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Abstract

In this thesis we classify plethories over fields of characteristic zero, thus
answering a question of Borger-Wieland and Bergman. All plethories over
characteristic zero fields are linear, in the sense that they are free plethories
on a bialgebra. For the proof we need some facts from the theory of ring
schemes where we extend previously known results. We also classify plethories
with trivial Verschiebung over a perfect field of non-zero characteristic and
indicate future work.
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Sammanfattning

I denna avhandling klassifierar vi s.k. plethories över kroppar av karakteristik
noll och svarar därmed p̊a en fr̊aga formulerad av Borger-Wieland och Berg-
man. Alla plethories över en kropp av karakteristik 0 är linjära, i det avseende
att de är fria konstruktioner p̊a ett bialgebra. För att bevisa detta behöver
vi n̊agra resultat fr̊an teorin om ringscheman där vi utvidgar tidigare kända
satser. Vi klassifierar även plethories med trivial Verschiebung över en perfekt
kropp av nollskild karakteristik och indikerar hur vi tror framtida forskning
p̊a omr̊adet skulle kunna te sig.
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1 Introduction

In this thesis we will study plethories and the aim of this introduction is to give an
informal exposition to plethories and how they relate to different areas of mathe-
matics. We will also give some background on the theory of group schemes, which
is used heavily in the article we present in this thesis. In this introduction, we will
sometimes define the objects of interest in less generality than in the aforemen-
tioned article. Our hope is that a reader, by reading this expository introduction,
will gain some intuition and see some motivating examples without the theory laid
out in full.

1.1 Witt vectors and Frobenius lifts

Let k be any ring. Given an algebra A over k one can construct its ring of p-typical
Witt vectors

Wp(A).

The ring of p-typical Witt vectors of A is an amazingly rich algebraic structure
and understanding its properties is of vital importance to many different areas of
mathematics. The object Wp(A) (and more generally, the functor Wp) satisfies a
variety of universal properties but we shall focus on one property in particular, as
explained in [1].Let us now suppose that the k-algebra A has no p-torsion for the
sake of simplicity (so k is neccesarily p-torsion free as well).

Definition 1.1. Let A be a p-torsion free k-algebra and let f : A → A be an
endomorphism of A. We say that f is a Frobenius lift if the induced map

f : A/pA→ A/pA,

coincides with the pth power map, i.e if f(a) = ap for all a ∈ A/pA.

Example 1.2. Consider Z. In this case, given the prime p, a Frobenius lift is given
by

f(a) = a.
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Example 1.3. Let us now work with the ring Z[x]. We will here give an example
of a more interesting example of a a Frobenius lift than the obvious one, taken from
Clauwens [7]. Let us define the Frobenius lift

fp : Z[x]→ Z[x]

as
fp(a) = a for a ∈ Z and fp(x) = Tp(x)

where Tp(x) is the pth Chebyshev polynomial, defined inductively by

T0(x) = 2, T1(x) = x and Tn+1(x) = xTn − Tn−1.

fp is then a Frobenius lift and the definition works for all primes p. If we want to
find commuting Frobenius lifts for all primes p on Z[x], there is, up to isomorphism,
only two choices.

Remark 1.1.1. Let A be a p-torsion free ring. Call a function (of sets) δp : A→ A
a p-derivation if

δp(a+ b) = δp(a) + δp(b) + (ap + bp − (a+ b)p)/p,
δp(ab) = δp(a)bp + apδp(b) + pδp(a)δp(b)

and δ(1) = 0. One easily shows that there is a bijection between Frobenius lifts
and p-derivations. Indeed, given a Frobenius lift f set δp(a) = (a − ap)/p and
given a p-derivation δp define a Frobenius lift by f(a) = ap + pδ(x). For more on
p-derivations see [5].

Denote by Λp−Algk the category which has as objects the p-torsion free k-algebras
A together with a Frobenius lift f, and which has as morphisms the maps

g : A→ B

commuting with the Frobenius lifts of A and B. We call an object of Λp − Algk a
Λ k-algebra. There is an evident forgetful functor F from

Λp −Algk

to the category of p-torsion free k-algebras and one can show that F has a right
adjoint Wp, called the p-typical Witt functor. The universal property of Wp(A), at
least for p-torsion free k-algebras A is now particularily easy to describe: Wp(A) is
the terminal p-torsion free algebra equipped with a Frobenius lift

Fp : Wp(A)→Wp(A)

and a map
Wp(A)→ A
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of rings (so this map is the counit of the adjunction). One can extend this definition
to all k-algebras as is done for example in [1] . So, in a very precise way one can
state that the ring of p-typical Witt vectors gives us a best possible Frobenius lift
on a p-torsion free algebra A. Despite this very natural universal property, the
standard construction of the ring of Witt vectors is quite complicated and not as
conceptual as one would want. It has been long known that the ring-valued Witt
vector functor is representable (see for example the section by Bergman in [13]) by
an affine ring scheme, i.e that there is a k-algebra Sp such that

Algk(Sp,−) : Algk → Set

factors through the category of rings and that

Algk(Sp, A) ∼= Wp(A).

The ring Sp is the ring of p-typical symmetric functions, for more on symmetric
functions see [11]. Viewing Wp as a representable functor is a step in the right
direction, but if one wants to construct certain natural maps involving Witt vec-
tors, such as the Artin-Hasse exponential or the ghost maps, one must look more
closely at Sp and by doing this one is faced with manipulations invovling sym-
metric functions. In [2] Borger-Wieland gave a conceptual definition of the ring of
Witt vectors, which avoids this ”formulaic approach”, using the theory of plethories
which identifies Λp −Algk as a category of P -rings for some plethory P.

1.2 Affine ring schemes and plethories

Let us say that an affine ring scheme is a ring A together with a lift of the covariant
functor

Spec A(−) = Algk(A,−) : Algk → Set
to rings. We say that A is an affine k-algebra scheme if the lift of

Algk(A,−) : Algk → Set

to rings actually takes values in k-algebras. It is possible to compose two different
k-algebra schemes,A and B as

Algk(A,−) ◦Algk(B,−) = Algk(A,Algk(B,−))

and one can show that this functor is representable by an object A�k B [2]. This
gives us a monoidal structure on the category of affine k-algebra schemes with unit
k[e] (see the following example) and we define a plethory P as a comonoid in this
category. We say that a k-algebra A is a P -ring if

Algk(A,−) : Algk → Set

has the structure of a coalgebra over the comonad Algk(P,−). This means that P
has a natural action on A.
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Example 1.4. For any ring k the affine line k[e] is a plethory. Indeed, we note
that the functor

Algk(k[e],−)

has a lift to k-algebras and that it is naturally isomorphic to the identity functor

Id : Algk → Algk .

