1]. However, all designs used in practice
must be exact in the meaning that they are realisable for a specific number
of observations, N . All design weights must thus be a multiple of 1/N . This
comment may be worth considering when the sample size is small.

Instead of focussing on all parameters, we may be particularly interested
in some of them. A DS-optimal design can then be considered. Often the
interest lies in a function of the parameters to be estimated. In the case of a
linear function of the parameters, the criterion is called local c-optimality. In
dose-finding studies one might not be primarily interested in ED50, the dose
giving 50% of the maximum possible efficacy, but rather, for example, in ED90

or ED95. Dette et al. (2010) gives local EDp-optimal designs, together with
D-optimal ones. One criterion for what is regarded as the optimal dose might
be the dose where the response has a certain derivative w.r.t. the logarithm
of the dose. This would be one way to balance efficacy and possible adverse
effects of taking the drug.

Local D-optimality focuses on a single point estimate of the unknown pa-
rameters. As an alternative, optimal-on-average (a.k.a. Bayesian) optimal de-
signs optimise the expectation over a prior for the parameter vector of the same
criterion function as before (Atkinson et al. (2007); Pettersson and Nyquist
(2003)). A review of Bayesian design can be found in Chaloner and Verdinelli
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(1995). Results for the Michaelis-Menten model were obtained by Matthews
and Allock (2004). An alternative to Bayesian designs is to focus on maximin
designs (Dette and Biedermann (2003); Nyquist (2013); Fackle-Fornius et al.
(2015); Fackle-Fornius and Nyquist (2015)). A way to extend the Emax model
is to include random effects. Optimal design in that type of models has been
studied in Mentré et al. (2001). Note that the Emax model is mathematically
similar to logistic regression models for dichotomous data. Fackle-Fornius
and Nyquist (2009) give c-optimal designs for this situation when the logit is
a quadratic function of the independent variable, the dose, say. Magnusdot-
tir and Nyquist (2015 (pre-published online) analyse Emax models with both
efficacy and safety, and Burman et al. (2010) discuss the trade-off between
them.

3 Optimising clinical trial designs

When a clinical trial is designed in practise, a multitude of design dimensions
have to be considered. A natural first question is which treatments should
be compared. We may know that a certain new drug under development
should be tested but the choice of control group is not always obvious. Could
placebo be used or is an active control needed for ethical reasons (Burman
and Carlberg (2009)), and in that case which active control?

The choice of the dose or doses of the new drug is often important. Some-
times other dosing aspects are also of importance, such as how often the drug
should be administered and through which route. Some designs have indi-
vidualised doses, e.g. based on body weight, and can even use titration, that
is, (usually) increasing doses over time. In many medical areas, one single
dose has traditionally been tested in confirmatory phase III trials. However,
this has been questioned by regulators and others. Lisovskaja and Burman
(2013) therefore studied whether one or two doses would be optimal, and
which dose(s) to choose. In that work, Bayesian decision theory was used
rather than optimal design theory.

When discussing which treatment arms to include in a trial, the disease in-
dication and population are often taken as given. However, the precise defini-
tion of inclusion and exclusion criteria for potential trial patients often requires
considerable work. Other examples of design dimensions are sample size, the
choice of (primary and secondary) variables, measurement time points, and
the pre-specified analysis, including multiplicity adjustments. Cross-over de-
signs can sometimes reduce the trial size and cost substantially. Adaptive
designs, including group-sequential designs, allow pre-specified design modifi-
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cations in response to interim data. This may help the trial to provide more
informative information (after dose adaptations e.g.) or sufficient data for
statistical conclusions.

Classical optimal design theory can readily attack some of the design prob-
lems, notably the choice of doses and relative sample sizes in a dose-response
trial, where the optimality criterion is a function of the information matrix
for a small number of parameters in a dose-response model. It has also been
used for the timing of measurements when non-linear mixed effects models are
used. Other design factors are perceived as less statistical in nature, and not
suitable for optimal design theory. Some factors, like the choice of countries or
centres, could possibly be addressed by the classic theory, but probably only
to the price of forcing the problem into an awkward mathematical model.
Arguably, the most important design parameter, the sample size, is normally
ignored by standard optimal design theory.

3.1 Optimal sample size

One problem when optimising the sample size is that by intrinsic measures, an
experiment becomes increasingly better, more informative, with an increased
sample size. Thus, in the small world, larger is always better. Widening
the perspective, however, the cost per patient is significant and there should
be a trade-off between information gain and cost. Most of the literature on
sample size calculations is, given a fixed type I error, focusing on obtaining
a certain type II error for a certain one-point alternative θA. This may seem
rational, but merely sweeps the problem under the carpet. How should the
alternative hypothesis’ value of the parameter be chosen? When designing
clinical trials, it is common to use the so called ”least clinically significant”
difference as the alternative θA. But, I would argue, virtually any difference is
clinically significant to the patients. A reduction in death risk of 1 in 10,000
is clearly valuable, at least in a situation where the new drug is as safe as the
alternative treatment. If the new drug has larger safety problems, that should
explicitly be factored into a benefit/risk assessment; it does not mean that a
small reduction in mortality is clinically in-significant per se.

If optimal design theory is not applicable, and traditional sample size cal-
culations are ad hoc, we should turn to an explicit analysis of the decision
(Lindley (1997); Burman et al. (2007)). What is the value of the information
generated by the trial, and what is the cost of experimentation? Assume that
the cost C(N) of a clinical trial is proportional to the trial size N , that is,
C(N) = cN . The value of a trial can be modelled in many different ways,
partly depending on which stakeholder perspective is taken. A patient who
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will receive a new drug if it obtains regulatory approval would then have a
benefit that depends on the drug’s (placebo-adjusted) efficacy, θ. Assuming
that the safety problems and cost of the new drug are ignorable, and that
the patients’ benefit is proportional to θ, the total benefit for a fixed future
population could be modelled as

k θ 1{Regulatory approval}.

For simplicity, we will assume that the drug is approved if and only if the
efficacy is statistically significantly better than placebo at level α = 0.025.
Assume that the test statistic ZN is normally distributed with mean θ

√
N

and variance 1. The net utility, considering the benefits for future patients
and the cost of the trial, could then be modelled as:

U(N, θ) = k θ 1{ZN>Cα} − cN,

where Cα = Φ−1(1−α) is the critical limit for the test and Φ is the cumulative
distribution function for the standard normal distribution. We are interested
in optimising, over N , the expected utility

E[U(N, θ)] = k θ p(N, θ)− cN.

where p(N, θ) = Prob(ZN > Cα) = Φ(θ
√
N − Cα) is the statistical power

of the trial. The optimisation could be made for a certain efficacy value, θ.
However, as in non-linear optimal design theory, this kind of ”local” optimi-
sation appears somewhat artificial from a practical point of view. How can
we assume that θ is known before the trial, when the purpose of the trial is to
estimate this same parameter? Bayesian (or ”optimal on average”) decision
theory moves one step further by explicitly modelling the prior uncertainty in
the parameter. With π as the prior, the optimum sample size is then

argmaxN kEπ[ θ p(N, θ)]− cN.

Figure 2 gives an example when θ is Normal(0.2; 0.1) and kEπ[θ]/c = 2000.
Optimal sample size have been discussed e.g. by Burman et al. (2007); Kikuchi
et al. (2008). Note that the Bayesian decision theoretic approach described is
Bayesian only with respect to the choice of design, not in the interpretation of
trial data. This is the same as for Bayesian optimal design theory, where the
prior is used only for design purposes, not to analyse data. The term optimal-
on-average design theory reduces the risk that the method is perceived as
fully Bayesian. The input to a decision theoretic model, as e.g. the commer-
cial potential which depends partly on health care providers’ willingness-to-
pay, is important. Optimal design theory may be used e.g. to evaluate such
willingness-to-pay (cf. Nyquist (1992)).
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Figure 2: The utility function for some specific values of θ, and when θ
follows a Normal(0.2; 0.1) prior. Solid lines show the cost, expected gain
g = k θ p(N, θ) and expected net utility V = E[U(N, θ)] when θ = 0.2. Dashed
lines indicate a higher/lower utility if θ is higher/lower. The dotted line gives
the expected utility over the prior for θ.

4 Adaptive programmes

In mathematics, we often generalise results from one dimension, to two, or
infinitely many. As clinical development is a sequential process, where a new
medicine has to be tested in a number of pre-clinical steps, followed typically
by phase I, IIA, IIB and III clinical trials, it makes sense not only to study
the optimal design of a single trial, but to consider also optimisation of a pro-
gramme of trials. The intricate inter-dependence between the trials will lead
to new and challenging problems. The cross-industry Adaptive Programme
workstream, sponsored by the Drug Information Association (DIA), has been
focussed on studying the design of phase IIB dose-finding in conjunction with
phase III confirmatory trials. The publications Patel et al. (2012); Antonije-
vic et al. (2013b); Marchenko et al. (2013); Antonijevic et al. (2013a, 2015)
from the Adaptive Programme workstream have often been relatively applied
but more generic models have also been discussed. Some results are given
by Jennison (2011).

Based on a prior π1 for the parameter vector, we are to choose the design
D2 for the phase IIB dose-finding study. Phase IIB will then generate random
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data X2. These data together with the prior π1 gives the posterior π2.
In similarity with phase IIB, we can then choose a design D3 for the con-

firmatory phase III, which will result in data X3. However, while phase IIB
was aimed at learning about the parameter vector, phase III is used for con-
firmation. The results from phase III, i.e. X3, translates into a project value
g. The value g may also depend on the total time duration of development,
which depends on the design through the sample sizes or, more generally,
g = g(X3,D2,D3). Let c be the cost of phase IIB and phase III. The generic
problem is to maximise

E1[g − c] = E1 [g(X3,D2,D3)− c(D2,D3)]

with respect to the designs D2 and D3 = D3(X2) The expectation is taken
over the distribution of the study results X2 and X3, which are governed by
the prior for the parameter.

For our current purposes, a design will be characterised by the doses and
related sample sizes. In this case, the design for stage i can be viewed as
a counting measure ξi, where ni(d) = ξi({d}) is the sample size for dose d.
The total sample size is Ni = ξi([0,∞]) (including infinity for mathematical
convenience).

To make the problem solvable, we have to further specify the relation
between the model entities. Take all responses to be independent, normally
distributed, with constant variance within each trial. Assume that the gain
and cost depend only on the designs Di through the sample sizes Ni. Thus,
c = c(N2, N3) and g = g(X3, N2, N3). The (main) reason that the gain
depends on the sample sizes is that the commercial value depends on the total
time duration T needed to complete the development program. We assume
T = T (N2, N3). Further, we assume a multiplicative structure, so that the
gain is a product of one component v related to phase III efficacy and safety
results, and one component t relating to time. Thus, g = v(X3) ·t(T (N2, N3)).

In short, the generic model consists of the following components in tem-
poral order,

1. Given: prior π1 for the parameter vector θ

2. Choose: design D2 (based on π1)

3. Random outcome: X2 (depends on the design D2 as well as the param-
eter θ, which follows the prior distribution π1).

4. Calculate: posterior π2 (depending on prior π1 and data X2).

5. Choose: design D3 (based on X2 and D2).

6. Random outcome: X3 (depending on the design D3 and parameter θ).
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7. Receive a utility U = g(X3,D2,D3)− c(D2,D3).

The objective is to estimate the expected utility.
Note that the parameter vector may govern both efficacy and safety, and

potentially several correlated efficacy and safety variables. It makes sense,
however, to start working with only one efficacy and (optionally) one safety
variable. Note also that the response in phase IIB and in phase III may depend
on different parameters. However, there has to be a dependence between the
parameters for phase IIB and phase III, so that phase IIB data are informative
about the best designs for phase III. The Adaptive Programme problem is
still largely unexplored. However, Jennison (2011) has solved an example
numerically and provided ideas for solutions of the more general problem.

5 Discussion

The decisions about designs of clinical trials are of fundamental importance
to medical science, our society, and, in particular, the patients hoping for
better treatments. For rare diseases in particular, we are in great need of
methodological improvements to make trials more cost-effective, as the large
drug development costs are hindering innovation. Whereas classic optimal
design theory e.g. can guide the design of dose-finding trials and measurement
times, Bayesian decision analysis is useful to optimally trade e.g. efficacy vs.
safety, precision vs. bias, and trial costs vs. information. The combination
of ideas from various areas of statistics, and beyond, may prove fruitful to
further optimise clinical trial designs.

For late-stage designs in small population groups, some improvement areas
are:

• Pooling data over multiple time points / longitudinal analysis

• Using continuous variables instead of dichotomised ones

• Choosing variables with relatively high signal-to-noise ratio

• Borrowing information from historic data or different populations

• Optimising regulatory requirements, based on a public health perspec-
tive

• Based on modelling and decision theory deciding whether one or two
doses should be included in phase III, and when two doses are included
making use of an optimal multiplicity correction (e.g. a pooled test).

• Utilising optimal design theory and similar methodology in design of
dose-finding trials

14
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• Adding interim analysis, and optimising group-sequential / adaptive de-
signs

• Cross-over designs

• Optimising the sample size

6 Conclusions

I’d like to conclude by thanking professor Nyquist for his contributions to the
progress of science, especially in the field of optimal design theory, and urge his
followers to stand on his shoulders and go beyond the current scope of optimal
design theory into the vast, mainly unexplored territory of optimisation of
real-life (clinical) experiments.
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In Uciński, D. and Atkinson, A. C., editors, mODa 10 - Advances in Model-
Oriented Design and Analysis. Springer, 2013.

Patel, N., Bolognese, J., Chuang-Stein, C., Hewitt, D., Gammaitoni, A., and
Pinheiro, J. Designing phase 2 trials based on program-level considerations:
A case study for neuropathic pain. Drug Information Journal, 46:439–454,
2012.

Pettersson, H. and Nyquist, H. Computation of optimum in average designs
for experiments with finite design space. Communication in Statistics –
Simulation and Computation, 32(1):205–221, 2003.

Sonesson, C. and Burman, C.-F. Locally D-optimal designs for Emax models
(unpublished manuscript). 2004.

Xu, R. and Chaplain, M. A. J. Persistence and global stability in a delayed
predator-prey system with Michaelis-Menten type functional response. Ap-
plied Mathematics and Computation, 130(2-3):441–455, 2002.

19

From optimal design theory to optimizing designs of clinical trials



28

Festschrift in Honor of Hans Nyquist

When is an adaptive design useful in

clinical dose-finding trials?

Frank Miller
1

Abstract

During the development process for new drugs, dose-finding trials

have to be conducted and the choice of their design is an important

issue. Traditionally, the standard design is a balanced design where

equally large groups of patients are treated with different doses of the

new drug or with a control. However, it has been identified that other

innovative designs might be more efficient: Optimal designs which use

non-balanced allocation to dose, and adaptive designs where the allo-

cation to the doses can be changed during the study based on results

collected earlier in the study. In a simulation study we will compare effi-

ciencies of balanced non-adaptive, optimal non-adaptive, adaptive two-

stage and fully sequential adaptive designs. In all situations considered

one can gain from applying optimal design theory. However, when mov-

ing from the optimal non-adaptive design to an adaptive design, there

are situations where the design is improved and other situations where

there is only a minor or no gain. Based on our considered situations, we

generalize our observations to answer when an adaptive design is useful.

Key words: Adaptive design; Clinical trial; Dose-finding; Efficiency; Fully
sequential design; Interim analysis; Optimal design; Two-stage design.

1 Introduction

The development process of a new drug is divided into several phases: In
Phase I, the tolerability of the drug is investigated in clinical trials and the
aim is to identify a maximal tolerated dose. As the Phase I investigations
often are conducted with healthy volunteers, no or limited information on the
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effect of the new drug is collected. In Phase II, patients are investigated.
The objective in Phase II is to show that the drug has effect, and to obtain
information about the dose-response profile. Often, a Phase II trial for dose-
finding includes some hundred patients. In Phase III, trials are conducted
comparing one chosen dose with placebo or with a control treatment (in some
cases also two or rarely three doses of the new drug are investigated in Phase
III). In Phase III trials, patients are usually treated during a longer time (if
a chronic disease is to be treated) and patients come from a broader patient
population than the Phase II trials. The dose-response profile estimated in
Phase II is important such that the dose(s) for the expensive Phase III trials
are chosen in the most adequate way.

It is therefore especially desirable to choose an efficient design for the
Phase II dose-finding trial. With a more efficient design, there may be the
opportunity to learn better about the new drug without increasing the number
of patients needed (sample size). Traditionally, a common design for a dose-
finding study allocates patients in a balanced way to placebo (or other control)
and to 3-5 doses of the new drug. The same number of patients are therefore
treated with each treatment out of 4-6 possible options. In recent years, the
discussion about adaptive designs became popular. The trial may be started
with a balanced design or with another design. After obtaining a certain
number of results, the data is analysed (interim analysis) and the design for
the remaining patients is chosen based on the results from the first patients.
For example, it might turn out that the doses investigated in the first part
(Stage 1) gave all similar and good effect such that the interest would be to
investigate smaller doses after the interim analysis (in Stage 2).

In the first years when adaptive design ideas were discussed in this context,
the usefulness of adaptivity had been overestimated. One reason was that
no comprehensive simulation-based or analytical comparisons were available.
Some small simulation studies which compared a non-adaptive design with an
optimized adaptive design in a specific situation often showed great benefit
of the adaptive design. However, a major shortcoming was that the adaptive
design was optimized - but the non-adaptive design was suboptimal. This
puts the non-adaptive design at a disadvantage but the interpretation was
anyway that the large gain was due to the feature of adaptivity alone. A
further shortcoming was the investigation of specific situations (sometimes
assuming variances for observations much lower than usual in clinical trials)
which turned out to be beneficial for the adaptation.

The organisation PhRMA (Pharmaceutical Research and Manufacturers
of America) founded a working group on adaptive dose-ranging studies which

2
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more comprehensively investigated these designs. They published their inves-
tigations in form of two white papers, see Bornkamp et al. (2007); Dragalin
et al. (2010). They investigate several non-adaptive and adaptive designs for
a variety of dose-response scenarios and compare different ways of analysing
the data. Their work shows the potential of innovative methods applied to
dose-finding. In some publications, situations were identified where the gain
of adaptations was limited, see Miller et al. (2007); Dragalin et al. (2010);
Jones et al. (2011); Dette et al. (2013); McCallum and Bornkamp (2015).

We will here in this simulation-based investigation quantify the gain of
several innovative design features, namely we first improve the traditional
balanced design as much as possible without using adaptations. When we then
add on adaptivity, we want to figure out what the adaptivity itself contributes
to the good properties of an adaptive design. Moreover, we consider two
different adaptive designs: a two-stage design with a single interim analysis
(as mentioned before) and a fully sequential design where each new patient
is assigned to a treatment determined based on all available data from the
ongoing study.

Consequently, we consider in this article the following four different types
of designs:

1. Balanced (non-adaptive) design with k treatment arms (placebo and
k − 1 doses). The number of patients in each treatment arm is equal.

2. Optimal non-adaptive design. Optimal dose allocation is done according
to knowledge prior to the study. Optimality is measured by a certain
criterion, which will be specified in Section 2.

3. Adaptive two-stage design (with optimal allocation). Allocation ratios
are updated once during the study. Two different optimal designs are
used before and after the interim analysis.

4. Fully sequential adaptive design (with optimal dynamic allocation). Op-
timal allocation for each patient based on all information which is col-
lected until the inclusion of this patient.

These four designs will be described with more details in Section 3.
In this article, we use a similar setting as considered by Miller et al. (2007);

Fackle-Fornius et al. (2015) but investigate other, varying scenarios of prior
knowledge. By this, we get a feeling in which situations an adaptive design is
useful.

3
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useful.

3

2 Model assumptions and objective of the trial

In our considered dose-finding trial we assume the possibility to use k treat-
ment arms: x0 = 0 (placebo) and k − 1 doses of the new drug 0 < x1 <
· · · < xk−1 ≤ xmax. We use in this article five doses x1 = 20, x2 = 40, x3 =
60, x4 = 80, x5 = 100 mg. A main aim of phase II in drug development is to
obtain knowledge about the dose-efficacy and dose-safety profile of the drug.
In this article, we focus on the dose-efficacy-profile, only. We assume that
the primary outcome measuring the drug effect of patient i in dose group d is
Ydi, d = 0, . . . , k − 1 following the Emax-sigmoid model,

Ydi ∼ N(f(xd, ϑ), σ
2)

with

ϑ = (E0, Emax, ED50, α)
⊤, f(x, ϑ) = E0 +

Emaxx
α

EDα
50 + xα

.

For modelling of both efficacy and safety, we refer to Magnusdottir and Nyquist
(2015) who consider a bivariate Emax model for simultaneous inference.

Here, we want to estimate the dose-efficacy in relation to placebo,

f(x, ϑ)− f(0, ϑ).

The placebo effect f(0, ϑ) is treated here as a nuisance parameter. However,
not all parts of the dose-response curve are of equal importance. Especially,
we do not need precision in estimates for the part of the curve with low effects
below some threshold of clinical importance, δ. Therefore, Miller et al. (2007)
used the following objective: if there exist doses within the dose range up to
xmax with an effect of at least δ compared to placebo, we want to estimate

f(x, ϑ)− f(0, ϑ), x ∈ [xδ, xmax],

where xδ is the dose with effect = δ, i.e. f(xδ, ϑ) − f(0, ϑ) = δ or xδ =
(δ/(Emax − δ))(1/α)ED50. If we have a drug without clinical relevant effect
up to dose xmax, we want to estimate the effect at the highest dose

f(xmax, ϑ)− f(0, ϑ).

This objective is illustrated in Figure 1. We call this objective ”estimation of
the interesting part of the dose-response curve”.

Given the described objective, we want to search for a good, or “optimal”,
design. To do this, we need to further formalize the objective and can then

4
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Figure 1: Objective of the trial: estimation of the placebo-adjusted effect
between smallest relevant and highest dose (left picture) or – if no such relevant
dose exists in the considered dose range – estimation of the effect at highest
dose (right picture). The smallest relevant dose is the dose with effect δ = 5.

apply optimal design theory. For a general background on optimal design of
experiments, we refer to Silvey (1980); Atkinson et al. (2007).

Let us consider a non-adaptive design which is characterised by allocation
ratios wd ≥ 0,

∑k−1
j=0 wj = 1, for the dose xd, d = 0, . . . , k−1. We estimate the

dose-response curve with the least square estimation in our assumed Emax-
sigmoid model. The variance of the estimated difference in the effect between
a dose x and placebo (dose 0) is approximately proportional to

d(x, ξ, ϑ) = (g(x, ϑ)− g(0, ϑ))
⊤
M−1(ξ, ϑ) (g(x, ϑ)− g(0, ϑ))

where

M(ξ, ϑ) =

k
∑

j=1

wjg(xj , ϑ)g
⊤(xj , ϑ)

is the information matrix, and

g(x, ϑ) =

(

∂f(x, ϑ)

∂E0
,
∂f(x, ϑ)

∂Emax
,
∂f(x, ϑ)

∂ED50
,
∂f(x, ϑ)

∂α

)⊤

=

(

1,
xα

EDα
50 + xα

,
−EmaxαED

α−1
50 xα

(EDα
50 + xα)2

,
EmaxED

α
50x

α(log x− logED50)

(EDα
50 + xα)2

)⊤
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is the gradient of the dose-efficacy-function with respect to ϑ, see also Miller
et al. (2007); Fackle-Fornius et al. (2015).

If there exists no dose within the dose range up to xmax with an effect of at
least δ compared to placebo, we just have to maximise 1/d(xmax, ξ, ϑ). If there
exist doses within this dose range with the required effect, we want to minimise
the average variance of the estimates for f(x, ϑ)− f(0, ϑ), x ∈ [xδ, xmax], and
use the IL-criterion with L = 1, see Fedorov (1972); Dette and O’Brien (1999).
Therefore we search a design ξ with large value of the following criterion
function:

Φ(ξ, ϑ) =

{

{

1
xmax−xδ

∫ xmax

xδ

d(x, ξ, ϑ) dx
}−1

, if f(xmax, ϑ)− f(0, ϑ) > δ,

1/d(xmax, ξ, ϑ), if f(xmax, ϑ)− f(0, ϑ) ≤ δ.
(1)

We define the relative efficiency of an arbitrary design ξ with respect to
the balanced design ξ0 (used as reference design) by

Eff(ξ, ϑ) = Φ(ξ, ϑ)/Φ(ξ0, ϑ).

For example, an efficiency of 1.25 means that the balanced design would need
25% more patients than the design under consideration to obtain estimates
with approximately the same precision.

Optimal designs for Emax dose-finding models based on other optimality
criteria have been derived in the literature. Burman (2015) presentsD-optimal
designs for the Emax-sigmoid model. Magnusdottir (2013) derives c-optimal
designs for the bivariate Emax model. Dette et al. (2008) consider MED-
optimal designs for estimation of the minimum effective dose.

