CLASSIFICATION OF POTENTIALLY
UNWANTED PROGRAMS USING
SUPERVISED LEARNING

Raja Muhammad Khurram Shahzad

Blekinge Institute of Technology
Licentiate Dissertation Series No.2013:02

School of Computing

Classification of Potentially Unwanted
Programs Using Supervised Learning

Raja Muhammad Khurram Shahzad

Blekinge Institute of Technology licentiate dissertation series
No 2013:02

Classification of Potentially Unwanted
Programs Using Supervised Learning

Raja Muhammad Khurram Shahzad

Licentiate Dissertation in
Computer Science

School of Computing
Blekinge Institute of Technology
SWEDEN

2013 Raja Muhammad Khurram Shahzad

School of Computing

Publisher: Blekinge Institute of Technology,

SE-371 79 Karlskrona, Sweden

Printed by Printfabriken, Karlskrona, Sweden 2013
ISBN: 978-91-7295-247-8

ISSN 1650-2140

urn:nbn:se:bth-00548

Abstract

Malicious software authors have shifted their focus from illegal
and clearly malicious software to potentially unwanted programs
(PUPs) to earn revenue. PUPs blur the border between legitimate
and illegitimate programs, and thus fall within a grey zone. Ex-
isting anti-virus and anti-spyware software are, in many instances,
unable to detect previously unseen or zero-day attacks and sepa-
rate PUPs from legitimate software. Many tools also require fre-
quent updates to be effective. By predicting the class of a particular
piece of software, users can get support before taking the decision
to install the software. This Licentiate thesis introduces approaches
to distinguish PUP from legitimate software based on the super-
vised learning of file features represented as n-grams.

The overall research method applied in this thesis is experiments.
For these experiments, malicious software applications were ob-
tained from anti-malware industrial partners. The legitimate soft-
ware applications were collected from various online repositories.
The general steps of supervised learning, from data preparation (n-
gram generation) to evaluation, were followed. Different data rep-
resentations, such as byte codes and operation codes, with differ-
ent configurations, such as fixed-size, variable-length, and overlap,
were investigated to generate different n-gram sizes. The exper-
imental variables were controlled to measure the correlation be-
tween n-gram size, the number of features required for optimal
training, and classifier performance.

The thesis results suggest that, despite the subtle difference be-
tween legitimate software and PUP, this type of software can be
classified accurately with a low false positive and false negative
rate. The thesis results further suggest an optimal size of opera-
tion code-based n-gram for data representation. Finally, the results
indicate that classification accuracy can be increased by using a
customized ensemble learner who makes use of multiple represen-
tations of the data set. The investigated approaches can be imple-
mented as a software tool with a less frequently required update
in comparison to existing commercial tools.

Acknowledgments

I owe a great debt of gratitude and thanks to my supervisor, Dr. Niklas
Lavesson for his trust and triggering my interest in Machine Learning.
Throughout my research work, Niklas has been a great mentor and a
source of encouragement. He has provided advice, guidance, and taught
me innumerable things from the basic research to develop new ideas. He
has inculcated me how to approach each research problem with a differ-
ent angle and ascertain the validity of the applied approach. Thank you
Niklas, I have still to learn a lot from you.

This thesis would not have happened without the invaluable support,
inspiration, and guidance of my advisor, Professor Bengt Carlsson. His
ideas and feedback have been instrumental in steering this research and
improving the quality of work. I am heartily thankful to Dr. Martin
Boldt for his guidance, support, and discussion on the research and as
well as photography. Furthermore, I like to thank my colleagues and
fellow Ph.D. students at DISL.

I place on record my sense of gratitude to Higher Education Commis-
sion (HEC), Pakistan and Blekinge Institute of Technology, Sweden for
providing me the opportunity to pursue the graduate studies. I like to
extend my thanks to Conny Johansson, Dean of School of Computing,
for having trust about my stay at BTH, for having welcomed me as a
research student and providing all the necessary facilities. Monica H.
Nilsson, Kent Adolfsson, Eva-Lotta Runesson, and Karin Svahnberg I
love your administrative help and thank you for being my supporter.

iii

Preface

This thesis presents the work done in the following four papers. These
four papers are published in peer-reviewed conference proceedings and
a journal. The thesis author is the main author of all the papers. The
included versions of Paper I, Paper II, and Paper III contain minor mod-
ifications/expansions in the text in comparison to the original publica-
tions. The modifications are to correct the minor mistakes found in the
original publications and update the references such as updating the
status of a publication from submitted to the published information.

Paper I. Raja Khurram Shahzad, Syed Imran Haider, and Niklas Laves-
son, "Detection of Spyware by Mining Executable Files," in the Pro-
ceedings of Fifth International Conference on Availability, Reliability, and
Security, IEEE Press, 2010.

Paper II. Raja Khurram Shahzad and Niklas Lavesson, "Detecting Scare-
ware by Mining Variable Length Instruction Sequences," in the Pro-
ceedings of Tenth Annual Information Security South Africa Conference,
IEEE Press, 2011.

Paper III. Raja Khurram Shahzad, Niklas Lavesson, and Henric John-
son, "Accurate Adware Detection using Opcode Sequence Extrac-
tion," in the Proceedings of Sixth International Conference on Availabil-
ity, Reliability, and Security, IEEE Press, 2011.

A%

vi

Paper IV. Raja Khurram Shahzad, Niklas Lavesson, "Comparative Anal-
ysis of Voting Schemes for Ensemble-based Malware Detection", in
press, Speical Issue of Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications, Vol. 4, No. 1, 2013.

As a main author, the thesis author was responsible for conducting the
research study, performing experiments, and writing papers. The Paper
I was the extension of author’s master thesis. The co-authors of the Pa-
per I were the thesis partner and the thesis supervisor. The co-authors
of the Paper II, Paper III, and Paper IV were supervisor and senior re-
searchers in the Distributed and Intelligent Systems Laboratory, who
aided in research study design, analysis, and writing papers by provid-
ing their iterative feedbacks.

The following articles are excluded from the thesis, but are related to
the thesis scope.

Paper V. Raja Khurram Shahzad and Niklas Lavesson, "Detecting Scare-
ware by Mining Variable Length Instruction Sequences," Extended
abstract, in the Proceedings of 11th Scandinavian Conference on Artifi-
cial Intelligence, 10S Press, 2011.

Paper VI. Raja Khurram Shahzad and Niklas Lavesson, "Veto-based Mal-
ware Detection”, in the Proceedings of Seventh International Confer-
ence on Availability, Reliability, and Security, IEEE Press, 2011.

Contents

Acknowledgments iii
Preface v
Contents vii
1 Introduction 1
2 Background 5
2.1 Malicious Software 5
2.2 Malware Detection 7
23 Terminology 10
24 Related Worko 13
3 Primary Research Contributions 19
31 AimandScope 20
3.2 Contributions 20
4 Research Approach 25
41 ResearchQuestions 26
42 Research Methodology 30
43 Research Validity 32
5 Conclusions 35
51 DiscusSion i e e e 35

vii

viii CONTENTS

52 Conclusion 37

53 FutureWork 39

6 Detection of Spyware by Mining Executable Files 41
Raja Khurram Shahzad, Syed Imran Haider, Niklas Lavesson

6.1 Introduction 42

6.2 Background L. 44

6.3 Proposed Method, 49

6.3.1 DataCollection 49

6.3.2 Malicious File Percentage 50

6.3.3 Byte Sequence Generation. 50

634 mn-gramSize, 50

635 Parsing 50

6.3.6 Feature Extraction 50

6.3.7 Feature Reduction 51

6.3.8 ARFF Generation 52

6.39 Classifiers, 53

6.3.10 Performance Evaluation Criteria 54

64 Results 55

641 Resultsforn=4 55

642 Resultsforn=5 57

643 Resultsforn=6 58

6.5 Discussion e 58

6.6 Conclusions and Future Work 60

7 Detecting Scareware by Mining Variable Length Instruction

Sequences 63

Raja Khurram Shahzad, Niklas Lavesson

7.1 Introduction, 64
711 Background 65
7.1.2 Traditional Countermeasures 67
713 Scopeand Aim 68
714 Outline. 68

72 Related Work, 69

7.2.1 Concepts and Terminology 69

CONTENTS ix

7.2.2 Related Directions of Research 71
73 Methodology 73
7.3.1 File Sampling and Data Set Design 73
7.3.2 Extraction and Data Preparation 74
7.3.3 FeatureSelection 75
74 Experiment. 76
74.1 Learning algorithms 76
742 Evaluation 78
75 Results 79
7.6 Analysis L 81
7.7 Conclusions and Futurework 82

8 Accurate Adware Detection using Opcode Sequence Extraction 85
Raja Khurram Shahzad, Niklas Lavesson, Henric Johnson

8.1 Introduction 86
811 AimandScope, 87
82 Background L. 88
8.2.1 Data Mining-based Detection 88
8.2.2 FeatureSelection 89
83 Related Work 90
84 Method 91
841 Overview 92
8.4.2 Data Set Generation 92
8.4.3 File Size and Data Size Analysis 93
8.4.4 Disassembly and Opcode Extraction 93
8.4.5 Parsing and n-Gram Size 94
8.4.6 FeatureSelection 94
8.4.7 Data mining algorithms 96
8.5 Evaluation Metrics 99
8.6 Experimental Procedure 100
87 Resultso 100
88 Analysis 101
8.8.1 Algorithm Performance Analysis. 102
8.8.2 State-of-the-Art 103

8.8.3 Opcode Analysis 103

X CONTENTS

8.8.4 Practical Considerations 104
8.9 Conclusion and Futurework 104

9 Comparative Analysis of Voting Schemes for Ensemble-based

Malware Detection 107
Raja Khurram Shahzad, Niklas Lavesson
9.1 Introduction, 108
911 AimandScope 110
9.1.2 Contribution 110
913 Outline. 110
92 Background 111
921 Terminology 112
922 RelatedWork 113
9.3 Veto-based Classification 115
931 VotingRules. 116
932 Architecture 118
9.4 Pre-processing Techniques 118
9.4.1 Overlapping n-grams 120
9.42 Non-adjacent Opcode Extraction 120
95 ExperimentI. 121
9.5.1 Feature Representation 123
952 DataSetCreation. 123
953 Pre-Processing 124
9.54 Feature Selection 125
9.5.5 Performance Evaluation Criteria 126
9.5.6 Pre-Experiment for Algorithm Selection 126
9.5.7 Results and Discussion 127
9.6 ExperimentIl 130
9.6.1 Trust-based Veto algorithm 131
9.6.2 Results and Discussion 135
9.7 Conclusion and Future Work 137

Bibliography 139

One

Introduction

Networked communication technologies are trusted for performing var-
ious routine operations to transfer sensitive information such as financial
transactions. One of the challenges of these technologies is the manifes-
tation of malicious software (malware), which is used to disrupt commu-
nication and damage data [1]. In the last decade; the landscape of mal-
ware has changed significantly from traditional malware (i.e., viruses,
worms, and Trojan horses) to programs having unwanted functionalities
such as users’ sensitive information collection, e.g., personal informa-
tion, credit card information, and banking information [2]. This type of
software may obtain an uninformed consent of the user, and is, therefore,
referred to as potentially unwanted programs (PUPs) [3,4,5,6]. There is
no consensus on the precise definition of PUP; however, in this thesis,
the term is defined as follows:

A piece of software that deceives the user, mainly for commercial purposes, and
that may negatively affects the user’s security and/or privacy.

PUPs mainly constitute a threat against privacy; that is a user’s right
to determine the extent of sharing the sensitive information [7]. PUP
vendors make different types of PUPs, i.e., spyware, adware, and scare-
ware [8]. The main objective of these types is to earn revenue by invad-
ing privacy. The revenue generated from PUPs is increasing constantly
due to the high return over investment [9]. It is reported that one in

1

1. INTRODUCTION

seven security breaches involves PUP [3]. In addition to the revenue
generation, another explanation for this increase is that different types
of PUPs are declared legal by current statutes, if the vendor obtains the
consent of the user during the program installation [10]. This fact has
encouraged the PUP vendors to launch malicious code at an increasing
rate.

Traditional malware is primarily addressed through a reactive approach,
i.e., malware detection at the user’s computer. Malware are detected us-
ing either pattern matching, i.e., signature-based detection, or heuristic-
based detection. Signature-based approach is incapable of detecting
zero-day attacks and is only capable of detecting circa 30 % of instances
in the wild [11]. Heuristic-based approach produce high false alarms
and is capable of detection circa 39 % of instances in the wild [12]. It
is also difficult to establish an acceptable borderline between the PUPs
and legitimate software for the heuristic-based approach [12]. Signature-
based approaches or heuristic based approaches are also applied for the
PUP detection. There is an arm race, between PUP vendors and anti-
malware vendors, to circumvent the traditional detection approaches. A
PUP vendor may challenge the anti-PUP software classification on the
grounds that anti-PUP software lack accuracy and fairness, i.e., biased
towards a class of applications [13]. Another problem associated with
the PUPs classification is that there is no consensus about the legal sta-
tus of PUPs as they reside in the grey area between legitimate (or benign)
software and malware [10].

In response to the increasing number of PUPs in wild, effective and
automatic PUPs detection/classification and analysis techniques are re-
quired. Therefore, the focus of this dissertation is to extend the heuristic-
based detection method by using the supervised learning for the auto-
mated classification and analysis of PUPs. Supervised learning can be
broadly divided into following main steps, i.e., training and testing. In
the data preparation step, features are extracted (generally referred to as
feature extraction) from the data set. The extracted features are further
merged by using different strategies to produce unique features such as

2

n-gram; which is essentially a word formed by the combination of more
than one features. During the training stage, labeled data set, i.e., a set
of inputs with their corresponding correct output classes (e.g., PUP and
legitimate) is given to a learning algorithm. The learning algorithm tries
to find the relationship between instances and their respective classes.
The mapped relationships can be interpreted, and all the relationships
found in a single data set are summarized in the form of a model called
classifier. The generated classifier is tested for predicting the class of
novel instances. The performance of classifiers is commonly affected by
the data preparation step. This work contributes from data preparation
stage to testing stage. Different data preparation and data reduction (for
the purpose of using most relevant data) techniques from the field of
text mining are investigated, and new techniques are also proposed. For
the testing stage, a model is proposed, which uses veto voting to incor-
porate the decisions of different learning algorithms.

The thesis consists of two logical parts. The first part contains the back-
ground, primary research contributions, research approach, and conclu-
sions. The second part consists of four published papers. The first article
focuses on spyware; the second paper focuses on scareware detection. In
the third publication, the work on adware detection is presented while
the fourth paper presents a generic framework for malware (especially
PUPs) detection.