It is a comonad in the monoidal structure on representable endofunctors since the
identity functor is obviously idempotent, so that

Algk(k[e],Algk(k[e],−)) ∼= Algk(k[e],−).

Example 1.5. Let G be a group (or a monoid) and consider the group algebra
k[G]. One can then endow S(k[G]) = P with the structure of a plethory (see [2],
example 2.7). A P -ring is then precisely a ring with an action of the group G.

We will here explain why Sp is a plethory and also give a way of defining it in a
conceptual manner, away from the symmetric functions approach. Let us consider
the Fp-plethory Fp[e]. Let F be the Frobenius endomorphism and consider the free
plethory

Z〈F 〉 = Z[e, F, F ◦ F, . . . , ].

Here, Z〈F 〉 is the free plethory on the monoid ring Z[N]. A Z〈F 〉-ring is then
precisely a ring A together with an endomorphism ψ : A → A. There is a natural
map of plethories

Z〈F 〉 → Fp[e],

given by e 7→ e and F, F ◦ F, . . . 7→ 0, that is surjective as a map of algebras. Let
us say that a p-torsion-free ring A is a Frobenius-deformation of a Fp[e]-ring if the
action of Z〈F 〉 on A/pA factors through the action of Fp[e] on A/pA. Since an
action of Z〈F 〉 on A is equivalent to giving an endomorphism

ψ : A→ A,

the requirement is the same as saying that ψ reduces modulo p to the action of the
Frobenius

a 7→ ap

on A/pA. One can now show that there is a Z-plethory P ′, which one calls the am-
plicifation of Z〈F 〉 along Fp[e] such that Frobenius-deformations of Fp[e]-rings are
precisely p-torsion free P ′-rings. Note that P ′ is by its defining universal property
unique up to unique isomorphism. The amplification construction is very natural
and is akin to a blow-up (see Borger-Wieland [2]). In [2] it is then shown that
P ′, the amplification of Z〈F 〉 along Fp[e] is isomorphic to Sp as plethories. This is
equivalent to showing that for a p-torsion free ring A an action of Sp is the same
as giving a Frobenius lift. The way we defined the plethory S easily generalizes to
other Dedekind domains where p is replaced by any non-zero prime ideal.
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1.3 Classification of plethories

As we sketched in the previous section, the functor taking A to its ring of Witt
vectors is governed by the plethory P ′ = Sp . One of the main reasons for studying
plethories is to understand what kind of things can act on rings. One particularly
interesting example, in our opinion, is given by Sp . A fundamental question one
might ask is whether one can classify plethories over a given ring k. We don’t expect
to be able to answer this for all rings but we would hope to some day understand
plethories over Z. In this thesis, we start a classification by classifying plethories
over any field k of characteristic 0 and we show that they are ”linear”, which means
that all plethories come from bialgebras in a sense made precise in the main part
of this thesis. In particular, this is true for Q. We saw that one could construct a
particularily interesting example of a plethory P by looking at the amplification of a
Z-plethory along a Fp-plethory, and we thus believe that to understand the situation
fully over Z one should first classify plethories over Fp (or more generally, perfect
fields). Here, we achieve a classification for plethories such that the Verschiebung
is zero but further classification is needed.

1.4 Group schemes

Let k be a field. Let us consider Schk, the category of schemes over k.

Definition 1.6. A (commutative) group scheme G is a scheme G such that the
representable functor

Schk(−, G) : Schk → Set

has a lift to a functor with values in the category of (abelian) groups.

Let us mention that not all group schemes are affine: some fundamental examples
of non-affine group schemes are abelian varieties over k. In the main article we will
in particular be concerned with unipotent group schemes. For ease of exposition,
we will from now on assume that G is also of finite type. Recall that a matrix A
over a field k is unipotent if

PA(t) = (t− 1)m

for some m > 0 where PA(t) is the characteristic polynomial of A.

Any affine group scheme of finite type embeds faithfully into the affine group scheme
GLn, [9] [12] for some n > 0. For a ring R, GLn(R) consists of the invertible matri-
ces with entries in R. There is a subgroup scheme Un of GLn, which to R assigns
Un(R), the upper triangular matrices with entries in R.

Definition 1.7. Let G be a group scheme. We say that G is a unipotent group
scheme if we can find a faithful embedding

r : G→ GLn
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such that
r(G) ⊂ Un.

There is another class of affine group schemes which are very natural to consider.
Recall that a matrix M over a field k is semi-simple if the minimal polynomial of
M has no square factors.This is equivalent to saying that if V is the vector space
M acts on, we have a direct sum decomposition

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn

where each Vi is stable under the action of M and such that there are no non-zero
proper subspaces of Vi stable under the action of M. Given a matrix M over a
perfect field k we always have the Jordan-Chevalley decomposition which says that
we can write any matrix M as a product

M = MuMs

where Mu is unipotent and Ms is semisimple and they commute with eachother. It
is then natural to ask whether one can get a similar decomposition for G an affine
group scheme of finite type. It turns out that if G is commutative, this is possible.
We will first need to ask what a natural generalization of semisimple matrices is in
the category of group schemes. Let us note that a matrix M is semisimple iff it is
diagonalizable after base change to some possible larger field. This motivates the
following definition:

Definition 1.8. Let G be a an affine group scheme. We say that G is of multi-
plicative type if the base change Gksep is such that any representation

r : Gksep → GLn

is diagonalizable, i.e a sum of one-dimensional representations.

Remark 1.4.1. There is also a class of group schemes called semisimple group
schemes. We will not concern ourselves with them in this thesis, but just note their
existence to avoid confusing multiplicative group schemes with semisimple group
schemes.

We are now in a position to generalize the Jordan-Chevalley decomposition. For a
proof, see [12], [9].