Usually, there exists prior knowledge about possible dose-response scenar-
ios before the study starts. Miller et al. (2007) have investigated an example
based on an AstraZeneca study with seven possible dose-response scenarios.
In this paper, we use as example three possible scenarios: an optimistic sce-
nario, a pessimistic scenario, and a scenario with good effects only at high
doses, see Table 1 and Figure 2. In Table 1, the parameter E0 is not included,
since we treat the placebo effect as nuisance parameter and our investigation
does not depend on the value of E0. Further, a standard deviation of σ = 10 is
assumed leading to reasonable signal-to-noise ratios in clinical studies. With
the knowledge before the study, we assume that the prior probabilities for the
three scenarios are 0.35, 0.35, and 0.30, respectively.
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Figure 2: Prior knowledge about dose-efficacy scenarios (Example 1)

Table 1: Parameters for the dose-efficacy scenarios (Example 1)

Scenario Emax ED50 α prior prob. πj

Optimistic 16.8 70 1 0.35
Pessimistic 11.2 200 1 0.35
Good-high-doses 11.2 70 4 0.30

3 Description of the considered designs

Once we have described the assumed model and the objective of the trial, we
can describe the four considered designs in more detail. In the simulations in
the next sections, we consider a total sample size of n = 300 patients.

3.1 Balanced design

Since we have n = 300 patients and k = 6 treatment arms, we have n/k = 50
patients per treatment arm.

7
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Table 2: Optimal non-adaptive design
Dose xd 0 20 40 60 80 100
Weight wd 0.385 0.038 0.062 0.096 0.119 0.300
nd 115 11 19 29 36 90

3.2 Optimal non-adaptive design

As mentioned before, a non-adaptive design is characterised by the allocation
ratios w0, w1, . . . , wk−1 for the treatment arms 0 (placebo) and 1, 2, . . . , k− 1
(active doses). In common notation for experimental design, a design char-
acterised by the observational points (here doses) and their allocation ratios
(weights) is often called ξ and can be written as

ξ =

(

x0 x1 . . . xk−1

w0 w1 . . . wk−1

)

.

Our prior knowledge consists of three different scenarios which we can call
ϑj with j = 1 for the optimistic, j = 2 for the pessimistic and j = 3 for the
good-high-doses scenario. We are interested in the design ξ (i.e. the weights
wd) which maximises the average efficiencies for the scenarios,

3
∑

j=1

πjEff(ξ, ϑj), (2)

using the prior probabilities π1 = π2 = 0.35, π3 = 0.30 (see Table 1). We
call this design optimal non-adaptive design. We have calculated this optimal
design by a numerical method using a first order exchange algorithm, see e.g.
Atkinson et al. (2007), see Table 2. The patient numbers nd are obtained by
rounding 300wd (while ensuring a total sum of 300).

The approach to maximize average efficiencies (2) is called “optimal-on-
average approach” in contrast to a “maximin approach” where the minimal
efficiency over the scenarios is maximised, see Fackle-Fornius et al. (2015).

3.3 Adaptive two-stage design

For this design, we start as above with the optimal non-adaptive design but
only for the first part of the study with 100 patients. Given the weights in
Table 2, the patient numbers are 38, 4, 6, 10, 12, 30 for doses 0, 20, . . . , 100,

8
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respectively (rounding 100wd and ensuring a total sum of 100). Based on the
results Ydi of 100 patients, we calculate posterior probabilities for the three
scenarios according to the Bayes formula. With these posterior probabilities,
we calculate a new optimal non-adaptive design for the whole 300 patients.
We do this in the same way as we did before with the only exception that
we optimise restricted to the fact that we have already a certain number of
patients treated with each dose. In practice, it takes some time to collect and
analyse the data from the first part of the study while recruitment of new
patients is ongoing. Therefore we assume that even patient number 101 to
140 are included according to the starting design. Then, for patient number
141 to 300, the new optimal non-adaptive design is applied.

3.4 Fully sequential adaptive design

As before we assume that we include 140 patients according to the optimal
non-adaptive design. When patient 141 enters the study, the results of the first
100 patients are analysed, posterior probabilities calculated and the treatment
of this patient is chosen in order to maximise our optimality criterion. We
continue in this way, updating the posterior probabilities on an ongoing basis
for determining the treatment of the next patient. We assume throughout the
study that we have a lag of 40 patients, i.e. when including patient number
i+ 1, the results of i− 40 patients are available.

4 Efficiency for designs

For each scenario and each design, we performed 5000 simulations. Based on
these simulations, we calculated relative efficiencies between the designs.

We need simulations as available asymptotic formulae for the efficiency is to
crude for finite sample sizes when adaptive designs are considered. Therefore,
we compute mean squared errors (MSE) of the estimates in the simulations.
More precisely, for a certain design and a certain simulation scenario, we
obtain the MSE at dose x for estimation of f(x)− f(0) by

MSE(x, ξ, ϑ) =
1

s

s
∑

l=1

[

{f̂l(x)− f̂l(0)} − {f(x)− f(0)}
]2

,

where s is the total number of simulations and f̂l denotes the estimated func-
tion in the lth run of the simulation. We replace then in equation (1) the
function d(x, ξ, ϑ) by MSE(x, ξ, ϑ) and calculate Φ; if the scenario is such

9
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Table 3: Efficiency gain (Example 1)

Scenario Efficiency gain
from balanced from optimal from adaptive

to optimal non-adaptive to two-stage to
non-adaptive adaptive two-stage fully sequential

Optimistic +12% +10% +3%
Pessimistic +62% +1% ±0%
Good-high-doses -4% +7% +8%
Overall +24% +6% +3%

that the first part of the Φ-formula applies we use numerical integration over
[xδ, xmax] where δ = 5 and xδ depends on the scenario. Then Φ(ξb, ϑ)/Φ(ξa, ϑ)
gives us the relative efficiency of Design ξb relative to Design ξa.

We went step by step and calculated the efficiency gain from the balanced
design to the optimal non-adaptive design, from the optimal non-adaptive
design to the adaptive two-stage design and finally from the adaptive two-
stage to the fully sequential design. Results are summarized in Table 3.

We see a quite large efficiency gain of +24% from the balanced design to
the optimal design, which is mainly due to an efficiency gain if the underlying
scenario is the pessimistic one (+62% efficiency gain; note that the increased
allocation to the highest dose is especially important in this scenario). Sur-
prisingly, we cannot improve it much further with the considered adaptive
designs: if we use the adaptive two-stage design, we gain additionally +6%,
and if we go even further and adapt after each patient, we can gain +3% more
efficiency. With these moderate efficiency gains for the adaptive design it is in
most situations hard to justify the additional complexity of an adaptive trial.

Why is there not more gain from adaptive dosing? Let us consider for
example the optimistic scenario and the comparison between the optimal non-
adaptive design and the adaptive two-stage design with average efficiency gain
of 10% (see Table 3). The cumulative distribution function for the MSE from
the simulations of the optimal non-adaptive design and the adaptive two-
stage design are shown in Figure 3 (a). We can see that the cumulative
distribution function for the adaptive design is mostly above the function
for the non-adaptive optimal design which reflects smaller MSE. However, if
we look closer into the tail region of the distribution (Figure 3 (b)), we see
that this is reversed in the part above 0.97 (i.e. for the largest 3% of the
MSE). In the part with large MSE, the adaptive design is even worse than the
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Figure 3: Cumulative distribution function of the MSE for the optimal non-
adaptive design and the adaptive two-stage design (optimistic scenario). (a)
Left figure: whole cumulative distribution, (b) Right figure: tail of the cumu-
lative distribution

non-adaptive. Since the large MSE have also a high impact on the average
efficiency of a design, these approximately 3% of the simulations contribute
that the efficiency of the adaptive two-stage design becomes not too good
compared to the optimal non-adaptive design. How can the high MSEs be
interpreted? Due to the assumed variability, some of the simulations have
interim data suggesting a totally different dose-response-shape compared to
the true scenario. In these cases, the problem for the adaptive design is that
an inferior design is chosen for the part after the interim analysis based on
the wrong interim estimate. This has then an additional negative impact on
the precision of the final estimate.

5 When is an adaptive design useful?

We modify now the prior assumptions in order to investigate in which cases
adaptive designs are useful compared to the non-adaptive optimal design. In
our first modification (Example 2), we change the optimistic scenario to a
“realistic” (Emax = 11.2, ED50 = 70, α = 1) which is closer to the other two
scenarios, see Figure 4. Otherwise, we change nothing: we keep the other two
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Figure 4: Prior knowledge about dose-efficacy scenarios (Example 2)

scenarios and prior probabilities.
The efficiency gains based on 5000 simulations per scenario and design are

summarised in Table 4. We have an even larger gain from the balanced to
the optimal non-adaptive design. We explain this as follows: The scenarios
are more similar compared to the example before. Therefore, a non-adaptive
design can be better optimised for all scenarios simultaneously. But when we
go further to adaptive designs we have even an efficiency loss. When there is
a good understanding prior to the trial with a few possible scenarios which
are not too different, then there is no need to introduce interim analyses for
design modification. In these cases, interim analyses could rather lead to an
inferior design due to the variability in the data used for interim decisions.

In our second modification (Example 3), we use exactly the same scenarios
and prior probabilities as in the main example (Example 1, see Figure 2). We
change only the underlying variability. Instead of the assumption σ = 10 in
Example 1 and 2, we use σ = 6. Again, we performed 5000 simulations per
scenario and design with results shown in Table 5. As before, we have a good
gain with the optimal non-adaptive design. In contrast to the examples before,
we see also a good gain with the adaptive two-stage design (+16%) which is
similar for all three scenarios (+18, +13, +16%, respectively). An additional
gain of 5% is made when using the fully sequential design. In this example,
we have seen that the adaptive dosing has value which could justify the more
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complicated logistics of an adaptive trial. Here, the possible scenarios are
sufficiently different in relation to the underlying variability. This makes it
possible to obtain good information from the interim analysis to improve the
prior probabilities to reliable posterior probabilities for the scenarios.

6 Discussion

We have seen that there is a large gain in efficiency when optimal design
theory is applied and an optimal non-adaptive design is chosen instead of a
traditional balanced design. Using interim data to change allocation ratios
(adaptive dosing) is an attractive concept but it depends on the situation
whether it can lead to a further gain in efficiency or not. This is in line with
the observation from a recent simulation study, McCallum and Bornkamp
(2015), concluding that “the benefit of including an interim analysis has not
been shown to universally to improve the performance of a dose-finding study”.

If the possible scenarios are similar or the variance is large, decisions based
on interim data could lead into the wrong direction. In these cases, an optimal
non-adaptive design might be the better choice. If differences between the
possible scenarios are large (in relation to the variability of data in interim
analysis), there is a clear gain from adaptive dosing.

Most investigations in this context are forced to build on simulation stud-
ies as available asymptotic formulae for the efficiency of adaptive designs are
to crude for finite sample sizes. However, in the context of a simplified dose-
response model (one-parameter model), Dette et al. (2013) successfully de-
rived explicit expressions for the asymptotic efficiency of the adaptive design
which are precise and suited for comparison. Based on these expressions, they

Table 4: Efficiency gain (Example 2)

Scenario Efficiency gain
from balanced from optimal from adaptive

to optimal non-adaptive to two-stage to
non-adaptive adaptive two-stage fully sequential

Realistic +48% -4% -1%
Pessimistic +64% +2% -6%
Good-high-doses +8% -1% +2%
Overall +42% -1% -2%
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Table 5: Efficiency gain in case of small variance σ2 = 62 (Example 3)

Scenario Efficiency gain
from balanced from optimal from adaptive

to optimal non-adaptive to two-stage to
non-adaptive adaptive two-stage fully sequential

Optimistic +13% +18% +5%
Pessimistic +79% +13% +4%
Good-high-doses -3% +16% +6%
Overall +31% +16% +5%

were able to compare the efficiency of non-adaptive and adaptive design in
this setting. The combined evidence from simulation studies and algebraic
investigations for simplified models gives a good picture about when adaptive
designs are useful.

Once it is concluded that an adaptive design is useful, it remains the ques-
tion whether it is feasible for the study to be planned. Logistical issues need
to be resolved before such a design can be applied. Miller et al. (2014) discuss
an example where a simplified adaptive dose-finding design was conducted.
The use of an interim analysis offers the important benefit that the study
can be stopped early (so called futility stopping) when results in the interim
suggest that no dose of the drug will be useful.

A further important point for adaptive designs is that the statistical in-
ference at the end of the trial need to take the adaptivity into account. Note
that in the context of clinical studies significance tests and their frequentist
properties (type I error and power) are of importance. For example Miller
(2010) has derived a trend-test which controls the type I error for an adaptive
two stage dose-finding trial.
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Combinations

Anthony C. Atkinson1

Abstract

The motivation is an experiment in deep-brain therapy in which

each patient receives a set of eight distinct treatment combinations and

provides a response to each. The experimental region contains sixteen

different sets of eight treatments. With only six parameters in the linear

model, it is unlikely that all sixteen points in the design region need to

be included in the experiment. The structure of such experiments is

elucidated in a response surface setting for a binomial model with the

logistic link in which each choice of an experimental setting provides a

response at each of s distinct settings of the explanatory variables. An

extension of the “General Equivalence Theorem” for D-optimum designs
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This paper, however, is about the application of the methods of optimum
experimental design to the linear logistic model.

The scientific motivation is an experiment in deep-brain therapy in which
each patient receives a set of eight treatment combinations and provides a
response to each. The structure of such experiments is most easily seen in a
response surface setting where each choice of an experimental setting provides
a response at each of s distinct settings of the explanatory variables. Atkin-
son (2016) explores this structure for designs when the errors of observation
are independent with constant variance and provides a generalization of the
equivalence theorem of Kiefer and Wolfowitz (1960). The extension in this
paper is to the more interesting case of designs for generalized linear models,
illustrated here for binomial data with the logistic link. Throughout the focus
is on D-optimum designs.

The paper starts in §2 with a brief review of the linear logistic model
and the theory of optimum experimental design. The main numerical results
are in §3. In the first part, §3.1, D-optimum designs are found for a two-
variable first-order model. The structure of the designs is illustrated both
in the design region of the experimental variables and in the induced design
region that depends upon the model. Section 3.2 provides numerical results
for the optimum design when now the design region contains six sets of two
observations. The numerical results suggest an extended equivalence theorem
which is presented in §4. Other design criteria and extensions of the model
are briefly considered in §5. Section 6 provides some discussion of numerical
algorithms for finding optimum designs. The paper closes with comments on
aspects of design for the motivating medical experiment.

2 The Logistic Model

The linear logistic model for a binomial random variable yi with mean µi and
linear predictor ηi is

log{µi/(1− µi)} = ηi = θT f(xi). (1)

The parameter vector θ is p×1, with f(xi) a known function of the explanatory
variables xi. The purpose of the experiment is to obtain good estimates of θ.
For binomial observations yi = Ri/ni, where Ri is the number of successes in
ni trials.

Maximum likelihood estimation for generalized linear models reduces to
weighted least squares. For the binomial distribution and the logistic link the
weights are qi = µi(1− µi).

2
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As is standard in the theory of optimum experimental design, an experi-
mental design ξ places a fraction wi of the experimental trials at the conditions
xi. A design with n points of support is written as

ξ =

{

x1 x2 . . . xn

w1 w2 . . . wn

}

, (2)

where wi > 0 and
∑n

i=1
wi = 1. There are thus two sets of weights: the

wi, which determine the proportion of experimentation at xi, and the GLM
weights qi. Any realisable experimental design for a total of N trials will
require that the weights wi are ratios of integers, that is wi = ri/N , where
ri is the number of replicates at condition xi. The mathematics of finding
optimal experimental designs and demonstrating their properties is greatly
simplified, as in this paper, by the consideration of continuous designs in
which the integer restriction is ignored.

The information matrix for the design ξ with n support points is written

M(ξ; θ) =

n
∑

i=1

wiqif(xi)f(xi)
T = FTWQF, (3)

where F is the n × p extended design matrix, with ith row fT (xi) and W
and Q are diagonal matrices of weights. For generalized linear models, the
parameter values enter only through the GLM weights qi.

3 Optimum Designs

3.1 Single Observations

D-optimum designs, minimizing the generalized variance of the estimate of θ,
maximize the determinant |FTWQF | over the design region X through choice
of the optimum design ξ∗. Examples for the two variable logistic model

log{µ/(1− µ)} = η = θ0 + θ1x1 + θ2x2 , (4)

are given in Atkinson et al. (2007, §22.4.4) for a series of parameter values in
which θ1 = θ2. For the design of this section the parameter values are instead
(0, 1.5, 2).

Table 1 shows the D-optimum design when the design region is X =
[−1, 1]2. This and the design of §3.2 were found numerically using the R
function optim, discussed in §6.

3
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Table 1: D-optimum design for first-order linear predictor in two variables
with the logistic link; θ = (0, 1.5, 2)T . The design region is X = [−1, 1]2

Obs. x1 x2 wi µi d(xi)
1 1 -1 0.324 0.378 3.00
2 -1 1 0.225 0.622 3.00
3 -1 -0.068 0.260 0.163 3.00
4 0.050 1 0.192 0.889 3.00

The table shows that, for these parameter values, the design has support
close to four points of the 32 factorial; the design weights are not quite equal,
ranging from 0.192 to 0.324. For the first two design points, those at the
corners of the design region, the values of µi are 0.378 and 0.622, summing to
one. The values at the other two design points are 0.163 and 0.889, close to
the values of 0.176 and 0.824 that are optimum for the model with a single
variable. See, for example, Atkinson et al. (2007, p. 400).

The support points of the design are shown in Figure 1, together with
shading showing extreme values of the response. In the lightly shaded area
µ ≤ 0.15, whereas, in the darker region, µ ≥ 0.85. The figure illustrates how
the design avoids extreme values of the response where the variance of the
response is high and the weights qi small.

The “general equivalence theorem” for D-optimality (Kiefer and Wol-
fowitz, 1960) provides conditions for the optimality of a design ξ which depend
on the sensitivity function

d(x, ξ; θ) = fT (x)M−1(ξ; θ)f(x)qi, (5)

although, in their case, qi = 1. For the optimum design d̄(x, ξ∗; θ), the maxi-
mum value of the sensitivity function over X , equals p, the number of param-
eters in the linear predictor. These values occur at the points of support of
the design. The last column of Table 1 shows that the values are indeed three
at the four support points. However, checking the optimality of the design
requires a search over X to verify that these are the maximum values.

As the information matrix (3) is of a weighted form, design for the additive
linear predictor

η(x) = θ0 +

p−1
∑

j=1

θjxj , (6)

4
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Figure 1: Support points of the D-optimum design for first-order linear pre-
dictors in two variables with the logistic link; θ = (0, 1.5, 2)T . In the lightly
shaded area µ ≤ 0.15, whereas, in the darker region, µ ≥ 0.85.

is equivalent to (unweighted) design for the linear model

E(yi) = θ0
√
qi +

p−1
∑

j=1

θj
√
qixij ,= θ0z0 +

p−1
∑

j=1

θjzij , (7)

Hence the original design region X can be transformed to the induced design
region Z for the induced variables z0, . . . , zk. Clearly, Z depends on both X
and θ. Since the design is unweighted in (7), D-optimum designs for first-order
models are at extreme values in Z. Ford et al. (1992) used the relationship
with linear model design to provide geometric insight into the structure of
designs for single variable generalized linear models, as did Fackle-Fornius
and Nyquist (2010) for the c-optimum designs mentioned in §5.

Figure 2 shows the induced design region for θ = (0, 1.5, 2)T . Since the
dimension of θ is three, this is also the dimension of Z. The region in the
figure is projected onto z1 and z2, so ignoring z0 =

√
q. As Figure 1 shows,

some extreme values of x do not provide informative experiments; as a result,

5
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dictors in two variables with the logistic link; θ = (0, 1.5, 2)T . In the lightly
shaded area µ ≤ 0.15, whereas, in the darker region, µ ≥ 0.85.
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Figure 2: Support points of the D-optimum design for first-order linear pre-
dictors in two variables with the logistic link in the induced design region Z.

the corners of Z appear folded over. As expected, the design points are at
extreme points in Z.

3.2 Sets of Observations

Instead of single observations, now suppose that the experimental design con-
sists of the choice of pairs of experimental conditions. An example is in Ta-
ble 2. There are twelve individual conditions, grouped into the six sets in
column 2. The design problem is to find the six weights for these sets that
give the D-optimum design.

The structure of the design region is exhibited in Figure 3. The black dots
are close to the four optimum design points for single observations presented
in Table 1. The four crosses combined with the conditions at their nearest
dot, form the first four sets in the table. One of the remaining two sets of
points, both represented by open circles, has been chosen to be at conditions
that are important for second-order response surface designs for unweighted

6
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Table 2: D-optimum design for first-order linear predictor in two variables
with the logistic link; θ = (0, 1.5, 2)T . The design region contains six sets of
two observations.

Obs. Set x1 x2 wi wSET

i µi d(xi) dAVE(xi)
1 1 1.0 -1.0 0.164 0.327 0.378 3.17 3.00
2 1 0.9 -0.9 0.164 0.327 0.389 2.83 3.00
3 2 -0.9 0.9 0.084 0.169 0.611 3.35 3.00
4 2 -0.7 0.7 0.084 0.169 0.587 2.65 3.00
5 3 -1.0 0.0 0.138 0.276 0.182 3.10 3.00
6 3 -0.9 -0.1 0.138 0.276 0.175 2.90 3.00
7 4 0.0 1.0 0.114 0.228 0.881 3.05 3.00
8 4 0.0 0.8 0.114 0.228 0.832 2.95 3.00
9 5 -1.0 -1.0 0.0 0.0 0.029 1.86 1.99
10 5 -0.9 -0.9 0.0 0.0 0.041 2.11 1.99
11 6 0.0 0.0 0.0 0.0 0.500 1.38 1.51
12 6 0.1 0.1 0.0 0.0 0.587 1.64 1.51

regression models. The other set is chosen to have low values of µ.
The optimum weights at the 12 points of observation are given in the fifth

column of the table, with the weights for the sets in column six. The design,
like the design for individual observations, has four points of support, the last
two sets having zero weight. The weights are similar to those in Table 1, the
largest difference being for set 2, for which observation 3 has been taken, for
purposes of illustration, at conditions that are not quite those of the optimum
design of Table 1. The values of µi in column 7 show that both observations
for set 5 have a value of µ less than 5%, and so will be uninformative.

The most interesting results are the values of the sensitivity functions in
the last two columns of the table. There are three parameters in the model,
and the D-optimum design for individual observations had a value of three
for the sensitivity function at the points of the optimum design. Here, for
the first four sets, the near optimum point had a value slightly greater than
three, with the related point represented by a cross, having a value slightly
less than 3. The implication is, if it were possible, that the “crosses” should
be moved closer to the “dots”. The values of the sensitivity functions for the
other two sets are mostly below 2, an indication that readings at the points
are not informative.

7
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Figure 3: Sets of points: the black circles are close to the D-optimum design
shown in Figure 2, with the nearby X the second in each set of observations.
The unfilled circles denote two further pairs of points.

The last column gives the average values of the sensitivity functions for
each set. These are exactly three for the four sets which are included in
the optimum design. The implications for a generalization of the equivalence
theorem are considered in the next section.

Figure 4 shows the sets of points in the induced design region, providing
geometric insight into the structure of the design. The black dots for the near
optimum design lie on the boundary of Z, except for the slightly sub-optimal
point 3 with co-ordinates (-0.9, 0.9) which is a little inside. All the related
points in these sets lie, as the crosses show, slightly further inside the region.
The points for set 5 lie in the centre of the region and the points for set 6 in
a highly folded region of the projection, again away from the boundary.
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Figure 4: Sets of points in the induced design region Z: the black circles
are close to the D-optimum design shown in Figure 2, with the nearby X the
second in each set of observations. The unfilled circles denote two further
pairs of points.

4 Equivalence Theorem

The numerical results for designs with sets of points suggest that an equiva-
lence theorem applies that is an extension of that for individual observations.

Some notation is needed. Let Si denote the ith set of observations, taken
at points xi1, xi2, . . . , xis, (i = 1, . . . ,m) and let

dAVE(i, ξ; θ) =
∑

j∈Si

d(xij , ξ; θ)/s. (8)

Further, let d̄AVE(ξ; θ) be the maximum over the m sets Si, that is over X , of
dAVE(i, ξ; θ).

Then the Equivalence Theorem states the equivalence of the following
three conditions on ξ∗:

1. The design ξ∗ maximizes |M(ξ; θ)|.

9
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9

2. The design ξ∗ minimizes d̄AVE(ξ; θ).

3. The value of d̄AVE(ξ
∗; θ) = p, this maximum occurring at the points of

support of the design.