Two

Background

2.1 Malicious Software

John von Neumann presents the concept of self-replicating programs
during a presentation in 1949. It is eventually published in a book [14].
This concept is considered as the theoretical foundation for malicious
software (malware). The first example of self-replicating programs is the
"Creeper" that appeared in 1970 for ARPANET [15]. However, creeper is
considered as an experimental benign program. For personal computers,
Elk Cloner (released in 1981 for Apple computers) and Brain (released
in 1986 for IBM computers) are considered first malign programs. Since
then malware are in the wild, i.e., outside the computer system, or lab
and software are divided into legitimate and illegitimate (malware) cat-
egories. Traditionally, malware are developed for entertainment, to earn
fame (through worm), or due to a political issue [16]. Later, their power
is realized to create the malicious behavior for the destruction of data.
Up to the end of nineties, malware family includes only traditional mal-
ware that stealth their presence [17]. With the availability of the Internet
in the mid-1990s, for the general public, new generation of malware, i.e.,
potentially unwanted programs appear in the wild with different objec-
tives such as to invade the privacy of users and earn the revenue. The
PUPs are also referred to as privacy-invasive software [18] or potentially
unwanted applications/software/technologies [19]. This thesis will use
the term PUP in subsequent sections.

5

2. BACKGROUND

In 2000, presence of the first type of PUDP, i.e., spyware is announced [3].
Spyware are used to obtain behavioral and personal information about
users. The collected information may be used for different purposes
such as to create the user profile for market segmentation or to cause
financial losses such as credit card fraud [20]. Depending on their func-
tionality; spyware can be broadly categorized as useful spyware, and
malicious spyware. Most of the spyware are PUP from the users’” point
of view; however, some software vendor may not be in accord with users’
point of view. An example of such software is " DoubleClick " !, which
is considered useful for commercial organizations to track the users’ ad-
vertisement related surfing habits. If a spyware steals the user’s personal
information such as financial information or creates security risks such
as add a covert channel for the communication with the system, it is
considered as malicious spyware [21]. Another type of PUP, i.e., ad-
ware, also emerged at the same time with spyware. Adware invade the
privacy of a user by monitoring his or her surfing activities, or prefer-
ences in order to display customized pop-up, or pop-under advertise-
ments for that particular user [22]. New generations of adware are also
capable of reading data from locally stored files, collect surfing or chat
related information, and make remote connections for transferring and
installing software in the future [23]. Spyware and adware are used for
indirect revenue generation as both collect the information and then this
information is sold to a third party. In 2003, a new type of PUD, i.e,,
scareware appears that is used for the direct revenue generation?. Scare-
ware represents scam applications that usually masquerade as security
application such as anti-malware software, more specifically anti-virus
software. Scareware scare the users about the security of their system
and tricks them to pay money for their security services [24].

The status of potentially unwanted program, as legitimate or illegit-
imate, depends upon the user’s perspective. Some software such as

Thttp:/ /www.google.com/doubleclick/
Zhttp:/ /www.secureworks.com/research/ threats /popup-spam/

2.2. Malware Detection

remote administration tools, packet sniffers, and key-loggers may be
considered illegal from the end user’s perspective. However, a sys-
tem administrator may require them on end users’ system as the part
of company policy, and that makes their presence legal. On the other
hand, some users may ignore the existence of a PUP with the legiti-
mate software since it may provide some useful functionality either on
its own or by the accompanying software such as an adware software
can be used by the user for getting commercial messages. However, if
a PUP is stealing the financial information of the user such as credit
card number, bank credentials, and relaying it to the third party without
the user’s knowledge, it will be considered illegal. To shift the status
of PUPs from illegal to legal boundaries, the presence of a PUP and ac-
tions performed by that particular PUP may be mentioned in the End
User License Agreement (EULA) using the verbose legal language that a
novice user cannot interpret [25]. Due to their presence in EULA and to
avoid legal consequences, anti-malware vendors are reluctant to indicate
the presence of PUPs. There are many commercial inducements, such
as income for advertisers from online ads distribution through adware,
which has elevated the PUP industry [18]. Therefore, it is reasonable to
assume that the volume of this industry will increase even more in the
future.

2.2 Malware Detection

The malware detection problem is addressed by using either the proac-
tive approach or the reactive approach. In the proactive approach, vul-
nerabilities from the system are eliminated, and in the reactive approach
an action is taken after the malware appears in the system. The reac-
tive approach, in which malware detection is the primary method of
protection, is commonly used by anti-malware software vendors [26].
Reactive approach is further extended by the dynamic detection or static
detection. In the dynamic detection, an emulation in the system is used
to identify the malware [27]. Advance and sophisticated malware are
capable of detecting the emulation and can elude it [28]. In the static

7

2. BACKGROUND

detection, signature-based approach or heuristic-based approach is used
for malware detection. However, the backbone of both approaches is a
basic pattern matching mechanism, i.e., comparing the features of files
to a database of known malware features [26]. The signature-based ap-
proach revolves around the use of signature database that contains byte
strings which are unique to different instances of malware [29]. The
heuristic-based approach, on the other hand, uses a behavior thresh-
old for the malware detection. For both methods, anti-malware vendors
need to get novel instances, analyze them, create new signatures or rules,
and then update their databases [26]. On the other hand, after releasing
a malware, the malware author waits befor unleashing the variant of
that particular malware, until the signature or rule database is updated
by anti-malware vendors for that particular instance [30]. It is reported
that malware authors are recycling the older malware?. Moreover, when
software vulnerability is announced, the interval between the announce-
ment of a vulnerability and unleashing the malware who exploits that
particular vulnerability is decreasing [31]. An average of 10 hours time
is required by the anti-malware vendors to respond to the latest released
malware, variants or recycled malware [12,32] and create the signature
or the rule for that particular malware instance. Consequently, anti-
malware signature/rule database is growing regularly [12]. Due to this
reason, these approaches are considered inadequate against the zero-day
attacks [33,34].

Most detection approaches are developed in order to detect the tradi-
tional malware especially viruses and worms. PUPs are not considered
harmful; therefore, the PUP detection is not investigated thoroughly.
The problem of PUPs is currently addressed through the static detection,
i.e., signature-based approach and heuristic-based approach. However,
it is not sure whether these detection methods are capable of detecting
PUPs because PUPs do not employ any particular routines like tradi-
tional malware or do not contain malicious payloads [10]. On the other
hand, PUP authors apply a number of stealth techniques to avoid de-

3http:/ /www.microsoft.com/en-us/download /details.aspx?id=5454

2.2. Malware Detection

tection. Due to variation in the behavior of different PUP groups, alter-
native ways of being undetected are applied. To avoid signature-based
detection, they alter their code, manipulate indicative features that may
be used as the signature, create new variants and even new families.
For counteracting the heuristic-based approach, PUP authors blend the
legitimate behavior with the behavior of their application or mimic the
legitimate behavior as much as possible [6].

Due to the use of various stealth techniques from malware vendors es-
pecially PUP vendors such as code obfuscation, the trend of malware
detection is shifted from detecting malicious code in a file to classify a
file as malicious before the file is executed. For a strong and effective de-
fense, it is essential to enhance the efficiency of malware detectors and to
generalize detector’s ability to detect the known malware as well as the
zero-day attacks. This situation warrant the application of knowledge
from other areas for the malware detection. Recently, the use of artificial
intelligence, statistical methods and machine learning (ML) has been in-
vestigated to extend the defense mechanism. Previously, machine learn-
ing is applied mainly for text mining and has shown promising results.
The ML methods such as supervised learning are applied to automate
and extend the heuristic-based malware detection. For the supervised
learning, a computer file is considered as a stream of text. The stream of
text can be represented by different representations such as byte codes
or assembly instructions. This stream contains different patterns that
can be extracted using different strategies. These patterns are further
used as n-gram to input the knowledge about the malicious behavior in
the learning methods. The input knowledge is usually given as a batch
of different examples. The batch is further used to build a model or the
learned system. The learned system is further applied on the unknown
examples for their classification.

2. BACKGROUND

2.3 Terminology

Following are the terminologies that are related to the thesis. These ter-
minologies can be defined in several ways to address different require-
ments according to different parameters. The following definitions of
these terminologies are relevant to the primary focus of this particular
thesis, i.e., the PUP detection that endangers the privacy of novice users.

Privacy as a concept is initially discussed by the Greek philosopher Aris-
totle who emphasized humans need to maintain social/ public life (i.e.,
to be part of society) and private/ personal life [35]. The private life of a
person is considered as the basic human right and is called the privacy.
The first literary definition of the privacy is presented in an article " The
Right to Privacy " [36]. According to the first definition, privacy is:

"The right to be let alone".

With the technological development, a novice user is more concerned
about the privacy of the data or the information present on the com-
puter; thus the concept of privacy has been further extended as follow-

ing [7]:

"To control, edit, manage, and delete information about them [selves] and decide
when, how, and to what extent information is communicated to others”.

The word privacy in this thesis refers to the information privacy, which
indicates the legal right of a person to decide about the collection, stor-
age, and sharing of personal information in the digital form. The user
can surrender the legal right of the privacy partially or fully by provid-
ing an informed consent to the other user or a software.

Informed consent is a legal term that is derived from two words, i.e., in-
formed and consent [37]. The term informed means that the accurate in-
formation is provided to the user who is able to accurately interpret that

10

2.3. Terminology

specific information. The term consent refers to an opportunity given
to a rational user to accept or reject something offered to him without
any pressure or lure. It is a common practice for the software vendors
to obtain the informed consent of users by providing the information
in the EULA. End User License Agreement is a software license agree-
ment between the software manufacturer and the user who describes
the permissions, rights, and restrictions about the use of that particular
software. In the case of PUPs, the information about the presence of an
additional software or full functionality of the software is concealed in
the EULA. The obscure information in EULA sets new challenges for
the traditional malware detection methods. These new challenges can
be addressed by applying data mining and machine learning.

Data Mining (DM) is the process of analyzing electronically stored data
by automatically searching for interesting patterns [38]. Learning algo-
rithms use the discovered patterns for the analysis and the prediction.
DM and ML overlaps in many areas such as DM uses ML algorithms for
predictions, and ML algorithms use DM methods, e.g., preprocessing
step to improve the predictive accuracy [38]. However, the difference be-
tween two fields is clear as DM focuses on the discovery of new patterns
in the data; ML learns from patterns in the input data to provide the
prediction.

Machine Learning is the branch of artificial intelligence that is concerned
with the design and development of algorithms that allow computer
programs to learn and evolve their behavior or state by discovering pat-
terns or relations in data [38]. The discovered patterns or relation in the
data is further used to generate input data set, and learning algorithms
can be applied to the input data set to develop a model (i.e., a classifier)
or a regression function to solve complex problems. This is formally de-
scribed as [39]:

"A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E”.

11

2. BACKGROUND

In the context of PUP detection, the definition of [39] can be elaborated
as following:

Task T: Recognizing and classifying PUPs from the set of legitimate and
PUP files.

Performance Measure P: Percentage of PUPs and legitimate files correctly
classified.

Training Experience E: A data set of PUPs and legitimate files features
with their known classes.

ML can be divided into either supervised learning or unsupervised
learning. In supervised learning, labeled data set, i.e., a set of inputs
with their corresponding correct output classes is given to learning al-
gorithms [38]. The correct output is used to evaluate the predictive per-
formance of the learning algorithm. If the data is incompletely labeled,
unsupervised learning is used to cluster the data set into groups having
similar features.

Data Set in ML refers to the collection of the data in the tabular form to
represent a schema and set of instances that corresponds to schema [38].
Generally, columns in the table correspond to variables; rows represent
members or instances (a single object for either learning a model or ap-
plying a model). Most of the ML data sets are single-fixed format tables,
which describe instances by their feature vectors where a feature is the
specification of an attribute and its corresponding value. Features from a
particular instance in the data set are extracted either as a single feature
set or by combining several features. This process is commonly referred
to as feature extraction. For the PUP detection, feature vectors are used
to represent the PUPs or legitimate files.

File Representation: For malware classification, data sets are prepared by
using various representations of binary files. A binary file can be rep-
resented by specific type of extracted features that are either present in
the file or features obtained from any kind of meta-analysis (for exam-
ple, runtime generated digital footprints). The extracted features may be

12

2.4. Related Work

further used to create n-grams, which in turn can be viewed as words or
terms if the learning problem is defined as a text categorization problem.

N-gram: In the domain of text categorization, n-gram is a contiguous
sequence of n items, n characters, or n words. The n-gram is a fixed size
string, but may have variable length if the basic units are not having the
same length such as if words are used to create n-gram, each n-gram will
have fixed size, but may have variable length. The size of n-gram may
be greater than or equal to one. The feature type used to create n-gram
affects the performance of the generated model or the classifier.

Classifier: A learning algorithm tries to find the relationship between in-
stances and their respective classes by using different strategies, such as
decision tree, depending on the family of algorithm [38,39]. The mapped
relationships can be interpreted, and all the relationships found in a sin-
gle data set are summarized in the form of a model called classifier.
Later, the classifier can be applied to other data sets, where class value
of instances is unknown, to obtain a prediction about the target class for
each instance in the data. This process is referred to as classification.

2.4 Related Work

In the end of 80s, theoretical evidence is presented to demonstrate that
accurate malware detection is impossible [40,41]. However, some se-
curity experts argue that this may not be an actual case in the real-
life [42]. Malware detection is gone through different phases, which
are from signature-based detection to behavioral-based detection [43].
Initial malware, i.e., virus are used to infect files, boot sectors, and are
easy to detect using signature-based detection methods up to the mid of
80’s. With the development of more sophisticated malware such as the
worm in the mid of 80s, [44] and Trojan horses, which exploit the vulner-
abilities in the operating system and/or software such as web servers,
more sophisticated detection techniques are required. Heuristic-based
detection and Behavior-based anomalies detection techniques are used

13

2. BACKGROUND

to address the challenge [45,46]. From the 2000-2005, the highest num-
ber of reported malware are PUPs [47]. Till that time; malware industry
generally relied on signature-based detection technique [48]. Signature
extraction is not a new or novel approach to address a similar problem.
This approach has shown promising results in the less controlled envi-
ronment such as honey pots and other threat collection systems [49,50].

Some other techniques such as generic exploit blocking for unseen in-
stances are investigated [51,52]. In another effort, creation of the generic
signature for a family of malware is also investigated [53]. However,
these techniques face the challenge of execution speed, CPU load and
false positive rate. Moreover, for the success of these techniques, vulner-
ability knowledge is required in advance, which may not be available. To
address these issues, especially prior vulnerability knowledge, test cases
are generated, which produce models [54,55]. The generated models are
further used to identify vulnerabilities. However, these models are also
used by malware vendors to fabricate evading techniques [47].