Theorem 1.9. Let G be an affine commutative group scheme of finite type over a
perfect field k. Then there is a canonical decomposition

G = Gu ×Gm

where Gu is a unipotent group scheme and Gm is a multiplicative group scheme.
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This structure theorem is a very powerful tool for understanding affine commuta-
tive group schemes G of finite type. A next step would thus be to gain a better
understanding of the non-affine commutative group schemes. As previously noted,
we have the that the proper group varieties (i.e abelian varieties) yield examples
of non-affine group schemes. Essentially, in [6] Chevalley (see also [8] for a modern
proof) shows that to understand connected group varieties, one important aspect is
to understand abelian varieties and affine group varieties. More precisely, we have:

Theorem 1.10. Let G be a connected group variety over a perfect field k. There
is then a unique short exact sequence

0→ N → G→ A→ 0

such that A is an abelian variety and N is a connected affine normal subgroup
variety.

This theorem gives us in particular that there is a smallest connected affine group
variety such that G/N is an variety (and in general, non-affine). There is a ”dual”
decomposition theorem in the sense that there is a largest affine quotient. We will
make this precise after some definitions.

Definition 1.11. Let G be a group scheme of finite type over k. We say that G is
anti-affine if OG(G) = k.

Anti-affine groups have been studied in great detail by Brion in [4]. Abelian varieties
are in particular anti-affine groups and over a perfect field k all anti-affine group
schemes are ”semi-abelian” varieties (i.e an extension of an abelian variety by a
torus).

Theorem 1.12 (Brion [3] Theorem 1). Let G be a group scheme of finite type over
a field k. Then there is an exact sequence

0→ Gant → G→ G/Gant → 0

such that Gant is anti-affine and G/Gant is affine.

This theorem (which we also mention in the article included in this thesis) is used
to show that any ring scheme of finite type over a field k is affine.





2 Summary of results

We study plethories as defined by Borger-Wieland [2] and Tall-Wraith [14]. We
show that over a field k of characteristic zero all plethories are linear, meaning that
they are the free plethory on a bialgebra. To prove this result, we use the theory
of group schemes and ring schemes in some detail, and generalize some results first
shown by Greenberg [10] on ring schemes. We then achieve our classification results
by first classifying k−k-birings for a field k of characteristic zero, which leads to the
result that all plethories over k are linear. We also study the classification problem
for perfect fields k of characteristic p > 0 and show that for plethories with trivial
Verschiebung all plethories are quotients of linear plethories. We also include some
new pathological examples of plethories which show what a future classification
theorem must take into account.

9
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CLASSIFICATION OF PLETHORIES IN
CHARACTERISTIC ZERO

MAGNUS CARLSON

Abstract. We classify plethories over fields of characteristic zero,
thus answering a question of Borger-Wieland and Bergman. All
plethories over characteristic zero fields are linear, in the sense that
they are free plethories on a bialgebra. For the proof we need some
facts from the theory of ring schemes where we extend previously
known results. We also classify plethories with trivial Verschiebung
over a perfect field of non-zero characteristic and indicate future
work.
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1. Introduction

Plethories, first introduced by Tall-Wraith [13], and then studied by
Borger-Wieland [3], are precisely the objects which act on k-algebras, for
k a commutative ring. There are many fundamental questions regarding
plethories which remain unanswered. One such question is, given a ring
k, whether one can classify plethories over k, in this paper we will take
a first step towards a classification.

For some motivation, let us start by looking at the category of modules
Modk over a commutative ring k. If we consider the category of repre-
sentable functors Modk →Modk, there is a monoidal structure given by
composition of functors. Then one defines a k-algebra R as a k-module R
such that the representable endofunctor Modk(R,−) ∶ Modk →Modk has

Date: November 9, 2015.
1



2 MAGNUS CARLSON

a comonoid structure with respect to composition of functors. Heuris-
tically, this says that a k-algebra is precisely the kind of object which
knows how to act on k-modules. This can be extended to a non-linear
setting, so that instead of looking at k-modules we look at k-algebras
Algk and consider representable endofunctors Algk → Algk . A comonoid
with respect to composition of functors is then called a plethory and
analogously, a plethory is what knows how to act on k-algebras. One
particular important example of a plethory is the Z-algebra Λ which
consist of the ring of symmetric functions in infinitely many variables
with a certain biring structure. The functor Algk(Λ,−) ∶ Algk → Algk

represents the functor taking a ring R to its ring of Witt vectors. Using
plethories one gets a very conceptually view of Witt vectors and in [2]
James Borger develops the geometry of Witt vectors using the plethystic
perspective.

Let now k be a field. If we let Pk denote the category of plethories over
k, there is a forgetful functor

F ∶ Pk → Bialgk

into the category of cocommutative counital bialgebras over k. This
functor has a left adjoint S(−) ∶ Bialgk → P and we say that a plethory
P is linear if P ≅ S(Q) for some cocommutative, counital bialgebra Q.
Heuristically, a plethory P is linear if every action of P on an algebra
A comes from an action of a bialgebra on A. The main theorem of this
paper is:

Theorem 1.1. Let k be a field of characteristic zero. Then any k-
plethory is linear.

This answers a question of Bergman-Hausknecht [1, p.336] and Borger-
Wieland [3] in the positive. The theorem is proved by studying the
category of affine ring schemes. We there have the following results,
extending those of Greenberg [8] to arbitrary fields and not neccesarily
reduced schemes:

Theorem 1.2. Let k be a field. Then any connected ring scheme of
finite type is unipotent.

Theorem 1.3. Let P be a connected ring scheme of finite type over k.
Then P is affine.

For the case of characteristic p > 0 our classification results on plethories
are not as complete and further work is needed to have a complete
classification. To explain our classification results here we need some
definitions. Let Fk be the Frobenius homomorphism of k and k⟨F ⟩
be the non-commutative ring which as underlying set is k[F ] and has
multiplication given by

F iF j = F i+j
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and
Fa = Fk(a)F.

We define Bialgp
k to be the category of cocommutative, counital bial-

gebras over k which also are modules over k⟨F ⟩. Once again, for a
plethory over a perfect field k of char k > 0 there is a forgetful functor

Pk → Bialgp
k

which has a left adjoint S[p] . Call a plethory P p-linear if P ≅ S[p](Q)
for some Q ∈ Bialgp

k . We have then the following classification result:

Theorem 1.4. Let k be a perfect field of characteristic p > 0. Assume
that P is a plethory over k such that the Verschiebung VP = 0. Then P
is p-linear.