As a consequence of 3, we obtain the further condition:

4. For any non-optimum design the value of d̄AVE(ξ; θ) > p.

The proof of this theorem follows from the additive nature of the information
matrix. Standard proofs of the equivalence theorem for individual observa-
tions, such as those in Pronzato and Pázman (2013, §5.2) and Fedorov and
Leonov (2014, §2.4.2) depend on the directional derivative at a point in X .
Here, with the extension to a set of observations, the directional derivative
is the sum of the derivatives for the individual observations. The theorem
applies equally when X is a continuous region, as in Figure 1 for single obser-
vations. However, the definition of the sets of points in the continuous region
may not be straightforward.

The assumption in this paper is that all sets contain the same number,
s, of design points. With sets containing different numbers of observations,
costs need to be included in the design criterion. Elfving (1952) formulated
optimum design criteria when costs are included in experiments with indi-
vidual observations. Fedorov and Leonov (2014, Chapter 7) present many
applications in pharmacokinetic experiments.

5 Other Design Criteria

The designs found in this paper depend on the value of θ and so are only
locally optimum. Chaloner and Larntz (1989) incorporate prior information
on θ in their Bayesian design criterion for individual observations, leading to
maximization of the expectation of M(ξ; θ) over the parameter space Θ. Sit-
ter (1992) overcomes dependence on θ by finding minimax designs or, since
the design criterion has been written in this paper as a maximization prob-
lem, maximin designs, in which the design is found by maximizing the design
criterion for the worst performance over Θ. Such designs can, however, be sen-
sitive to the boundaries of Θ and sometimes have particularly good properties
for values of θ that are unlikely. Another way of avoiding dependence of the
design on the value of θ follows from Cox (1988). As the effects of the explana-
tory variables decrease, that is, for example, as θ1 and θ2 in (4) decrease, but
with θ0 non-zero, designs tend to those for homoskedastic regression models.

10
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These designs can be surprisingly efficient for some generalized linear models,
but not usually, for binomial responses. Atkinson and Woods (2015) pro-
vide a survey of results on optimum designs for individual observations from
generalized linear models.

These approaches all use D-optimality. However, the properties of designs
for other criteria, such as A-, c-, E or T-optimality could also be explored for
sets of points. There is some work, for individual observations, on the use of
other criteria for generalized linear models. One criterion is DA-optimality, in
which a set A of linear combinations of the parameters is of interest. Petter-
son and Nyquist (2003) combine DA-optimality with Bayesian design, using
a uniform prior to produce “Laplace designs”. Fackle-Fornius and Nyquist
(2010) use c-optimality, that is DA-optimality when A is a vector, to explore
designs for finding the maximum response in a single-variable quadratic model
with the logistic link.

In §3 the induced design region Z is a continuous region. It was used to
illustrate the optimality, or otherwise, of given design points. For the single
variable logistic model of Fackle-Fornius and Nyquist (2010), Z becomes a
curve. Geometric results of Elfving (1952) help in trying to find the structure
of the optimum design in Z independently of θ. The procedure has a similar
geometry to that of the “design locus” introduced by Box and Lucas (1959)
for D-optimality in nonlinear regression models.

It is assumed in this paper and the references that the observations are
independent. However, it is likely that there will be correlation between the
observations within a set, since these come from a single unit; in the medical
experiment, that is from a single patient. A mixed model would then be
appropriate for design and analysis. Fedorov and Leonov (2014, p.92) give
references on design for linear mixed-effects models; Nyquist (1997) provides
a test for the presence of such correlations.

6 Algorithms

Numerical algorithms are essential for the construction of any but the sim-
plest optimum designs. Much of the discussion in the literature, for example
Fedorov and Leonov (2014, Chapter 3), stresses the desirability of using al-
gorithms that take account of the specific structure of optimum designs. An
example is Nyquist (2013) for the numerically tricky problem of finding min-
imax designs. However, the designs for this paper were found using a general
purpose numerical algorithm.

There are two sets of constraints in the maximization problem providing

11
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geometry to that of the “design locus” introduced by Box and Lucas (1959)
for D-optimality in nonlinear regression models.

It is assumed in this paper and the references that the observations are
independent. However, it is likely that there will be correlation between the
observations within a set, since these come from a single unit; in the medical
experiment, that is from a single patient. A mixed model would then be
appropriate for design and analysis. Fedorov and Leonov (2014, p.92) give
references on design for linear mixed-effects models; Nyquist (1997) provides
a test for the presence of such correlations.

6 Algorithms

Numerical algorithms are essential for the construction of any but the sim-
plest optimum designs. Much of the discussion in the literature, for example
Fedorov and Leonov (2014, Chapter 3), stresses the desirability of using al-
gorithms that take account of the specific structure of optimum designs. An
example is Nyquist (2013) for the numerically tricky problem of finding min-
imax designs. However, the designs for this paper were found using a general
purpose numerical algorithm.

There are two sets of constraints in the maximization problem providing
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the design of §3.1. The first is on the design weights which must be non-
negative and sum to one. The other is on the design points, which must be
within X . Atkinson et al. (2007, §9.5) suggest search over an unconstrained
space Ψ, using transformation to polar co-ordinates to calculate weights wi

that satisfy the required constraints. Here use was made of a simpler approach
taking advantage of the upper and lower constraints on variables in the R
function optim.

The search variables are ψi. Taking

wi = ψi/

n
∑

j=1

ψj (9)

with 0 ≤ ψj ≤ 1 provides weights that satisfy the required constraints. Sim-
ilarly, for each explanatory variable X is such that −1 ≤ xij ≤ 1, which is a
straightforward constraint. Of course, the wi are in n− 1 dimensions, so that
(9) is not unique; the same weights are obtained when all ψi are replaced by
aψi, (a �= 0). However the Quasi-Newton BGFS algorithm did not show any
difficulty in converging.

With four design points and with each xi lying in two dimensions, the
proposed method requires an optimization in 12 dimensions. However, as in
many cases, it is possible to guess the form of the optimum design. In this case
the results of Atkinson et al. (2007) suggest that only two co-ordinates of the
xij are unknown, thus reducing the search to six dimensions. The equivalence
theorem is then used to confirm that the found design is indeed optimum in
the class of all designs.

7 Further Design Aspects of the Medical Prob-
lem

In the experiment in deep-brain therapy there are two factors, stimulation at
three levels and conditions at four levels. There are thus twelve treatment
combinations. However, for safety reasons, it is not possible to expose each
patient to all twelve. Instead, it was proposed to take measurements at only
eight combinations; sixteen such sets were chosen. The design region this con-
tained 16 distinct points, each of which would give a set of eight measurements
from one patient.

A design question is, which of the sixteen sets should be used and in what
proportions? Since the linear model for the factors contains only 1 + 2 + 3
= 6 parameters, it is unlikely that all sixteen points in the design region need
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to be included in the experiment. Even if an optimum design satisfying the
equivalence theorem does include all sixteen, it may not be unique; there may
be optimum designs requiring fewer distinct design points. An example of
such an optimum design for a two-factor logistic model is shown by Atkinson
et al. (2007, p. 404). There are two distinct four-point D-optimum designs.
Six-point designs that are a convex linear combination of these two designs
are also D-optimum.

The equivalence theorem also provides a method of treatment allocation
in clinical trials in which patients arrive sequentially. In the experiment in
deep-brain therapy there is a prognostic factor, initial severity of the disease.
The effect of this variable is not the focus of the trial, so that it would be
considered a nuisance factor. Sequential construction of the DS-optimum de-
sign for the treatment effects would aim for balance over the prognostic factor
and lead to the most efficient inference about the treatments. However, such
deterministic allocation rules are unacceptable in clinical trials, where they
may lead to selection bias. A randomized rule based on D-optimality, such as
those described by Atkinson (2015), should instead be used.
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Abstract

We apply the Particle Swarm Optimization (PSO) algorithm to find
locally exact D-optimal designs for the widely used Michaelis-Menten
model when errors are correlated. We show that our PSO-generated de-
signs agree with the theoretical designs provided by Dette and Kunert
(2014), when each subject has up 2 repeated observations. We further
demonstrate that PSO can also easily generate such exact D-optimal
designs with 3, 4, 5 and 6 repeated observations efficiently when theoret-
ical results are no longer available. For comparison purposes, our work
assumes the same correlation structure as in Dette and Kunert (2014)
but we expect PSO can also directly and efficiently generate exact D-
optimal designs for other models with various correlation structures and
multiple repeated measurements.

Key words: locally optimal designs, nature-inspired metaheuristic algorithms,
nonlinear models, repeated observations.

1 Introduction

The Michaelis-Menten model is a nonlinear model widely used to approximate
and study complicated enzyme kinetic biological systems. Because of the

1Department of Statistics, National Cheng Kung University, Tainan, Taiwan, ROC
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fornia, USA

1

simplicity and effectiveness of this model, it enjoys wide applications in several
fields, such as biochemistry (Maloney and Heidel, 2003), biology (Butler and
Wolkowicz, 1985) or environmental study (Yu and Rappaport, 1996; Yu and
Gu, 2007). The biochemical reaction rate expressed by the Michaelis-Menten
model in its simplest form is

E(υ) = η(θ, s) =
as

b+ s
, s ∈ S, θ = (a, b)�,

where υ is the observed velocity of the chemical reaction when the substrate
concentration applied is s. The set S is user-selected, compact and represents
the range of concentrations available to observe υ. The mean response is a
nonlinear function η(θ, s) with two parameters a and b. The parameter b
is called Michaelis-Menten constant, which controls the rate of the reaction
and so between the two parameters, it is the more biologically meaningful
parameter. The maximum velocity attainable is a, which is reached when the
substrate concentration is increased without bound.

This model can also be used to study growth curves of subjects or different
species of animals by taking repeated measurements on the animal (Lopez
et al., 2000). Suppose that there are n subjects to be investigated, and for
each subject, m repeated observations are allowed over a period of time. Dette
and Kunert (2014) used the following Michaelis-Menten model and addressed
some design issues when the responses are correlated:

υ = η(θ, si,j) + εi,j =
asi,j

b+ si,j
+ εi,j , j = 1, ...,m, i = 1, ..., n. (1)

Here the error terms εi,j are normally distributed with mean 0 and constant
variance and we assume εi,j and εi′,j′ are independent if i �= i′, and each pair
of εi,j and εi,j′ has the correlation coefficient λ|si,j−si,j′ |, j, j′ = 1, ...,m where
λ ∈ (0, 1) and si,j , si,j′ ∈ S.

Optimal design problems for Michaelis-Menten model have been studied
quite extensively in the literature; see for example, Dunn (1988), Rasch (1990),
Dette and Wong (1999) and Boer et al. (2000), who all addressed somewhat
different aspects of the design problems. A commonality is that they assumed
independent observations and worked with approximate designs, which are
probability measures defined on a user-selected compact interval S. We denote
a generic approximate design ξ with k points by

{

s1 . . . sk
p1 . . . pk

}

, (2)
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where s1, . . . , sk are the design points in the pre-specified experimental region,
S, and pi’s are the corresponding weights with p1 + · · ·+ pk = 1. If the total
number of observations for the study is predetermined and equal to N , the
implemented design from ξ takes roughly Npi observations at xi, i = 1, . . . , k
subject to the constraint that each Npi is a positive integer and they sum
to N . Because of the rounding, the implemented design may not be unique
even though the approximate design is. In contrast, exact optimal designs
optimize the criterion by directly finding k, the number of design points, the
locations of the points xi, i = 1, . . . , k and the number of observations ni at
xi, i = 1, . . . , k subject to n1+ . . .+nk = N . Finding exact optimal designs for
any problem is much more difficult than finding optimal approximate designs
because unlike the latter, there is no unified approach to solving them and the
mathematics required is usually very involved and specific for each problem.
There is also no easy way to confirm if the exact optimal design found is
optimal among all exact designs.

Following convention, we measure the worth of a design by its Fisher in-
formation matrix obtained by taking the negative of the expectation of the
second derivatives of the log likelihood function. For a nonlinear model, such
as the Michaelis-Menten model, this matrix depends on the model parameters,
θ = (a, b)�. Using the approximate design ξ, a direct calculation shows the
Fisher information matrix is

M(θ, ξ) =

∫

∂η(s, θ)

∂θ

∂η(s, θ)

∂θT
ξ(ds)

=

∫

(
as

b+ s
)2

(

1
a2 − 1

a(b+s)

− 1
a(b+s)

1
(b+s)2

)

ξ(ds)

=
k

∑

i=1

pi(
asi

b+ si
)2

(

1
a2 − 1

a(b+si)

− 1
a(b+si)

1
(b+si)2

)

.

For approximate designs, it is typical that we formulate the design crite-
rion as a convex function of the information matrix, M(θ, ξ) and the design
sought is the one that minimizes the criterion over all possible approximate
designs on S. For example, if we want to estimate the parameters accurately, a
common criterion is the D-optimality criterion log |M(θ, ξ)−1|, which is a con-
vex function of the information matrix. The resulting optimal design depends
on the nominal parameters θ and is called the locally D-optimal approximate
design. Because the set S is compact, and the criterion is convex, an equiva-
lence theorem is available to verify the optimality of any design. Equivalence
theorems are widely discussed in design monographs, such as Fedorov (1972),

3

Silvey (1980), Atkinson and Donev (1992) and Berger and Wong (2009). This
is one reason why it is appealing to work with approximate designs.

A popular algorithm for finding an optimal approximate design is the Fe-
dorov algorithm which exchanges design points sequentially to improve the
design criterion values (Fedorov, 1972). Several modifications to the algo-
rithms have been proposed and widely used over the years. They are generally
referred to as the exchange type algorithms and some details can be found in
Atkinson and Donev (1992). In addition to the exchange type methods, other
optimization approaches have been used to search for optimal designs. More
recent algorithms that seem effective for finding optimal designs are nature-
inspired metaheuristic algorithms, such as particle swarm optimization (PSO).

In this paper, we investigate the effectiveness of PSO for finding optimal
exact designs for the Michaelis-Menten model with correlated errors. Our work
differs from the above work in that we search for an exact optimal design and
the model has correlated outcomes. Our goal is to apply PSO to generate
locally exact D-optimal designs for the model and show our results agree with
the theoretical designs reported in Dette and Kunert (2014). PSO is then
employed to tackle a more complicated setup where more measurements are
required from each subject.

The rest of the article is organized as follows. We introduce and review
particle swarm optimization in Section 2. Then we apply PSO to search for
locally exact D-optimal designs for the Michaelis-Menten model with corre-
lated responses and compare them with the theoretical designs when possible
in Section 3. Section 4 contains a conclusion.

2 Particle Swarm Optimization for Searching
Optimal Designs

Recently a class of algorithms called nature-inspired metaheuristic algorithms
has proved very popular in the optimization literature. Whitacre (2011a,b)
provided reasons for the rapid rise and interest in these algorithms. Early
users of such algorithms to find exact optimal designs include Haines (1987),
who used an annealing algorithm to search for optimal designs for linear re-
gression models, and Montepiedra et al. (1998), who used a genetic algorithm
to construct exact D-optimal designs for low order polynomial models. Of
particular note is the particle swarm optimization (PSO) introduced by Eber-
hart and Kennedy (1995) for tackling optimization problems. Nowadays, PSO
appears to be very widely used across multiple disciplines to solve hard op-
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timization problems. Qiu et al. (2014), Chen et al. (2015) and Wong et al.
(2015) are among the early ones to apply PSO to find different types of optimal
approximate designs for nonlinear models, including minimax optimal design
problems where the criterion is not differentiable. This is possible because
PSO does not require assumptions on the objective function, such as differen-
tiability or convexity, and PSO conducts the search in a simple and effective
way. For example, PSO does not require mutation or crossover operations as
they are required in a genetic algorithm.

PSO is a metaheuristic optimization algorithm inspired from the way an-
imals, such as birds and fishes, search for food. The birds fly continuously in
the sky to look for food on the ground. Each has its own perception where
the food is (local optimum) but it communicates with the rest and collectively
decide as a flock where the food is (global optimum). Accordingly, each bird
flies toward the global optimum in the direction of the local optimum (not giv-
ing up completely where it thinks the food is). Birds are referred as particles
and each bird represents a candidate solution to the optimization problem.
Velocities and locations of each bird are adjusted iteratively and if and when
the flock converges, the perceived global optimum is found.

PSO requires that we have an initial flock of birds in the pre-defined search
space. The size of the flock and the maximum number of iterations are user-
selected, along with a stopping criterion. The latter can take on various forms;
for example, one may terminate the search when the percentage change in the
criterion value becomes extremely small over time. LetXi(t) be the location of
the i-th particle at the t-th iteration, let XL,i(t−1) be the best location (local
optimum) found by the i-th particle before the t-th iteration, and let XG(t−1)
be best location (global optimum) determined collectively by the whole swarm
before the t-th iteration. The two equations defining the movement of the flock
in PSO are:

Xi(t) = Xi(t− 1) + Vi(t) (3)

and

Vi(t) = wVi(t− 1) + c1R1 ⊗ [XL,i(t− 1)−Xi(t− 1)]

+c2R2 ⊗ [XG(t− 1)−Xi(t− 1)], (4)

where Vi(t) is the velocity of the i-th particle at the t-iteration. There are
several parameters in Eq. (4). The inertia weight represents how active the
birds are and is denoted by w. This parameter may be chosen to be a constant

5

but more typically its value changes over time and eventually decreases to 0.
The parameters c1 and c2 are two positive constants which are typically set
by default to have the value 2, and R1 and R2 are two random vectors whose
components are independently drawn from the uniform variate on [0, 1]. In
practice, the number of iterations and the swarm size are the most influential
parameters in PSO. A large swarm size generally allows the search area to
be more thoroughly explored and so can help PSO finds the global optimum
with a higher chance. Similarly, having more iterations tend to provide the
particles more search experience from the random perturbation. However,
having too large a flock and too many iterations can also be inefficient and
the user should choose appropriate values pertinent to the problem at hand.
More details on PSO and the related metaheuristic optimization algorithms
are available in Yang (2010).

To apply PSO for solving our optimal design problems, we treat each par-
ticle as a design ξ in (2), and represent it as a vector, (s1, ..., sn, p1, ..., pn−1)

�.
The objective function is the optimal design criterion Φ(ξ, θ). Hence at the
beginning of the PSO, we randomly generate initial particles (designs) on the
design space. Then at each iteration, we update the particles (designs) based
on the (3) and (4). We also watch out for those that flew outside the search
boundaries and when this happens, we need to adjust those particles to make
sure they are in the design space properly. The hope is that after a number
of iterations, the particles will converge to a point and this point is suppos-
edly the global best solution or the optimal design we are after. The details
of PSO algorithm for optimal design search problem is shown in Algorithm 2.1.

3 Locally Exact D-optimal Designs

Assume model (1) holds and it has the autoregressive error structure. There
are n subjects for the study and the research question is how to optimally
select from S, m observations per subject to estimate the model parameters
accurately. If we assume an exact design, ξ, is supported at sij with equal
weight 1/N with N = nm, the information matrix is

M(ξ, θ0) =
1

N

n
∑

i=1

f�
i Σ−1

i fi,
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design space. Then at each iteration, we update the particles (designs) based
on the (3) and (4). We also watch out for those that flew outside the search
boundaries and when this happens, we need to adjust those particles to make
sure they are in the design space properly. The hope is that after a number
of iterations, the particles will converge to a point and this point is suppos-
edly the global best solution or the optimal design we are after. The details
of PSO algorithm for optimal design search problem is shown in Algorithm 2.1.

3 Locally Exact D-optimal Designs

Assume model (1) holds and it has the autoregressive error structure. There
are n subjects for the study and the research question is how to optimally
select from S, m observations per subject to estimate the model parameters
accurately. If we assume an exact design, ξ, is supported at sij with equal
weight 1/N with N = nm, the information matrix is

M(ξ, θ0) =
1

N

n
∑

i=1

f�
i Σ−1

i fi,
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Algorithm 2.1 PSO for optimal design search problem

1: Initialize particles

(1.1) Choose initial particle (design) ξi and velocity Vi, for i = 1, ...,m.

(1.2) Calculate fitness values Φ(ξi, θ0)

(1.3) Determine local and global best positions ξL,i and ξG

2: Repeat until stopping criteria are satisfied

(2.1) Calculate particle moving velocity by (4)

(2.2) Update particle position by (3)

(2.3) Calculate fitness values Φ(ξi, θ0)

(2.4) Update the best minimal (or best maximal) position ξL,i and
the corresponding best values Φ(ξL,i, θ0) and Φ(ξG, θ0)

3: Output ξG and Φ(ξG, θ0)

where θ0 = (a, b, σ2, λ), and fi is a 2×mmatrix containing the first derivatives.
The j-th row of fi is

(

si,j
b+si,j

− asi,j
b+si,j2

)

, j = 1, ...,m.

The correlation matrix of the m responses from the i-th subject is represented
by Σi with two parameters σ2 and λ. It is an m×m matrix and the (j, k)-th
element is

σ2
(

λ|si,j−si,k|
)

, j, k = 1, . . . ,m.

Thus, given the fixed parameters θ0 = (a, b, σ2, λ), the locally D-optimal
design is to maximize

Φ(ξ, θ0) = log |M(ξ, θ0)|.

It is well known that D-optimal designs has an invariance property that
allows us to assume, without loss of generality, that S = [0, 1], which is the
same as in Dette and Kunert (2014). It is also clear that the locally D-optimal
design does not depend on a and σ2 and following Dette and Kunert (2014),
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we choose a = σ2 = 1. For the design points, due to the balance assumption,
we assume that the observations in each subject are taken at the same point,
s1j = s2j = · · · = snj , for j = 1, . . . ,m. As in Dette and Kunert (2014), we
also assumed that the experimental conditions for each subject are the same.
Accordingly, we set n = 1 and search for the locally exact D-optimal design
for the individual subject.

We first consider the case when we have 2 observations from a single sub-
ject and the design questions are which two time points to take observations
and how the spread out the observations between the two points. Dette and
Kunert (2014) theoretically identified that the locally exact D-optimal design
is supported at two points, u and 1, when b ≥ 1

3 , and the design point u solves
the equation

b− (2b+ 1)u

u(1− u)(b+ u)
=

log(λ)λ2(1−u)

1− λ2(1−u)
. (5)

The solution has no closed form when b < 1/3. When there are 3 or 4
observations to be taken from each subject, locally exact D-optimal designs
cannot be described analytically and only numerical results were provided.
The numerical approach they used is to check all possible designs using a
pre-specified grid.

Throughout, we systematically used Algorithm 2.1 to find the locally ex-
act D-optimal designs. The number of particles we used was 256 and the
maximum number of iterations allowed was 500. The PSO parameters c1 and
c2 were set equal to 2 and the inertia weight, w started with a value of 0.95
and then linearly decreases to 0.4 in the first 350 iterations and then we set
w = 0.4 for the remaining iterations. We chose b = 0.2, 0.7, 1.2, 1.7, 2.2, 2.7,
λ = 0.1, 0.5, 0.9 and the number of observations per subject m = 2, 3, 4.

Table 1 displays locally exact D-optimal designs when m = 2 and shows
that the PSO-generated designs, denoted by ξPSO, coincide with the analytical
results, ξ∗, reported in Dette and Kunert (2014) when b ≥ 1/3. For instance,
when b = 0.2 and λ = 0.9, the design reported in Dette and Kunert (2014)
is close to our design found by PSO, ξPSO. Table 2 and Table 3 display
corresponding D-optimal exact designs when we have 3 or 4 observations from
each subject, respectively. These tables show that Algorithm 2.1 was able to
identify the exact D-optimal designs and agree to those found by Dette and
Kunert (2014).

We next modify Algorithm 2.1 to search for exact D-optimal designs when
we have resources to take more observations per subject. Table 4 displays
the exact D-optimal designs found by the Algorithm 2.1 for 5 and 6 obser-
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Table 1: Selected PSO-generated locally D-optimal exact designs with 2 ob-
servations per subject versus the theoretical designs ξ∗s found by Dette and
Kunert (2014). All designs are equally weighted.

ξPSO ξ∗

b λ = 0.1
0.2 0.14425 1 N/A
0.7 0.30002 1 0.3000 1
1.2 0.36707 1 0.3670 1
1.7 0.40465 1 0.4046 1
2.2 0.42871 1 0.4287 1
2.7 0.44548 1 0.4455 1

λ = 0.5
0.2 0.15299 1 N/A
0.7 0.33582 1 0.3358 1
1.2 0.41747 1 0.4175 1
1.7 0.46305 1 0.4630 1
2.2 0.49184 1 0.4918 1
2.7 0.51169 1 0.5117 1

λ = 0.9
0.2 0.16027 0.94453 0.1600 0.944
0.7 0.36832 1 0.3683 1
1.2 0.45849 1 0.4585 1
1.7 0.50706 1 0.5070 1
2.2 0.53691 1 0.537 1
2.7 0.55717 1 0.5571 1

vations per subject. Unlike the global numerical search approach in Dette
and Kunert (2014), we are not constrained by the grid size imposed on S and
PSO can still identify the best designs efficiently. The CPU time required
by our Algorithm 2.1 to find the optimal design is short. On average, our
MATLAB codes take around 4.11, 5.54, 6.72, 7.83 and 8.71 seconds to find
the optimal designs when there are 2, 3, 4, 5 and 6 observations, respectively.
The hardware we used was a PC with 3.50 GHz Intel(R) Core(TM) i7-4770K
CPU. Our overall experience is that Algorithm 2.1 is efficient in identifying
the locally exact D-optimal designs for the Michaelis-Menten model with the
correlation structure considered here.