To generalize the known malware detection and detect unknown mal-
ware especially zero-day attack, use of data mining and machine learn-
ing methods is first investigated in 1994 [56]. The use of supervised
learning techniques in ML for malware detection is first investigated
in 2001 [33]. In the training phase of supervised learning, a batch of
malicious and legitimate examples is provided to the learning method.
The batch of examples contains the patterns that are used for repre-
senting executable files (i.e., file representation) [57]. These patterns are
generally referred to as file features, which are extracted from the exe-
cutable files by applying different reverse engineering techniques. The
file features are considered static features (morphological) and super-
vised learning is usually applied on extracted file features to extend the
static analysis [57]. The researchers in the malware detection are pri-
marily focused on the static feature extraction (commonly referred to
as malware signatures) from executable files and their analysis, and not
on dynamic (behavioral) features. Static features are typically used to
generate the n-gram. The concept of n-gram is widely investigated in

14

2.4. Related Work

the domain of text categorization [58]. The n-gram probability distri-
bution and n-gram models have shown promising results, independent
of any specific language, both in natural language processing and text
mining [59]. The n-grams are also used for authors profiling, text com-
parison, and speech recognition [60]. The concept of n-gram is also ap-
plied for the malware detection in the form of tri-grams extracted from
the virus signatures [56]. N-grams are also fed into the neural network
based classifier for detecting viruses [61,62]. Similarly, several neural
network based classifiers are also generated on the n-gram for the virus
detection [63].

Static features of executable files, i.e., byte code, DLL information and
strings, in the form of n-gram, using supervised learning are also in-
vestigated for malware detection [33]. Byte n-gram is a fixed size se-
quence of byte code in the hexadecimal format, extracted from the bi-
nary files. This approach is further extended evaluating different sizes
of n-gram representation under different settings [64]. Different sizes
of byte code n-grams are also used to create profiles of legitimate and
malicious classes [65]. New malicious instances are assigned to the most
similar profiles. The work of [33] is also extended by applying different
feature selection, and learning algorithms [66]. The results produced are
better than the work of [33]. In another study, class imbalance problem
is also investigated for the malware detection [67].

Byte code n-gram representation is extensively investigated for the mal-
ware detection. However, main focus of investigations is to classify
viruses, Trojan horse, worms and legitimate software [33,65,66]. How-
ever, byte code features (being a small piece of hexadecimal code) are not
capable of providing any interpretable and useful information, which
can be used for understanding the behaviour or the function of exe-
cutable files [68]. Moreover, it is also difficult to trace them back in
the original software and understand the purpose of a particular byte
code or sequence of byte codes [68]. However, this representation is
widely investigated for malware detection due to its high success rate.
To address the deficiencies in byte n-grams, the use of operational code

15

2. BACKGROUND

(opcode) n-gram, and sequence of opcodes is also investigated for repre-
senting executable files [69]. An executable file is disassembled to obtain
assembly instructions and opcode is the part of assembly instructions.
Opcode representation is used in two different ways to make n-grams,
i.e.,, by having fixed length sequences [29,70] and by having variable
length sequences [24,71]. Variable legth opcode n-grams are normally
produced to capture an entire function in the executable file.

Initially opcode are used to generate signatures for the detection of dif-
ferent variants of worms and some types of spyware [69]. To avoid the
problem of manually updating the signature databases of the scanners;
data mining algorithms are used as part of a scientific study to create a
generic scanner [16]. In this study, experiments are performed on two
different data sets: the first data set contains the opcode of each instruc-
tion, and the second data set contains the opcode as well as the first
operand of each instruction. The frequency of occurrence in the virus
class, and in the legitimate class is used as a basis for feature selection.
The frequency of opcode distribution is also used to isolate malware
from legitimate. Opcode based n-grams under different settings along
with the class imbalance problem are also investigated [29]. The idea of
using variable length instruction sequences is conceived as a part of an
attempt to detect worms. The valuable instruction sequences are used
to create the data set, which is further fed into learning algorithms and
ensemble learners to classify novel instances of worms.

Opcode sequences are investigated by different researchers to under-
stand the behavior of malicious programs (mostly viruses) and derive
the distinct patterns of behavior, which separate malware from legit-
imate programs. Most of the researchers have used the commercial
disassemblers such as IDA*, and PE Explorer’ to disassemble binary
files. The commercial disassemblers are capable of understanding the
file structure. Researchers have used the opcode from the specific sec-

*http:/ /www.hex-rays.com/products/ida/index.shtml
Shttp:/ /www.heaventools.com/

16

2.4. Related Work

tion of the file, i.e., code section. In comparison of two kinds of opcode
n-grams, variable length sequences produce better results in terms of de-
tection rate and capturing a particular function. The main advantage of
using opcode sequence is that opcode sequence can provide the mean-
ingful information and can be traced back to its location in the original
file for further analysis.

Except the n-gram representations, the executable files also contain other
meaningful static features in the form of printable strings, meta data
about functions, and meta data about the file. These strings are stored
in different parts of files. The examples of these features are messages
shown by files and functions calls. These features may give a clue about
the activities performed by the executable file and are used for malware
detection [33,72,73,74]. Albeit, these representations achieved satisfac-
tory results, such representations may not be considered reliable for mal-
ware detection problem because it is easy to change this information by
changing the compiler or packager or class files.

17

Three

Primary Research
Contributions

A survey of the research, in the domain of malware detection using ML,
in the last decade is presented in [57]. The research summary provides
an overview of different types of features for representing executable
files. Different types of representations along with possible features ex-
tracted for the particular representation is shown in Table 3.1. The re-
search in the last decade is heavily influenced by the use of byte code
n-grams or byte n-grams, followed by the fixed length opcode n-grams.
However, following problems can be ascertained from the last decade
research:

1. Most of the researchers have used the same data set of viruses,
worms, and Trojans horses obtained from the website VX Heav-

ensl.

2. Similar procedure for n-gram extraction is used, and only few re-
searchers have addressed n-gram extraction techniques.

3. Feature selection methods have not been investigated. Mostly, tra-
ditional feature selection methods from text mining are borrowed
by the researchers.

1h’rtp: / /www.vx.netlux.org

19

3. PRIMARY RESEARCH CONTRIBUTIONS

Table 3.1: Different static features used for the malware detection.

Type Feature

Byte n-grams N-grams consist of a sequence of bytes in the hex-
adecimal representation.

Functions Meta data about functions in executable files.

Opcode n-grams N-grams consist of a sequence of the assembly lan-
guage operations (opcode), e.g., ADD, MOV, etc.

PE-Features Meta data about executable files, e.g., creation time,
structure, etc.
Strings Readable strings from executable files.

4. For obtaining the meaningful static features such as opcode, re-
searchers have used commercial software, and features from a spe-
cific part of the files are investigated.

3.1 Aim and Scope

The thesis aims to enhance the heuristic-based detection methods for po-
tentially unwanted programs by using supervised learning. It is argued
that computer programs, i.e., executable files contain patterns in terms of
functionality. The patterns in the executable files can be converted into
the n-grams, which can be further used to indicate the purpose of the
program and classify the program. By providing information about the
purpose and class of a program, users are empowered in their consent
about using that particular software. The scope of this thesis is limited
to potentially unwanted programs, which fall within the grey zone of
the legitimate programs and illegitimate programs.

3.2 Contributions

The following sections elaborate the contributions of this thesis in gen-
eral and particular contributions of the published articles that constitute

20

3.2. Contributions

Chapter 6 to Chapter 9. The details of contributions in each chapter
according to the research questions (R.Qs) (given in section 4.1) are as
follows:

Chapter 6 presents a spyware detection approach that investigates the
possibility of using DM and ML based detector to detect spyware. The
data set of binary features (i.e., fixed size n-grams) representing the real-
world situation of malware and legitimate software is prepared with
different configurations. Two feature reduction methods are proposed
to obtain a subset of data. Five different supervised learning algorithms
from different families such decision tree based are applied on all the
configurations to generate classifiers. The proposed results suggest that
proposed detector is capable of detecting the spyware in both cases, i.e.,
either it is embedded with other executable or as a stand-alone appli-
cation. The detector is also capable of indicating the presence of spy-
ware, when the malicious files are scarce. The results also suggest that
larger n-gram size is a better option for the PUP detection. This chapter
contributes to R.Q. 1.1 in that the results suggest the use of byte code
features for the spyware detection. However, it is worth to note that byte
code features are unable to provide the useful information about the be-
havior of the program. The other contribution of this chapter is to R.Q.
2.1in that two proposed feature reduction methods are investigated, and
the results suggest that the features reduction using frequency of a fea-
ture improves the detection results.

Chapter 7 proposes an Adware detection algorithm. To investigate the
validity of the proposed algorithm, extracted sequences of opcodes are
used as the primary feature for classification. Feature selection is per-
formed using different configurations, to obtain 63 data sets. In order
to obtain an efficient and accurate detector, six data mining algorithms
are evaluated on these data sets. Empirical results show that the pro-
posed method can be used to accurately detect both novel and known
adware instances. This chapter contributes to R.Q. 1.2 as the experimen-
tal results indicate that opcode sequences are the best choice for the PUP
detection than the byte code n-grams. The results also extended the re-

21

3. PRIMARY RESEARCH CONTRIBUTIONS

sults of previous study that larger n-gram size is a best choice for the
PUP detection. The Chapter 7 also contributes to the R.Q. 2.2. For the
R.Q. 2.2, the effect of feature selection is evaluated in two stages, i.e., pri-
mary feature selection using the frequency of a feature and secondary
feature selection using the statistical importance of a feature, to find an
optimal percentage of features.

Chapter 8 extends the traditional heuristic detection methods to an auto-
mated method for extracting the behavior of a particular type of PUPs
(i.e., scareware), and legitimate software in the form of variable length
instruction sequences. Extracted fragments of behavior are analyzed in
order to improve the existing knowledge about the scareware detection.
This chapter contributes to R.Q. 1.2 in terms of the features used. The
results suggest that the use of variable length n-gram is better than the
fixed size n-gram as they also assist in capturing a complete function
in the program without breaking the function after a specified length.
However, results from both Chapter 7 and Chapter 8 are in favor of us-
ing four-gram. The four-gram size is capable of capturing the complete
valuable functions, which can be further used as n-gram for the PUP
detection. This chapter also provides pointers for the R.Q. 2.2 as the
primary feature selection and secondary feature selection from the text
mining are evaluated. Another major contribution of this chapter is to
the R.Q. 3 as the experimental results proposed that combining the in-
ductive biases of multiple algorithms improves the detection rate.

Chapter 9 presents a generic malware detection approach that is tested
for a specific type of PUD, i.e., scareware. This chapter proposes two
data selection techniques (feature extraction), an ensemble learning al-
gorithm, and an empirical evaluation of the proposed algorithm. The
results of this chapter contributes to R.Q. 3 by providing the empirical
evaluation of the impact of combining inductive biases and the effect of
different voting schemes on the output of the ensemble. For the R.Q.
3, results also suggest that different voting strategies shall be adopted
for different tasks according to the problem in question. The results
also contribute through the pointer that combining the inductive biases

22

3.2. Contributions

of several algorithms trained on different representations predicts better
for the malware detection than combining the inductive biases of differ-
ent algorithms trained on the same data set.

The overall contribution of the thesis is to provide an understanding
about the automation of PUPs classification. Potentially unwanted pro-
grams resemble legitimate software in terms of functionality. Thus, it
is difficult for human experts to classify a particular instance as PUP.
This thesis introduces the idea of using a non-commercial disassembler
for extracting either the n-gram or the behavior of a particular software,
which can be further used for identifying the class of software. The ex-
perimental results indicate that instruction sequence is a better option in
comparison of other representations such as hexadecimal n-grams. The
experimental results also indicate that either a technique is adopted for
extracting instruction sequence based n-grams or behavioral n-grams,
the n-gram size four is a suitable option for the PUP classification. The
experimental results indicate that relative frequency of a feature is better
option in comparison to the frequency of a feature. It is also suggested
that a suitable voting scheme will enhance the accuracy of the PUP clas-
sification system.

23

Four

Research Approach

In this thesis, the PUP detection problem is addressed through different
techniques of data mining and machine learning. On the abstract level,
the process of applying DM and ML can be divided into the following
steps [75]:

1. Problem Statement

2. Data Preparation (Data Selection)

3. Data pre-processing or Transformation

4. Model Generation (i.e., model estimation (training phase))

5. Validation (i.e., model interpretation; analyzing the quality of the
model)

For the first step, the problem statement is clearly stated as the PUP de-
tection problem. The main contributions of the work are in the remain-
ing four steps, and these contributions are experimentally proven. The
thesis contributions (section 3.2) also provide the answers of the research
questions in the section 4.1. For the step 2, the main contribution is to
investigate the different features of a binary file representation for the
PUP detection. This thesis also introduces the idea of using overlapping
n-grams and adjacent-nonadjacent n-grams extracted from the binary

25

4. RESEARCH APPROACH

files as the primary feature for the file representation. After extracting
all the features from a data set in the required representation, all the fea-
tures may not be significant for the detection. The data pre-processing
step, i.e., step 3, is required to select the relevant features. The step 3 in
the process is the most computationally intensive procedure and perfor-
mance of the step 4 and the step 5 may also depend upon it. Therefore,
for the step 3, uses of different feature reduction methods from text min-
ing are investigated. For the step 4 and step 5, an algorithm is proposed,
which combines multiple learning algorithms and uses the veto voting
to predict the class of an instance. This thesis compares different fea-
ture extraction techniques, feature sizes, feature selection settings, and
performance of different algorithms upon different settings to find an
optimal solution.

4.1 Research Questions

Potentially unwanted programs may mislead a novice user about their
actual functionalities by hiding their existence as the part of a complete
software package or by indicating their intended functionalities in the
End User License Agreement. Users usually ignore the long written
terms and conditions of the EULA and accept the EULA without read-
ing. This behavior makes the user consent questionable, as a result the
malicious software authors may claim the legitimate status for their ap-
plication. Due to this reason, traditional countermeasures may ignore
the presence of known PUP instances. Traditional measures are also in-
capable of detecting zero-day instances. Consequently, new detection
methods that are capable of detecting known instances and the zero-day
attacks are required. The usage of ML and DM technologies is investi-
gated for traditional malware detection. Supervised learning in ML has
shown promising results in the detection of viruses, worms, and Trojan
horses. However, supervised learning is not investigated for the detec-
tion of PUPs.

Every binary file contains different features that can be used for the file

26

4.1. Research Questions

representation in the data set. For example; the name of a file is a feature,
which represents a file in the set of files. Other features are file size, file
creation/modification date, instructions in the file, messages in the form
of printable strings in the file and other important information available
as part of the file, e.g., information in the file header. However, all the
features of a file may not be suitable for the file representation due to
different reasons such as the file name does not provide any useful infor-
mation about the function of file. In different studies, for the detection
of viruses, worms and Trojan horses, different file features obtained di-
rectly from the file or from the file conversion are used. The common file
features used in the experiments are printable strings, meta-data about
the functions, byte code (in hexadecimal form), and extracted assembly
instructions. However, it is obscure that similar file features may also
be used for the PUP detection as PUPs have subtle difference with the
legitimate programs. Hence, it is required to find the file features, which
can help to achieve optimal results in the PUP detection and provide rel-
evant information for the analysis of PUPs behavior. Different potential
file features or combination of file features can be investigated to find
the appropriate feature representation/s for the PUP detection. Hence;
this thesis investigates, which file features are suitable for detecting poten-
tially unwanted behavior in an executable file? This investigation addresses
a particular dimension of the problem in hand and provides the answer
to contribute in the overarching aim of the thesis. Thus, this particular
dimension is further addressed by following two sub-questions.