The structure of this paper is as follows. In section 2 we study ring
schemes and prove some results which we will need for our classification
theorem. The main theorems of this section that are needed for later
purposes are Theorem 2.6 and Theorem 2.7. In section 3 we introduce
plethories and k − k-birings and provide some examples. This section
contains no new results and gives just a brief introduction to the relevant
objects as defined in Borger-Wieland [3]. In section 4 we prove that all
plethories over a field k of characteristic zero is linear using the results
from section 2. We also show that any k − k-biring is connected. In
section 5 we prove some initial classification results regarding plethories
in characteristic p > 0.

Notation and conventions

Ring category of rings.

BRk,k category of k − k-birings.Pk category of k-plethories.

Bialgk category of cocommutative k-bialgebras.

Bialgp
k category of cocommutative k-p-bialgebras.⊙ composition product of k − k-birings, Def. 3.2.R generic name for a ring scheme.

Algk category of commutative algebras over the ring k.

∆+
A,∆

×
A coaddition resp. comultiplication map for a biring A.

ε+A, ε×A counit for coaddition resp. comultiplication for a biring A.

βA co-k-algebra strucutre on a k − k-biring A.

∆+
2 ,∆

×
2 abbreviation for the composite (1⊗∆+) ○∆+ resp. (1⊗∆×) ○

∆×.
P primitive elements functorOX structure sheaf of a scheme X.

Schk category of k-schemes for k a commutative ring.

Ga the affine line viewed as a group scheme, see Ex. 3.1
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Gm the multiplicative group scheme, after Def. 2.5.

µp the p-th root of unity group scheme, Ex. 5.2

αp see Ex. 3.3

π0(G) the group scheme of connected components of a group scheme
G over the field k, Def. 4.2

S free plethory functor on a cocommutative bialgebra. Def. 4.1

S[p] free plethory functor on a cocommutative p-bialgebra, after
Def. 5.1.

G○ the identity component of a group scheme G.

FG, VG the Frobenius resp. Verschiebung morphism of a group scheme
G over a perfect field of characteristic p > 0.

Fq the constant group scheme on Fq, Ex. 3.3.

k⟨F ⟩ the twisted polynomial algebra.

For us, all rings are commutative and unital. We will use Swedler

notation for coaddition ∆+ and ∆×, so that ∆+(x) = ∑i x
(1)
i ⊗ x(2)

i and

∆×(x) = ∑i x
[1]
i ⊗ x[2]

i if x ∈ A where A is a biring. For concepts from
the theory of group schemes not introduced properly here, we refer to
[11] or [6] .

Acknowledgements. I am very grateful to James Borger who supplied
me with the conjecture for characteristic zero and the idea of ”weakly
linear” plethories. He has been more than generous with his knowledge
and many of the ideas in this paper come from conversations with him.
I would also like to thank my advisor Tilman Bauer for his support and
for his many thoughtful suggestions on this article.

2. Ring schemes

Let k be a commutative ring. Recall that R is a ring scheme over k ifR is a scheme and the functor

Schk(−,R) ∶ Schk → Set

has a lift to a functor

Schk(−,R) ∶ Schk → Ring.

We say that a functor is a k-algebra scheme if we can lift it to a functor
taking values in k-algebras. We will mostly be concerned with affine
ring schemes. Ring schemes were studied by Greenberg in [8] and he
showed that for connected, reduced ring schemes of finite type over
an algebraically closed field k, the underlying scheme is always affine.
Further, he shows that the underlying group variety is always unipotent.
We improve on these results by showing that any connected ring schemes
of finite type over an arbitrary field is affine, and that the underlying
group scheme is always unipotent. From now on, in this section, k is
always a field.
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Definition 2.1. A scheme X is anti-affine if OX(X) = k. We say that
a group scheme is anti-affine if its underlying scheme is anti-affine.

For example, abelian varieties are all anti-affine group schemes. An
anti-affine group scheme has the property that any morphism from
it into an affine group scheme is trivial. Anti-affine groups are very
important for the structure of group schemes as the following theorem
shows:

Theorem 2.2 (Brion [4] Theorem 1). If G is a group scheme of finite
type over a field k there is an exact sequence of group schemes

0→ Gant → G→ G/Gant → 0

such that Gant is anti-affine and G/Gant is affine.

We will now want to show that all connected finite type ring schemes
are affine, i.e that in the above exact sequence Gant = Spec k. For this,
we will need the following lemma.

Lemma 2.1. Let X,Y,Z be schemes with X quasi-compact and anti-
affine and Y locally noetherian and irreducible. Suppose that f ∶X×Y →
Z is a morphism such that there exist k-rational points x0 ∈X, y0 ∈ Y
such that f(x, y0) = f(x0, y0) for all x. Then f(x, y) = f(x0, y) for all
x, y.

Proof. see [4] lemma 3.3.3 .
�

Theorem 2.3. Let R a connected ring scheme of finite type over k.
Then R is affine.

Proof. We know that by Theorem 2.2 that R sits in the middle of an
extension of an affine group scheme by an anti-affine group. Let

0→Rant →R→Raff → 0

be the corresponding extension where Rant is anti-affine and Raff the
affine quotient. Note that Raff is a ring scheme so that Rant defines an
ideal scheme in R, i.e for all rings S over k,Rant(S) is an ideal of R(S).
Now, we will apply the above lemma with Y = R and X = Z = Rant.
Taking x0 = eRant and y0 = eR we have that m(x, y0) = m(x0, y0) is
identically equal to zero. Thus, we have that m(x, y) = m(x0, y) is
identically zero. But, letting 1R be the rational point corresponding to
the multiplicative identity of R(k) we have that m(1R, y) is zero. But
multipication by 1 is always injective, and thus, Rant is trivial and Raff

is affine.
�

We don’t know if the condition for R to be of finite type is neccessary
in the above theorem. Let us recall the following definition from the
theory of algebraic groups.
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Definition 2.4. Let G be a group scheme over k. We say that G is
unipotent if it is affine and if every non-zero closed subgroup H of G
admits a non-zero homomorphism H → Ga.

The data of a homomorphism G → Ga is the same as specifying an
element x ∈ AG in the underlying Hopf algebra of G that satisfies
∆G(x) = x⊗1+1⊗x, i.e specifying a primitive element. If G = Spec AG

is an affine group scheme and AG the Hopf algebra associated to G, then
saying that G is unipotent is the same as saying that it is coconnected
(or conilpotent). The following definition will be useful for the proof of
Theorem 2.6.