9

Table 2: PSO-generated locally D-optimal exact designs with 3 observations
per subject versus the theoretical designs ξ∗s found by Dette and Kunert
(2014). All designs are equally weighted.

ξPSO ξ∗

b λ = 0.1
0.2 0 0.06730 1 0 0.067 1
0.7 0 0.20541 1 0 0.205 1
1.2 0 0.28554 1 0 0.286 1
1.7 0 0.33274 1 0 0.333 1
2.2 0 0.36320 1 0 0.363 1
2.7 0.35199 0.61652 1 0.352 0.617 1

λ = 0.5
0.2 0 0.061677 1 0 0.062 1
0.7 0 0.176060 1 0 0.176 1
1.2 0 0.249140 1 0 0.249 1
1.7 0 0.297390 1 0 0.297 1
2.2 0 0.330950 1 0 0.331 1
2.7 0 0.355240 1 0 0.355 1

λ = 0.9
0.2 0 0.059322 0.75632 0 0.059 0.755
0.7 0 0.172660 1 0 0.172 1
1.2 0 0.244440 1 0 0.244 1
1.7 0 0.292450 1 0 0.292 1
2.2 0 0.326100 1 0 0.326 1
2.7 0 0.350910 1 0 0.350 1

Table 3: PSO-generated locally D-optimal exact designs with 4 observations
per subject versus the theoretical designs ξ∗s found by Dette and Kunert
(2014). All designs are equally weighted.

ξPSO ξ∗

b λ = 0.1
0.2 0 0.06168 0.46456 1 0 0.062 0.466 1
0.7 0 0.12791 0.36732 1 0 0.128 0.367 1
1.2 0 0.17921 0.45456 1 0 0.179 0.454 1
1.7 0 0.21202 0.50141 1 0 0.212 0.501 1
2.2 0 0.23434 0.53049 1 0 0.234 0.531 1
2.7 0 0.25049 0.55034 1 0 0.250 0.550 1

λ = 0.5
0.2 0 0.03898 0.12877 1 0 0.039 0.129 1
0.7 0 0.10119 0.28173 1 0 0.101 0.281 1
1.2 0 0.14643 0.38442 1 0 0.146 0.384 1
1.7 0 0.17849 0.44787 1 0 0.178 0.448 1
2.2 0 0.20155 0.48912 1 0 0.202 0.489 1
2.7 0 0.21898 0.51772 1 0 0.219 0.518 1

λ = 0.9
0.2 0 0.05228 0.28875 1 0 0.052 0.288 1
0.7 0 0.09848 0.27409 1 0 0.098 0.272 1
1.2 0 0.14276 0.37526 1 0 0.143 0.375 1
1.7 0 0.17441 0.43998 1 0 0.174 0.440 1
2.2 0 0.19743 0.48317 1 0 0.197 0.483 1
2.7 0 0.21476 0.51291 1 0 0.215 0.513 1
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Table 4: PSO-generated locally exact D-optimal designs, ξPSO, with 5 and 6
observations per subject found by Algorithm 2.1, respectively. All designs are
equally weighted.

5 correlated observations 6 correlated observations
b λ = 0.1
0.2 0 0.0361 0.1085 0.5361 1 0 0.0274 0.0724 0.1761 0.5813 1
0.7 0 0.0968 0.2493 0.5397 1 0 0.0764 0.1848 0.3546 0.6593 1
1.2 0 0.1322 0.3113 0.5761 1 0 0.1047 0.2375 0.4134 0.6649 1
1.7 0 0.1565 0.3506 0.6089 1 0 0.1242 0.2708 0.4499 0.6838 1
2.2 0 0.1738 0.3768 0.6316 1 0 0.1382 0.2937 0.4747 0.6996 1
2.7 0 0.1866 0.3955 0.6475 1 0 0.1488 0.3103 0.4924 0.7117 1

λ = 0.5
0.2 0 0.0323 0.0935 0.4020 1 0 0.0235 0.0595 0.1303 0.4399 1
0.7 0 0.0719 0.1774 0.3646 1 0 0.0563 0.1318 0.2424 0.4410 1
1.2 0 0.1042 0.2482 0.4752 1 0 0.0810 0.1843 0.3252 0.5423 1
1.7 0 0.1278 0.2965 0.5422 1 0 0.0996 0.2227 0.3824 0.6085 1
2.2 0 0.1452 0.3302 0.5845 1 0 0.1135 0.2500 0.4209 0.6493 1
2.7 0 0.1585 0.3549 0.6131 1 0 0.1242 0.2707 0.4487 0.6764 1

λ = 0.9
0.2 0 0.0317 0.0918 0.3778 1 0 0.0235 0.0598 0.1330 0.4156 1
0.7 0 0.0700 0.1720 0.3523 1 0 0.0547 0.1274 0.2332 0.4211 1
1.2 0 0.1010 0.2409 0.4624 1 0 0.0784 0.1784 0.3146 0.5260 1
1.7 0 0.1241 0.2893 0.5329 1 0 0.0968 0.2168 0.3733 0.5983 1
2.2 0 0.1418 0.3241 0.5781 1 0 0.1108 0.2447 0.4140 0.6426 1
2.7 0 0.1549 0.3492 0.6086 1 0 0.1216 0.2655 0.4429 0.6729 1
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4 Conclusion

We investigated PSO capability to generate locally exact D-optimal designs
for the Michaelis-Menten model with correlated outcomes. We implemented
PSO using MATLAB codes to find the exact D-optimal designs as described
in Algorithm 2.1. PSO was able to successfully and efficiently identify the
best designs and they agreed with the theoretical exact D-optimal designs in
Dette and Kunert (2014) when there were 2 observations per subject. Our
PSO-generated designs also agree with other numerical results in their paper
obtained using non-PSO methods. We further demonstrated that the PSO
was also able to directly and efficiently generate exact D-optimal designs with
more observations per subject. Because PSO is a general optimization tech-
nique and does not require assumptions on the function to be optimized for
it to work well, we expect PSO should also perform well in finding exact
D-optimal designs for other models with different correlation structure and
multiple observations per subject. We close with an encouragement to oth-
ers to explore and apply PSO in their search for optimal designs, and more
generally, solve optimization problems in statistics.
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Another simplified Cox-model

based on copulas

and optimal designs for it

Werner G. Müller1 and Andreas Rappold1,2

Abstract

We propose a simplified version of the Cox binary model using cop-
ulas and provide corresponding D-optimal designs.

Key words: Binary data, coupled pairs, D-optimality

1 Introduction

I (WGM) have known Hans Nyquist for quite a while as a regular participant
of the mODa conference series on optimal design. But it was in 2008 when we
had our most memorable encounter. Hans had asked me to be the opponent
for his PhD-student Daniel Bruce for the defense of the thesis Bruce (2008a)
to which I gladly agreed. Little did I know that in Sweden the opponent was
supposed to do the main work, particularly to provide a lecture about the
candidates thesis. Well, to be fair, Stockholm university rewarded me quite
generously for that task.

In the first chapter of his dissertation thesis Daniel Bruce enumerates a
couple of real life situations where either a phenomenon with natural binary
outcome is observed or an experiment with binary response is designed on
coupled pairs (or multiples). For instance we may want to model the prob-
ablitiy for visual impairment (yes/no) on the left eye and on the right eye.
We would assume that the probability for visual impairment is equal for both
eyes and that it is more likely that both eyes are impared (or both are sound)
rather than a single eye. Another example would be an experiment in which

1Johannes Kepler University Linz, Austria.
2Research financially supported by the ANR/FWF grant I-833-N18.

1



75

different batches of fish are fed different types of food in order to determine
whether it affects some property of the fish. We would assume that each fish
within a certain batch is affected with equal probability and also that the
outcomes are dependent. More on the general setup can be found in Bruce
and Nyquist (2007).

For these kind of questions one of the most frequently employed statistical
models has been given in Cox (1972) and has found particular prominent use
in twin studies (such as e.g. Zucknick et al. (2015)). I (WGM) remember well
that I took the chance to start my opponents lecture off with a picture of my
own twin boys, then 11 years old, which is displayed in Figure 1.

Figure 1: David (left) and Simon (right) Müller in 2008.
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2 The model

Daniel Bruce built upon the general Cox model as given in Cox and Snell
(1989) and imposed restrictions on the parameters to arrive at a simpler model.
In the Cox model each possible outcome is treated as a seperate response
category. For the bivariate case the probabilities are given in Table 1 with
linear predictors η01, η10 and η11 of a covariate vector x.

S2

0 1

S1
0

1

1 + eη10 + eη01 + eη11

eη01

1 + eη10 + eη01 + eη11

1
eη10

1 + eη10 + eη01 + eη11

eη11

1 + eη10 + eη01 + eη11

Table 1: General bivariate Cox model.

If we had k entities S1, . . . , Sk the model would consist of 2k response
categories with at least one parameter in each of the 2k − 1 linear predictors.

In contrast, in the simplified model proposed by Bruce each possible out-
come of only the total S =

∑k
i=1 Si defines a response category. Furthermore,

for a fixed s =
∑k

i=1 si the probability of each realization s1, . . . , sk is assumed
equal. Or in mathematical terms

P (S = s) =
eηs

∑k
i=0 e

ηi

,

P (S1 = s1, . . . , Sk = sk) =
P (S = s)

(

k
s

) . (1)

Again, for the bivariate case the probabilities are given in Table 2 with
linear predictors η1 and η2 of a covariate vector x.

S2

0 1

S1
0

1

1 + eη1 + eη2

eη1/2

1 + eη1 + eη2

1
eη1/2

1 + eη1 + eη2

eη2

1 + eη1 + eη2

Table 2: Simplified Cox model
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Figure 2: Design and probabilities as found in Bruce (2008a) on page 39.

As a consequence, the marginal probabilities P (Si = 0) are equal. Now
if there were k entities we only have k response categories with at least one
parameter in each linear predictor. Therefore the number of parameters is
greatly reduced. One can show that this simplified model retains many prop-
erties of the general Cox model. For instance, in the bivariate case the con-
ditional probablities of S1 given S2 and vice versa are logistic in η1 and η2
assuming the covariate x is held constant. Also the log-odds ratio is linear in
the parameters and in x. This allows for direct interpretation of the log-odds.
Another nice property is that the likelihood and Fisher information matrix
may be derived analytically even for a large number of entities. Details on
these properties are given in Bruce (2008b).

An entire chapter of Bruces thesis (Bruce, 2008a) is devoted to optimal
design of experiments. In example 4.1 on page 39 he illustrates a D-optimal
design for a bivariate example with a single regressor x. We reproduced and
confirmed the result which is displayed in Figure 2.
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3 Another simplification

The simplified Cox model has certain advantages over the general Cox model,
first and foremost the reduced number of parameters when dealing with multi-
ple entities, but it still suffers from the lack of interpretability of the marginal
probabilities from the parameters. In a new attempt to provide a simple model
for binary response we now utilize some theoretical results as found in Perrone
and Müller (2015) to build models based on copulas. Copulas in general allow
us to define the margins and dependence structure of a multivariate random
variable separately. We are also able to find D- and Ds-optimal designs for
such models. The proof of a corresponding equivalence theorem is found in
the appendix of Perrone and Müller (2015).

As we have seen earlier, all of the parameters of the simplified Cox model
influence the margins and at the same time define the dependence structure
and strength. While this allows for complex marginal behavior we would prefer
to have a more direct and simpler structure instead. Therefore we decided to
define the marginal probabilities as follows

P (S1 = · · · = Sk = 0) =
1

1 + eη1
, (2)

where η1 is a linear predictor of a covariate vector x.
Now let us focus on the aforementioned example 4.1. There we assume a

high level of negative association around x = 9 (see Figure 2). This means
that if we observe S1 then the probability of observing S2 = 1 − S1 (and
S = S1 + S2 = 1) is high. Furthermore, from equation (2), it should be
obvious that if x tends to large positive or negative values, the probability of
observing S1 = S2 = 1 or S1 = S2 = 0 tends to 1. Quite naturally we can
define

P (S1 = S2 = 1) = Cα(π1, π1) (3)

where π1 = P (Si = 1) and Cα is some copula with parameter α. For the
properties and choices of such copula functions see e.g. Nelsen (2007).

We need the copula parameter α to be a function of x in order to add
flexibility. Let us therefore (rather arbitrarily) choose the rotated Gumbel
copula (90 degrees) for which there is a simple relationship between the copula
parameter α ∈ (−∞,−1] and the corresponding Kendall’s tau, a common
measure of association: τ(α) = −α+1

α ∈ [−1, 0]. So we define

τ(x) =
−1

1 + eη2

=⇒ α(x) = −1− e−η2 , (4)
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Figure 3: Design and probabilities for the new simplification.

which completes the model definition. By adjusting the initial values for
η1 and η2 in this model we approximately fit the assumed progression of
probabilities as found in Figure 2. Now the D-optimal design can be found
and is presented in Figure 3. From it, it can be seen, that the probability
curves correspond rather well to the ones from Bruce’s simplified Cox model,
but here now the optimal design is reduced to a two point design, which
may be advantageous in practice. All computations were performed using the
package DoCopulaE by A.Rappold available on CRAN, see Rappold (2015).

4 Conclusions

Copulas provide a flexible way of modelling dependence structures and allow
better interpretation by separating the marginal behaviour. Here, we provided
another simplification of the Cox model, which led to an optimal design with
a reduced number of support points.

Allow me (WGM) to conclude with yet another personal remark. While
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the defense of Daniels thesis went smoothly, a difficult moment in my career
came only a few hours later. Daniel had invited Hans and me to a party
in the evening to downtown Stockholm. As I had planned a touristic boat
trip through the skerries for the afternoon, I asked Hans for the dressing
requirements for the celebration afterwards. His answer “casual” put me quite
at ease first, but let me freeze in horror later, when Daniels mother opened
the doors dressed in an evening gown (as was the rest of the party). It was
obvious that I was most seriously underdressed! (Hans beat me in wearing a
suit and tie).
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Why are design in survey sampling and

design of randomised experiments

separate areas of statistical science?

Dan Hedlin1

1 Introduction

It is puzzling that design of randomised experiments and sampling design have
diverged and become two separate areas of statistical science with weak inter-
action. As Kish (1965, p. 595) put it: “the separation of the sample surveys
from experimental designs is an accident in the recent history of science...”.

One reason may be lack of communication. Fienberg and Tanur (1987, p.
76) ask: “Why is it that modern researchers and students seem to be ignorant
of these parallels across fields [surveys and experiments]?” Stephan (1948,
p. 30): “... developments in agriculture and engineering had both direct
and indirect effects on sampling survey practice. They provided principles of
design and contributed to the growth of applied mathematical statistics. Still
there were many practical problems and obstacles that delayed the immediate
extension of the methods developed for field trials and manufacturing to large-
scale surveys. One of the obstacles was the relative lack of communication
between statisticians engaged in different types of work” (my emphasis).

Lack of communication is certainly a factor. However, the origins of ran-
domised experiments and survey sampling are different.

1Department of Statistics, Stockholm University

1

We identify two roots of survey sampling and we may call them ‘mathemat-
ical’ and ‘arithmetical’ (Bowley, 1906). One strand of survey sampling stems
from population studies with one leg in arithmetical work limited to tabula-
tion of population records (e.g. Swedish 18th century population statistics)
and another leg in more ‘mathematical’ work in which sources of uncertainty
are accounted for. There were also researchers who very early began to use
random sampling. For example, Laplace invented and constructed a survey
sampling method to estimate the population in France in the beginning of
the 19th century. He used the central limit theorem to assess the accuracy
of his estimates. His work on survey sampling was long buried in oblivion
(Bethlehem, 2009). More impact did the work of Bowley (1913) have. He
describes a sample survey of working-class households in Reading. Through
a systematic sample (not clear if it is a random systematic sample or not) he
estimates average household income and other population parameters. Other
strands of early survey sampling have their roots in crop yield estimates and
in opinion polls (Stephan, 1948).

To say that experiments also have two roots, one ‘refined common sense’
and one ‘mathematical’, may be to draw the parallel to surveys too far. How-
ever, experiments have a long and widely spread history. Sven Ove Hansson
(2007, p.48) notes that “the Mende people in Sierra Leone have a special
word, hungoo, for experiment. A hungoo can consist in planting two seeds in
adjacent rows, and then measuring the output in order to determine which
seed was best. This was probably an original habit, not one brought to the
Mende by visiting Europeans. Similar experiments also occur in other parts of
the world.” Those experiments may well be denoted ‘refined common sense’,
whereas Fisher (1935) certainly treated experiments ‘mathematically’. But
the tenuousness in the parallel to surveys may sit in the word ‘roots’: Fisher
elaborated on existing practices of experiments.

In this article I attempt to cover large areas of statistical practice and
history. Since I cannot possibly be deeply familiar with all aspects of the
history of survey sampling and randomised experiments and the contemporary
methodology, I will appreciate suggestions for correction and addition.
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2 What is an experiment?

In Sven Ove Hansson’s (2007) account an experiment, generally speaking,
consists of four steps:

1. Make it happen, that is, make the phenomenon that you intend to study
appear.

2. Separate. Disturbing factors needs to be removed.

3. Control. Factors that may influence the phenomenon must be controlled.

4. Observe. Obtain as exact observations as possible.

A fifth step would be to select the objects that will be included in the
study. This fifth step could be subsumed into step 1:

1’. Make it happen. Select the objects that will be included in the study
and make the phenomenon appear that you intend to study.

The separation step is crucial in a scientific experiment. There are two
major ways to do this, elimination and effect separation (Hansson, 2007).
R.A. Fisher stressed that in controlled experiments the purpose of introducing
randomness into the design is to separate systematic variation from purely
random error (Fienberg and Tanur, 1987, p. 77), that is, to conduct the
separation step of the experiments. By ‘control’ Hansson refers to the control
of external factors that may make the experiment inefficient. A standard
procedure to control those is blocking.

3 What does an experimental statistician work
with?

It is useful in research to distinguish between extraneous sources and what
Kish (1987, pp. 3-5) calls explanatory variables, which comprise predictors

3

(independent variables) and predictands (dependent variables). The extrane-
ous sources are largely undesirable in research. Kish classifies variables that
come from extraneous sources into three groups, the two first being:

1. Controlled variables. “Control may be exercised either by design of
the selection procedures or by estimation techniques in the statistical
analysis, or perhaps by both” (Kish, 1987, p. 4).

2. Disturbing variables. These are confounding variables.

Kish (1965, p. 594) writes that the aim of efficient design, both in experiments
and in surveys, is to move as many extraneous variables as is feasible into the
class of controlled variables, and to control for them successfully. A common
way to exercise control (i.e. move variables from being disturbing to the
class controlled) through estimation is regression analysis. For example, if a
researcher discovers that the incidence of cancer is higher in Bournemouth
than in England in general, he can include age among the predictors and the
otherwise disturbing variable age is ‘controlled for’ (and the higher incidence
in Bournemouth will disappear). Various kinds of regression analyses are
common also in survey sampling (Särndal et al., 1992).

Consider a field in an agricultural experiment. The soil will vary in all
directions and hence potentially disturb the inference. How can we define
blocks and find explanatory factors that accounts for all disturbing factors?
Salsburg (2001, p. 47) paints the picture of how a discussion in Rothamsted
may have gone:

R.A. Fisher sits back and smiles, letting the other researchers get more
and more involved in complicated constructs. He has already considered these
questions and has a simple answer. Those who knew him describe Fisher as
sitting, quietly puffing on his pipe, while arguments raged about him, waiting
for the moment when he could insert his answer. He removed the pipe from
his mouth.

Randomise, he says.

Randomisation is an ingenious trick that helps to move variables from the
class ‘disturbing’ to the class ‘randomised’. So added to controlled variables
and disturbing variables above, Kish has a third group:

4
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3. Randomised variables. They are uncontrolled but treated as random
errors.

Kish (1987) notes in his Figure 1.2.1 that in a successful and well-designed
experiment all disturbing variables have been transformed to controlled or
randomised variables.

Unlike the (successful) experimental statistician, the survey sampler will
have to address remaining disturbing variables that for example nonresponse,
measurement error and undercoverage have created.

4 What does a survey sampler work with?

The steps 1’, 2, 3, 4 in the section ‘What is an experiment?’ are actually the
same in a survey, with one exception. What does a survey practitioner do
when conducting these steps?

1. Select the objects that will be included in the study and observe/measure
the phenomenon/characteristic that you intend to study.

2. Separate. Disturbing factors needs to be removed.

3. Control. Factors that may influence the phenomenon must be controlled.

4. Observe. Obtain as exact observations as possible.

It is not usual in survey sampling to instigate a phenomenon; rather the survey
practitioner strives to observe or measure without exerting influence on the
phenomenon that is the object of the survey. Apart from this, steps 1 to 4 are
at an abstract level similar in surveys and experiments. However, at a more
practical level they are quite different:

1. The selection of units is a step that the survey practitioner devotes ample
time to. The thinking about the best way to select units starts with a
definition of the target population, which is usually a finite set. Routes
to find units in the target population and observe their study variables
are identified or devised.

5

2. Disturbing factors in surveys are removed or ameliorated. To give an
example, interviewer effects are undesirable but unavoidable in telephone
or face-to-face interviews (Biemer and Lyberg, 2003, Ch. 5). They are
mitigated through training and clear procedures.

3. Control is exercised through sampling design (e.g. stratification) or es-
timation (e.g. generalised regression estimation, Särndal et al. (1992)).

4. The observations are made through a mode (any medium that is used to
measure or collect information from observed units). Biemer and Lyberg
(2003, Ch. 6) give an excellent account on modes and their (disturbing)
errors.

As noted above, disturbing factors in surveys abound. As early as in the
beginning of the 20th century, Bowley addressed the measurement problem in
his survey on daily household income among working-class families in Reading
(Bowley, 1913). He used a model to compute weekly household income.

5 How is randomness created?

The statistician has to pinpoint the source of randomness she or he is going
to take into account. This is actually an intersubjective procedure. In some
areas of statistics randomness is trust upon the objects of study. Design-
based survey sampling and randomised experiments are two of those areas.
Consider a target population of N objects, U = {u1, u2, . . . , uN}, and an
indicator I = {I1, , I2, . . . , IN}. In a survey,

Ik =

{

0 if unit k is not included in the sample
1 it is included in the sample

In an experiment with two treatments,

Ik =

{

0 if unit k is given treatment A
1 treatment B

The purpose is to observe a variable y = {y1, y2, . . . , yn} in the sample of
size n. The variable y is referred to as study variable in survey sampling and
response variable in experiments. It can be multivariate.

6
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In both surveys and experiments there is a set S of all vectors I. In both
cases, S is the set that defines the randomness which helps the statistician to
place the actual result of the survey or experiment in a certain position of the
stochastic distribution and make inference.

In surveys, a sample is one realisation of the stochastic vector I. In design-
based survey sampling, a sampling design is a function p (·) such that p (Is)
is the probability of selecting the sample Is. For example, simple random
sampling is defined as the function p (·) where all p (s) are the same and
all samples have the same predetermined size, n. The probability p (s) in
simple random sampling is the inverse of

(

n
N

)

. The probability of selecting one
particular unit is referred to as inclusion probability. Unfortunately, simple
random sampling is often referred to as ‘random sampling’. The term ‘random
sampling’ for simple random sampling is cursory, or even sloppy, as there are
many other random sampling designs. In fact, research into different random
sampling designs was intense in the middle of the 20th century. Around 1980
the focus changed to estimation.

The design-based framework was founded by Bowley (1913) and Neyman
(1934).

Random sampling plays a less critical role in model-based survey sam-
pling. To the contrary, it has been argued that random sampling is not only
unneeded, it may even be counter-productive (Valliant et al., 2000, p. 19). In
model-based survey sampling a large number of tentative samples are drawn
and the sample that is most ‘balanced’ is selected for data collection. The
most basic form of balance is x̄s = X̄U , where x = {x1, x2, . . . , xN} is a vari-
able known for all units in the target population and x̄s and X̄U are the sample
and population averages. Randomness is not devised by the statistician, it is
rather assumed to be inherent in the study variable that is assumed to have
some stochastic distribution. Model-based survey sampling is of a more re-
cent date than the design-based framework, despite the fact that it is in some
respects closer to mainstream statistics than is design-based survey sampling.
The two articles introducing model-based survey sampling are Brewer (1963)
and Royall (1970).