R.Q. 1.1. Can hexadecimal based features of a binary file be used for the ac-
curate PUP detection?

This research question is investigated in Chapter 6, which describes the
experimental results for the PUP detection based on byte code features
in the hexadecimal form. Chapter 6 also investigates the suitability of
combining multiple features for producing a unique feature, i.e., n-gram.
The byte code features may also be extracted in the binary or octal rep-
resentation. However, the detection result will not be different from
the hexadecimal representation. This chapter provides the answer about
the suitability of byte code (hexadecimal form or similar forms) based

27

4. RESEARCH APPROACH

feature; however, this chapter does not address the suitability of other
representations such as instruction sequences.

R.Q. 1.2. Can assembly instructions be used to descry PUP behavior and as the
file feature for the accurate PUP detection?

The answer of R.Q.1.1 indicates that the combination of features to pro-
duce a unique feature is a better option than using a single feature. The
suitability of instruction sequences or the specific part of the instructions
in sequence for the PUP detection and strategies for their combination
are investigated in the Chapter 7, Chapter 8, and Chapter 9. Differ-
ent feature combining strategies are investigated to produce unique n-
grams, which provides valuable information about the function or the
behavior of PUPs. The identified function or behavior can be further
used to accurately detect PUPs.

The features obtained from a binary file may vary in numbers such as
the file name is the only one feature of a file. However, if a file is disas-
sembled, the number of generated features will depend on the file size.
If a data set is prepared with all the generated features, that data set can-
not be processed directly by most of the machine learning algorithms.
Consequently, a method is needed to reduce the number of features
significantly in such a way that it does not degrade the predictive per-
formance of machine learning algorithms. During the feature reduction
process, valuable features from the original feature set are selected to
generate a feature subset. The generated subset shall be able to provide
an understanding of the data set. In text mining different methods such
as frequency of a feature in a particular document or the whole data set,
or statistical importance of a feature in the document, are used to find
the valuable features in a feature set. The PUP detection task can also be
viewed as a binary text classification and correlation of each feature with
its class can be computed by using the frequency of the feature. Further,
the frequency of each feature may be used to find the subset of valuable
features. However, it is worth to investigate that What is the impact of
frequency based feature selection methods on classifier performance for the PUP
classification? To find the solution for this question, this question can be

28

4.1. Research Questions

split into two further questions:

R.Q. 2.1. Is the frequency of a feature a suitable measure to select the valu-
able feature?

To find the answer of this R.Q., frequency based feature selection meth-
ods are investigated in Chapter 6. The proposed frequency based fea-
ture selection methods investigate the suitability of common features
and frequency of features in the files. However, a feature may also have
a relative frequency, which is not addressed throughout this study.

R.Q. 2.2. Is the statistical importance (weight) of a feature a suitable mea-
sure than the frequency of a feature to select the valuable features?

To find the solution of this question, different feature selection methods,
which calculate the composite weight of a feature, are investigated in
Chapter 7 and Chapter 8. The Chapter 7 and Chapter 8 also investigates
the possibility of extending the feature selection in multiple, i.e., primary
feature selection and secondary feature selection steps where each step
applies a unique method to calculate the relative weight of a feature to
produce the subset of valuable features.

The subset of valuable features and feature representation impregnate
the inductive bias of a learning algorithm and affect the performance.
Due to different feature representations, generated models may perform
contrary. However, different models can be combined to increase the
overall predictive performance. The combination of different models to
reach final predication is usually referred to as an ensemble. Ensemble
can use different methods such as voting, to reach the final prediction.
This element is investigated by the following given research question.

R.Q. 3. What is the impact of a voting strateqy on the outcome of an en-
semble for the PUP detection?

An appropriate combination of inductive biases may increase predictive
performance as well as an inappropriate combination may cause a sig-
nificant decrease. Diversity among the models in the ensemble enhances
the predictive performance of the ensemble. The strategy to select the

29

4. RESEARCH APPROACH

appropriate finite set of models and method to achieve a collective deci-
sion can be either one of the methods already in practice or a customized
method. An example of methods in practice is the bagging. In bagging
each algorithm provides its prediction about the instance (all the predic-
tions are weighted equally) and final prediction of the ensemb]e is given
on the basis of majority of votes. This thesis investigates the use of an
ensemble for the PUP detection in two steps. In the first step, Chapter
6 and Chapter 8 investigate an ensemble in practice; and compare the
ensemble’s performance with the performance of other learning algo-
rithms. The customized method of combining the inductive biases such
as veto voting can be adapted according to the problem in hand. There-
fore, in the second step, Chapter 9 investigates two customized voting
strategies, i.e., veto voting and the trust-based veto voting and compares
them with the majority voting.

4.2 Research Methodology

The selection of the research methodology is a crucial step because it
helps to learn the cause and the effect relationship for the problem in
hand. This thesis performs the empirical investigation of the problem in
hand, which is referred to as quantitative research. The quantitative re-
search can be carried out by using different research designs such as the
experiment, and the case study. This thesis applies experimental design
to answer the research questions in the section 4.1.

Experiment method is also referred to as the scientific method [76]. Ex-
periment is defined as follows [77]:

" A study in which an intervention is deliberately introduced to observe its
effects " .

An experiment is performed to determine the cause-effect relationship be-
tween the variables. In the experiment all variables, except one variable,
i.e.,, independent variable are controlled. Due to controlled variables,

30

4.2. Research Methodology

experiments are also referred to as controlled experiments [78]. The
other variables involve in a controlled experiment are dependent vari-
able, control group, and constants. All the variables of an experiment
are explained according to the thesis following:

o Independent Variable is the variable, which this thesis measures,
generally referred to as cause or experimental conditions or treat-
ments. The independent variable in the thesis is the number of
valuable features.

o Dependent Variable is a variable, which is dependent upon the in-
dependent variable, generally referred to as the effect. The depen-
dent variable in this thesis is the percentage of correct decisions by
different algorithms.

e Control Group is a group, which receive either no treatment or a
standard treatment and is contrasted with the experimental group.
This thesis uses ZeroR algorithm as a control group and the perfor-
mance of all the algorithms is compared with the ZeroR algorithm.

e Constants are variables, which are not changed during the exper-
iments; they may not have any direct effect on the outcome of
the experiment. The constants for the thesis are operating system,
Weka software, feature extraction and feature selection routines
and learning algorithms.

For any particular experiment in the thesis, the independent variable is
dependent upon other parameters, i.e., number of files and the file size.
This independent variable has positive correlation with the dependent
variable, i.e., percentage of correct decision, which implies with the in-
crease in the importance (quality/value) of features, the percentage of
correct decisions also increases. It is common in the field of machine
learning to have a larger data set (that lowers the variance across the dif-
ferent data sets) to increase the accuracy. The likelihood of a true causal
relationship between the independent variable and dependent variable

31

4. RESEARCH APPROACH

for the experiments is high. The increase in the independent variable,
i.e., increase in the number of valuable features, up to a certain extent,
may help in indicating the class of files, (considering the effect of con-
stant, i.e., feature selection routines) and the learning algorithms will be
able to predict more correctly.

By using the variables mentioned above, two types of experiments, i.e.,
Random Experiments (RE) and Quasi Experiments may be performed. In
RE, random assignment of experimental units to the treatment is made,
no prediction about the outcome can be given. However, the outcome
of experiments always lies in the list of possible outcomes. A random
assignment of the experimental units helps in deriving a stronger con-
clusion about the cause-effect relationship between the variables. Quasi
Experiments are similar to the random experiments except that the quasi
experiments lack random assignment of experimental units to the treat-
ment [77]. In quasi experiments "cause is manipulable and occurs before
the effect is measured" [77]. For the PUP detection experiments, random-
ization may not be required as ML algorithms are independent of data
collection methods. However, the predictive performance of an algo-
rithm needs to be compared by using controlled experiments. Chapter
6, Chapter 7, Chapter 8, and Chapter 9 compares the predictive per-
formance of ML algorithms. Chapter 7 and Chapter 8 also investigate
the cause-effect relationship. Chapter 7, Chapter 8, and Chapter 9 also
investigates the impact of constant, i.e., feature selection routine.

4.3 Research Validity

Validity concerns the correctness level of the outcome of an experiment
and its applicability in the real-world settings or righteousness of the
answer of a scientific problem [79]. For an experiment, there are al-
ways possible threats to its validity that can be divided into four prin-
cipal categories. Validity threats include internal, external, construction
and conclusion; where each type may address a specific methodological
question [79]. Each category may be further divided into different sub-

32

4.3. Research Validity

categories; if needed.

Internal Validity threats are related to experimental settings. Most in-
ternal validity threats concern the effect of an independent variable on
the dependent variable in a controlled experiment and the effect of any
change in the experimental setting to its outcome [80]. Different vari-
ables such as history, maturation, testing, instrumentation, statistical
regression, selection, and experimental mortality interfere with the in-
ternal validity [81]. For the experiments in the thesis; most of these
variables are not applicable. The related internal validity threats are con-
cerned with the selection, i.e., random assignment of application during
the training phase and the percentage of features used. To mitigate the
selection threat, statistical methods are used, which are addressed in
Chapter 6, Chapter 7, Chapter 8, and Chapter 9. The other internal
threats are related to the experimental procedures, i.e., extraction of fea-
tures from the file. For the feature extraction, extraction routines may
not be able to extract features from all the programs. The threats for the
experimental procedure are mitigated by using different representation
and addressed in all subsequent chapters.

External Validity threats are concerned to the generalization of conclu-
sions or results from a particular experiment to the more general popu-
lation. The general research question addressed by the external validity
threat is the criteria to apply results of the experiment (as experimenta-
tion is done in a controlled setting by creating the artificial environment)
or the conclusion drawn from the study of another similar population or
in the real-world settings [80]. For the malware detection experiments,
malicious file percentage in the wild is an example of the external valid-
ity threat that is investigated in the Chapter 6 and Chapter 7. Another
external validity threat for the thesis is that the data set used in exper-
iments may not have representation of all families of malware in the
sample, so the results may not be generalized. Correct sampling allows
generalization and mitigates the external validity threats; statistical sam-
pling and replacing methods are used in experiments.

33

4. RESEARCH APPROACH

Construct Validity threats are threats to the experiment itself and threats
to the data preparation stage in the experiment; hence they assess the
quality of experiment design [79]. Construct validity threats are miti-
gated by performing the statistical analysis of the experimental proce-
dure and the relation between the variables [81]. For evaluating the
relation between variables; variables shall be defined in a quantifiable
way. These threats are not applicable to the experiments in the thesis.
The followed experimental procedures and data preparation methods
are standards within the domain.

Conclusion Validity threats concern the reasonability of conclusions drawn
from the experiment [79]. In all the experiments in the thesis, statistical
test such as the paired t-test is used. T-test is a parametric test, which
is used to obtain the ratio of difference between means of two groups
against variability between groups [80].

34

Five

Conclusions

5.1 Discussion

The PUPs are generally detected either by the signature matching or
heuristic methods. The signatures and rules are kept in a database,
which needs frequent and regular updates by the users. For obtaining
the signature of a PUP or defining the rules to detect a particular PUP,
a human expert needs to capture the PUP and manually analyze the
PUP. ML and DM technologies are employed to automate the detection
process from start to end. The features from the malware are extracted,
given to learning algorithms for generating classifiers that are further
used to predict the class of a file. The ML and DM technologies extend
the heuristic-based detection method, and the generated models are suit-
able both for the novice user and the expert. For the users, the generated
models may provide the information about the purpose of a program.
Thus, users are empowered in their consent about using that particular
software. This empowerment will enhance the privacy of users as users
can decide to execute a specific file or not. However, it is impossible to
give the final decision/recommendation about the execution of a partic-
ular file to the user as the definition of legitimate and illegitimate varies
from region to region. These varying definition prospects the chances of
malware vendors to lure the users by giving different options.

For the experts, this thesis presents an automated process to ease their

35

5. CONCLUSIONS

job. The difference between a PUP and legitimate program is subtle,
and human experts may not be able to track all the patterns in a file to
conclude its behavior. The techniques presented in this thesis will help
the experts to analyze the executable. However, one main drawback of
the proposed techniques is that they are not capable of detecting a PUP,
which contains encrypted malicious payload. The malicious part of the
PUP cannot be decrypted without the key; thus, human intervention is
required. At the same time, the presence of an encrypted module in
a program can be considered as an indication of unwanted behavior.
Another associated problem with the proposed technique is updating
the generated classifiers. Although experimental results indicate that
generated classifiers are capable of detecting the zero-day attacks; how-
ever, users need to update the classifiers due to the emergence of new
examples and families of PUPs. However, this is different from updat-
ing the traditional signature or rules database where new signature or
rules are added into an existing database on the daily basis. For the
proposed techniques, to update the classifiers, classifiers are generated
again on the new data set, which contains the new examples of PUPs.
However, the classifier generation is a time-consuming task and shall be
avoided at the user end. The task of classifier generation can be per-
formed at a central location. Later, users can be informed about new
classifiers and users can replace their classifier with the new classifier or
this can be done by the system automatically. The size of this update
is quite smaller than the size of new signatures added into the signa-
ture database, used in traditional detection techniques. Moreover, the
frequency of new classifier generation and updating at the user end is
also lower than the frequency of updating the signature database or the
rule database.

This thesis investigates the classification (detection) of one particular
family of PUPs in each experiment; however, experiments shall be ex-
tended for the multi-class classification. Moreover, the proposed tech-
nique can also be extended for the detection of PUPs in online social
networks, as the basis of proposed technique is text mining. The the-
sis is not conclusive about a particular algorithm that can be used for

36

5.2. Conclusion

the classification of all families of PUPs, thus several classifiers (from
several algorithms) may be required for multi-class classification. An
ensemble may be required to combine the decisions of multiple classi-
fiers. Generally, the outcome of an ensemble is obtained by the voting
of participants, thus, a voting strategy may also be required. This the-
sis investigates two different voting strategies; however, results may not
be generalized for all the voting strategies. Moreover, most of the ap-
plied techniques are borrowed from the text mining, techniques devised
specifically for the malware/PUP classification are required.

The proposed techniques extend the static detection that is used to clas-
sify a file as malicious or legitimate before the file execution. However,
a malicious file may be misclassified and may be executed by the user.
Moreover, users perform various tasks on the systems such as brows-
ing. A user can browse through a website with the malicious contents
such as malicious scripts. Such malicious contents cannot be detected by
the static detection methods. Therefore, dynamic analysis and detection
are also needed with the static detection. The proposed techniques are
not tested on the malware using obfuscation. However, it is indicated
that similar techniques are capable of detecting different variants of a
malware in a family, which implies that proposed techniques are also
capable of detecting the PUPs with obfuscated code.