Definition 2.5. Let G be an affine group scheme over a field. We say
that G is multiplicative if every homomorphism G→ Ga is zero.

An example of a multiplicative group is Gm = Spec k[x,x−1]. There
can in general be no homomorphism from a multiplicative group into
a unipotent group and no morphisms from a unipotent group to a
multiplicative group (for a proof, see [11] Corollary 15.19-15.20).
The following theorem was shown for reduced ring varieties over an
algebraically closed fields by Greenberg, but the results carry over for
perfect fields without any modification. We improve on this by carrying
through the proof when R is not neccesarily reduced and over any field
k. Further, the theorem can be extended to ring schemes not neccesarily
of finite type if the ring scheme is already known to be affine.

Theorem 2.6. Over a field k, all connected ring schemes R of finite
type are unipotent.

Proof. By the previous theorem we know thay they are affine. We know
that R contains a greatest multiplicative subgroup Rm that has the
property that for all endomorphisms α of RS, (where RS is the base
change of R to S) for S a k-algebra, that α((Rm)S) ⊂ (Rm)S ([11],
Theorem 17.16). Thus, since any x ∈ R(S) defines an endomorphism ofRS (as a group scheme) through multiplication by x, we have that Rm

is an ideal of R. It is known that any action of a connected algebraic
group on a multiplicative group must be trivial, i.e for G connected and
H multiplicative, a map G→ Aut(H,H) must have image the identity.
We will need the following, which says that any map G→ End(H,H)
where G is any connected group scheme and H is multiplicative is
trivial. This is basically just deduced, mutatis mutandis, from the
proof of [11] Theorem 14.28. So, we see that 0 and 1 defines the same
endomorphisms on the ideal scheme Rm. But this is only the case ifRm = 0. The theorem thus follows. �
To extend this to all connected ring schemes, we need the following:

Theorem 2.7. Let k be a field and R be an affine ring scheme over k.
Then R is a filtered limit of its finite type ring schemes.
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Proof. The following proof is inspired by the analogue theorem for Hopf
algebras over a field, as occurs in for example Milne [11] Proposition
11.32 . Write R = Spec AR. We know that AR is a bialgebra and we
see that we can reduce to proving that any a ∈ AR is contained in a
sub-bialgebra of finite type. Let ∆+ ∶ AR → AR ⊗AR be the coaddition
giving the additive group structure on R and ∆× ∶ AR → AR ⊗AR the
comultiplication defining the multiplication on R. Consider

∆+
2(a) = ∑

i,j

ci ⊗ xij ⊗ dj
with ci and dj linearly independent. Now, by the fundamental theorem
of coalgebras, we know that if we take X to be the subspace of AR
generated by {xij}, then this is a subcoalgebra, i.e that ∆+(xij) ⊂X⊗X.
Now, for each xij in this system, consider

∆×
2(xij) = ∑

k,l

ei ⊗ ykl ⊗ fl
with ei and fl linearly independent. With the same arguments, one sees
that for the subspace Y generated by {ykl} we have ∆×(ykl) ⊂ Y ⊗ Y.
Let now Z be subalgebra generated by the finite-dimensional subspace
spanned by {xij, ykl}. We claim that Z actually is closed under both
the operation ∆+ and ∆×. It is clear that

∆×(xij) ⊂ Z ⊗Z
and the same holds for coaddition. It is also easy to verify that
∆×(ykl) ⊂ Z ⊗ Z. We will now prove that ∆+(ykl) ⊂ Z ⊗ Z and for
this, consider the following diagram which is easily verified if we reverse
all arrows and think of it in terms of rings.

AR AR ⊗AR
AR ⊗AR AR ⊗AR

AR ⊗AR ⊗AR ⊗AR AR ⊗AR
AR ⊗AR ⊗AR ⊗AR AR ⊗AR

AR ⊗ (AR ⊗AR) ⊗ (AR ⊗AR) AR ⊗AR
(AR ⊗AR) ⊗AR ⊗AR ⊗ (AR ⊗AR) (AR ⊗AR) ⊗AR

AR ⊗AR ⊗AR ⊗AR AR ⊗AR ⊗AR ⊗A

∆×

∆+

∆×⊗∆×

1⊗T⊗1

∆×⊗1⊗1⊗∆×

1⊗T⊗T⊗1 ∆×⊗1

M⊗1⊗1⊗M 1⊗∆+⊗1
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What the opposite is saying, is just relating different ways of form-
ing

abd + acd
for a, b, c, d in a ring. So this says, that

(1 ×∆+ × 1)(∆×
2(xij) = ∑

k,l

ek ⊗∆+(ykl) ⊗ fl. ∈ Z ⊗Z ⊗Z ⊗Z.
Now, since ek are independent, this means that

∑
l

∆+(ykl) ⊗ fl ∈ Z ⊗Z
and by linear independence of each fl this means that

∆+(ykl) ∈ Z.
Now, let W be the sub-algebra generated by Z ∪ S(Z) where S ∶ AR →
AR is the antipode. It is easily verified that

∆+ ○ S = (S ⊗ S) ○∆+
and that

∆×(S(Z)) ⊂W
follows from the identity

∆× ○ S = (1⊗ S) ○∆×.
We thus see that W is a bialgebra and we are done. �
Corollary 2.2. Any affine connected ring scheme over a field is unipo-
tent.

Proof. Indeed, we know that we can write P = lim←ÐPi where Pi ranges

over ring schemes of finite type. Now, unipotence is stable under inverse
limits and this immediately gives that P is unipotent. �

3. Plethories and k − k-birings.
Let k be an arbitrary commutative ring. In this section we will recall
the definition of a plethory as defined in [3].

Definition 3.1. A biring A is a coring object in the category of k-
algebras. Explicitly, A is a k-algebra together with maps

∆+ ∶ A→ A⊗k A,

∆× ∶ A→ A⊗k A,

S ∶ A→ A,

ε+ ∶ A→ k

and ε× ∶ A→ k such that:

● The triple (∆+, ε+, S) defines a cocommutative Hopf algebra
structure on A with S the antipode and ε+ the counit.
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● ∆× is cocommutative coassociative and codistributes over ∆+
and ε× ∶ S → k is a counit for ∆×.