The main difference between experiments and model-based survey sam-
pling in terms of the role of randomness is that in experiments treatment
is randomised to separate factors (see the section ‘What is an experiment?’)
whereas in model-based survey sampling there is no active randomisation. In
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both cases, however, randomness constitutes ‘left-overs’ when everything that
is feasible to control has been addressed. This randomness stems from the per-
ceived or real stochastic nature of y = {y1, y2, . . . , yN}. In design-based survey
sampling the study variable is believed to be, or taken as, non-stochastic.

6 What drove the separation?

One clue to the root of the separation of surveys and experiments can be
sensed in the very first sentence in Stephan’s paper on the history of survey
sampling (1948, p. 12): ‘Modern sampling practice is the result of combining
statistical theory with scientific knowledge about the material that is being
sampled’ (my emphasis).

In conversation (Fienberg and Tanur, 1987, p. 86) William Madow noted
three factors driving the separation of experiments and surveys:

1. the complexity of the populations sampled in large scale surveys (het-
erogeneity, skewness, and mixture properties)

2. the large sizes of samples selected in large scale surveys made it possible
to draw inferences that did depend on a probability structure imposed by
the survey designer and did not depend on assumed probability densities
(see design-based and model-based survey sampling above)

3. from the early work of Fisher the simplest analysis of variance model
did not permit a negative intraclass correlation coefficient, while cluster
sampling as defined for finite sampling would yield a negative intraclass
correlation

The survey samplers around the 1940s, William Madow included, addressed
the issue of population complexity by introducing sampling designs with un-
equal inclusion probabilities. Knowledge about the population was essential
to devise a cost-efficient sampling design. There was an enormous growth of
complex sampling designs. For example, Brewer and Hanif (1983) list more
than 40 sampling designs of the πps type (probability proportional to size
without replacement) that they had found in the literature. Some modern
textbooks, for example Chambers and Clark (2012), are organised around
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types of population, with chapter headings such as ‘homogenous population’,
‘clustered population’, etc.

The textbook by Hansen et al. (1953) played an instrumental role in shap-
ing the survey sampling practices. They include fairly little material on ran-
domised experiments. That is in fact true for the vast majority of textbooks
in surveys sampling with one notable exception: Yates (1981). Frank Yates
was early in his career employed by R.A. Fisher in Rothamsted.

Another driver of the separation was the growth of the literature in both
fields. It just became very hard for newcomers to statistics to master both
survey sampling and randomised experiments (Fienberg and Tanur, 1987).

7 Different desiderata

You cannot have it all in research. It is sometimes useful to map the aim
of research onto three dimensions: representation, control and realism (Kish,
1987; O’Muircheartaigh, 1999). These can be called desiderata (Weisberg,
2006). By representation we mean whether it is possible to generalise to a
wider population, by control we mean whether confounders are in control and
finally by realism we have the validity of the research in mind.

Kish (1987, p. 9) notes that only rarely all three desiderata can be satisfied
adequately in any research, and often you can have only one of the three. Kish
goes on to say that experiments are strong on control, weak on representation
and often also on realism. Perhaps Kish had in mind the type of experiments
where subjects are chosen out of convenience. For example, Godden and
Baddeley (1975, 1980) test the effect of changing the physical context on how
well subjects recall a list of words. The subjects were divers from the university
diving club and the physical contexts were under-water and above water. In
Phase III clinical trials the sampling design is certainly not a convenience
sample but still it may fall considerably short of what in official statistics
would be considered as a good, random sample that provides reliable grounds
for representation. So there is more than a grain of truth in the claim that
experiments are weak on representation.

Surveys, Kish (1987) claims, are strong on representation and realism.
They are strong on realism because “measurements can often be made in the
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‘natural settings’ of actual populations” (Kish, 1987, p. 9). I disagree with
the last point. I believe that collecting data through a survey is very different
from making real-life observations. An exception may be surveys on crop
yields and similar topics.

A fourth desideratum may be precision. Surveys often sacrifice precision
in study variables to be measured in the survey. One common sacrifice is the
use of Lickert scales or similar where something that is more or less continuous
is mapped onto a, say, five-point scale. Another sacrifice is when the survey
designer deliberately simplifies questions (for example, by asking how often
respondents eat vegetables instead of asking about the amount of vegetables).
In sum, I believe surveys are strong on representation only, although in terms
of control there have been substantial recent advances in estimation where
‘auxiliary’ variables (controlled variables) remove disturbing variables, not
only to reduce bias but also to improve precision in estimates.

8 Exploring the rationale behind the separa-

tion

Different origins and lack of communication aside, are there rational reasons
for the fact that design in survey sampling and design of randomised experi-
ments are separate areas of statistical science?

Our notes above suggest four possible reasons:

1. Experimental research and survey sampling may have different aims.

2. Survey sampling faces substantial challenges with disturbing variables.

3. Knowledge about the population structure is paramount in surveys,
which has led to an interest in complex sampling designs.

4. In the survey sampling area there is a choice between design-based
inference, where moments are taken over p (·), and model-based in-
ference where moments are taken over the non-sampled part of y =
{y1, y2, . . . , yN} conditional on Is.
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To the discussion above on different aims (realism, precision, control and rep-
resentation) the dimension analytical and descriptive aim should be added
(Thompson, 1997). You have a descriptive aim when you strive at estimating
a function of y = {y1, y2, . . . , yN} (uni- or multivariate), and an analytical aim
when the goal is to estimate parameters in a model that captures the rela-
tionship between predictors and predictands. Surveys have usually descriptive
aims and experiments analytical aims.

A further intriguing issue, which we have not touched upon so far, is
whether survey samplers and experimental statisticians have different ways of
thinking about optimality in terms of inferential precision. This issue can be
organised at least under the three headings: ‘interest’, ‘what kind of critical
points’ and ‘what objective function (loss function)’.

To start with ‘interest’, the mere existence of a book like Atkinson et al.
(2007) suggests a stronger emphasis on optimality in experiments. However,
in practice, experimental designs are often chosen in a traditional fashion, even
in expensive clinical trials (Fackle-Fornius et al., 2015). Optimality plays a
backstage role in surveys. Results on optimal choices like Neyman allocation
(Neyman, 1934) appeared rather early in the development of survey theory,
but now cost-efficiency, rather than optimality, attracts greater interest. The
main reason may be the fact that most surveys have several purposes: there
are many study variables and subpopulations. In model-based sampling the
focus shifted early from optimality to robustness, the reason being fear of bias
(Valliant et al., 2000, Ch. 3).

Turning to ‘what loss function’, mean squared error is the by far most often
used loss function in surveys. I would argue that at least in official statistics
the most relevant function is the ‘survey error’, that is, the difference between
the true finite population parameter and the estimate. The central position
of the MSE appears to be due to its mathematical tractability.

Finally, as for the issue ‘what kind of critical points’ we note that exper-
imental design with nonlinear models and surveys share one obstacle: the
optimum depends on unknown parameters and hence the optimum is strictly
speaking infeasible to identify ahead of the data collection. Practitioners use
estimates (‘guestimates’) of those parameters to compute an optimal design
in terms of minimum MSE. Instead of trying to locate a minimum of the
objective function, a minimax type of criterion to find a good (minimum of
the maximum variance over a reasonable range of values of the unknown pa-
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rameters) optimum seems preferable (Scott and Smith, 1975; Cheng and Li,
1987; Fackle-Fornius et al., 2015). Hedlin (2002) suggests minimum risk of
obtaining estimates with large error as a criterion. The downside is loss of
mathematical tractability.

The interesting issue whether optimality is an area where survey sampling
and randomised experiments can learn from each other is left for future re-
search.

This article started with a quotation from Kish (1965): “The separation
of the sample surveys from experimental designs is an accident in the recent
history of science... ”. It is intriguing to see what follows that quotation:

“... and it will diminish. With complete command over the research
situation, we could introduce, with firm experimental controls, the desired
effects and measurements into controlled and randomized portions of the entire
target population”.
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A note on equating test scores with

covariates

Marie Wiberg1

Key words: background information, covariates, future challenges

1 Equating test scores with covariates

Test score equating is the statistical process that is used to ensure that test
scores from different versions of a test, for example achievement tests are
comparable. There exist a number of data collection designs and test equating
methods depending on if we have access to common items on the test versions
or common test takers. One common data collection design is the equivalent
group (EG) design which require the test taker group to be similar even if the
test versions are administered at different places or at different time points.
Another common data collection design is the non-equivalent groups with
anchor test (NEAT) design which require the access to a number of common
items (i.e. an anchor test) that has been given to a large number of test
takers. The NEAT design is preferable in many test situations. A problem
with the NEAT design is that although two groups might be nonequivalent
we may not always have access to an anchor test. Recently, a number of ways
to circumvent this has been proposed which not only uses test scores but also
covariates. The aim of this note is to highlight some future challenges when
equating test scores when we have nonequivalent groups and no anchor test.

During 2015 three independent studies were published which all used co-
variates in test score equating in different ways. In the first study, by Wiberg
and Bränberg (2015), covariates were actively used to improve the test equat-
ing through a new design called the non-equivalent groups with covariates
(NEC) design. In the NEC design, the test takers are categorized through a

1Professor, Department of Statistics, Ume̊a School of Business and Economics, Ume̊a
University, Sweden

1

number of covariates that correlate highly with the test scores and these cat-
egories are used in a similar way as anchor test scores are used in the NEAT
design.

In the second study, by Haberman (2015), pseudo-equivalent groups were
constructed by using background information of the test takers. From this in-
formation Haberman created weighted samples of test takers which resembled
samples from equivalent groups. Linking, which is similar to equating but
less restricted, was performed on the weighted samples. In the third study,
by Longford (2015), a test score equating method was proposed which was
built on causal inference. Especially the ideas of matching with inverse pro-
portional weighting and matched-pairs based on coarsened propensity scored
derived from covariates. In all these methods the key ingredient is the use
of covariates. It is interesting that all these three studies were published
within a few months in the beginning of 2015, without any reference to each
other. As equating test scores is an important part of ensuring fairness in
standardized achievement tests I expect more research in test score equating
with covariates the next following years as there are many equating methods
where one could incorporate covariates, including for example item response
theory (IRT) equating.

In Sweden, test score equating are used in the Swedish Scholastic As-
sessment Test (SweSAT) college admissions test. The SweSAT is a paper
and pencil test with 160 multiple-choice binary-scored items which consists
a quantitative and a verbal section that are equated separately. The test is
given twice a year and since 2011 an anchor test is given to a smaller num-
ber of test takers. Before the anchor test was introduced, different test taker
groups were used with specific values on their covariates to ensure equivalence
between test groups when performing equating with an EG design. Some co-
variates are regularly collected at each test occasion, and it has been shown
that education level and age correlate with the test scores and that gender
influence the test scores (Bränberg et al., 1990). Although there is now an an-
chor test for the SweSAT, covariates are still important to facilitate backward
comparison of the test results over the years.

2 Future challenges

There are many future challenges which are connected to test equating and the
use of covariates. It must however be emphasized that without good covariates
we cannot perform a well working equating with covariates. A huge challenge
is thus to examine which covariates could be used and how to regularly collect
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them. Possible covariates which one could include are for example the test
takers response times to the items or the results from other tests. A guideline
when choosing covariates could be to examine the correlation between the
covariates and the test scores, as covariates which correlate highly with the
test scores tend to work well in the equating situation.

There are many equating methods around and some people may argue
that we do not need more equating methods. However there might be situa-
tions when one need a new equating method. One such possibility could be to
examine the possibility to equate a multidimensional test multidimensionally.
It is however unclear if we would gain anything compared with equating the
different dimensions separately, as a study comparing the use of multidimen-
sional IRT and unidimensional IRT showed only small differences (Wiberg,
2012). It is also possible that for computerized multistage tests one might
need a special equating method in the future.

Another huge challenge when equating large scale assessments, is if one
actively use covariates as in the NEC design, is how to reach out to the public
and explain the use of covariates in the equating of test scores. It is important
that a large scale assessment is perceived as fair for all test takers. In Sweden
we have a tradition of explaining how everything works, including the equating
method of a standardized test, to the public. Thus, in order to use new
equating methods in Sweden one has to be prepared to explain its advantages
over traditional equating methods. This is interestingly of less importance in
for example the USA, where the equating process is typically secret in many
large scale assessments as the tests are developed and administered by private
companies and not from a governmental institution as in Sweden.

Finally, during the past few years equating packages has been developed
for the freeware R (R Development Core Team, 2015). Equating specific
packages include for example equate (Albano, 2014), kequate (Andersson et al.,
2013) and SNSequate (González, 2014). Although many equating methods are
incorporated in these packages there are still many equating methods which
one could incorporate into R packages in order to make them more accessible
for the users. This is something I hope will happen within a near future.
A final reflection is that there are excellent theoretical test equating books
around, and thus the focus should be on implementing recent well working
equating methods. Initiatives as new equating R packages and the new applied
test equating book by González and Wiberg (in preparation) is thus of great
importance.
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Assessing dependence, independence,

and conditional independence

Ove Frank1

Abstract

Independence between several variables implies mutual independence
between all pairs of variables. But when do we have dependence and
still mutual independence? To answer such kind of questions we need
to understand how dependence and independence can be specified and
compared. This essay presents convenient tools for assessing depen-
dence, independence and conditional independence and demonstrates
that a central balance between independence and mutual independence
based on entropies has a corresponding set of balances between condi-
tional and unconditional independencies.

Key words: Stochastic and functional dependence, independence, mutual in-
dependence, conditional independence, likelihood ratio, divergence, entropy,
test statistics.

1 Introduction

1.1 Stochastic and functional dependence

In explorative data analysis and statistical modelling, a fundamental problem
is to assess which variables might be treated as independent. More specifically,
dependence between variables can be stochastic dependence or functional de-
pendence. Stochastic dependence means that there is covariation between the

1Department of Statistics, Stockholm University, Sweden
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outcomes of different variables but says nothing about whether this is a conse-
quence of direct or indirect causes of other variables. Functional dependence of
a variable Y on some other variable X can be considered as stochastic depen-
dence between X and Y degenerated into deterministic dependence so that for
each possible outcome of X there is a unique outcome of Y , and the variation
in Y is entirely determined by the variation in X. Similarly, stochastic inde-
pendence between variables means no covariation between their outcomes, so
that their simultaneous outcome frequencies are proportional to the marginal
outcome frequencies of each variable.

1.2 Independence and conditional independence

Even if two variables are stochastically dependent, it might be possible to find
a third variable such that the two variables are stochastically independent
conditional on each fixed outcome of the third variable. Such conditional
independence can be difficult to assess, particularly in multivariate settings
where the conditioning might involve two or more variables.

1.3 Multivariate data

The typical setup of multivariate data needed for the investigation of depen-
dence and independence comprise m variables (attributes, properties, mea-
surements) defined on n objects (units, individuals, cases). Data can be pre-
sented in a matrix with m columns and n rows such that the entries in row
i are the ith m-variate observation, and the entries in column j are the n
observations on the jth variable for i = 1, . . . , n and j = 1, . . . ,m.

Categorical variables often have a small number of categories occurring
with frequencies summing to the total n. Continuous variables might be mea-
sured and rounded to convenient accuracy so that they appear as categorical.
Generally, neither numerical nor ordinal but only nominal scales are needed
for all variables in the present context. In some cases, it might be convenient
to use quartiles or deciles or some other categorization for ordinal or numerical
variables. Thus we consider the data matrix as a collection of n observations
on m categorical variables.
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1.4 Marginal distributions

The m-variate distribution has usually a number of different possible out-
comes that is much larger than the number of rows n, but only a fraction of
the distinct possible outcomes occurs among the rows. Usually, however, n is
much larger than the number of distinct possible outcomes of any univariate
marginal distribution, or even much larger than the number of distinct possi-
ble outcomes of any bivariate or trivariate marginal distribution among the m
variables. This implies that data suffice to estimate at least the lower dimen-
sional marginal distributions. Marginal distributions are sometimes required
to have an average of at least 5 or 10 observations per outcome in order to
yield reasonably reliable frequency distributions.

If we allow X, Y and Z to be variables or sequences of variables chosen
from the m variables in the data matrix, and if their numbers of distinct pos-
sible outcomes r, s and t are sufficiently small compared to n to allow reliable
frequency distributions, then n is large enough for the investigation of vari-
ous kinds of dependence, independence and conditional independence in the
(X,Y, Z)-distribution. In the following we first consider bivariate distributions
in detail, and then extend the results to trivariate distributions.

2 Bivariate categorical distributions

2.1 Likelihood ratio for independence

Let X and Y be two categorical variables with simultaneous probability dis-
tribution P (X = x, Y = y) = p(x, y) and empirical relative frequency distri-
bution n(x, y)/n for r distinct possible outcomes of X labelled x = 1, . . . , r
and s distinct possible outcomes of Y labelled y = 1, . . . , s. The bivariate
probability distribution of (X,Y ) and its empirical estimate both have at
most rs distinct possible outcomes. Stochastic independence between X and
Y implies that the bivariate probability distribution of (X,Y ) is given by the
product of the univariate marginal probabilities P (X = x)P (Y = y) = q(x, y)
and estimated by the product of the empirical marginal relative frequencies.
Such independence is denoted

X⊥Y

3

and the log likelihood ratio

log[p(x, y)/q(x, y)]

can be used for testing it. For different outcomes, the ratios can be both
smaller than and larger than 1, so the log likelihood ratio can be both negative
and positive. However, it is possible to use the convexity of the logarithm
function in order to prove that the expected log likelihood ratio is always non-
negative. Therefore, large values of the expected log likelihood ratio indicate
deviation from independence.

2.2 Divergence as test statistic

The expected log likelihood ratio is called the divergence between the distri-
butions p and q, and it is denoted and given by

D(p, q) =

r
∑

x=1

s
∑

y=1

p (x, y) log
p (x, y)

q (x, y)
≥ 0.

When p is the general distribution of (X,Y ) and q specifies independence
X⊥Y it is convenient to denote the divergence

D(p, q) = D(X⊥Y ).

It measures the fit of independence to the bivariate distribution. When p and
q are estimated by empirical distributions it can be shown by approximation
of the logarithm function that the divergence is closely related to the Pearson
goodness-of-fit statistic, and

2nD/ log(e)

is asymptotically chi-square distributed with d degrees of freedom as n tends
to infinity. Here d is obtained as the difference between the degrees of freedom
for p and q. The degrees of freedom for p is rs− 1 and for q is r − 1 + s− 1
so that d = (r − 1)(s − 1). It is convenient to use D/d as test statistic and
reject independence when it is, say, more than 2 standard deviations above
its expected value, which is

D/d >
(

1 +
√

8/d
)

log(e)/2n.
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2.3 Divergence and entropies

The divergence D(p, q) = D(X⊥Y ) is not only related to statistical likelihood
theory but has also an interpretation in terms of information theoretic entropy
measures. This is important since it makes it possible to systematically extend
model testing to more complicated multivariate cases.

The entropy of X, sometimes called the information in X, is defined as the
expected uncertainty of X, and the uncertainty of the event X = x is defined
as the order of magnitude of the probability P (X = x) = p(x). For instance,
a probability p = 0.001 has order of magnitude log(1/p) = 3 in decimal
information units (called dits) obtained with log base 10, and a probability
p = 1/8 has order of magnitude log(1/p) = 3 in binary information units
(called bits) obtained with log base 2. Thus, the entropy of X is equal to

H(X) = E log[1/p(X)] =

r
∑

x=1

p(x) log[1/p(x)],

where the sum is extended over all distinct outcomes x of X with p(x) > 0. In
information theory it is common to use log to base 2. Here log is used without
specifying the base, and when a specific base b is intended this is obtained by
dividing the entropy by log(b). For instance, we used natural logarithms with
base e above giving uncertainty in natural information units (called nits).

The definition of entropy for categorical variables extends immediately to
multivariate cases and

H(X,Y ) = E log[1/p(X,Y )]

where p(x, y) = P (X = x, Y = y). It is therefore possible to express the
divergence

D(X⊥Y ) = H(X) +H(Y )−H(X,Y )

as a combination of univariate and bivariate entropies. In information theory
this combination is called the joint entropy of X and Y , and denoted

J(X,Y ) = H(X) +H(Y )−H(X,Y ).

It can be interpreted as the approximate number of information units that are
common to the two variables. Joint entropy is always non-negative, and it is
0 if and only if there is independence X⊥Y . Its upper bound is the bivariate

5

entropy H(X,Y ). This upper bound might be equal to H(X) if X explains Y
in the sense that there is a single outcome of Y for each outcome of X, that
is, there is a function f so that Y = f(X), which is denoted as X → Y . When
H(X,Y ) = H(X) it follows that H(Y ) ≤ H(X) with equality if and only if
X and Y are equivalent in the sense that they explain each other, which is
denoted by X ←→ Y .

2.4 A partition of bivariate entropy into three diver-

gences

The bivariate entropy H(X,Y ) can be represented as a sum of three non-
negative entropies according to

H(X,Y ) = EH(X |Y ) + J(X,Y ) + EH(Y |X),

where

EH(Y |X ) =

r
∑

x=1

P (X = x)H(Y |X = x)

=
r

∑

x=1

s
∑

y=1

P (X = x)P (Y = y |X = x) log[1/P (Y = y |X = x)]

= H(X,Y )−H(X)

= H(Y )− J(X,Y ),

and analogously for the other expected conditional entropy. Thus the bivariate
entropy counts information units in three disjoint sets (some may be empty)
corresponding to units that are informative for only one of the variables or for
both. If J(X,Y ) = 0 we have X⊥Y , if EH(Y |X) = 0 we have X → Y , and
if EH(X |Y ) = 0 we have Y → X. If we denote

EH(Y |X) = D(X → Y ) and EH(X |Y ) = D(Y → X),

we have got the bivariate entropy expressed as a sum of three divergences

H(X,Y ) = D(Y → X) +D(X⊥Y ) +D(X → Y ).

If the interval from 0 to H(X,Y ) is divided into a first subinterval of length
D(Y → X), a middle subinterval of length D(X⊥Y ), and a last subinterval

6
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of length D(X → Y ), then the first subinterval is not smaller than the last if
and only if the variables satisfy the general inequalities

0 ≤ H(Y ) ≤ H(X) ≤ H(X,Y ) ≤ H(X) +H(Y ).

3 Trivariate categorical distributions

3.1 Likelihood ratios for independence and conditional

independence

With three categorical variables X, Y , Z of r, s, t possible distinct outcomes
for each, there are at most rst possible outcomes for the trivariate (X,Y, Z)-
distribution. Various kinds of independence and conditional independence can
be specified, and some of them imply some of the others.

An important equivalence is that (X,Y )⊥Z if and only if X⊥Z and
Y⊥Z |X . Since X and Y are exchangeable here, it also holds true that
(X,Y )⊥Z if and only if Y⊥Z and X⊥Z |Y . Thus, the independence be-
tween the bivariate (X,Y )-distribution and the univariate Z-distribution is
equivalent to a combination of independence and conditional independence
for pairs of variables.

Another important fact is that (X,Y )⊥Z together with X⊥Y is equivalent
to trivariate independence, which means that every pair of variables is inde-
pendent as well as conditionally independent. It is not sufficient for trivariate
independence that every pair of variables is independent. Neither is it suffi-
cient that every pair is conditionally independent. Not even two of each of the
two kinds of independence is sufficient for trivariate independence. The cru-
cial thing is that a combination of mutual independence with any conditional
independence or a combination of mutual conditional independence with any
unconditional independence is required to guarantee trivariate independence.

The likelihood ratios for the independencies (X,Y )⊥Z and X⊥Y are

P (X = x, Y = y, Z = z)/P (X = x, Y = y)P (Z = z)

and
P (X = x, Y = y)/P (X = x)P (Y = y),

7

so by multiplication of these two ratios we get the likelihood ratio for trivariate
independence

P (X = x, Y = y, Z = z)/P (X = x)P (Y = y)P (Z = z).

The likelihood ratio for conditional independence X⊥Y |Z is given by

P (X = x, Y = y, Z = z)P (Z = z)/P (X = x, Z = z)P (Y = y, Z = z).

3.2 Divergences and tests

The divergence for trivariate independence is the expected value of its log
likelihood ratio, which is the sum of the log likelihood ratios of (X,Y )⊥Z and
X⊥Y so we have

D((X,Y )⊥Z and X⊥Y ) = D((X,Y )⊥Z) +D(X⊥Y ).

The degrees of freedom d for trivariate independence can be obtained as the
difference between the degrees of freedom for the general trivariate distribution
and for the distribution with trivariate independence, which is d = rst− 1−
(r − 1 + s − 1 + t − 1). It can also be obtained as the sum of the degrees
of freedom for the divergences of each independence assumption, which is
d = d′ + d′′ where d′ = (rs − 1)(t − 1) and d′′ = (r − 1)(s − 1). Hence,
d = rst− r − s− t+ 2.