5.2 Conclusion

Supervised learning can be performed by using a wide range of ap-
proaches such as artificial neural network, Bayesian statistics, decision
tree learning, kernel estimators, support vector machines, ensemble of
classifiers, and statistical relational learning. There is no single ap-
proach, which is suitable for all problems. More than one method can
be used to address the problem. The decision of applying a particular
approach is based on different factors such as availability of the data,
the amount of the data and complexity in it, and dimensionality of the
data. These all factors are also valid for the PUP detection. However, an

37

5. CONCLUSIONS

implied benefit of the PUP detection is that PUP examples are available
in the wild, which can be used to create the labeled data set for super-
vised learning. This leads us to address the critical components of the
supervised learning process. Therefore, the aim of this thesis concerns
about the applicability of approaches and has been achieved by address-
ing different dimensions, where each dimension is further addressed by
a research question.

R.Q. 1.1 and R.Q. 1.2 in the thesis address the feature representation di-
mension of the problem. Various features can be extracted from a binary
file for the file representation. However, some features are easy to be
customized by developers and may be considered unsuitable for super-
vised learning. Chapter 6 investigates the possibility of using byte code
features for the file representation. Chapter 7 and Chapter 8 explore the
possibilities of using opcode as a feature by using two different strate-
gies, i.e., fixed size opcode sequence based n-gram, and variable length
opcode sequence base n-gram. The results, presented in these chapters,
suggest that for the PUP detection four-gram (n-gram size = 4) is an opti-
mal size for both fixed size opcode n-grams, and variable length opcode
n-grams. Chapter 9 proposes two different strategies to obtain byte code
or opcode based features from the binary files, i.e., overlap n-gram, and
nonadjacent n-gram. The results, presented in Chapter 7, Chapter 8,
and Chapter 9 favor the use of variable length opcode sequences and
overlap-ngram for the detection task. However, to understand the be-
havior of binary files, the results are in favor of variable length opcode
sequences, and nonadjacent opcode n-grams.

R.Q. 2.1 and R.Q. 2.2 concern the number of features used in the train-
ing of supervised learning algorithms. A huge number of features can
be extracted from the binary file data set. However, all of these features
may be unsuitable for the training purpose due to two factors, i.e., all
the learning algorithms cannot process large number of features, and
many features may not play a decisive role in the classification task.
Therefore, it is essential to find the appropriate features by applying dif-
ferent strategies. Different text mining strategies are investigated, and

38

5.3. Future Work

two methods are proposed to address these R.Qs. Chapter 6 proposes
two different strategies based on the frequency and common features for
selecting the significant features. Chapter 7 and Chapter 8 explore the
feature selection methods in two steps, and each step uses a different
feature selection method from the text mining. The results suggest that
a small number of features in comparison to the original feature set can
be used to obtain the optimal performance for the PUP detection.

R.Q. 3 concerns the decision strategy for the class prediction of a binary
file. As described earlier, supervised learning can be performed by using
different approaches; however, the decision from each approach depends
upon the underlying set of assumptions of the learning algorithm. Due
to this reason, different approaches can predict differently for the prob-
lem in hand. To improve the prediction decision, ensembles are used
in machine learning. Chapter 7 combines the inductive biases by us-
ing an ensemble algorithm random forest, which shows the promising
result. However, similarly to other supervised learning algorithms, sim-
ilar ensemble cannot be applied to all the problems. Therefore, Chapter
9 investigates the veto strategy and trust-based veto strategy for combin-
ing the inductive biases of all the different algorithms. The experimental
results suggest that the trust-based veto strategy is a better choice for the
problem in hand due to the high number of malware instances classified
correctly.

5.3 Future Work

For the future work, diverse approaches from data/text mining for the
feature extraction, and feature selection can be investigated using the
proposed algorithms. Features extracted from the EULA may also be
combined to reduce the chances of false predictions. The PUP detec-
tion problem can as well be addressed through other machine learning
techniques, e.g., the rule based or neural networks using the file features
presented in this thesis. This work currently predicts one kind of PUP
using the proposed techniques; the detection process can be generalized

39

5. CONCLUSIONS

for more than one class. The classification techniques, presented in all
the chapters, are tested by using the real-world data in the controlled
environment. These techniques are required to be tested and validated
in the real-world settings. Another aspect, which needs to be addressed,
is to extend the decision strategy in ensembles, especially for the trust-
based veto voting. The extended trust-based veto voting strategy shall
be evaluated and validated statistically. The proposed framework, in
Chapter 9, is required to apply on the social network data to indicate
the online potentially unwanted programs.

40

Six

Detection of Spyware by Mining
Executable Files

Raja Khurram Shahzad, Syed Imran Haider, Niklas Lavesson

Abstract

Spyware represents a serious threat to confidentiality since it
may result in loss of control over private data for computer users.
This type of software might collect the data and send it to a third
party without informed user consent. Traditionally, two approaches
have been presented for the purpose of spyware detection: Signature-
based Detection and Heuristic-based Detection. These approaches
perform well against known Spyware, but have not been proven to
be successful at detecting new spyware. This paper presents a Spy-
ware detection approach by using Data Mining (DM) technologies.
Our approach is inspired by DM-based malicious code detectors,
which are known to work well for detecting viruses and similar
software. However, this type of detector has not been investigated
in terms of how well it is able to detect spyware. We extract bi-
nary features, called n-grams, from both spyware and legitimate
software and apply five different supervised learning algorithms
to train classifiers that are able to classify unknown binaries by an-
alyzing extracted n-grams. The experimental results suggest that
our method is successful even when the training data is scarce.

41

6. SPYWARE DETECTION

6.1 Introduction

Programs that have the potential to violate the privacy and security of a
system can be labeled as Privacy Invasive Software [18]. These programs
include: spyware, adware, trojans, greyware, and backdoors. They may
compromise confidentiality, integrity, and availability of the system and
may obtain sensitive information without informed user consent [82,83].
This information is valuable for marketing companies and also gener-
ates income for advertisers from online ads distribution through adware.
This factor works as a catalyst for elevating the spyware industry [18].
Traditionally, advertisements for computer users are spread by sending
spam messages, but such advertisements are not targeted toward a spe-
cific segment of users as no information about the users is available to
the spammers. On the other hand, data collected by spyware may be
used for customized ads spread through adware to an individual user.

Originally, viruses represented the only major malicious threats to com-
puter users and since then much research has been carried out in or-
der to successfully detect and remove viruses from computer systems.
However, a more recent type of malicious threat is represented by spy-
ware and this threat has not been extensively studied. According to
the Department of Computer Science and Engineering at the University
of Washington, spyware is defined as "Software that gathers information
about use of a computer, usually without the knowledge of the owner of the
computer, and relays the information across the Internet to a third party loca-
tion" [21]. Another definition of spyware is given as "Any software that
monitors user behavior, or gathers information about the user without adequate
notice, consent, or control from the user" [18]. The major difference between
the definitions involves user consent, which we regard as an important
concept when it comes to understanding the difference between spyware
and other malicious software.

Unlike viruses, which are always unwanted, spyware can sometimes
be installed with the users expressed consent, since it may provide some
useful functionality either on its own or by an accompanying software

42

6.1. Introduction

application. Due to this reason spyware overlaps the boundaries of what
is considered legal and illegal software and thus falls in a grey-zone.
However, in most cases, the spyware vendors do not seem to provide the
user with any realistic opportunity to give an informed consent or to re-
ject the installation of a software application in order to prevent spyware.
Vendors embed spyware in regular software, which is installed with the
application or by using hacking methods [84]. The installed spyware
may be capable of capturing keystrokes, taking screen shots, saving au-
thentication credentials, storing personal email addresses and web form
data, and thus may obtain behavioral and personal information about
users. It may also communicate system configuration including hard-
ware and software, system accounts, location information, and informa-
tion about other aspects of the system to a third party. This can lead to
financial loss, as in identity theft and credit card fraud!. The symptoms
of spyware infection vary, but spyware may, e.g., show characteristics
like nonstop appearances of advertisement pop-ups, open a web site or
force the user to open a web site, which has not been visited before, in-
stall browser toolbars without seeking acceptance from the user, change
search results, make unexpected changes in the browser, display error
messages, and so forth. Furthermore, other indications of spyware may
include a noticeable change in computer performance after installation
of new software, auto-opening of some piece of software or the default
home page in a web-browser, a changed behavior of already installed
software, the occurrence of network traffic without any request from
the user, and increased disk utilization even in perceivably idle condi-
tions [84]. Some researchers have predicted that advanced spyware can
possibly take control of complete systems in the near future [85].

The awareness about spyware and its removal is considered low and
outside the competence of normal users [86,87]. Even if users have
anti-virus software installed, it may not be helpful against spyware until
it is designed particularly for this threat, as spyware differ from reg-
ular viruses, e.g., in that it uses a different infection technique [88].

lwww.us-cert.gov /reading_room/spywarehome_0905.pdf [accessed 18-05-2009]

43

6. SPYWARE DETECTION

Viruses normally replicate themselves by injecting their code into ex-
ecutable files and spread in this way, which is not the case for most
spyware. Specific anti-spyware tools have been developed as counter-
measures, but there seem to be no single anti-spyware tool that can
prevent all existing spyware because, without vigilant examination of
a software package, the process of spyware detection has become almost
impossible [89]. Current anti-spyware tools make use of signature-based
methods by using specific features or unique strings extracted from bi-
naries or heuristic-based methods by using on the basis of rules written
by experts who define behavioral patterns as approaches against spy-
ware. These approaches are often considered ineffective against new
malicious code [33,88]. Moreover, since most heuristic approaches have
been developed in order to detect viruses, it is not certain whether they
would be capable of detecting new types of spyware because spyware
use stealth systems and they do not employ any specific routines like
viruses, which may be associated explicitly with spyware [88].

This paper presents a spyware detection method inspired by data mining-
based malicious code detection. In this method, binary features are
extracted from executable files. A feature reduction method is then
used to obtain a subset of data, which is further used as a training set
for automatically generating classifiers. This method is different from
signature-based or heuristic-based methods since no specific matching
is performed. In this method, the generated classifiers are used to clas-
sify new, previously unseen binaries as either legitimate software or spy-
ware. In our experiments, we employ 10-fold cross-validation in order
to evaluate classifiers on unseen binaries. We use accuracy and the Area
under Receiver Operating Characteristic (ROC) curve as metrics for the
evaluation of classifier performance.

6.2 Background

The term spyware first appeared in a Usenet post on October 16, 1995
about a piece of hardware that could be used for espionage. In 2000, the

44

6.2. Background

founder of Zone Labs, Gregor Freund, used the term in a press release
for Zone Labs firewall product?. Since then, spyware has spread rapidly
and several attempts to prevent this spread have been made. In 2001, the
use of data mining was investigated as an approach for detecting mal-
ware [33] and this attempt attracted the attention of many researchers.
Since then, several experiments have been performed to investigate the
detection of traditional malicious software such as viruses, worms, and
so forth, by using data mining technologies.

The objective of the aforementioned data mining experiment [33] was
to detect new and unseen malicious code from available patterns. Data
mining is the process of analyzing electronically stored data by auto-
matically searching for patterns [90]. Machine Learning algorithms are
commonly used to detect new patterns or relations in data, which are
further used to develop a model, i.e., a classifier or a regression func-
tion. Learning algorithms have been used widely for different data min-
ing problems to detect patterns and to find correlations between data
instances and attributes. In order to represent malware instances in a
suitable format for data mining purposes, many researchers have used
n-grams or API calls as their primary type of feature. An n-gram is
a sequence of n elements from a population. It can, e.g., represent a
character or a word. The length of an n-gram can be either fixed (e.g.,
unigrams, bigrams, and trigrams) or variable. In experiments for the de-
tection of malware, sequences of bytes extracted from the hexadecimal
dump of the binary files have been represented by n-grams. In addition
to the use of such byte sequences, some experimental studies have been
conducted using data from End User License Agreements, network traf-
fic, and honeypots.

The 2001 data mining study of malicious code [33] used three types
of features, i.e., Dynamic-link Library resource information, consecutive
printable characters (strings) and byte sequences. The data set consisted
of 4,266 files out of which 3,265 were malicious and 1,001 were legitimate

2h’ctp: //zonealarm.com

45

6. SPYWARE DETECTION

or benign programs. A rule induction algorithm called Ripper [91] was
applied to find patterns in the DLL data. Naive Bayes (NB), a learning
algorithm based on Bayesian statistics [90], was used to find patterns in
the string data and n-grams of byte sequences were used as input data
for the Multinomial Naive Bayes algorithm [90]. A data set partitioning
was performed in which two data sets were prepared, i.e., a test data set
and a training data set. This is to allow for performance testing on data
that are independent from the data used to generate the classifiers. The
Naive Bayes algorithm, using strings as input data, yielded the highest
classification performance with an accuracy of 97.11 %. The study also
implemented a signature-based algorithm and compared its results to
those of the data mining algorithms. The data mining-based detection
rate of new malware was twice as high in comparison to the signature-
based algorithm.

Following this study, a large number of researchers [29,65,66,67,68,92,93]
have devoted their efforts for encountering malicious code, which is
in most of the cases either viruses or worms, by using data mining.
Only two studies [88,94] focused specifically on spyware. References
[64, 65,95] used n-grams of byte code as features while others [29, 68]
used opcodes. They all were successful in having more than 97 % of
accuracy. In a different study [92], an experiment was performed on
network traffic filtered by network scanner, but still having suspicious
malicious code. Two different types of features were used: n-grams
of size 5 and Windows Portable Executable header data. This study was
successful in achieving an Area under the ROC curve score of 0.983. Ref-
erence [66] performed an experiment for detection of viruses on a data
set of 3,000 files. The study performed experiments on sequence lengths
ranging from 3 to 8. The best result was obtained using a sequence
length of 5. The results indicated that classifier performance could be
increased by using shorter sequences. Reference [68] performed an ex-
periment for the detection of Trojans. In this study, instruction sequences
were used as features. The primary data set contained 4,722 files. Out
of these, 3,000 files were Trojans and the rest were benign programs. A
detection of compilers, common packer was also performed on data set

46

6.2. Background

and the feature set was also systematically reduced. Three types of algo-
rithms were analyzed; Random Forest (RF), Bagging, and Decision Trees
(DT). The study used ROC as analysis for measuring performance and
the best results for false positive rate, overall accuracy and area under
the ROC curve were achieved with the Random Forest classifier.

Reference [88] has replicated the work of [33] but with a focus on spy-
ware collected in 2005. The purpose was to specifically evaluate the
suitability of the technique for spyware detection. The data set consisted
of 312 benign executables and 614 spyware executables. These spyware
applications were not embedded (bundled) with any other executables.
The Naive Bayes algorithm was evaluated, using a window size of 2 and
4, with 5-fold cross-validation. Cross-validation is a statistical method
that is used to systematically divide the available data into a predeter-
mined number of folds, or partitions [90]. Prediction models, or classi-
fiers, are generated by applying a learning algorithm to n-1 folds and
then evaluated on the nth fold. The process is repeated until all folds
have been used for evaluation once. Even though criticism has been
directed towards (over) belief in the cross-validation performance esti-
mates [96], the method is still widely regarded as a reasonable and ro-
bust performance estimation method, especially when the data is scarce.
The experiment showed that the overall accuracy was higher when us-
ing a window size of four.