We say that A is a k − k-biring if, in addition to the above data, it has
a map

β ∶ k → Ringk(A,k)
of rings, where we endow Ringk(A,k) with the ring structure induced
from the coring structure on A.

Equivalently, a k − k-biring A is just an affine scheme such that the
functor Ringk(−,A) has a lift to k-algebras, i.e it is an affine k-algebra
scheme.

Example 3.1. Let us note that A1
k = Spec k[e] is a k-algebra scheme

which we will call Ga. Ga will represent the identity functor Ringk →
Ringk . Indeed, the coaddition and comultiplication is given by ∆+(e) =
e ⊗ 1 + e ⊗ 1, ∆×(e) = e ⊗ e, the additive resp. multiplicative counit
by ε+(e) = 0, ε×(e) = 1 the antipode by S(e) = −e and the co-k-linear
structure by β(c)(e) = c for all c ∈ k.
Example 3.2. Consider Z[e, x]. On e, we define all the structure maps
as in the previous example. We then define

∆+(x) = x⊗ 1 + 1⊗ x,
∆×(x) = x⊗ e + e⊗ x

and ε×(x) = ε+(x) = 0, S(x) = −x. This Z-ring scheme represents the
functor taking a ring R to R[ε]/(ε2) , the ring of dual numbers over
that ring.

Example 3.3. Let k = Fq be a finite field of characteristic p and
consider

αp = Spec k[e]/(ep)
as a group scheme where the group structure is induced from Spec k[e].
Define a multiplication

αp × αp → αp

by saying that xy = 0 for any x, y ∈ αp(R) for R a k-algebra. Consider
now the constant group scheme

Fq =∐
x∈k k.

Then we can define a structure of a ring scheme on αp×Fq by defining the

multiplication to be (x, y)(z,w) = (xz, xw + yz + yw) for (x, y), (z,w) ∈
αp × Fq(R). This is a non-reduced ring scheme.

A famous example is also that the functor taking a ring R to W (R),
its ring of big Witt vectors, is also representable by a ring scheme.
Let us note that we can form the category of k − k-birings, with mor-
phisms between objects those morphism of k-algebras respecting the
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biring structure. We let BRk,k be the category of k − k-birings. Let us
recall the following definition from [3].

Definition 3.2. Let A be a k − k-biring. Then the functor

Ringk(A,−) ∶ Algk → Algk

has a left adjoint,
A⊙k − ∶ Algk → Algk .

Explicitly, for a k-algebra B, A⊙B is the k-algebra generated by all
symbols a⊙ b subject to the conditions that:

● ∀a, a′ ∈ A, r ∈ R, aa′ ⊙ r = (a⊙ r)(a′ ⊙ r).● ∀a, a′ ∈ A, r ∈ R, (a + a′) ⊙ r = (a⊙ r) + (a′ ⊙ r).● ∀c ∈ k, c⊙ r = c.● ∀a ∈ A, r, r′ ∈ R, a⊙ (r + r′) = ∑i(a(1)i ⊙ r)(a(2)i ⊙ r′).● ∀a ∈ A, r, r′ ∈ R, a⊙ rr′ = ∑i(a[1]i ⊙ r)(a[2]i ⊙ r′).● ∀a ∈ A, c ∈ k, a⊙ c = β(c)(a).
It is easy to see that (⊗iAi) ⊙R ≅ ⊗i(Ai ⊙R) and that A ⊙ (⊗iRi) ≅⊗i(A ⊙ Ri). If further, R is a k − k-bialgebra, we note that A ⊙
R is a k − k-bialgebra. Indeed, we have that Ringk(A ⊙ R,S) ≅
Ringk(R,Ringk(A,S)) and since the latter set has a ring structure, so
does the former. One then verifies that ⊙k gives a monoidal structure to
BRk,k. The unit of this monoidal structure is k[e]. BRk,k is a monoidal
category, but it is not symmetric. Now, the Yoneda embedding sets
up an equivalence of categories between the category of representable
endofunctors Algk → Algk and BRk,k and under this equivalence, ⊙
corresponds to ○, composition of representable endofunctors as given
in the introduction. Denote the category of representable endofunctors
Algkk → Algk by Algend

k .

Definition 3.3. A k-plethory is a comonoid in Algend
k where the

monoidal structure is composition of endofunctors. Explicitly, on the
level of representing objects, a k-plethory P is a monoid in BRk,k. This
means that P is a biring together with an associative map of birings
P ⊙ P → P and a unit k[e] → P.

Remark 3.4. For a plethory P one can define an action of P on a
k-ring R to be a map ○ ∶ P ⊙R → R such that (p1⊙p2) ○ r = p1⊙(p2 ○ r)
and e ○ p = p,∀p1, p2 ∈ P, r ∈ R.
Example 3.5. If k is a finite ring, then kk, the set of functions k → k
is a plethory where ○ is given by composition of functions.

4. Classification of plethories over a field of
characteristic zero.

In this section we will prove that all plethories over a field of character-
istic zero are linear. This question was asked by Bergman-Hausknecht
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[1] and Borger-Wieland [3]. To understand what it means for a plethory
to be linear, we will introduce some terminology.

Definition 4.1. Let A be a cocommutative bialgebra (not neccesarily
commutative) over k with comultiplication ∆. Then there is a free
k-plethory on A over k. The underlying algebra structure is S(A), the
symmetric algebra on A and the coaddition

∆+ ∶ S(A) → S(A) ⊗ S(A)
is induced from the map

A→ S(A) ⊗ S(A)
sending a to a⊗ 1 + 1⊗ a. The comultiplication ∆× is induced from ∆.
The plethysm ○ ∶ S(A) ⊙ S(A) → S(A)
is given by

S(A) ⊙ S(A) ≅ S(A⊗A) S(m)ÐÐ→ S(A)
where m is the multiplication on A. Among the pairs consisting of a
plethory P and a morphism of bialgebras f ∶ A→ P the pair S(A) and
j ∶ A→ S(A) is initial with this property.