The divergence of conditional independence is

D(X⊥Y |Z),

and its degrees of freedom d is given by the difference between the degrees of
freedom for the general trivariate distribution and for the distribution with
conditional independence, which is d = rst − 1 − [t − 1 + t(r − 1 + s − 1)] =
(r − 1)(s− 1)t.

Testing can be performed by using that for large values of n, the empirical
divergences are distributed so that 2nD/ log(e) is approximately chi square
distributed with d degrees of freedom.

8
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3.3 Divergences and entropies

We can express divergences by joint entropies according to

D((X,Y )⊥Z) = J((X,Y ), Z)

and
D(X⊥Y ) = J(X,Y ),

and the divergence of trivariate independence is the sum

D((X,Y )⊥Z andX⊥Y ) = J((X,Y ), Z) + J(X,Y )

= H(X,Y ) +H(Z)−H(X,Y, Z) +H(X) +H(Y )−H(X,Y )

= H(X) +H(Y ) +H(Z)−H(X,Y, Z),

which is also denoted by J(X,Y, Z) not to be confused with J((X,Y ), Z).

The divergence of conditional independence is given by

D(X⊥Y |Z) = EJ(X,Y |Z)

= H(X,Z) +H(Y, Z)−H(Z)−H(X,Y, Z).

Functional dependence (X,Y ) → Z can be identified by

EH(Z |X,Y ) = H(X,Y, Z)−H(X,Y ) = 0.

We define the divergence from such dependence by this expected entropy

D((X,Y ) → Z) = EH(Z |X,Y ).

3.4 Partitions of trivariate entropy into divergences

It is possible to partition trivariate entropy H(X,Y, Z) into six non-negative
entropies according to

H(X,Y, Z) =

EH(X |Y, Z) + EH(Y |X,Z) + EH(Z |X,Y )+

J(X,Y ) + EJ(X,Z |Y ) + EJ(Y, Z |X).

9

Here the three expected entropies are divergences for functional dependen-
cies, the joint entropy is divergence for independence D(X⊥Y ), and the two
expected joint entropies are divergences for conditional independencies. By
interchanging the variables there are three similar partitions into six non-
negative divergences, where the three expected entropies are the same but the
joint entropy and one of the expected joint entropies differ between any two
partitions. It is possible to combine the three partitions in a partition into
seven parts of which six are non-negative divergences and one is a balancing
central part C(X,Y, Z) that can be positive, negative or zero. The central
part together with any expected joint entropy is equal to the corresponding
joint entropy. Thus

H(X,Y, Z) =

EH(X |Y, Z) + EH(Y |X,Z) + EH(Z |X,Y )+

EJ(X,Y |Z) + EJ(X,Z |Y ) + EJ(Y, Z |X) + C(X,Y, Z),

where

C(X,Y, Z) =

J(X,Y )− EJ(X,Y |Z) = J(X,Z)− EJ(X,Z |Y ) = J(Y, Z)− EJ(Y, Z |X).

The central part represents a certain balance in the three dimensional dis-
tribution. For instance, if there is mutual independence, the central part is
negative or zero and the three expected joint entropies are all equal. Gen-
erally, the three joint entropies as well as the three expected joint entropies
can all have different values but they are always restricted to yield the same
difference between joint entropy and expected joint entropy for each pair of
variables.

The value of the central part can be symmetrically given as a linear com-
bination of all univariate, bivariate and trivariate entropies according to

C(X,Y, Z) = S1 − S2 + S3,

where

S1 = H(X) +H(Y ) +H(Z),

S2 = H(X,Y ) +H(X,Z) +H(Y, Z),

S3 = H(X,Y, Z).

10
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Now trivariate independence has a divergence that can be given as J(X,Y, Z) =
S1 − S3 and mutual independence has divergence

J(X,Y ) + J(X,Z) + J(Y, Z) = 2S1 − S2 = (S1 − S2 + S3) + (S1 − S3).

Therefore

C(X,Y, Z) = J(X,Y ) + J(X,Z) + J(Y, Z)− J(X,Y, Z)

can be given as the difference between the divergences for mutual indepen-
dence and for trivariate independence. As a consequence, the balance be-
tween independence and conditional independence can also be interpreted as
a balance between mutual independence and trivariate independence. In par-
ticular, if there is mutual independence, the three expected joint entropies
EJ(X,Y |Z) , EJ(X,Z |Y ) , and EJ(Y, Z |X) are all equal to J(X,Y, Z).
Generally, we can say that the difference between the measures of dependence
and conditional dependence is equal to the difference between the measures
of mutual and trivariate dependence, and this is equal to half the difference
between the measures of trivariate and mutual conditional dependence in ac-
cordance with the formula

C(X,Y, Z) = J(X,Y )− EJ(X,Y |Z) =

J(X,Z)− EJ(X,Z |Y ) =

J(Y, Z)− EJ(Y, Z |X) =

J(X,Y ) + J(X,Z) + J(Y, Z)− J(X,Y, Z) =

(1/2)[J(X,Y, Z)− EJ(X,Y |Z)− EJ(X,Z |Y )− EJ(Y, Z |X)].

Mutual conditional dependence is measured by the sum of three deviations
from conditional dependence, and this sum is larger than the measure of
trivariate dependence if and only if C is negative. As a consequence, we
have that

3J(X,Y, Z) =

2[J(X,Y ) + J(X,Z) + J(Y, Z)] + [EJ(X,Y |Z) + EJ(X,Z |Y ) + EJ(Y, Z |X]

so that trivariate dependence can be said to weight mutual dependence twice
as much as mutual conditional dependence.

11

4 Some examples

Multivariate independence implies independence in all bivariate marginal dis-
tributions, but mutual independence does not imply multivariate indepen-
dence. A simple example of dependence in a trivariate distribution with mu-
tual independence between any two variables is given by a uniform probabil-
ity distribution of (X,Y, Z) over the four outcomes (0, 0, 1), (0, 1, 0), (1, 0, 0),
and (1, 1, 1). All univariate and bivariate marginal distributions are uniform.
Therefore, there is mutual independence but the eight trivariate outcomes
do not have the uniform distribution that would be required by trivariate
independence.

Using entropies in this example, we see that H(X) = H(Y ) = H(Z) = 1,
H(X,Y ) = H(X,Z) = H(Y, Z) = 2, and H(X,Y, Z) = 2 so that J(X,Y ) =
J(X,Z) = J(Y, Z) = 0 and J(X,Y, Z) = H(X)+H(Y )+H(Z)−H(X,Y, Z) =
1 implying mutual independence but not trivariate independence. The bal-
ancing central part C(X,Y, Z) = −1, and any two variables are depen-
dent conditionally on the third according to EJ(X,Y |Z) = EJ(X,Z |Y ) =
EJ(Y, Z |X) = 1. We also find EH(X |Y, Z) = EH(Y |X,Z) = EH(Z |X,Y )
= 0, which implies that any pair of variables determines the third variable.
In fact, any variable is an indicator variable of equality between the values of
the other two variables. For instance, Z = 1 if (X,Y ) = (0, 0) or (1, 1), and
Z = 0 if (X,Y ) = (0, 1) or (1, 0). Thus, Z can be considered as a redundant
variable that interferes with the bivariate distribution of (X,Y ) and creates
explainable dependence. However, not all trivariate dependence occurring to-
gether with mutual independence can be demystified in this way. This can be
seen and understood by looking further at the multivariate entropies. Let us
consider the following extended example.

Assume that (X,Y, Z) has a uniform distribution over 32 of the 64 out-
comes (x, y, z) with x, y and z being integers chosen from 1,2,3,4. The
integers should be chosen so that (x, y, z) has an odd number of odd in-
tegers. It is convenient to think of a cube of side length 4 divided into
64 small cubes of side length 1 and assign equal probabilities to 32 small
cubes that have no common side areas. Due to the symmetry it follows
that all univariate and bivariate marginal distributions are uniform. Now
H(X) = H(Y ) = H(Z) = 2, H(X,Y ) = H(X,Z) = H(Y, Z) = 4, and
H(X,Y, Z) = 5 so that J(X,Y ) = J(X,Z) = J(Y, Z) = 0 and J(X,Y, Z) =
H(X)+H(Y )+H(Z)−H(X,Y, Z) = 1 implying mutual independence but not
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trivariate independence. As in the previous example we have C(X,Y, Z) =
−1 and find EJ(X,Y |Z) = EJ(X,Z |Y ) = EJ(Y, Z |X) = 1 , which means
that any two variables are dependent conditionally on the third. However,
now EH(X |Y, Z) = EH(Y |X,Z) = EH(Z |X,Y ) = 1 , which implies that
no pair of variables determines the third variable. The trivariate dependence
in this example is therefore not a consequence of some functional relationships
between the variables, which it was in the previous example. But still we have
mutual independence and know that it can occur together with trivariate de-
pendence even without redundancy between the variables.

Both the examples considered above are very symmetric and based on
uniform distributions that do not give the full flavour of how entropies can
be useful for comparing variables and judging the strengths of functional re-
lationships, of stochastic dependence, and of conditional dependence. For
such examples the reader is referred to some of my students’ bachelor the-
ses, which apply multivariate entropy methods to real survey data of different
kinds: Drea-Persson and Karjalainen (2012), Langemar and Eriksson (2012),
Harki and Klaesson (2013), Nikoforova and Marcus (2013), Jonsson and Ygge
(2014). There are also illustrations with network data in Frank and Shafie
(2015).

5 Comments on literature

Even if entropy is a concept used in statistics, both in general theoretical texts
like Ellis (2012) and Kallenberg (2002), and in attempts to combine statis-
tics and information theory as in Kullback (1959) and Gokhale and Kullback
(1978), the potential of multivariate entropies is not yet widely recognized.
Bivariate joint entropy measures can be considered as natural alternatives to
some of the statistical measures of association. A good old source is Goodman
and Kruskal (1979), and some early attempts to find useful entropy measures
are Theil (1967) in economic applications and Krippendorff (1986) in social
science applications. Systematic use of multivariate entropies is described in
Frank (2000). Elaborations of multivariate entropies as exploratory tools are
given in Frank (2011), and applications to network data are illustrated in
Shafie and Frank (2015) and Frank and Shafie (2015).
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A Short Note on Matrices Used in

Statistics

Tatjana von Rosen1

Abstract

Matrices find many applications in various research areas and real-
life problems. In spite of the availability of many innovative tools in
statistics, the main tool of the applied statistician remains the linear
model. Patterned matrices are often used to model dependence struc-
ture of longitudinal or repeated measures data. In this paper, some
properties of symmetric circular Toeplitz matrices will be outlined which
are useful for inference in linear models. Special focus is on block ma-
trices having Kronecker structure since they arise in many applications
for modelling spatio-temporal data.

Key words: Block matrix; Toeplitz matrix; eigenvalues; inverse of the matrix.

1 Introduction

Matrices play an important role in statistics and in many other disciplines
(e.g. data mining, bioinformatics, engineering). In statistical applications,
the first step is to represent available data in a matrix form, which substan-
tially simplifies data manipulations and use of statistical software for the data
analysis. In many areas of statistics, it has become a routine to use matrix al-
gebra in the presentation and the derivation of results. In particular, in linear
statistical models and multivariate analysis, a knowledge of matrix algebra is
of utmost importance for exploring complex interrelations among variables.

There is a number of special matrices, such as symmetric, banded and
orthogonal matrices, which are routinely used in statistics (Harville, 1997;
Bradley and Meek, 1986). Patterned matrices are of special interest in statis-
tics (Olkin and Press, 1969; Reinsel, 1982; Kim and Zimmerman, 2012) and
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1

statistical applications (Viana and Olkin, 2000), since they yield parsimo-
nious modelling of dependence structures arising in various applications (e.g.
medicine, economy, signal processing). For example,

CS =




τ1 τ2 τ2 τ2
τ2 τ1 τ2 τ2
τ2 τ2 τ1 τ2
τ2 τ2 τ2 τ1


 ,

compound symmetry
matrix

T =




τ1 τ2 τ3 τ2
τ2 τ1 τ2 τ3
τ3 τ2 τ1 τ2
τ2 τ3 τ2 τ1


 ,

symmetric circular
Toeplitz matrix

The block-matrices are of utmost importance when complex real-life phe-
nomena should be modelled. Nowadays, the structures involving the Kro-
necker product of patterned matrices have become a standard option for data
analysts. For example, I⊗ I, I⊗Σ, and Ψ⊗Σ.

In the next sections, we focus on two specific patterns, compound and
circular symmetry which are described by compound symmetry and symmetric
circular Toeplitz matrices, respectively.

2 Block CS-Matrix

The compound symmetry matrices (CS-matrices) are widely used in statistics
and various applications (e.g. for split-plot designs). Hence, its properties in-
cluding spectrum and the inverse are well-studied (Searle, 1982). We consider
a block CS-matrix which can be used for example for modelling equicorrelated
hierarchical data (Roy et al., 2015). Let us define the following matrix

Jνi
ni

=

{
Ini , if νi = 0,

Jni
, if νi = 1,

where Ini is the identity matrix of order ni, Jni
is an ni × ni matrix with all

elements equal to 1, i = 1, . . . , s.
The covariance matrix Σs, also called s-exchangeable, has the following

structure (Searle and Henderson, 1979):

Σs =

1∑
νs=0

. . .

1∑
ν1=0

cνs...ν2ν1J
νs
ns ⊗ · · · ⊗ Jν2

n2
⊗ Jν1

n1
, (1)

where cνs...ν2ν1 are constants. Note thatΣs completely defined by 2s elements.

2
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The covariance matrix Σs given by (1) can be also written in a recursive
form (Nahtman, 2006) which highlights its block structure:

Σs= Ins⊗Σ
(1)
s−1 + (Jns − Ins)⊗Σ

(2)
s−1,

where, for h = 1, . . . , 2s,

Σ
(ih)
0 = τh,

Σ
(ik)
k = Ink ⊗Σ

(2ik−1)
k−1 + (Jnk

− Ink )⊗Σ
(2ik)
k−1 ,

ik = 1, . . . , 2s−k, k = 1, . . . , s− 1,

and the constants τh are covariances between the components of the corre-
sponding random vector.

As an example, we can consider the covariance matrices of random factors
with exchangeable levels representing main and interaction effects, respec-
tively:

Σ1= In1τ1 + (Jn1 − In1)τ2,

Σ2= In2⊗ (In1τ1 + (Jn1− In1)τ2) + (Jn2− In2)⊗ (In1τ3 + (Jn1− In1)τ3).

3 Block SC-Toeplitz Matrix

Symmetric circular Toeplitz matrices (SC-Toeplitz matrices) often arise in
various research fields as statistics, econometrics, engineering, seismology, bi-
ology, and it is of interest to explore their special structure and properties.
For example, image restoration applications often yield least squares prob-
lems with large, structured matrices. These matrices are usually banded block
Toeplitz matrices with Toeplitz blocks. Moreover, they also can be expressed
as the sum of the Kronecker products of such matrices (see e.g. Kamm and
Nagy, 2000; Wirfält and Jansson, 2014).

Recall that an n× n matrix T of the form

T =




t1 t2 t3 · · · tn
tn t1 t2 · · · tn−1

...
. . .

. . .
. . .

...
t2 t3 t4 · · · t1


 ≡ Toep(t1, t2, t3, . . . , tn)

with tj = tn−j+2, j = 2, . . . , n, is called a SC-Toeplitz matrix. The matrix T
depends on [n/2] + 1 parameters, here [•] stands for the integer part.

3
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Let us define a SC-matrix, SC(n, k), of size n as follows:

(SC(n, k))ij =

{
1, if |i− j| = k or |i− j| = n− k,

0, otherwise,
,

where k = 1, . . . , [n/2]. Furthermore,

SC(n, k) = Toep(

n� �� �
0, . . . , 0� �� �

k

, 1, 0, . . . , 0, 1, 0, . . . , 0� �� �
k−1

).

For notational convenience denote SC(n, 0) = In.
Notice that matrices SC(n, 0),SC(n, 1), . . . ,SC(n, [n/2]) are linearly in-

dependent and they commute. Furthermore, it is easy to see that

Toep(t1, t2, t3, . . . , t2) =

[n/2]∑
i=0

ti+1SC(n, i)

.
Block SC-Toeplitz matrix is defined in a similar way:

ΣT =




T1 T2 T3 · · · Tn1

Tn1 T1 T2 · · · Tn1−1

...
. . .

. . .
. . .

...
T2 T3 T4 · · · T1


 ≡ Toep(T1,T2,T3, . . . ,Tn1), (2)

where Ti is a SC-Toeplitz matrix with [n2/2] + 1 parameters, i = 1, . . . , n1,
and Tj = Tn1−j+2, j = 2, . . . , n1. Hence, the matrix ΣT is defined by
([n1/2] + 1)([n2/2] + 1) parameters.

Any block SC-Toeplitz matrix can be represented using SC-matrices.

Theorem. The covariance matrix ΣT with the structure defined in (2) can
be represented as

ΣT =

[ns/2]∑
ks=0

· · ·
[n1/2]∑
k1=0

τkSC(ns, ks)⊗ · · · ⊗ SC(n1, k1),

where τk are constants, k = 1 for s = 1, and otherwise,

k =
s∑

h=2

h−1∏
i=1

([
ni

2
] + 1)kh + k1.

4
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The following recursive structure of ΣT can be used for obtaining its eigen-
values using the information about its blocks (Nahtman and von Rosen, 2008):

ΣT =

[ns/2]∑
i=0

SC(ns, i)⊗Ti,s−1, (3)

where

Tk,j =

[nj/2]∑
i=0

SC(nj , i)⊗Tk([nj/2]+1)+i,j−1,

Tl,0 = τl,

k = 0, . . . , [nj+1/2], j = 1, . . . , s− 1, l = 0, . . . ,
∏s

i=1([ni/2] + 1)− 1.

4 Spectral Properties of Block CS-Matrix and
Block SC-Toeplitz Matrix

Since patterned covariance matrices occur frequently in statistical modelling,
it is useful to review some of their spectral properties which are used, for
example, in estimation and hypotheses testing.

We start with the block CS-matrix Σs= Ins⊗Σ
(1)
s−1+(Jns − Ins)⊗Σ

(2)
s−1.

Let λ
(1)
i and λ

(2)
i be eigenvalues of CS-matrices Σ

(1)
s−1 and Σ

(2)
s−1, respectively,
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5 Patterned Matrices in Linear Models

The statistical interest towards using patterned covariance structures in nor-
mal linear models has been large over the years due to demand for better
modelling and hence understanding the dependence structure of the data, of-
ten large and complex, arising in different applications including medicine,
biology, psychology and education.

Let y1, . . . ,yn be a random sample from Np(1n2 ⊗µ,Σ), where µ : n1 × 1
is an unknown mean vector, p = n2n1, and Y = (y1, . . . ,yn). Hence,

Y ∼ Np,n((1n2 ⊗ µ)1T

n,Σ, In),

where Np,n((1n2 ⊗µ)1T
n,Σ, In) denotes the p× n matrix normal distribution

with mean matrix (1n2 ⊗ µ)1′
n and Σ : p × p the covariance matrix between

rows of Y.
For the following linear model, which could be used for modelling hierarchical
data structures,

yi = µ1p + Z1γ1 + Z2γ2 + ϵ,

where yi ∼ Np(µ1p,Σ), Σ = Z1V1Z
T

1 + V2 + σ2Ip, Z1 = In2 ⊗ 1n1 and
Z2 = In2 ⊗ In1 , the following three specific covariance matrices, denoted by
Σ1, Σ2 and Σ3, are of interest:

• Σ1 = In2
⊗Σ(1) + (Jn2

− In2
)⊗Σ(2),

Σ(i) : n1 × n1 is an unstructured matrix, i = 1, 2.

• Σ2 = In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2),
Σ(i) : n1 × n1 is a SC-Toeplitz matrix, i = 1, 2.

• Σ3 = In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2),
Σ(i) : n1 × n1 is a CS-matrix, i = 1, 2.

The number of unknown variance-covariance parameters in Σ1, Σ2 andΣ3 are
n1(n1+1), 2([n1/2]+1) and 4, respectively. We shall focus on the covariance
matrix (see e.g. Olkin, 1973; Liang et al., 2012, 2015)

Σ2 = In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2),

whereΣ(1) and Σ(2) are SC-Toeplitz matrices.
The spectral properties of the matrix Σ2 are stated in the following theo-

rem.
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Theorem. Let λ
(i)
1 , . . . , λ

(i)
n1 be the eigenvalues of a SC-Toepliz matrix Σ(i)

of order n1, i = 1, 2. Then Σ2 has the eigenvalues of the following form

λ1h = λ
(1)
h + (n2 − 1)λ

(2)
h ,

λ2h = λ
(1)
h − λ

(2)
h ,

where h = 1, . . . , n1.
Furthermore, if n1 is odd, the multiplicity of λi1 is (n2 − 1)i−1, the eigen-

values λi2, . . . , λin1
are of the multiplicity 2(n2 − 1)i−1, i = 1, 2. If n1 is even,

the multiplicities of both λi1 and λi
n1
2

are (n2 − 1)i−1 and other eigenvalues

λi2, . . . , λin1 are of the multiplicity 2(n2 − 1)i−1, i = 1, 2. The number of
distinct eigenvalues for Σ2 is 2([n1/2] + 1).

The eigenvectors v1
1 . . . ,v

n1
1 ,v1

2 , . . . ,v
n1(n2−1)
2 corresponding to λkh, are of the

following form

vi
k = wh2

2 ⊗wh1
1 ,

where the vectors wh2
2 and wh1

1 are the eigenvectors of CS-matrix and SC-
Toeplitz matrix, correspondingly, k = 1, 2.

6 On the Inverse of Block Patterned Matrices

There are many statistical problems where the inverse of a matrix is needed.
Moreover, in other disciplines the inverse matrices can be of interest in their
own right.

It is worth noting that the structure of CS and SC-Toeplitz matrices carries
over to their inverses. Foe example, the inverse of CS-matrix

Σs =

1∑
νs=0

. . .

1∑
ν1=0

cνs...ν2ν1J
νs
ns ⊗ · · · ⊗ Jν2

n2
⊗ Jν1

n1

can be presented in the following form (Searle and Henderson, 1979):

Σ−1
s =

1∑
νs=0

. . .
1∑

ν1=0

dνs...ν2ν1J
νs
ns ⊗ · · · ⊗ Jν2

n2
⊗ Jν1

n1
,

where 

d00...0

...
d11...1


 =

1⊗
i=s

(
1 0

− 1
ni

1
ni

)


λ−1
00...0
...

λ−1
ss−1...1


 ,
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and λαs...α2α1 ’s are the distinct eigenvalues of Σs (for details, see Nahtman,
2006). Furthermore,



λ00...0

...
λ11...1


 =

1⊗
i=s

(
1 0
1 ni

)


c00...0
...

css−1...1


 .

In general, one can use the block structure of Σh = In2 ⊗ Σ(1) + (Jn2 −
In2)⊗Σ(2), h = 1, 2, 3, as defined in Section 5 in order to invert it.

Then, noting that the structure of Σh is carried over to its inverse, we
have (assuming that the corresponding inverses exist):

Σ−1
2 = In2 ⊗Σ−1

1,1 + (Jn2 − In2)⊗Σ−1
1,2,

where

Σ−1
1,1 = Σ−1

1,2 + (Σ
(1)
1 −Σ

(2)
1 )−1,

Σ−1
1,2 = −(Σ

(1)
1 + 2Σ

(2)
1 )−1Σ

(2)
1 (Σ

(1)
1 −Σ

(2)
1 )−1.
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Central limit theorems

from a teaching perspective

Per Gösta Andersson1

Abstract

Central limit theorems and their applications constitute highlights
in probability theory and statistical inference. However, as a teacher,
especially in undergraduate courses, you are faced with the challenges
of how to introduce the results. These challenges especially concern
ways of presentation and discussion of under which conditions asymp-
totic (approximate) results hold. This paper attempts to present some
relevant examples for possible use in the classroom.

Key words: Asymptotic theory, Cauchy distribution, Lindeberg-Lévy central
limit theorem

1 Introduction

Introducing the error term in a linear regression model during a course in
statistics occasionally gives rise to comments from students such as ”How can
we motivate the assumption of normality?”. A common reply is that the
error is supposed to be the aggregate of many ”disturbances”, i.e. a sum of
many random variables and therefore we can assume that, at least, normality
holds approximately. The teacher might then (rightfully) receive the follow-
up question: ”We have been taught that the terms should be iid in order to
assume approximate normality for the sum and is it realistic to assume that
here?” The teacher must then shamefully admit that the students previously
have been somewhat misled to believe that there is something called THE
central limit theorem, whereas in reality, there are many versions of central
limit theorems. In some of them, the assumption that the terms have the same
distribution is dropped, and there are also examples of limit normality results,

1Department of Statistics, Stockholm University

1

where the assumption of independence is relaxed. On the other hand, there
are cases where the observations are indeed iid (independent and identically
distributed), but the limit distribution is not normal. Students who have
taken a few courses in statistics are usually more worried about how many
observations they sum than anything else. This is mostly due to rules of
thumb like ”the sample size 30 is usually enough”.