The spyware problem is also different from that of detecting viruses or
worms as vendors of spyware-hosting applications usually include them
in bundles with popular free software. The End User License Agreement
(EULA) may very well mention the spyware, in order for the spyware
vendors to avoid legal consequences, but this information is given in a
way that makes it difficult for the average user to make an informed con-
sent. In addition, the EULAs from both legitimate software vendors and
spyware vendors normally contain thousands of words, and this makes
it hard for users to interpret the information. Reference [94], therefore,
investigated the possibility to automatically detect spyware by mining
the EULA. This study is similar to the studies carried out on spam de-

47

6. SPYWARE DETECTION

tection by using data mining. The studied data set contained 996 EULAs
out of which 9.6 % were associated with spyware. The study applied 17
learning algorithms on two data sets, represented by a bag-of-words and
meta EULA model, respectively. The performances of the 17 classifiers
were compared with a baseline classifier, ZeroR, which predicts the class
of an instance by always assigning the majority class, e.g., the class that
the majority of the instances in the training data set belong to. ZeroR
is commonly used as a baseline when evaluating other learning algo-
rithms. The results indicated that the bag-of-words model is better than
the meta EULA model. Results also indicated that it is indeed possible to
distinguish between legitimate software and spyware by automatically
analyzing the corresponding EULAs.

A majority of the reviewed studies use n-grams to represent byte se-
quences. Except for Reference [88] and Reference [94], all the stud-
ies were performed on malware or viruses. Moreover, some studies
[33,68,88] featured data sets with almost a double number or an equal
number of malicious files than benign files. Other studies [67,92] use
a population in which a third consists of malicious files. This situation
is arguably unrealistic, since in real life, the number of malicious files
compared to benign files is much lower. Most of the studies used stan-
dard data sets available for malware or virus research. These data sets
contain individual malicious executables. Thus, the executables are not
embedded or bundled with other executables, which is the common sit-
uation for spyware. We have only been able to find one malicious code
detection study that focuses on spyware [88]. This study performed ex-
periments using n-grams for data representation, in particular, with n
=2 and n = 4. The latter configuration yielded the best results. How-
ever, other experiments on malicious code [92] have shown better results
for n = 5. We, therefore, argue that a larger set of n-values need to be
evaluated for the spyware domain.

48

6.3. Proposed Method

Binary Data II Byte Sequence |_»| Feature Extraction
| Data Set Generation Feature Reduction

| Model Training |_>| Evaluation |

Figure 6.1: Experimental process

6.3 Proposed Method

The focus of our analysis is executable files for the Windows platform.
We use the Waikato Environment for Knowledge Analysis (Weka) [97] to
perform the experiments. Weka is a suite of machine learning algorithms
and analysis tools, which is used in practice for solving data mining
problems. First, we extract features from the binary files, and we then
apply a feature reduction method in order to reduce data set complexity.
Finally, we convert the reduced feature set into the Attribute-Relation
File Format (ARFF). ARFF files are ASCII text files that include a set of
data instances, each described by a set of features [90]. Figure 6.1. shows
the steps involved in our proposed method.

6.3.1 Data Collection

Our data set consists of 137 binaries out of which 119 are benign and 18
are spyware binaries. The benign files were collected from CNET Down-
load®, which certifies the files to be free from spyware. The spyware
files were downloaded from the links provided by SpywareGuide.C0m4,
which hosts information about different types of spyware and other
types of malicious software. The rather low amount of gathered spy-
ware is attributed to the fact that most of the links provided by Spy-
wareGuide.com were broken, i.e., these links did not lead to pages where
the spyware executables could be downloaded. We have yet to find, or

build a larger spyware data set.

3http:/ /download.com
4http:/ /spywareguide.com

49

6. SPYWARE DETECTION

6.3.2 Malicious File Percentage

Reference [29] has shown that for their particular study, the MFP needed
to be equal to, or lower than 15 % of the total population in order to yield
a high prediction performance. Relating to our data set, the MFP is al-
most 14 %. However, it is important to stress that we have yet to uncover
evidence to support that the recommended MFP leads to improved re-
sults in the general case.

6.3.3 Byte Sequence Generation

We have opted to use byte sequences as data set features in our experi-
ment. These byte sequences represent fragments of machine code from
an executable file. We use xxd®, which is a UNIX-based utility for gen-
erating hexadecimal dumps of the binary files. From these hexadecimal
dumps, we may then extract byte sequences, in terms of n-grams of dif-
ferent sizes.

6.3.4 n-gram Size

A number of research studies have shown that the best results are gained
by using an n-gram size of 5 [66,92]. In the light of previous research,
we chose to evaluate three different n-gram sizes (namely: 4, 5, and 6)
for the experiments.

6.3.5 Parsing

We first extract byte sequences of the desired n-size. Each row contains
one n-gram and the length of a single row is thus equal to the size of n.

6.3.6 Feature Extraction

The output from the parsing is further subjected to feature extraction.
We extract the features by using two different approaches: the Common

5 http:/ /linux.about.com/library /cmd/blemdll_xxd.htm

50

6.3. Proposed Method

Feature-based Extraction (CFBE) and the Frequency-based Feature Ex-
traction (FBFE). The purpose of employing two approaches is to evaluate
two different techniques that use different types of data representation,
i.e., the occurrence of a feature and the frequency of a feature. Both
methods are used to obtain Reduced Feature Sets (RFSs), which are then
used to generate the ARFF files.

Common Feature-based Extraction

In CFBE, the common n-grams (byte sequences) are extracted from the
binary files, one class at a time.

Frequency-based Feature Extraction

The word frequency can be defined in various ways. In statistics, it ba-
sically represents the number of occurrences or repetitions of some ob-
servation at a specific time or from some specific category. In our study,
the word frequency means the number of occurrences of some specific
n-gram in a certain class or the number of repetitions of some specific n-
gram in a particular class. In FBFE, all the n-grams were sorted and the
frequency of each n-gram in each class is calculated. All n-grams, within
a specified frequency range, are extracted and the rest is discarded. In
the frequency calculation, we discovered that there were a few uninter-
esting n-grams, e.g., 0x0000000000, OxFFFFFFFFFE, and 0x0000000001.
Even though these instances were few (less than 10), their frequencies
were high (more than 10,000). Thus, the frequency analysis helped us
to define three suitable frequency ranges: 1-49, 50-80, and 81-500. The
number of n-grams in the 50-80 frequency range tends to be almost equal
to the number of n-grams in the 81-500 range.

6.3.7 Feature Reduction

Features were reduced in both the CBFE and FBFE method. In CBFE, the
common features gained from all files were sorted. Only one represen-
tation of each feature was considered in one class. CBFE has produced
a better reduced feature set. For example, the reduced feature set for n

51

6. SPYWARE DETECTION

Table 6.1: Feature Statistics

Size / Features n=4 n=>5 n==6

Benign Features 26,474,673 21,179,768 17,649,809
Spyware Features 8,357,458 6,685,971 5,571,645
Total Features 34,832,131 27,865,739 23,221,454

FR=1-49 26,269,292 21,987,533 18,746,618
FR =50 - 80 5,282 3,226 2,286
FR =81 - 500 6,018 3,929 2,788
CFBE 536 514 322

= 4 contains only 536 features compared to 34,832,131 for the complete
set. In FBFE, the frequency of each n-gram is calculated. Reduced fea-
tures were obtained with three frequency ranges 1-49, 50-80, and 81-500.
After analysis of the number of n-grams in each frequency range, it was
decided that the 1-49 frequency range will not be included in the ex-
periments, since the number of n-grams even in the reduced feature set
was too high. For example, for an n-gram size of 5, the total number
of n-grams was 27,865,739 and the number of n-grams included in the
reduced feature set for the 1-49 frequency range was 21,987,533, which
indicated the presence of a large amount of uninteresting features. Ta-
ble 6.1. shows some statistics regarding the number of features in each
class, the total number of features, and the reduced feature sets, based
on different frequency ranges for both FBFE and CFBE.

6.3.8 ARFF Generation

Two ARFF databases based on frequency, and common features were
generated. All input attributes in the data set are represented by Booleans,
i.e., either a certain n-gram or the n-grams within a certain frequency
range are represented by either 1 or 0 (present or absent).

52

6.3. Proposed Method

91 1
.
@ 90 h |:.
S 891 .
S 88 - e
(8} i m
2 87 .
86 - o=
g5 4t o= =

ZeroR Navie Bayes SMO J48 Random Jrip
Forest

Classifiers

OCFBE ©50-80 081-500 |

Figure 6.2: Comparison of Accuracy with n =6

6.3.9 Classifiers

Previous studies are not conclusive about which learning algorithm gen-
erates the best classifiers for problems similar to the studied problem.
However, the results have provided us with a basis for choosing ZeroR,
Naive Bayes, Support Vector Machine (SVM) algorithm, i.e., Sequential
Minimal Optimization (SMO), C4.5 Decision Tree (J48), Random Forest
and JRip as candidates for our study. ZeroR is used only as a base-
line for comparison. For our purpose, it can be viewed as a random
guesser, modeling a user who makes an uninformed decision about a
piece of software. A Naive Bayes classifier is a probabilistic classifier
based on Bayes theorem with independence assumptions, i.e., the dif-
ferent features in the data set are assumed not to be dependent of each
other. This of course, is seldom true for real-life applications. Never-
theless, the algorithm has shown good performance for a wide variety
of complex problems. SVMs, which are used for classification and re-
gression, work by finding the optimal hyperplane, which maximizes the
distance/margin between two classes. J48 is a decision tree-based learn-
ing algorithm. During classification, it adopts a top-down approach and
traverses a tree for classification of any instance. Moreover, Random For-

53

6. SPYWARE DETECTION

est is an ensemble learner. In this ensemble, a collection of decision trees
are generated to obtain a model that may give better predictions than a
single decision tree. Meanwhile, JRip is a rule-based learning algorithm.

6.3.10 Performance Evaluation Criteria

We evaluate each learning algorithm by performing cross-validation tests
to ensure that the generated classifiers are not tested on the training data.
From the response of the classifiers, the relevant confusion matrices were
created. Four metrics define the elements of the matrix: True Positives
(TP), False Positives (FP), True Negatives (TN), and False Negatives (FN).
TP represents the correctly identified benign programs while FP repre-
sents the incorrectly classified spyware programs. Correspondingly, TN
represents the correctly identified spyware programs and FN represents
the wrongly identified benign programs. The performance of each clas-
sifier was evaluated using the AUC metric and the (overall) Accuracy
(ACC) metric. The later is defined in Equation (6.1). AUC is essentially
a single point value derived from a ROC curve, which is commonly
used when the performance of a classifier needs to be evaluated for the
selection of a high proportion of positive instances in the data set [90].
Therefore, it plots the True Positive Rate (TPR, see Equation (6.1)) on
the x-axis in function of the False Positive Rate (FPR, see Equation (6.2))
on the y-axis at different points. TPR is the ratio of correctly identified
benign programs while FPR is the ratio of wrongly identified Spyware
programs. ACC is the percentage of correctly identified programs. In
many situations, ACC can be a reasonable estimator of performance (the
performance on yet unseen data). However, AUC has the benefits of be-
ing independent of class distribution and cost [98]. In many real world
problems, the classes are not equally distributed and the cost of misclas-
sifying one class may be different to that of misclassifying another. For
such problems, the ACC metric is not a good measure of performance,
but it may be used as a complementary metric.

TP

TPR = 75 FN

6.1)

54

6.4. Results

EP
FPR = #5TFp 6.2)

TP+ TN
TP+ TN+ FP+FN

Accuracy = (6.3)

6.4 Results

Table 6.2. and Table 6.3. show the results for each n-gram size for both
the CFBE and the FBFE method. Two feature sets were produced as a
result of the FBFE approach. The first feature set includes instances from
the frequency range of 50-80 and the second set includes instances from
the 81-500 frequency range. Each table shows the results of the baseline
classifier and five different learning algorithms. As stated earlier, we
represent classification performance using two metrics: AUC and ACC.
Algorithms that are significantly better or worse than the baseline in
terms of AUC according to the corrected paired t-test (confidence 0.05,
two-tailed) are also indicated. It is not the main objective of this study
to determine the optimal algorithm or the highest possible performance.
Hence, we did not tune the parameters of the learning algorithms, i.e.,
all algorithms are default configured.

6.4.1 Resulisforn=4

Using the feature set produced by the CFBE feature selection method
for n = 4, the J48 decision tree classifier achieves the highest accuracy
results. However, it only performs slightly better than the Random For-
est model and the JRip classifier. In comparison, the accuracy of Naive
Bayes is mediocre while the support vector machines classifier (SMO)
achieved the lowest accuracy. In summary, all included algorithms have
performed better than the baseline. When comparing the AUC-based
performance results, the Random Forests model achieved the highest
score while J48 performed at a mediocre level.

55

6. SPYWARE DETECTION

Table 6.2: Accuracy results of experiment

Method ZeroR NaiveBayes SMO J48 Random Forest JRip
CBFE 86.92 (2.72) 88.20 (6.17) 86.56 (8.13) 89.89(5.10) 89.48(5.52) 89.45(4.94)
FR50_80 86.92 (2.72) 83.70 (8.20) 88.52 (7.53) 88.52(5.89) 87.07(6.47) 88.07(6.28)
FR 81_500 86.92 (2.72) 79.37 (12.28) 89.65 (5.93) 88.41(6.21) 88.82(5.66) 85.84(7.31)
CBFE 86.92 (2.72) 89.36 (5.43) 83.41 (8.59) 89.88(4.78) 88.61(6.19) 89.15(4.36)
FR50_80 86.92 (2.72) 87.25(6.19) 86.39 (6.65) 87.15(7.72) 88.45(5.93) 88.21(5.85)
FR 81_500 86.92 (2.72) 87.39 (5.69) 88.42 (5.96) 84.68(6.97) 87.94(5.57) 85.95(7.17)
CBFE 86.92 (2.72) 89.80 (4.89) 87.37 (6.98) 90.54(4.33) 88.74(5.75) 88.77(5.40)
FR50_80 86.92 (2.72) 87.41(6.26) 88.02 (6.10) 88.30(5.51) 89.30(5.45) 88.15(4.21)
FR 81_500 86.92 (2.72) 88.04 (6.13) 89.29 (7.26) 86.96(7.50) 88.25(6.01) 86.98(7.37)

56

6.4. Results

0.9
0.8

AUC Value

ZeroR Navie Bayes SMO J48 Random Forest

Classifier

|.CFBE 850-80 081-500|

Figure 6.3: Comparison of Area under ROC Curve with n = 6

In the 50-80 frequency range, SMO and J48 produced the highest ACC
results. Moreover, in the higher range (81-500), SMO yields the highest
ACC-based performance. In the frequency range of 50-80, SMO and J48
are slightly better than JRip and in the frequency range of 81-500; SMO
is performing slightly better than J48. When comparing results across
these two frequency ranges, it is obvious that the difference in accuracy
is negligible.