Call a plethory P linear if P ≅ S(A) for some bialgebra A. The reason
for calling it linear is that if P ≅ S(A) for some bialgebra A then

Ringk(−,S(A)) = Modk(−,A).
Let us note now that by Theorem 2.6, any connected reduced ring
scheme of finite type is unipotent. Over Q (or more generally any
field of characteristic zero) all group schemes are reduced by a theorem
of Cartier. We say that a group scheme G is étale if G is a finite
scheme and geometrically reduced. This is equivalent to asking for the
underlying Hopf algebra AG to be an étale algebra. Let us recall the
following definition from the theory of group schemes (see for example
[6], II, §5, Proposition 1.8,or [11] Definition 9.4)

Definition 4.2. Let G be a group scheme of finite type over k. Let
AG be the underlying Hopf algebra of G and consider the largest étale
k-subalgebra π0(AG) of AG. π0(AG) then has a Hopf algebra structure
induced from the one on AG and we let π0(G) = Spec π0(AG) be the
group scheme associated to this Hopf algebra.

Note that there is a canonical map G→ π0(G). It is easy to see that if
π0(G) = Spec k, then G is geometrically connected since in that case
AG has no nontrivial idempotents.

Lemma 4.1. Any k-algebra scheme R of finite type over any infinite
field k is geometrically connected.
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Proof. Consider the connected-étale exact sequence

0→R○ →R→ π0(R) → 0

of group schemes where R○ is the identity component of R. We will first
show that π0(R) has a natural k-algebra scheme structure. Indeed, for
this it is enough to show that R○ is a k-ideal scheme in R.Let us start
by proving that m(R○ ×R) ⊂ R○. We know that the multiplication

m ∶ R○ ×R → R
takes the additive identity e ∈ R(k) to itself, i.e m(e, x) = e for any
x ∈ R(k). Further, the k-algebra structure on R○ is induced from the k-
algebra structure on R. This clearly implies that R○ is a k-ideal scheme.
Thus, the quotient R/R○ ≅ π0(R) is a k-algebra scheme. Let us see that
π0(R) is isomorphic to Spec k. One knows that the underlying algebra
of π0(R) is a product of finite separable k-extensions. We consider
Schk(π0(R), π0(R)), this is a k-algebra (since π0(R) is a ring scheme).
Because the underlying algebra of π0(R) is a finite product of finite
separable field extensions, Schk(π0(R), π0(R)) is a finite set. However,
for a finite set to have a k-algebra structure it must just contain one
element, i.e it has to be the zero ring. This implies that π0(R) = Spec k
so R is geometrically connected. �

Now, let us consider a Hopf algebra H denote the primitive elements
of H by P(H). We say that a Hopf algebra is primitively generated if
P(H) generates H as an algebra. Over characteristic zero all unipotent
affine group schemes of finite type are primitively generated. We then
have the classical Milnor-Moore theorem (for a proof, see [12])

Theorem 4.3. For any commutative connected affine unipotent group
scheme of finite type H over a field of characteristic zero, the canonical
map

Spec H → Spec S(P(H))
is an isomorphism of group schemes. In particular, the underlying
scheme is affine space.

Remark 4.2. Let us note that we can view P(H) as a Lie algebra with
trivial commutator. Then the construction S(P(H)) is the same as the
universal enveloping Lie algebra of P(H).
In [3] it is shown that if Q is a plethory over a field k, then P(Q) is a
cocommutative k-bialgebra. Briefly, the multiplication in P(Q) is given
by the plethysm ○ and the maps

∆× ∶ Q→ Q⊗Q,
ε× ∶ Q → k induces a comultiplication respectively a counit on P(Q)
making it a cocommutative counital bialgebra.
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Theorem 4.4. Let Q be a plethory over a field of characteristic zero
k. Then Q is linear, i.e

Q ≅ S(P(Q))
where S(P(Q)) has the plethory structure as given in Definition 3.1.

Proof. Suppose that Q is a plethory over k. P(Q) naturally has a
bialgebra structure as explained above. Given this, we can form the
free plethory on P(Q), S(P(Q)). We always have a natural map

v ∶ S(P(Q)) → Q

of Hopf algebras, and this is bijective by Milnor-Moore. Thus to show
that any plethory is linear, it suffices to show that this is actually a
morphism of plethories. But this is clear: the pair S(P(Q)) and

j ∶ P(Q) → S(P(Q))
is initial in the category of pairs consisting of a plethory P and a
morphism f ∶ P(Q) → P of bialgebras. It is immediate that the canonical
map vp is induced by this universal property, when we note that there
clearly is a map P(Q) → Q of bialgebras. We will of course need to show
that v is an isomorphism in the category of plethories. This follows
easily from the fact that v is an isomorphism of affine schemes and
thus has an inverse in the category of affine schemes. What remains to
be checked is that this inverse is a morphism of plethories, but this is
immediate since v is. �

5. Some classification results in characteristic p > 0.

In this section we will start a classification for plethories over a perfect
field k of characteristic p. Our classification results here only apply
to a certain class of plethories. We state future research directions,
as well as give some ”pathological” examples which a complete clas-
sification must take into account. For any scheme X over k with
structure map f ∶ X → Spec k we let Gp be the pullback of f along
F ∶ Spec k → Spec k, the Frobenius.

Let us briefly recall that for perfect fields k, group schemes over k
have two especially important maps, the (relative) Frobenius

FG ∶ G→ Gp ≅ G
and the Verschiebung

VG ∶ G ≅ Gp → G.

These satisfy the property that FGVG = VGFG = p. A ring scheme R is
called elementary unipotent if VR = 0, i.e the Verschiebung is zero. Call
a plethory Q weakly linear if there is a map of plethories f ∶ P → Q
where P is a linear plethory (as defined in the previous section) such
that f when viewed as a map of algebras is surjective. This will, in
particular, imply that Q is primitively generated and is a quotient of P
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by a P −P -ideal as defined in [3]. Not all plethories over a perfect field
k are primitively generated, as the following example shows (built on
an example from [10], Remark 1.6.2).

Example 5.1. Let G be the group scheme

Ga ×f αp

which as a scheme, is just Ga × αp. We let the the group structure be
given by (g1, h1)(g2, h2) = (g1g2, h1 + h2 + f(g1, g2))
for

g1, g2, h1, h2 ∈ Ga(R) × αp(R)
where f(x, y) = ((x + y)p − xp − yp)/p. This is a p-torsion group scheme
but is not elementary unipotent. One can define a non-unital ring
scheme structure on G be definining the multiplication to be trivial and
then, when k is finte, i.e k ≅ Fq ”unitalize” this by taking the direct
product with

Fq = ∐
a∈Fq

Fq

to get a ring scheme, as we did in Example 3.3. The underlying group
scheme of this ring scheme is clearly not elementary unipotent, since the
Verschiebung acts on each factor separately. In the case where k = Fp

this is a k − k-biring, and taking the free plethory on this k − k-biring
(see [3] 2.1 ) will then give us a plethory with its underlying group
scheme not elementary unipotent.