2 Presenting a central limit theorem

Textbooks used for a first course in probability theory usually (without a
proof) include the following result, known in the literature as the Lindeberg-
Lévy central limit theorem:
Let X1, . . . , Xn be iid random variables with mean µ and finite variance σ2

and further let Sn =
∑n

i=1 Xi. Then

P
(Sn − nµ√

nσ
≤ a

)

→ Φ(a), as n → ∞, for all a ∈ R

(Note that it is understood here that µ is finite, which follows from the as-
sumption that the variance σ2 is finite.)
The presentation is sometimes as an approximate result rather than as an
asymptotic:

If n is large, then Sn is approximately N(nµ, nσ2)

or equivalently

If n is large, then X̄ = Sn/n is approximately N(µ, σ2/n)

These latter ways of presenting the theorem are probably preferable if the
students have poor mathematical background.
In a second course in probability theory, the Lindeberg-Lévy theorem is often
presented including a proof using some type of generating function. Usually
the moment generating function is the chosen tool as in e.g. Casella and Berger
(2002). The authors include two versions of central limit results, where in the
first it is assumed that the moment generating function exists in a neighbour-
hood of 0. In that case the proof is rather straightforward. Then, a ”stronger
form of the Central Limit Theorem” (Lindeberg-Lévy) is stated without a
proof, since in that case you need the use of characteristic functions instead.
It is argued that dealing with complex variables is beyond the scope of the
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book. In a teaching situation you do not have much of a choice if the students
are not familiar with complex numbers. However, to really appreciate the
meaning of the statement about a moment generating function existing in a
neighbourhood of 0 is probably rather difficult for most students. The good
thing though with this assumption is that you do not need to specify that σ2

is finite.
Inlow (2010) presents a moment generating proof involving use of Slutsky’s
theorem without actually requiring the existence of the moment generating
function of the constituent random variables, which are assumed (absolutely)
continuous. As the author comments the proof is unfortunately accessible for
graduate students only.
The superior property of a characteristic function compared with a moment
generating function is of course that the former always exists and the proof
of this is so elegant that we should include it here!
Suppose the random variable X is continuous. (The proof is similar in the
discrete case.) Its characteristic function is given by ρ(t) = E(eitX) and
|ρ(t)| = |

∫∞
−∞ eitxf(x)dx| ≤

∫∞
−∞ |eitxf(x)|dx

Now, since |f(x)| = f(x) and |eitX | = |cos tx+ isin tx| =
√

cos2tx+ sin2tx =
1, we finally get that |ρ(t)| ≤

∫∞
−∞ f(x)dx = 1 and we are done.

3 Relaxing the iid assumption

When we deviate from iid cases, the situation naturally becomes more com-
plicated. If we first consider a sequence of random variables which are in-
dependent, but not necessarily identically distributed, we can rely on results
such as the Lindeberg-Feller central limit theorem. This theorem includes
what is called the Lindeberg condition and this might be too technical for an
undergraduate course, but one could mention that this condition implies that

maxi=1,...,n
σ2
i

s2n
→ 0, as n → ∞, (1)

where σ2
i = Var(Xi), i = 1, . . . n and s2n =

∑n
i=1 σ

2
i . The interpretation is

that the contribution of any individual random variable is arbitrarily small
for (sufficiently) large n.
An example of where we may have use for this result is when we consider
a sequence of independent Bernoulli variables X1, . . . , Xn, where P (Xi =
1) = pi, i = 1, . . . , n. When pi = p, i = 1, . . . , n, the students know that
we get a binomial distribution from Sn and that we can approximate this

3

distribution with a normal for large n. Now, a sufficient condition for (1) is
that s2n =

∑n
i=1 pi(1−pi) → ∞, which will be obtained if pi is kept away from

values too close to either 0 or 1.
Let us now have a look at the independence part of the iid assumption. If the
students are familiar with time series modelling the following simple moving
average type of situation may illustrate the case of nonindependent random
variables: Let

Xi = Zi + Zi−1, i = 1, 2, . . . ,

where Z0, Z1, Z2,. . . are iid with a common finite variance. Clearly X1, X2, . . .
is not a sequence of independent variables, so what can we say about the
distribution of Sn for large n? The simple trick is to rewrite Sn as

Sn = Z0 + Zn + 2

n−1
∑

i=1

Zi (2)

The Lindeberg-Lévy theorem can be applied to the last sum of (2) and it can
further be shown formally that Z0 and Zn are asymptotically negligible and
we can therefore conclude that Sn is approximately normally distributed for
large n.

4 Counter examples

Probably the most famous counter example of an iid situation where a central
limit theorem does not apply is when Xi is Cauchy(θ1, θ2), i = 1, . . . , n (also
named the Lorentz distribution by physicists). The pdf is

f(x) =
θ2

π(θ22 + (x− θ1)2)
−∞ < x < ∞, θ2 > 0

This density function looks innocent enough, being symmetric around θ1,
but as is well-known, the mean µ and the variance σ2 do not exist. A
natural and interesting case is when we put θ1 = 0 and θ2 = 1. A stu-
dent might then be tempted to draw the conclusion that the mean really is
0 using the following (wrong) argument: E(X) = lima→∞

1
π

∫ a

−a
x

1+x2 dx =

lima→∞
1
2π [ln(1 + x2)]a−a = 0, thereby not following the rules of generalized

integrals. As pointed out by e.g. Casella and Berger (2002), we should first
check if E(|X|) < ∞, which does not hold here.
So can we instead determine the distribution of some function of Sn in the
general case of X ∼ Cauchy(θ1, θ2)? As it turns out, Sn/n has also a Cauchy

4



129

distribution with a normal for large n. Now, a sufficient condition for (1) is
that s2n =

∑n
i=1 pi(1−pi) → ∞, which will be obtained if pi is kept away from

values too close to either 0 or 1.
Let us now have a look at the independence part of the iid assumption. If the
students are familiar with time series modelling the following simple moving
average type of situation may illustrate the case of nonindependent random
variables: Let

Xi = Zi + Zi−1, i = 1, 2, . . . ,

where Z0, Z1, Z2,. . . are iid with a common finite variance. Clearly X1, X2, . . .
is not a sequence of independent variables, so what can we say about the
distribution of Sn for large n? The simple trick is to rewrite Sn as

Sn = Z0 + Zn + 2

n−1
∑

i=1

Zi (2)
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distribution. To prove this we cannot use the moment generating function
for X, since it does not exist, but instead the characteristic function ρ(t) is
of help. If X is Cauchy(θ1, θ2), then ρ(t) = eθ1it−θ2|t| and the characteristic

function for Sn/n is (ρ(t/n))n = (eθ1
it
n −θ2| t

n |)n = ρ(t)! So, in a trivial sense
Sn/n converges to a Cauchy(θ1, θ2).
A student may at this stage comment that this distribution seems extreme
and therefore not realistic. Thus it is good to be able to point out a few
situations where the Cauchy distribution turns up. The most well-known
is probably where we look at the ratio Y = Z1/Z2, where Z1 and Z2 are
N(0, 1) and independent. Y is then Cauchy(0,1) and if we first confront
a student with the ratio, he/she will probably sense that there might be a
problem with the denominator, since there is a substantial probability that it
will attain a value close to 0. A second example is related to physics. If we
have a ray at an angle γ which has a uniform distribution, then tan(γ) has a
Cauchy distribution. A third example is related to statistical inference, since
a Cauchy(0, 1) distribution is the same as a t-distribution with one degree of
freedom.
Before leaving the Cauchy distribution it is worth telling the students that
besides the obvious observation that θ1 is the median, the scale parameter θ2
is (q3 − q1)/2 ( half the interquartile range).
If a student finds the Cauchy distribution somewhat extreme, then probably
the following member of the inverse-gamma family of densities will be regarded
as ballistic. Suppose that X has density

f(x) =
1√
2πx3

e−
1
2x , x > 0 (3)

The mean and variance do not exist, so we cannot apply a central limit the-
orem to an iid sequence X1, . . . , Xn. However, it holds that X̄ has the same
distribution as nX1. This has the quite amazing effect that X̄ has more vari-
ability (we have to be careful about not using the word variance here!) than
one single variable X1.
Also it is worth pointing out that the distribution given by the density (3) is
not pathologic, since it can be used for e.g. modelling first passsage times in
a one-dimensional Brownian motion.
These two examples (and more) of situations where a central limit theorem
cannot be applied, are to be found in Bagui et al. (2013).

5

5 Summary

When teaching central limit theorem results, it is desirable to discuss other
issues than mere sample sizes to make students aware of at least something of
the involved complexity. Having done that hopefully facilitates understanding
of when and how to apply central limit theorems in real world situations.
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The Analysis of Covariance using R

and SAS : A Few Surprises

Subir Ghosh1

Abstract

The analysis of covariance (ANCOVA) using R (Crawley, 2013) may
give different values than that of SAS (Littell et al., 2002) for certain
important components of the outcomes. Their similarities and differ-
ences are investigated and explained with the anorexia data (Tamhane,
2009).

Key words: ANCOVA, Model Comparisons, R, SAS

1 Prelude

With great pleasure, pride, and admiration, I dedicate this article in honor
of Professor Hans Nyquist on his 65th birthday. His friendship, kindness,
and scientific collaboration are valuable treasures in my life. During this
celebration of his fundamental contributions in the general area of Statistics,
wishing Hans and his family members all the happiness, health, prosperity
and peace now as well as years to come.

2 ANCOVA using R and SAS

A completely randomized experiment was performed to compare three treat-
ment therapies: control, behavioral, and family, for treating anorexia patients
to recover from their loosing weights (Tamhane (2009)). The patients were
randomly assigned to three treatment therapies. The response variable y was
the weight gain (lb) after therapies and an observed covariate x was base-
line weight prior to starting therapies. The data are given in Table 1 for
51 patients: 17 patients for each of three treatment therapies. Denote the

1University of California, Riverside, CA 92521, USA
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Table 1: Data on (xij , yij), i = 1, 2, 3, j = 1, ..., 17

Patient Control Behavioral Family
i = 1 i = 2 i = 3

j (x, y) (x, y) (x, y)
1 (80.7, -0.5) (80.5, 1.7) (83.8, 11.4)
2 (89.4, -9.3) (84.9, 0.7) (83.3, 11.0)
3 (91.8, -5.4) (81.5, -0.1) (86.0, 5.5)
4 (74.0, 12.3) (82.6, -0.7) (82.5, 9.4)
5 (78.1, -2.0) (79.9, -3.5) (86.7, 13.6)
6 (88.3,-10.2) (88.7, 14.9) (79.6, -2.9)
7 (87.3,-12.2) (94.9, 3.5) (76.9, -0.1)
8 (75.1, 11.6) (76.3, 17.1) (94.2, 7.4)
9 (80.6, -7.1) (81.0, -7.6) (73.4, 21.5)
10 (78.4, 6.2) (80.5, 1.6) (80.5, -5.3)
11 (77.6, -0.2) (85.0, 11.7) (81.6, -3.8)
12 (88.7, -9.2) (89.2, 6.1) (82.1, 13.4)
13 (81.3, 8.3) (81.3, 1.1) (77.6, 13.1)
14 (78.1, 3.3) (76.5, -4.0) (83.5, 9.0)
15 (70.5, 11.3) (70.0, 20.9) (89.9, 3.9)
16 (77.3, 0.0) (80.4, -9.1) (86.0, 5.7)
17 (85.2, -1.0) (83.3, 2.1) (87.3, 10.7)

data (x, y) for the jth patient under the ith treatment therapy by (xij , yij),
j = 1, ..., 17, i = 1, 2, 3.

Consider the model M1 for describing the data in Table 1 under the as-
sumptions that yij , i = 1, 2, 3, j = 1, ..., 17, are independently normally dis-
tributed as

M1 : yij ∼ N(β0 + β1xij + β2x
2
ij + γ0i + γ1ixij , σ

2), (1)

where the parameters β0, β1, β2, γ0i, γ1i , and σ2 are unknown.
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Consider the model M1 for describing the data in Table 1 under the as-
sumptions that yij , i = 1, 2, 3, j = 1, ..., 17, are independently normally dis-
tributed as

M1 : yij ∼ N(β0 + β1xij + β2x
2
ij + γ0i + γ1ixij , σ

2), (1)

where the parameters β0, β1, β2, γ0i, γ1i , and σ2 are unknown.
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Table 2: Type I − ANOVA for M1

Source DF Sum Sq Mean Sq F value P value
Treatment 2 479.30 239.65 5.45 0.0077
Covariate 1 391.65 391.65 8.91 0.0046

Sq. Covariate 1 451.15 451.15 10.27 0.0025
Treatment
x Covariate 2 214.75 107.38 2.44 0.0985

Residual/Error 44 1933.10 43.93

Total 50 3469.95

Table 3: Type II and Type III Analyses for Models M1 in R and SAS

Program Source DF Type II Type III
Sum Sq P value Sum Sq P value

SAS Treatment 2 174.02 0.1501 174.02 0.1501
R 728.17 0.0009 174.02 0.1501

SAS Covariate 1 488.63 0.0017 366.13 0.0060
R 488.63 0.0017 346.71 0.0074

SAS, R Sq. Covariate 1 338.36 0.0081 338.36 0.0081
SAS, R Treatment

x Covariate 2 214.75 0.0985 214.75 0.0985

Type I, Type II, and Type III analyses are now performed for the data in
Table 1. Type I analysis in Table 2 gives the same output for SAS and R.
However, a few components in Type II and Type III analyses are different in
their output. Table 3 summarizes their similarities and differences.

3 Figuring out the Differences and Similarities
in R and SAS

The Sums of Squares Residual/Error are identical for Types I, II, and III
analyses under a model Mw and their common value is denoted by SSEw.

3

Define z1ij = 1 for i = 1 and z1ij = 0 for i = 2 and 3, z3ij = 1 for i = 3
and z3ij = 0 for i = 1 and 2. Introducing now the models below so that yij ,
i = 1, 2, 3, j = 1, ..., 17, are independently
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M1.1 : N(β0 + β1xij + β2x
2
ij + γ1ixij , σ

2),

M1.2 : N(β0 + β2x
2
ij + γ0i + γ1ixij , σ

2),

M∗
1.2 : N(β0 + β2x

2
ij + γ01z1ij + γ03z3ij + γ01z1ijxij + γ03z3ijxij , σ

2),

M1.3 : N(β0 + β1xij + γ0i + γ1ixij , σ
2),

M1.4 : N(β0 + β1xij + β2x
2
ij + γ0i, σ

2),

M2 : N(β0 + β1xij + β2x
2
ij + γ0i, σ

2),

M2.1 : N(β0 + β1xij + β2x
2
ij , σ

2),

M2.2 : N(β0 + β2x
2
ij + γ0i, σ

2),

M2.3 : N(β0 + β1xij + γ0i, σ
2),

M2.3.2 : N(β0 + γ0i, σ
2),

M2.3.2.1 : N(β0, σ
2),

(2)

As reflected in the numbering systems of the models, M1.1, M1.2, M1.3 and
M2 are nested within M1, M2.2 and M2.3 are nested within M2, M2.3.2 is
nested within M2.3, and M2.3.2.1 is nested within M2.3.2. The Sums of Squares
Residual/Error for these models are given in Table 4. In Table 5, the Sums
of Squares in Tables 2 and 3 are expressed in terms of SSEw values. Table
5 explains why the Type II Treatment Sums of Squares in SAS and R are
different for M1 as well as why the Type III Covariate Sums of Squares in
SAS and R are different for M1.

4 Model Comparisons: M1 Versus M2

The least squares fitted values for the model Mw are denoted by ŷ
(w)
ij , w =

1, 2, i = 1, 2, 3, j = 1, ..., 17. The residuals or estimated errors are (yij −
ŷ
(w)
ij ) and the sums of squares of residuals (SSEw) with degrees of freedom
(DF (E)w), the mean squares of residuals (MSEw) and the residual standard
errors (RSEw) are

4
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(DF (E)w), the mean squares of residuals (MSEw) and the residual standard
errors (RSEw) are

4

The Analysis of Covariance using R and SAS : A Few Surprises



136

Festschrift in Honor of Hans Nyquist

Table 4: The values of SSE(Mw),
w = 1, 1.1, 1.2, 1.3, 2, 2.1, 2.2, 2.3, 2.3.2, 2.3.2.1

w Mw SSE(Mw) DF
1 M1 1933.10 44
1.1 M1.1 2107.12 46
1.2 M1.2 2299.23 45
1.2* M∗

1.2 2279.81 45
1.3 M1.3 2271.46 45
2 M2 2147.82 46
2.1 M2.1 2876.02 48
2.2 M2.2 2636.48 47
2.3 M2.3 2599.00 47
2.3.2 M2.3.2 2990.65 48
2.3.2.1 M2.3.2.1 3469.95 50










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





SSEw =
3
∑

i=1

17
∑

j=1

(yij − ŷ
(w)
ij )2,

MSEw = SSEw/DF (E)w,

RSEw = (MSEw)
1/2.

(3)

Note that SSE is also notationally represented by RSS. The Akaike Informa-
tion Criterion (AIC) and Bayesian Information Criterion (BIC) for the model
Mw are defined as

{

AICw = n+ n log(2π) + n log(SSEw/n) + 2pw,

BICw = n+ n log(2π) + n log(SSEw/n) + pw log(n),
(4)

where n = the sample size = 51 and pw = the number of estimated parameters
in the model Mw = (51 - DF (E)w) + 1. (Note that the last term 1 in pw is
represented by the parameter σ2.) The computations in Table 6 are done by
using the R program which includes the first two terms in AICw and BICw

although they can be ignored without making any difference to the model
comparisons. The coefficients of determination (R2) and adjusted coefficient
of determination (R2

a) are defined for the model Mw as

5

Table 5: Types I, II, and III Sums of Squares under M1

in terms of SSE(Mw) values in Table 4

Sum of Squares under M1

Source Program Type I Type II Type III
Treat- 479.30 174.02 174.02
ment SAS = SSE(M2.3.2.1) = SSE(M1.1) = SSE(M1.1)

−SSE(M2.3.2) −SSE(M1) −SSE(M1)
Treat- 479.30 728.17 174.02
ment R = SSE(M2.3.2.1) = SSE(M2.1) = SSE(M1.1)

−SSE(M2.3.2) −SSE(M2) −SSE(M1)
Covar- 391.65 488.63 366.13

iate SAS = SSE(M2.3.2) = SSE(M2.2) = SSE(M1.2)
−SSE(M2.3) −SSE(M2) −SSE(M1)

Covar- 391.65 488.63 346.71

iate R = SSE(M2.3.2) = SSE(M2.2) = SSE(M∗
1.2)

−SSE(M2.3) −SSE(M2) −SSE(M1)
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Table 5: Types I, II, and III Sums of Squares under M1

in terms of SSE(Mw) values in Table 4
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Source Program Type I Type II Type III
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Table 6: SSEw, AICw, BICw, R
2
w, R

2
aw, and RSEw for w = 1, 2

w pw SSEw fw AICw BICw R2
w R2

aw RSEw

1 8 1933.10 185.39 346.12 361.57 0.44 0.37 6.63

2 6 2147.85 190.76 347.49 359.08 0.38 0.33 6.83



































nȳ =
3
∑

i=1

17
∑

j=1

yij ,

SST =
3
∑

i=1

17
∑

j=1

(yij − ȳ)2,

R2
w = 1− (SSEw/SST ) ,

R2
aw = 1− [(SSEw/DF (E)w)/(SST/(n− 1))] .

(5)

Define fw = 51 log(SSEw/51), w = 1, 2. Table 6 presents the numerical val-
ues of SSEw, fw, AICw, BICw, R2

w, R2
aw, and RSEw for w = 1, 2. The

model M1 is performing better than M2 with respect to (w.r.t.) the criterion
functions AIC and RSE having the smaller values indicated in bold and w.r.t.
the criterion functions R2 and R2

a having the larger values indicated also in
bold. The model M2 is performing better over M1 w.r.t. the criterion func-
tion BIC. Since 3.93 = log(51) > 2, the penalty for a bigger model having a
higher p value is much more under BIC than AIC. So, it is not surprising to
have the AIC conclusions being different from that of BIC.
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A Structural Equation Model of Job

Satisfaction, Burnout, Vigor and

Depression: A Study from Turkey1

Nuran Bayram2

Abstract

Aim: The aim of the study was to investigate the relationships
among job satisfaction, burnout, vigor and depression among academic
staff in Turkey.

Method: The study participants ranged in age from 23 years to 67
years, approximately 53 % were female, 69 % were married. The Min-
nesota job satisfaction scale, the Shirom-Melamed burnout and vigor
measure, and Lovibond’s depression scales were used. Printed ques-
tionnaires were sent to the entire academic staff of a single academic
institution and were filled out anonymously.

Results: The results were χ2/df=2.684; GFI=0.94; CFI=0.95; RM-
SEA=0.07; SRMR=0.04. The goodness of fit provided evidence that the
hypothesized model was stable. All estimated path coefficients were sig-
nificant. 47 % of the variance in depression was explained by the direct
effect of burnout, 23 % of the variance in vigor was explained by the
direct effect of burnout and depression. 24 % percent of the variance in
job satisfaction was explained by the direct effect of burnout, depression
and vigor.

1The first version of this study was presented at the 5th International Academic Con-
ference in 2013, Buenos Aires, Argentina.

2Department of Econometrics, Faculty of Economics and Administrative Sciences,
Uludag University, Bursa, Turkey.

1

Conclusion: Structural equation model showed that burnout and
depression are negatively affected by job satisfaction, that vigor are
positively affected by job satisfaction, and that vigor and depression
play a mediating role for burnout.

Key words: Structural Equation Model, Job Satisfaction, Burnout, Vigor,
Depression

Introduction

Job satisfaction is simply how people feel about their jobs and different as-
pects of their jobs. Job satisfaction is a pleasurable or positive emotional
state resulting from the appraisal of one’s job or job experiences (Wright and
Cropanzano, 2004) and it is an important issue in every work environment.
Job satisfaction has emotional, cognitive and behavioral components (Bern-
stein and Nash, 2008). The emotional component refers to feelings regarding
the job, such as boredom, anxiety, or excitement. The cognitive component
of job satisfaction refers to beliefs regarding one’s job, for example, feeling
that one’s job is mentally demanding and challenging. Finally, the behavioral
component includes people’s actions in relation to their work. These actions
may include being tardy, staying late, or pretending to be ill in order to avoid
work (Bernstein and Nash, 2008).

Emotional exhaustion, depersonalization and low personal accomplishment
are the three main components of burnout syndrome (Maslach et al., 2001).
Burnout has been mentioned as an effective response to ongoing work-related
stress (Shirom, 2003a). The three facets of burnout are: physical fatigue,
emotional exhaustion, and cognitive weariness. Physical fatigue refers to one’s
feelings of tiredness and low levels of energy in carrying out daily tasks at work.
Emotional exhaustion refers to one’s feeling too weak to display empathy
to clients or coworkers. Cognitive weariness refers to one’s feelings of slow
thinking processes and reduced mental agility (Shirom, 2003a).

Vigor has been defined as having a high level of energy, motivation to in-
vest effort at work, and resilience and has been accepted as a part of work
engagement (Bakker and Demerouti, 2008). Vigor comprises one’s feelings of
possessing physical strength, emotional energy, and cognitive liveliness (Shi-
rom, 2003b). These facets are physical strength that refers to one’s physical
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and empathy to significant others and cognitive liveliness that refers to one’s
flow of thought processes and mental agility.

The depression assesses dysphoria, hopelessness, devaluation of life, self-
deprecation, lack of interest or involvement, anhedonia and inertia (Lovibond
and Lovibond, 1995). In other words, depression is characterized by low pos-
itive affect, loss of self-esteem and incentive, and a sense of hopelessness (ab-
sence of positive affect) (Brown et al., 1997).

The aim of the study was to investigate the relationships among job sat-
isfaction, burnout, vigor and depression among academic staff in Turkey.

Method

Study participants

368 academic staff participated in the study. The study participants ranged in
age from 23 years to 67 years. Printed questionnaires were sent to the entire
academic staff of a single academic institution and were filled out anony-
mously.

Instruments

In this study four different instruments have been used to measure job satis-
faction, burnout, vigor and depression.

Job satisfaction: To determine job satisfaction we used the Turkish version
of the Minnesota Job Satisfaction Scale (MJSS). These 20 items evaluate
two dimensions: intrinsic (Cronbach’s Alpha=0.89) and extrinsic (Cronbach’s
Alpha=0.82). Responses are rated on a 5-point Likert scale ranging from 1
for not satisfied to 5 for very satisfied. The highest point of this scale is 100
and the lowest 20. High scores mean greater job satisfaction.