6.4.2 Resultsforn=5

Similarly to the results for n = 4, the feature set produced by the CFBE
feature selection method was suitable as a data representation for the
J48 algorithm, which again yielded the best ACC results. In compari-
son, the SMO produced the worst ACC result of all included algorithms
for this particular data set. In fact, the results of the SMO are even lower
than the baseline. In contrast, the difference between the results of]48,
Naive Bayes and JRip is small and all algorithms performed better than
the baseline. In terms of the AUC, the Random Forest algorithm was
the best performer, followed by the J48. For the 50-80 frequency range,
the Random Forest algorithm yielded the highest ACC results. How-

57

6. SPYWARE DETECTION

ever, it only slightly outperformed the JRip rule inducer. J48 performed
mediocre at this range. Moreover, in the 81-500 range, the SMO yielded
the highest ACC results while NB and RF were mediocre. In terms of
the area under the ROC curve, the Random Forest algorithm outper-
formed the other algorithms for both the 50-80 and the 81-500 range.
When comparing results obtained for both frequency results, the 50-80
frequency range seems to be more suitable on average than the 81-500
frequency range.

6.4.3 Resultsforn=6

The data sets generated for n = 6 proved to be most successful in terms
of both accuracy and the area under the ROC curve. The feature set pro-
duced by the CFBE feature selection algorithm was used in conjunction
with the J48 decision tree algorithm to yield a top accuracy score of 90.5
%. It slightly outperformed the NB algorithm, which was followed by
RF and JRip. The support vector machines algorithm yielded the lowest
ACC score. All algorithms performed better than the baseline. For the
AUC Random Forest was the best performer, yielding a top AUC score
of 0.83.

6.5 Discussion

The feature sets generated by the CFBE feature selection method gener-
ally produced better results with regard to accuracy than the feature sets
generated by the FBFE feature selection method. However, the reverse
situation seems to be true when AUC is used as an evaluation metric.
Overall, the results suggest that the two higher frequency ranges are
more suitable than the lowest. The best AUC result was obtained by
using the Random Forest algorithm, an n-gram size of 6, and the high-
est frequency range. However, the 50-80 frequency range yielded better
AUC results than the other frequency ranges when the size of n-grams
was 4. When comparing the performance on the data sets generated by
the FBFE method, it is clear that the ACC results for the 50-80 frequency

58

Discussion

6.5.

«(81°0)99°0 «(21°0)€8°0 (810990 (020120 «(81°0)290 (000050 005 18 A
(10450 «(£1°0)T8°0 (ST'00650 (21700990 (91°0009°0 (00°0)0S'0 08 0S AL
(91°0)19°0 (TT0)S2°0 91090 (£10)290 (610190 (000050 TI9D
«(61°0)99°0 «1T°0)82°0 #0790 (2100290 (910190 (0010)0S°0 005 18 VA
«(91°0)19°0 «(£2°0)92°0 020790 (2100990 (10190 (000050 08 0S ¥
«(€1°0)65°0 «(TT0)89°0 «GT°0)€90 (910860 (2170290 (0000050 HI9D
(¥1°0)95°0 +(02°0)8£°0 (Z10)190 (610290 (€T0790 (000050 005 18 A
(91°0)09°0 (02°0)8£°0 910290 (810120 (0TMZ90 (000050 08 0S ¥
(ST°0)19°0 (€2°0)€£°0 91090 (81090 (410190 (000050 HID
dry(1S310, Wopuey 54l OIS sofeg aareN ¥oI19Z POYRIN

yuawIadxa Jo s)Nsa1 oA DOY IOPU IV €9 dS[qeL

59

6. SPYWARE DETECTION

range are better than those for the 81-500 frequency range. This can eas-
ily be viewed in Figure 6.2. Meanwhile, the AUC results are very close to
each other for both ranges as shown in Figure 6.3. Consequently, more
experiments, e.g., with larger amounts of data and a wider variety of
learning algorithms are needed in order to fully understand which data
representation and feature selection method is optimal for our purpose.

6.6 Conclusions and Future Work

Data mining-based malicious code detectors have been proven to be suc-
cessful in detecting clearly malicious code, e.g., like viruses and wormes.
Results from different studies have indicated that data mining tech-
niques perform better than traditional techniques against malicious code.
However, spyware has not received the same attention from researchers,
but it is spreading rapidly on both home and business computers. The
main objective of this study was, therefore, to determine whether spy-
ware could be successfully detected by classifiers generated from n-gram
based data sets, which is a common data mining-based detection method
for viruses and other malicious code.

In order to find a suitable data representation, we analyzed n-gram-
based byte sequences of different sizes from a range centered on n =
5, which has proven to be an appropriate value that yields high perfor-
mance for similar experiments. We then evaluated five common learning
algorithms by generating classifiers and using 10-fold cross-validation
and the corrected paired t-test. Moreover, two different feature selec-
tion methods were compared for all algorithms and n-gram sizes. Since
no suitable spyware data set was available, we collected spyware and
legitimate binaries and generated a small data set for the purpose of
validating our approach. The experiments indicate that the approach is
successful, achieving a 90.5 % overall accuracy with the J48 decision tree
algorithm when using n = 6 and the common n-gram feature selection
method. The success of the approach is also indicated by an AUC score
of 0.83 with the Random Forest algorithm when using n = 6 and the

60

6.6. Conclusions and Future Work

frequency-based feature selection method. Currently, the false positive
rate is quite high for most combinations of algorithms and data sets.
However, we believe that one of the primary reasons for this is that the
data set is small. In particular, the number of spyware files is too low.
In data mining, it is believed that larger set of data can produce better
results [90]. So a larger set of data can be tested to have better classifica-
tion with higher ACC and lower false positive rate. With regard to AUC,
which is our primary evaluation metric, all algorithms were statistically
significantly better than the baseline, but with different combinations of
n-gram size and feature selection method. Thus, from our experiments,
we can conclude that it is possible to detect spyware by using automati-
cally generated classifiers to identify patterns in executable files.

We hope that data mining techniques can help the researcher community
and security experts to label the software or the home user to have an
informed decision before installation of any software. For future work,
we plan to gather a larger collection of binary files, especially spyware
binaries as no standard data set of spyware is currently available, and
to evaluate our approach when the data set features represent opcodes
instead of arbitrary bytes. Additionally, we aim to develop a hybrid
spyware identification method that is based on a combination of EULA-
based and executable-based detection techniques.

61

Seven

Detecting Scareware by Mining
Variable Length Instruction
Sequences

Raja Khurram Shahzad, Niklas Lavesson

Abstract

Scareware is a recent type of malicious software that may pose
financial and privacy-related threats to novice users. Traditional
countermeasures, such as anti-virus software, require regular up-
dates and often lack the capability of detecting novel (unseen) in-
stances. This paper presents a scareware detection method that is
based on the application of machine learning algorithms to learn
patterns in extracted variable length opcode sequences derived
from instruction sequences of binary files. The patterns are then
used to classify software as legitimate or scareware, but they may
also reveal interpretable behavior that is unique to either type of
software. We have obtained a large number of real world scareware
applications and designed a data set with 550 scareware instances
and 250 benign instances. The experimental results show that sev-
eral common data mining algorithms are able to generate accurate
models from the data set. The Random Forest algorithm is shown
to outperform the other algorithms in the experiment. Essentially,

63

7. SCAREWARE DETECTION

our study shows that, even though the differences between scare-
ware and legitimate software are subtler than between, say, viruses
and legitimate software, the same type of machine learning ap-
proach can be used in both of these dissimilar cases.

7.1 Introduction

This paper addresses the problem of detecting scareware, i.e., scam soft-
ware with different forms of malicious payloads!, and presents a ma-
chine learning-based approach for detection of this type of software.
Many reports have been published in the media regarding malicious
software (malware) such as viruses and worms. Such reports have ar-
guably increased the awareness of novice computer users about basic
security issues. Consequently, users are becoming more conscious about
the security and privacy of their systems and data. Through media,
friends, colleagues and security experts, users have been advised to in-
stall detection software such as anti-virus software or other protective
measures. Success stories about the detection and mitigation of virus
and worm threats have probably also played a part in enhancing the
general security awareness. However, personal computers are becoming
more and more attractive targets for cyber criminals due in part to the
electronic financial transactions that are nowadays performed by private
citizens from their personal computers. Notable examples of such trans-
actions include Internet bank sessions and online credit card payments.
This development has caused a shift in the focus of the malware authors
from self-spreading malware such as worms, which are easily detectable
due to their distribution techniques, to privacy invasive malware [99].

A recent addition to the family of privacy invasive malware is known
as rogue software, rogueware, or scareware. In the remainder of this
paper, the latter term will be used to denote this type of software. Scare-
ware represents scam applications that usually masquerade as security
applications such as anti-malware software or more specifically anti-

Thttp:/ /www.microsoft.com /security /antivirus/rogue.aspx

64

7.1. Introduction

virus software. In reality, however, scareware provides a minimum level
of security or no security at all*3. This type of software is especially
crafted to include fake scanning dialogs, artificial progress bars and fake
alerts [100]. Scareware may display fake lists of infected files and some-
times such lists are so unsophisticatedly generated that they include files
that may not even exist on the computer or they may be incompatible
with the operating system [34]. Figure 7.1. shows the fake scanning di-
alog of a particular scareware Rouge:W32/Winwebsec*. The fake scan-
ning processes and the fake results are of course used to scare users into
believing that their system has been compromised and that it is infected
with malicious content. The fake presentations are essentially carried
out to convince the user that they need anti-virus software or some other
form of protection. As a remedy for the fake situation, scareware offers a
free download, which may also be bundled with other malware (such as
trojans) or it may facilitate the installation of additional malware. Scare-
ware may also trick users into paying registration fees in order to scan
their system more thoroughly to remove (fake) warnings. Such an exam-
ple is shown in Figure 7.2., which is the screen-shot of payment screen
displayed by Rouge:W32/Winwebsec*. The additional malware, which
has been installed instead of protective software, remains on the targeted
computer regardless of whether the registration fee is actually paid or
not. Such additional malware is typically used to collect personal data
of the user or to launch different forms of attacks.

7.1.1 Background

In 2003, Secure Works observed that spam advertisements for fake anti-
virus software were being sent to users by the utilization of a vulner-
ability in the Microsoft Messenger Service®. Two years later, in 2005,
Microsoft reported about the presence of scareware on web sites and

Zhttp:/ / voices.washingtonpost.com /securityfix /2009/03/ obscene_profits_fuel -
rogue_ant.html

Shttp:/ /www.lavasoft.com/

“http:/ /winsec.se/?cat=166

Shttp:/ /www.secureworks.com /research/ threats /popup-spam/

65

7. SCAREWARE DETECTION

Threats: 18

Figure 7.1: Scanning screenshot of Rouge:W32/Winwebsec*

web servers. Since then and arguably due to the overwhelming finan-
cial incentive to malware authors, the scareware has been increasing.
The scareware distribution mechanism is different from other malware
(such as viruses or worms). Scareware reaches the target machine by
employment of social engineering, stealth techniques, or both of these
approaches. User interaction is required when scareware is distributed
through social engineering. For this purpose, advertisements are either
sent via spam e-mail or posted on popular social networking web sites.
Scareware is misleadingly marketed as legitimate software and, with
user interaction; it is downloaded and installed on personal computers.
When it comes to stealth techniques, vulnerabilities in web browsers
or other popular software are exploited in order to employ a so-called
drive-by download mechanism. Essentially, scareware is downloaded
and installed without any user interaction using such a mechanism. It
has been reported that the monetary conversion rate of the fees obtained
for fake scanning services can be as much as 1.36 %, which can result in
a gross income of $21,000 - $35000 for a period of 44 days [99]. Panda
Labs reported that an approximate overall gross income of 34 million per
month is generated by scareware [101]. Late in 2009, Symantec Corpora-

66

7.1. Introduction

tion reported about 43 million installation attempts from more than 240
distinct families of scareware®. Recently a Swedish newspaper Afton-
bladet” reported that according to U.S Department of Justice, 9, 60,000
users were victims of rouge, which caused a loss of 460 million krona.
This alarming situation has received the attention of legitimate secu-
rity software companies. CA Global Security Advisor®, Secure Works’
and Microsoft!® published advisories about scareware, which describe
the general functionality of scareware and tips for identifying this type
of software [34]. To reduce the probability of being fooled by scare-
ware, novice users are advised to install legitimate anti-malware soft-
ware. However, the problem with such software is that users need to
update it on regular basis as novel families of scareware are continu-
ously appearing.

7.1.2 Traditional Countermeasures

Current anti-malware programs primarily rely on either signature-based
methods or heuristic-based methods for the detection of scareware; tech-
niques that were originally developed for detecting computer viruses.
The signature-based approach revolves around the use of signature data-
bases that contain byte strings that are unique to different instances of
software. If these databases are allowed to become more than a cou-
ple of weeks old, the detection rate will be significantly reduced due to
the fact that the approach cannot detect recent scareware for which it
lacks recorded signatures [34]. The second approach, which relies on
heuristic-based methods, is based on more general rules that, e.g., may
define malicious or benign behavior. For both methods, anti-malware
vendors need to catch novel instances, analyze them, create new signa-
tures or rules and then update their databases. It is safe to say that,

®http:/ /www.symantec.com/about/news/resources/ press_-
kits/detail jsp?pkid=istr_rogue_security

"http:/ /www.aftonbladet.se/nyheter /article13218796.ab

8http:/ / cainternetsecurity.net

http:/ /www.secureworks.com/

Ohttp:/ /www.microsoft.com

67

7. SCAREWARE DETECTION

Expiration Date
V2 Number

Last Name
Your 1P Zip Code
¥

IMPOR TANT: Plose alow U 5 bwwes mimstes for bee processng of your order. Dot ok BACK o CANCEL whis wating

Figure 7.2: Payment screenshot of Rouge:W32/Winwebsec*

between database updates, users may be exposed to novel scareware in-
stances. Thus, it is important for users to have up-to-date and reliable
protective measures.

7.1.3 Scope and Aim

In this paper, we present results from an experimental evaluation of
a new scareware detection method. The aim of this method is to ex-
tend the traditional heuristic detection approach by employing machine
learning. The objectives of the study are to assess the performance of
the proposed method, which can be described as an automated sys-
tem for extracting typical behavior of scareware and benign software in
the shape of variable length instruction sequences, and to analyze such
fragments of behavior in order to improve upon the existing knowledge
about scareware detection.

7.1.4 Outline

The remainder of this paper is organized as follows. Section 7.2 presents
related work by first introducing necessary concepts and terminology in

68

7.2. Related Work

Section 7.2.1 and then reviewing related studies in Section 7.2.2. Section
7.3 then describes the employed methodology and the data preprocess-
ing steps. Section 7.4 reviews the experimental procedure. The subse-
quent sections present the experimental results and the analysis. Finally,
Section 7.7 concludes the paper and gives some pointers to future work.

7.2 Related Work

7.2.1 Concepts and Terminology

To overcome the deficiency of traditional techniques concerning the de-
tection of novel instances, the potential of various approaches, such as
agent-based technologies and artificial neural networks have been inves-
tigated. Data mining (DM) and machine learning (ML) methods have
been extensively investigated in the field of text classification and have
showed promising results for many applications. As we shall see, it is
possible to benefit from this area of research when addressing the scare-
ware detection problem. However, the idea of using DM and ML meth-
ods for making the malware detection process automated and for ex-
tending the heuristic-based detection approach for traditional malware
is not new; it originates from a study conducted in 2001 [33].