Another feature which differs from the case over a field of characteristic
zero is that there are plethories which have a non-trivial multiplicative
subgroups. This stems from the fact that there are ring schemes with
non-trivial multiplicative subgroups.

Example 5.2. Consider µp = Spec k[x,x−1]/(x − 1)p with comultipli-
cation ∆ ∶ x → x ⊗ x and counit ε(x) = 1. This is an example of a
multiplicative group scheme which is p-torsion and we can as before
define a trivial multiplication on µp, making it a non-unital ring scheme.
We can then as previously stated, for finite fields, unitalize it to get a
ring scheme by taking the direct product with

Fq

and if k = Fp we can form the free plethory to get a plethory Q with a
non-trivial multiplicative subgroup.The fact that it has a non-trivial
multiplicative subgroup comes from , for example, the fact that there is
a non-zero homomorphism of group schemes µp → Q.

These two examples are rather artificial, but they show that plethories
behave wildly different in characteristic p > 0 than in characteristic 0. We
know that for any group scheme G over a perfect field k of characteristic
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p > 0, the group P(G) of primitive elements has a natural action of
the Frobenius, taking x ∈ P(G) to xp. In fact, P(G) becomes a module
over a certain ring. As we previously stated, P(G) = Hom(G,Ga). We
thus have that P(G) is naturally a module over the endomorphism ring
End(Ga,Ga).
Definition 5.1. Let k⟨F ⟩ be the non-commutative polynomial ring over
k in one variable F with multplication given by, for a ∈ k aF = Fk(a)a
where Fk is the Frobenius endomorphism of k.

It is a quick calculation to show that End(Ga,Ga) ≅ k⟨F ⟩. We now see
that P(G) is a module over k⟨F ⟩. Let us denote the category of modules
over k⟨F ⟩ by Modk⟨F ⟩. Given a k⟨F ⟩-module M one can construct an

elementary unipotent group scheme S[p](M) as follows (for details we
refer the reader to [11]). Form S(M), the symmetric algebra on M, with
its obvious Hopf algebra structure and consider the map j ∶M → S(M).
We then quotient out by the ideal generated by the elements

j(Fx) − j(x)p
to get S[p](M). One notes that for any commutative algebraic group G

one always has a map G→ S[p](P(G)). We have the following classical
theorem (see [6] IV, §3, Proposition 6.6).

Theorem 5.2. Let G be an affine group scheme. The following are
equivalent:
(i) The Verschiebung VG is zero.
(ii) G is a closed subgroup of Gr

a for some r.

(iii) The canonical homomorphism G→ S[p](P(G)) is an isomorphism.

Remark 5.3. t What we call S[p](P(Q)) is the same as the enveloping
p-algebra (also called the restricted universal enveloping algebra) on
the p-Lie algebra P(Q) where P(Q) has trivial commutator.

Lemma 5.4. When Q is a plethory, then S[p](P(Q)) has the structure
of a plethory.

Proof. We know that P(Q) has a k⟨F ⟩ module structure where the

action of F is just taking the pth power. Further, S[p](P(Q)) is the
quotient of S(P(Q)), which we know is a plethory, by the ideal J
generated by j(x)p − j(xp), where j ∶ P(Q) → S(P(Q)) is the inclusion
in degree 1. It now suffices to show that this is a Q −Q-ideal (see [3]
6.1) for U [p](P(Q)) to be a plethory. This is equivalent to showing that
for a generating set S of J that

∆+
Q(S) ⊂ Q⊗ J + J ⊗Q,

∆×
Q(X) ⊂ Q⊗ J + J ⊗Q,

and
βQ(c)(S) = 0
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∀c ∈ k and that

P(Q) ⊙X ⊙Q ⊂ J.
The first is immediate, since taking S to be the set of all j(x)p − j(xp),
we have

∆+(j(x)p) −∆+(j(xp)) = ∆+(j(x))p − (j(xp) ⊗ 1 + 1⊗ j(xp))
which is equal to

j(x)p ⊗ 1 + 1⊗ j(x)p − j(xp) ⊗ 1 − 1⊗ j(xp) ⊂ J ⊗Q +Q⊗ J.
Further,

∆×(j(x)p)−∆×(j(xp)) = ∑
i

j(x[1]
i )p⊗j(x[2]

i )p−∑
i

j((x[1]
i )p)⊗j((x[2]

i )p)
and this is equal to

∑
i

j(x[1]
i )p⊗(j(x[2]

i )p−j((x[2]
i )p))+∑((j((x[1]

i )p)−j(x[1]
i )p)⊗j((x[2]

i )p)
but this is in J ⊗ P + P ⊗ J. We also need to show that βQ(c)(S) = 0,
this is clear. The last containment is similarily easy to verify. �

Theorem 5.3. When Q is a plethory over a perfect field such that
VQ = 0, then S[p](P(Q)) ≅ Q. We then say that Q is a p-linear plethory.

Proof. All one has to verify is that the canonical map f ∶ Q→ S[p](P(Q))
is a map of plethories. But this is obvious since this map is just the
composition of the two plethory maps Q → S(P(Q)) and S(P(Q)) →
S[p](P(Q)). �

Remark 5.5. We have seen that plethories need not be elementary
unipotent and not purely unipotent either (i.e it can have a non-trivial
multiplicative subgroup). Let us note that there can be no non-trivial
finite plethories over an infinite perfect field k. Indeed, from what we
have seen all plethoriesQ are connected over an infinite field. By classical
Dieudonné theory we can then decompose Q as Q = Qloc,red ×Qloc,loc.
This would imply that the Frobenius is nilpotent, but this can never
happen: the Frobenius is always a map of ring schemes.

It seems to us that to classify plethories over a perfect field one should
establish an extension of ordinary Dieudonné theory to account for ring
schemes, which has been done to some extent by Hedayatzadeh in [9]
and for Hopf rings by Goerss [7] and Buchstaber-Lazarev [5]. Note that
Hedayatzadeh work with finite / profinite group schemes and with local
group schemes, which limits their applications to ring schemes since we
have seen that there are no non-trivial finite connected ring schemes
over a perfect field.
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