Burnout : To measure burnout we used the Turkish version of the Shirom-
Melamed Burnout Measure (SMBM). This 12-item questionnaire evaluates
three burnout dimensions: physical fatigue (4 items, Cronbach’s Alpha=0.95),

3

emotional exhaustion (4 items, Cronbach’s Alpha=0.91) and cognitive weari-
ness (4 items, Cronbach’s Alpha=0.91). Responses are rated on a 7-point
Likert scale ranging from 1 for never to 7 for always (Melamed et al., 1999;
Shirom, 2003a). High scores mean greater burnout.

Vigor : To measure vigor we used the Turkish version of the Shirom-
Melamed Vigor Measure (SMVM). This 14-item questionnaire evaluates three
vigor dimensions: physical strength (5 items, Cronbach’s Alpha=0.91), emo-
tional energy (4 items, Cronbach’s Alpha=0.94) and cognitive liveliness (5
items, Cronbach’s Alpha=0.91). All items are scored on a 7-point Likert scale
ranging from 1 for never to 7 for always (Melamed et al., 1999). High scores
mean greater vigor.

Depression: To measure depression we used the Turkish version of DASS-
42. This 42-item instrument evaluates symptoms of depression, anxiety and
stress. Each of the three scales consists of 14 items that are answered using
a 0–3 scale where 0 = did not apply to me at all and 3 = applied to me very
much or most of the time. In this study, we used only depression dimension
(Cronbach’s Alpha=0.93). High scores mean greater depression.

Data Analyses

Descriptive statistics, reliability analysis (Cronbach’s alpha), and Structural
equation modeling (SEM) were performed. SEM was used to show the effects
of burnout, vigor and depression on job satisfaction. SEM specifies the di-
rect and indirect effects among latent variables and is used to describe the
amount of explained variance for each variable. The adequacy of the model
was assessed by (1) Goodness-of-Fit Index (GFI), which shows the amount
of variances and covariance explained by the model and should be greater
than 0.90 for an adequate fit of the model; (2) Comparative Fit Index (CFI),
which should be also greater than 0.90 for an adequate fitness; (3) Root Mean
Square Error of Approximation (RMSEA), which should be below 0.05 for a
good fit; and (4) Standardized Root Mean Square Residual (SRMR) which
should be below 0.05 for a good fit model (Steiger, 1990; Byrne, 2001; Hoyle,
1995; Bayram, 2010).
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Figure 1. Structural equation model for job satisfaction 
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Results

Of the 368 respondents, 195 (53 %) were females and 173 (47 %) males.
42 % of the participants were professors (including associate and assistant
professors), and 58 % were research fellows or residents. The mean ages of the
professors and research fellows were 43.23± 0.70 (std) and 31.67± 0.32 (std)
years respectively. In terms of their marital status, 31 % of the participants
were single and 69 % were married.

Covariations between the error terms were allowed in this model, but these
are not shown in the figure (Figure 1). The arrows in Figure 1 indicate
hypothesized paths. The results were χ2/df=2.684; GFI=0.94; CFI=0.95;
RMSEA=0.07; SRMR=0.04. The goodness of fit provided evidence that the

5

hypothesized model was stable. To estimate the direction and magnitude
of the effects among latent variables identified, a recursive SEM was fitted
using the maximum likelihood estimation method. The best fitting solution is
illustrated in Figure 1. The path coefficients are the standardized estimates of
direct effects which are interpreted as standardized regression coefficients. All
estimated path coefficients were significant. 47 % of the variance in depression
was explained by the direct effect of burnout, 23 % of the variance in vigor was
explained by the direct effect of burnout and depression. 24 % of the variance
in job satisfaction was explained by the direct effect of burnout, depression
and vigor.

Discussion and Conclusion

The objective of this study was to analyze the relationship between Turkish
academics’ job satisfaction, burnout, vigor and depression. The study used
the structural equation model to determine these variables’ relations, and
found that burnout and depression negatively affects job satisfaction. Shirom
et al. (2006) and Schaufeli et al. (2008) also found a negative relation between
depression and job satisfaction. Moreover, many studies in the relevant liter-
ature have found that burnout and job satisfaction are negatively correlated
(Maslach and Jackson, 1981; Shahab and Ali, 2013; Koustelios and Tsigilis,
2005; Özyurt et al., 2006; Kılıç et al., 2011; Kalliath and Morris, 2002). The
model also determined that vigor has a positive influence on job satisfaction.
There are many relevant studies that have also found a positive correlation
between vigor and job satisfaction (Shirom et al., 2006; Schaufeli et al., 2008;
Rothmann, 2008; Hakanen and Schaufeli, 2012; Aydogan et al., 2009). Ac-
cording to the model, vigor and depression play a mediating role for burnout.

Burnout is a developmental stage of depression (Ahola et al., 2006; Iaco-
vides et al., 2003). Previous studies have shown that symptoms of burnout
and depression are widely known (Bakker et al., 2000; Glass and McKnight,
1996; Leiter and Durup, 1994; Shirom and Ezrachi, 2003). The findings of
this study indicate that the effect of burnout on depression is positive and
strong (0.69). There are many relevant studies that have also found a positive
correlation between burnout and depression (Toker et al., 2005; Shirom and
Ezrachi, 2003).

6
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As stated above, burnout influences job satisfaction negatively (-0.26).
This finding is consistent with many other studies in the relevant literature
(Maslach and Jackson, 1981; Shahab and Ali, 2013; Koustelios and Tsig-
ilis, 2005; Özyurt et al., 2006; Kılıç et al., 2011; Kalliath and Morris, 2002).
Burnout also has a negative effect on vigor (-0.34). The negative correlation
between vigor and burnout is also supported by the findings of many relevant
studies (Schaufeli and Bakker, 2003; Oerlemans and Bakker, 2014; Shimazu
et al., 2008; Brand-Labuschagne et al., 2013; Demerouti et al., 2010).

The model also shows that depression has a negative effect on vigor (-0.19).
The negative correlation between depression and vigor is also supported by the
relevant studies (Shirom et al., 2006; Schaufeli et al., 2008). Similarly, depres-
sion has a negative effect on job satisfaction (-0.17). Hagan and Kay (2007)
found the same result in their study to determine the effect of depression on
job satisfaction.

According to the model, vigor has positive effect on job satisfaction (0.16),
and many studies in the relevant literature have determined that there is
a positive correlation between vigor and job satisfaction (Rothmann, 2008;
Narainsamy and Van Der Westhuizen, 2013; Cheng et al., 2014).
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Kitabevi, 2010.

Bernstein, D. A. and Nash, P. W. Essentials of psychology (4th ed.). retrieved
from http://books.google.com/books?id=4Do-bFrt9tUC, 2008. Boston:
Cengage Learning.

Brand-Labuschagne, L., Mostert, K., Jnr, S. R., and Rothmann, J. Burnout
and work engagement of south african blue-collar workers: The development
of a new scale. Southern African Business Review, 16(1):58–93, 2013.

Brown, T. A., Chorpita, B. F., Korotitsch, W., and Barlow, D. H. Psycho-
metric properties of the depression anxiety stress scales (dass) in clinical
samples. Behaviour research and therapy, 35(1):79–89, 1997.

Byrne, B. M. Structural equation modeling with amos. London: Lawrence
Erlbaum Associates, 2001.

Cheng, T., Mauno, S., and Lee, C. Do job control, support, and optimism
help job insecure employees? a three-wave study of buffering effects on job
satisfaction, vigor and work-family enrichment. Social Indicators Research,
118(3):1269–1291, 2014.

Demerouti, E., Mostert, K., and Bakker, A. B. Burnout and work engagement:
a thorough investigation of the independency of both constructs. Journal
of occupational health psychology, 15(3):209, 2010.

Glass, D. and McKnight, J. Perceived control, depressive symptomatology,
and professional burnout: A review of the evidence. Psychology and Health,
11(1):23–48, 1996.

Hagan, J. and Kay, F. Even lawyers get the blues: gender, depression, and
job satisfaction in legal practice. Law & Society Review, 41(1):51–78, 2007.

Hakanen, J. J. and Schaufeli, W. B. Do burnout and work engagement pre-
dict depressive symptoms and life satisfaction? a three-wave seven-year
prospective study. Journal of affective disorders, 141(2):415–424, 2012.

Hoyle, R. H. The structural equation modeling aproach: Basic concepts and
fundamental issues. In Hoyle, R. H., editor, Structural equation modeling:
Concepts, issues, and applications, pages 1–15. Sage Publications, 1995.

8

A Structural Equation Model of Job Satisfaction, Burnout, Vigor and Depression: A Study from Turkey



148

Festschrift in Honor of Hans Nyquist

Iacovides, A., Fountoulakis, K., Kaprinis, S., and Kaprinis, G. The relation-
ship between job stress, burnout and clinical depression. Journal of affective
disorders, 75(3):209–221, 2003.

Kalliath, T. and Morris, R. Job satisfaction among nurses: a predictor of
burnout levels. Journal of nursing administration, 32(12):648–654, 2002.
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A new index describing the degree of

virginity of forest structure

Mats Hagner1

In forest research there is often a need to express the structure of a forest.
In a natural forest small and big trees are locally mixed, while plantation
forests contain trees of more similar size. Species are also mixed, but aggre-
gated. It is of great interest to describe this structure.

In forest mapping a traditionally used method is to divide the forest into
“stands”. The area of a stand can vary from one to several hectares and it
is used for description of a forest with a specific feature. In the past it was
necessary to describe forests in this simplified way, as all details could not be
included in a drawn map. Today this has been changed as laser scanning gives
data and coordinates for single trees and computers are capable of giving a
lot of data for each tree.

When the “stand” was the smallest unit, a suitable description of structure
was the “diameter distribution” for the stand. To form this distribution a huge
number of diameters had to be registered and sampled within all parts of the
stand. Variation within the stand, i.e. aggregation, could not be described.

1Professor emeritus, Swedish University of Agricultural Sciences
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To find a better way I proposed to Hans Nyqvist a description based on the
un-equality between neighboring trees. Our discussions ended up in the “Dis-
similarity coefficient”, shortened to “Disco”, see Hagner and Nyquist (1998).
This index is described in the following way.

A random tree is found and its diameter is measured (d1). The closest
standing tree is found and its diameter is registered (d2). The dissimilarity is
defined as

|d1− d2|
d1 + d2

Its range is from 0 to 1. Among trees of equal size Disco is 0, and when one
tree in the pair is close to zero Disco is close to 1. Disco of the stand is the
average of all pairs.

In a natural stand of trees the distribution of diameters forms a Gamma
Distribution which has a Disco = 0.500. When I tested this in a virgin rain
forest in Borneo, I obtained an average of 0.501 (Hagner (2001)) which shows
Disco seems to function very well. In forests in Sweden that have been thinned
from below in accordance with conventional ideas, Disco has been ca 0.2. In
stands left to develop naturally for more than 40 years, I have found Disco
0.35-0.48.

It is convenient for a forester to measure only larger trees, i.e. diameter
from 8 cm and up. In such a case the diameter distribution can be truncated
at 7.999. If this figure is withdrawn from each value the remaining distribution
is still equal to a Gamma distribution, and Disco can be estimated from the
transformed values.

Aggregation can be studied by a running line formed by the Disco-values
for single pairs, if the pairs are taken along a straight line through the forest.
Another method is to form new pairs by randomly redistribute all the original
values of d2, by permutation, see Hagner and Nyqvist (1996). If Disco in the
new pairs is bigger, then the values were aggregated.
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Paranormal Activity:

An Essay in Honor of Hans Nyquist in

Celebration of His Sixty-Fifth Birthday

Don Coursey1

1 Getting Started: A Normal Beginning

Combine knowledge of tastes, technology, and resources. Mix them following
the rules of an interactive institution. And you will yield economic models of
behavior.

In the late 1970’s, understanding this process was my full-time job as a
graduate student in economics at the University of Arizona. My goal was
to become a scientist of economics. I had started my academic life in the
physical sciences but, due to the serendipity of required electives in my course
of studies, had fallen deeply in love with microeconomics and fascinated in
how science might be better applied to social behavior.

But I was anxious. And insecure. I had chosen a science for my career
that was based upon theory. But a science that, unlike physical sciences, was
deficient in providing either suggestions of functional form or the promise of
absolute constants of nature.

My anxiety spanned many dimensions and generated much self-questioning.
What forms of utility and welfare functions actually describe human satisfac-
tion? Where do discontinuities come from? How should Type I and Type II
errors be weighted in the process of understanding personal and policy choices?
How and why are people hard-wired to function in a world of choice under

1Chicago Harris School of Public Policy, University of Chicago.
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uncertainty? What can go wrong when models of behavior are divorced from
systems of which they are only a part? In short, was the world of economics
a “Normal” or even a “normal” place to investigate?

I shared these thoughts and worries with my advisors assuming that they
knew the answers to my questions. In an experimental manner, Vernon Smith
was wrestling with his answers to these questions through the development
of laboratory experimental systems. In a statistical manner, Lester Taylor
was wrestling with his answers to these questions through the development of
econometric models of consumer behavior.

Taylor, in the fall of 1980, alerted me to the fact that Hans Nyquist would
be visiting the economics department at Arizona. Nyquist was a few years past
completion of his doctor thesis concerning non-normality in regression analysis
and was interested in interacting with economists concerning applications of
his work.

Thus began our five-year collaboration. Which, to me, was the spice of my
late-graduate and early-professorial intellectual life, and laid the foundational
platform for all of my later research and teaching career.

Our work resulted in two econometric papers (Coursey and Nyquist, 1983,
1986). In a time of IBM punch-cards, no personal computers, nor internet or
e-mail, and separated by two continents, we managed to explore the nature of
errors in consumer budget allocations. What was important about this work
is that we showed that the world of consumer choice generates error processes
where normality is the exception; rather than the rule. A world where, relative
to the normal distribution, errors are generated that most often are consistent
with “thinner” or “fatter” factors at work; that is, distribution tails either too
thin or fat to be consistent with normal assumptions.

This work is what it is. More importantly for me was learning from Nyquist
the processes associated with the art of statistical insight. Our papers were
our science. What went on outside the written pages of this work was my
insight into Nyquist’s eye as a researcher: his ability to begin an investigation
with absolutely no prior statistical assumptions, his ability to balance the
intricate details of an investigation with the broader whole, and his ability to
apply the gleaned wisdom of prior investigation to the present. This was my
introduction to the art of statistical analysis. My interactions with Nyquist
provided a perfect complement to my graduate studies and set the stage for
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my future activities as an economist. Without this underpinning, my work
would be less rich, have missed critical insight, and even wondered off on paths
that would have resulted in incorrect inference.

I will illustrate these points in what follows. I have chosen examples from
my research only because only in one’s own body of work can a person delin-
eate the important self-reflections related to my interactions with Nyquist.

2 Paranormal Tastes

Let me begin with economic tastes. A fundamental question about the policy
is why and when states decide to invest resources to improve environmental
quality. Suggested answers to this question involve income, politics, geog-
raphy, education, behavioral tipping-points, demographics, and a variety of
other factors. A standard approach involves conducting multiple-regressions
to sort-out the individual and collective factors that influence demand for
environmental quality. Quite often inflection points or threshold levels are
incorporated into stories that purport to explain environmental demand.

In a series of papers with Christopher Hartwell (Coursey and Hartwell,
2000, 2015), he and I have shown that while these explanations shed some
evidence on environmental demand, they miss the larger picture. And that
research that ignores this larger picture is ignoring regression information that
in turn affects assumptions about models’ underlying error structures. Much
work in this arena has been built from the bottom-up and has missed two
important factors that Hartwell and I have identified.

The first is that the demand for environmental quality is best described
by a holistic, cultural set of variables. Increased demand for environmental
investment is not merely the sum of the effects of a list of independent variable
changing. Rather it is the agglomeration effect of these variables (especially
income and political freedom) that drive environmental demand. The second
is that geographical closeness to other states produces lattice externalities that
must be captured (in a manner similar to time-series autocorrelation) to fully
explain different state outcomes with respect to the environment.

At the end of the day, these factors can be corrected by careful thinking
about the error structure of models. But the art of this problem involves care-

3

ful thinking about how policy decisions are affected. Perhaps this work and
associated work on environmental demand would have turned out the same if
I had never met Nyquist and had merely kept beating upon the problem until
it yielded. I doubt it. And, more importantly, the results would have been
stale; offering little guidance to me or those who have followed regarding how
to improve the research.

3 Paranormal Technology

The most surprising project that I have conducted involves technology and
economic behavior (Rabinovici et al., 2004). In the United States, many
recreational beaches can become afflicted with harmful bacteria. If people
swim in such waters, they may in turn experience negative health outcomes.
Therefore, significant resources are devoted in determining the day-to-day
safety of these areas.

The problem is that tests for bacterial contamination operate with a tech-
nological lag. Samples of water (at significant economic costs) taken in the
morning at a particular location take twenty-four hours to be evaluated. A
beach manager must make decisions to open or close a beach based upon the
known condition of the beach one day earlier. Four outcomes of this process
are forthcoming. Two are most readily understood: a safe beach is open for
swimming and consumers reap the welfare benefits of swimming or an unsafe
beach is closed and swimmers avoid the negative health consequences of be-
coming sick. But two other outcomes are possible and seem to be less thought
of by both beach managers and the public: a safe beach is closed and con-
sumers forego swimming benefits or an unsafe beach is open and consumers
become sick.

In the United States a “safe/unsafe” beach is defined by the United States
Environmental Protection Agency as whether the bacteria context is be-
low/above a threshold level. My charge in this project was to determine,
in a cost/benefit analysis, whether this threshold level was optimal; that is,
did it balance the joint desires of people to swim and to not become sick.

Two lessons from my time with Nyquist made this project so much more
that it might have been. The first was discovering that beach managers were
ignoring statistical information about how bacteria levels are auto-correlated
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through time. It is hard to gather the talent and make the choices that result
in the production of a stellar ice hockey team. But usually, once such a team
is constructed, it remains competitive for some time. Similarly, it might take
time to contaminate a beach with bacteria. But once contaminated, it may
remain so until forces of nature have time to run their course.

The second insight was to remember that there must always be a null
hypothesis in a scientific effort. This may seem trivial and I am not attempting
to be cynical or condescending to my reader. Rather, it is amazing to me how
much social science often pretends to have a null when it really is just shopping
among alternatives. My alternatives were different bacterial threshold levels.
At the last minute, I declared that the null ought to be, both logically and
statistically, to do nothing. That is, to not spend the resources to do any
testing and just let people swim if they desire.

Years later I am still stunned by the results. We found that the null
hypothesis, no testing, to generate the largest net benefits. How can this be so?
Ex post, most beaches are safe most of the time. Second, the Markov-chain
cleansing process of the beaches happens quickly. And most importantly, the
benefits enjoyed by thousands of swimmers at beaches massively outweigh the
occasional, and relatively small health effects when a few swimmers become
sick. The results of this study, while counterintuitive to many, are now applied
in many beach management protocols around the country.

Again, the readers of this essay will recognize that I am really only talking
about structures of error terms and weights on Type I/II errors. But in the
bigger picture, I am talking about a system that need a holistic understanding
before any estimation take place.

4 Paranormal Resources

My third example relates to economic resources. In particular, a resource
called life. I have been interested for many years how we, as a civilization,
treat endangered animal species from the perspective of economics. Simply
put, I have attempted to measure how much these animals are worth.

To a non-economist, such an effort may sound immoral. Or, if forced to
place a value on an animal, they might express an immeasurable or “infinite”

5

value on its life. Such feelings and expressions might be fine in coffee houses
or over cocktails, but the reality of making policy trade-offs under limited re-
source constraints leads us to an alternative reality: difficult and often painful
choices must be made when conserving natural resources including protecting
endangered animals.

My research question was to examine how much, based upon quantifiable
measures, we spend or do not spend to save animals and to determine the
implicit, revealed value of each animal. To do this, I spent years collecting
information about over 250 animal species in the United States; the type of
animal, its location, its date of listing, its program for conservation, and the
monetary resources amortized to save it.

As this data-collection was slowly proceeding, I had the leisure to think
about endangered species as a public good and what that might mean to
my statistical analysis. Usually when economists think of functional forms
for public goods they are thinking from their textbooks; the public good is
defined by either the summation or the product of its components. Think here
of collections to fund a new museum or the combined efforts of a football team
to produce a score on the playing field. But in the area of endangered species,
two other, non-classical functional forms, often diametrically opposed, are
relevant. One functional form might indicate that society ought to consider
most aggressively saving those species that are in most critical condition; in
the limit those with only a few representative male and female individuals
extant. A second functional form more Nietzschean in form might argue that
saving the most valuable, the most “uber-species,” ought to hold sway. How
society might choose to apply, or not to apply these standards became a
critical part of my preparations for the econometric analysis that followed.
And again, at a technical level, this involved being aware of functional form
and the nature of errors in a regression. But at a higher level, the question
of who wants to save what and how and what that means to the statistics
presents a metaphysical challenge. Nyquist was, again, there to help me; to
a-priori drive my regression strategy.

The results are perhaps most easily described colloquially (Coursey, 1998,
2000, 2002). Americans want to save endangered species. But not in the
biblical sense of Noah’s Ark. People may care about all of the animals, but
they do not want an Ark large enough for all to board. Among those that do
get aboard, Americans further want to discriminate among different animal
types. Birds and mammals are expected to travel first-class. Others such as
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relevant. One functional form might indicate that society ought to consider
most aggressively saving those species that are in most critical condition; in
the limit those with only a few representative male and female individuals
extant. A second functional form more Nietzschean in form might argue that
saving the most valuable, the most “uber-species,” ought to hold sway. How
society might choose to apply, or not to apply these standards became a
critical part of my preparations for the econometric analysis that followed.
And again, at a technical level, this involved being aware of functional form
and the nature of errors in a regression. But at a higher level, the question
of who wants to save what and how and what that means to the statistics
presents a metaphysical challenge. Nyquist was, again, there to help me; to
a-priori drive my regression strategy.

The results are perhaps most easily described colloquially (Coursey, 1998,
2000, 2002). Americans want to save endangered species. But not in the
biblical sense of Noah’s Ark. People may care about all of the animals, but
they do not want an Ark large enough for all to board. Among those that do
get aboard, Americans further want to discriminate among different animal
types. Birds and mammals are expected to travel first-class. Others such as
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reptiles and amphibians will ride in second class. Still others will find room
only in the lower steerage compartments. And, to a fantastically robust extent,
that is what the machinations of the public-policy and political processes do
for American citizens. Americans get what they want whether it be at odds
with what they need in the eyes of biological and ecological experts. To my
satisfaction, these results continue to generate debate concerning what ought
to be the role of economics as it brushes against its ken; that limit where
efficiency meets higher-level criteria.

5 Paranormal Institutions

My final example of Nyquist’s influence comes from a project that I have
spent the last ten years exploring – whether it is possible to build and operate
real-time trading markets for water. A question of economic institutions.

Especially in the arid west, demand for water often exceeds seasonal sup-
ply of water in the United States. Historically, command and control insti-
tutions have been utilized to find ways of ameliorating this imbalance. And,
as populations and climates have evolved, efforts to find a balance have been
unsuccessful. Often times, spectacularly unsuccessful.

To an economist, a solution to this problem of imbalance is a market. The
intuition is that water markets ought to be as simple to create as lemonade
markets in the summer. Like markets where children organically appear on
the streets during the warm months and who offer to voluntarily sell cold
drinks to thirsty customers, larger-scale water markets ought not be overly
complex to implement. It is just a matter of bringing together water owners
with those who desire the water.

But then reality begins to intrude. Physics states that water will run
downhill towards the sea. Human desires turn this truism on its head; water
is seen to run uphill towards money. Animals that use river and lake systems
need minimal flows in order to survive. Moving water from one point to an-
other in an exchange may produce externalities that affect third-party type
users not involved in the original exchange. Building hydrological models of
water systems involves complexity and a lot of resources. Historical experi-
ences with water allocation and with property right legislation regarding water
cause people to be threatened by a change in water allocation methods.
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My ten years working on this problem have produced the highest highs and
the lowest lows of my intellectual career (Broadbent et al., 2010, 2014). At
heart, the reason for this is that the project has involved integrating three sys-
tems: hydrology, economics, and culture. The work is not done. But progress
has been made. Le Chatelier has helped me to understand the philosophy of
my lows. Nyquist has helped me to understand how to address these lows and
to address them in a rational framework.

6 Not a Normal Person

I have been reading a lot lately about intellectual magic (Wulf, 2015). In
particular, how much Alexander von Humboldt’s polymath life was affected
by his interaction with Goethe and Gauss; and theirs with his. It is a beautiful
story that even they and the best historians of the last two hundred years
cannot fully explain in words. A story of the best of art meeting the best of
science. A story that is not discussed or thought about much these days in
the academy.

In preparing these remarks, I have had to reflect upon what has been
special, rewarding, or magical about the last thirty years. Learning to think
about statistical economics through the eyes of a man who is both a mathe-
matician and an artist is at the top of my list. Sharing this with thousands
of my own students is second.

From all of us to you Hans Nyquist, sk̊al.
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