The process of ML-based malware classification essentially follows stan-
dard classification and can thus be divided into two sub stages: training
and testing. During the training stage, classifiers are generated from
training sets that feature some type of extracted malware and benign
file information as well as the predetermined classification of each file
and the predictive performance of the classifiers is then evaluated dur-
ing the testing stage. For malware classification, data sets have been
prepared using various representations of files and by using different
features that are either present in the files or obtained from any kind of
meta analysis (for example, runtime generated digital footprints). Fea-
tures that are commonly extracted from a binary file include: byte code
n-grams, printable strings and instruction sequences. The n-gram is a
sequence of n characters or n extracted words. Other features that are

69

7. SCAREWARE DETECTION

present in binary files and that may also be used include system calls (to
application programming interfaces). The use of opcodes as an alterna-
tive form of representation has also been suggested [102]. An assembly
instruction contains an operation code (opcode) and maybe one or more
operands for performing the operation. Opcodes or sequences of op-
codes may be represented using n-grams, which, in turn, can be viewed
upon as words or terms if the learning problem is defined as a text cat-
egorization problem.

In text categorization, text files are commonly represented using the bag
of words model, which is based on Salton’s vector space model [103]. A
vocabulary of words or terms is extracted from the so-called document
set. For each term (t) in the vocabulary, its frequency (f) in a single doc-
ument (d) and in the entire set (D) is calculated. A weight is assigned
to each term, usually equal to its f in d; such weights are denoted term
frequencies (tf). When the frequency (F) of each term is calculated in D,
this is called Document Frequency (DF). The tf value of a term is further
divided by the frequency of the most frequent term in the document, i.e.,
max(tf) to obtain a normalized Term Frequency (TF) within the range of
[0-1] as shown in Equation (7.1). An extended version of TF-DF is TF
Inverse Document Frequency (TF-IDF), which combines TF and DF as
shown in Equation (7.2); where N is the number of documents in the
entire data set and DF is number of 4 in which t appears.

TermFrequency = ma;tcf(tf) (7.1)
N
TFInverseDocumentFrequency = TF X log[ﬁ] (7.2)

The problem of n-gram-based malware classification in this context is
perhaps different from the general text categorization case since a huge
vocabulary or very large feature sets have to be produced. The size of the
vocabulary creates two problems: most ML algorithms cannot directly
process the vocabulary and a vast number of terms in the vocabulary
do not provide any valuable information for classification. Therefore,

70

7.2. Related Work

it is necessary to obtain a subset of features by applying feature se-
lection. The Categorical Proportional Difference (CPD) algorithm is a
rather recent example of such an algorithm. In a number of text cate-
gorization experiments, CPD has outperformed other traditional feature
selection algorithms such as: chi-square, information gain, mutual infor-
mation, and odds ratio [104]. CPD represents a measure of the degree
to which a word contributes in discriminating a specific class from other
classes [104]. The possible outcome of CPD falls between [-1...1] where
a CPD value close to -1 indicates that a word occurs in an equal number
of instances in all classes and a value of 1 or in proximity to 1 indicates
that a word occurs only in one class. A is the number of times word w
and class c occur together and let B the number of times word w occurs
without class ¢, then we may define CPD for a particular word w and
class ¢ as shown in Equation (7.3):
A—-B

CPD(w,c) = A8 (7.3)
The reduced feature set can now be converted, e.g., into the Attribute-
Relation File Format (ARFF). ARFF files are structured ASCII text files
that include a set of data instances, each described by a set of fea-
tures [38]. AREFF files are used as input to the Waikato Environment for
Knowledge Analysis (Weka) [97] before applying learning algorithms in
order to build and analyze classifiers. Essentially, Weka is a suite of
machine learning algorithms and analysis tools for solving or analyzing
data mining problems. There are, of course, many alternatives to Weka,
but we argue that this workbench is particularly fitting for developing
our approach since it is released as open source and may be tuned, ex-
tended, or changed in any way.

7.2.2 Related Directions of Research

Opcodes have already been used to build signature databases that can be
searched to detect different variants of worms [69]. To avoid the prob-
lem of having to manually update the databases of the scanners, data
mining algorithms were later used as part of a scientific study to build

71

7. SCAREWARE DETECTION

a generic scanner [93]. In this study, experiments were performed on
two different data sets: the first data set contained the opcode of each
instruction and the second data set contained the opcode as well as the
tirst operand of each instruction. The frequency of appearance in the
virus class and in the benign class was used as a basis for feature selec-
tion. Results showed that the first data set produced better results than
the second. In another study, opcode n-grams of different sizes were
constructed to detect novel malware. By addressing the class imbalance
problem properly, an accuracy of 96 % was achieved [29]. The idea of us-
ing variable length instruction sequences was conceived as part of an at-
tempt to detect worms. Frequently occurring instruction sequences were
analyzed using ensemble learners to classify novel instances of worms.
In an attempt to detect a more recent type of malware, called spyware,
hexadecimal n-grams were used to represent binary files [20]. The most
common n-grams for each class together with overall high frequency n-
grams were used as features for building the classifiers. The spyware
detection rate was recorded to be 90.5 %.

Hexadecimal n-grams have been used extensively as features in tra-
ditional malware classification problems. Experiments have been per-
formed on viruses, worms and trojans. These types of malware are typ-
ically very distinct from the standard benign software program. More-
over, only a few studies have used only the opcode from the instruction
as the feature of choice [29,69,93]. Today, very little is known about the
appropriateness of using opcodes or instruction sequences as features
when trying to detect the type of malware that is more similar to benign
software in terms of behavior. In this paper, we investigate the concept
of scareware which, to the best of our knowledge, has not been inves-
tigated in terms of how well it can be detected by mining instruction
sequences.

72

7.3. Methodology

7.3 Methodology

Generalizing the scareware detection method so it can detect novel in-
stances can arguably be regarded as quite important for user protection.
Another problem regarding the detection of scareware is that it may re-
semble legitimate software to such extents that it is difficult to detect
differences. Recently, data mining classification algorithms have been
heavily applied in order to automate and extend the heuristic-based
methods for detection of traditional malware. It is, therefore, of interest
to investigate how well such classification algorithms can detect scare-
ware. Consequently, we present a static analysis method based on data
mining, which extends the general heuristic detection approach. In this
context, a dynamic analysis method is used to detect malware instances
by investigating runtime footprints while static analysis is carried out
on files without any runtime execution. Our data set contains Windows-
based executable scareware and benign files and this choice was made
since the Windows operating system is still the most commonly used
operating system, especially for novice users, and it is often considered
more vulnerable than, e.g., Unix-based operating systems. We have dis-
assembled our initial file database into instruction sequences and then
we extracted the opcodes from each instruction. The extracted opcodes
were combined into ordered lists, instruction sequences (IS), to produce
our vocabulary. Each word in vocabulary is of variable length. We have
used TF-IDF and CPD for generating the final data sets.

7.3.1 File Sampling and Data Set Design

As the threat of scareware is relatively new compared to, say, viruses
and worms, there is unfortunately no default or public data set available
for researchers to build classification models from. Therefore, we have
created a data set of 800 files out of which 550 are scareware (provided
by Lavasoft® from their scareware collection). The remaining 250 files
are benign and were downloaded from the web site CNET Download!!.
This web site claims that the software provided is spyware free. How-

Uhttp:/ /download.com

73

7. SCAREWARE DETECTION

ever, after downloading software from the web site and scanning it with
a commercial version of the F-Secure Client Security software!?, we dis-
covered that some files were actually infected by so-called riskware. The
infected instances were removed from the data set.

7.3.2 Extraction and Data Preparation

For the purpose of our experiment, we needed to convert our data set to
a format that could be processed by learning algorithms. We decided to
represent files by using extracted instruction sequences as features. The
advantage of using IS as a primary feature is that IS represent program
control flow blocks, which cannot be presented by binary or hexadeci-
mal n-grams or printable strings. Moreover, each IS in this study rep-
resents a function that can be located within the actual program for the
purpose of deeper analysis, even though such a step is out of scope in
the presented paper. We disassembled each program using the Netwide
disassembler!® (Ndisasm) , which was configured to auto-synchronous
mode to avoid misalignment between the data and code segments. The
generated output, from all the file segments, was stored in regular text
files and each entry contains the memory address of the instruction field
as well as the opcode and the operands. The disassembled files were
further processed through a parser to obtain the instruction sequences
(ordered lists of opcodes). During the extraction process, the end of
an instruction sequence was determined by identifying a conditional or
unconditional control transfer instruction or function boundary. It is
worth noting that these identified control transfer instructions (such as:
call, iret, jmp or jnz) were not included in the generated instruction se-
quences. In this way, we obtained variable length instruction sequences.
Each row in output contains single IS. Figure 7.3. shows the instruction
sequences extracted from a scareware Rouge:W32/Winwebsec? along-
with some other related information of this particular scareware.

Zhttp:/ /www.f-secure.com/
13ht’cp: / /nasm.us/

74

7.3. Methodology

popawxorimuladd
mulincaddaddaddpushpushimuldbpush
dbandmovinc
pushincaddmovaddincaddadd
inandmovpushpushpushpushpushpush
fisubincaddpushpushincadd

addpush

xlatband
addaddstdadcincaddrclpushpush
adcincaddpushpushand

Name: Rogue:W32/Winwebsec

Aliases: Program:Win32/Winwebsec (Microsoft)
Category: Riskware

Type: Rogue

Platform: W32

Figure 7.3: Instruction Sequence Extracted from Rouge:W32/Winwebsec

7.3.3 Feature Selection

Feature selection is performed to measure the correlation of each feature
with its class (scareware or benign). It is also performed to estimate the
role of that specific feature in classification task. The measures used for
feature selection by any feature selection methods are not biased to any
classification algorithm or class, which helps us in comparing the per-
formances of different classification algorithm.

Our disassembled files were in text format and each file can be read as
text string so we decided to use the bag of words model, since it has been
proven to be a suitable model for similar problems. We used the String-
ToWordVector filter in Weka to parse each string, extract the vocabulary
and produce word vectors. For our experiment, each word represents
a unique IS. We used TF-IDF for the weight calculation of each word.
Our vocabulary features top 1,625 unique words. We decided to per-
form a secondary feature selection to eliminate features, which will not
contribute significant in classification task. We applied CPD to obtain
reduced feature sets. As it is difficult to know beforehand the optimal
number of features to remove, we decided to generate a number of data
sets where each set was generated by keeping a different number of at-
tributes. This process resulted in 19 reduced data sets for which 5-95 %

75

7. SCAREWARE DETECTION

of the original features were kept.

7.4 Experiment

The aim of the experiment is to evaluate classifier performance on the
task of detecting scareware by learning from variable length instruction
sequences and to assess the impact of feature selection using categorical
proportional difference. Learning algorithms can be categorized accord-
ing to their learning bias, that is, by the way their designs restrict the
search space and dictate how this space is traversed. When categorizing
the commonly used algorithms in this manner, a rather small number of
algorithm families can be identified, e.g., tree inducers, rule set induc-
ers, neural networks, instance based learners, and Bayesian learners. We
have tried to select at least one representative algorithm from each fam-
ily. As our study extends the heuristic based detection technique that
uses rules set, so we used families of algorithms that either uses rules
or help in developing rule set. These families of algorithms are rules
based and decision tree. Except these families we also used support vec-
tor machine, Bayesian theorem based algorithms and nearest neighbor
concepts for classification. All the algorithms were used at their default
configuration in Weka.

7.4.1 Learning algorithms

ZeroR

ZeroR is a rule-based algorithm. ZeroR works as a random guesser,
modeling a user that makes an uninformed decision about software by
always predicting the majority class (the class to which most of the data
instances belong) [38]. This algorithm is frequently used as a baseline
to measure the performance gain of other algorithms in classification
against chance.

76

7.4. Experiment

JRip

JRip is an implementation of the Ripper algorithm. This algorithm tries
to generate an optimized rule set for classification. Rules are added on
the basis of coverage (that is, how many data instances they cover) and
accuracy [105]. A data instance is classified as positive if a rule matches;
otherwise it is classified as negative. JRip also features an optimization
step in which redundant or bad rules are discarded.

J48

J48 is a decision tree based learning algorithm, which uses the concept of
information entropy [106]. Decision trees recursively partition instances
from the root node to some leaf node and a tree is constructed. For
partitioning, J48 uses the attribute with the highest information gain and
stops if all instances of same class are present in the subset. In learning,
they adopt top-down approach and traverse the tree to make a set of
rules, which is used for classification.

Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) belongs to support vector ma-
chines. During classification, SMO finds the optimal hyper-plane, which
maximizes the distance/margin between two classes thus defining the
decision boundaries. It is used for classification and regression [107].

Naive Bayes

Naive Bayes (NB) is based on Bayes theorem and generates a probabilis-
tic classifier with independence assumptions, i.e., the different features
in the data set are assumed not to be dependent of each other. Therefore,
presence (or absence) of a particular feature of a class is not dependent
on the presence (or absence) of any other feature [108].

77

7. SCAREWARE DETECTION

IBk

IBk is k-nearest neighbor classifier, which uses Euclidean distance [109].
Predictions from the neighbors is obtained and weighted according to
their distance from test instance. Majority class of closest k neighbors is
assigned to new instance.

Random Forest

Random Forest (RF) is an ensemble learner. A specified number of de-
cision trees are created and their mode is obtained for prediction pre-
dictions [110]. Being an ensemble learner, it has superiority of having
combined decision, which is not the case for other algorithms, therefore,
it is expected to produce better accuracy than single decision tree.

7.4.2 Evaluation

We tested each learning algorithm by performing 10 fold cross-validation
(CV) tests to ensure that the generated classifiers are not tested on the
training data. Confusion matrices were generated by using the responses
from classifiers. The following four measures defined the elements of the
generated confusion matrices: True Positives (TP) represent the correctly
identified scareware programs, False Positives (FP) represent legitimate
software that has been classified as scareware, True Negatives (TN) rep-
resent correctly identified legitimate programs and False Negatives (FN)
represent scareware programs that were incorrectly classified as legiti-
mate software applications. We argue that the false negatives carry the
highest cost from the users’ perspective.

The performance of each classifier was evaluated using Detection Rate
(DR), which is the percentage of correctly identified scareware, as shown
in Equation (7.4). False Negative Rate, which is the percentage of wrongly
identified malicious programs (see Equation (7.5)), and Accuracy (ACC),
the percentage of correctly identified programs (see Equation (7.6)). The
last evaluation measure used was Area Under Receiver Operating Char-
acteristic Curve (AUC). AUC is essentially a single-point value derived

78

7.5. Results

from a ROC curve, which is commonly used when the performance of a
classifier needs to be evaluated for the selection of a high proportion of
positive instances in the data set [38]. Therefore, it plots the DR on the
x-axis in function of the False Positive Rate (FPR) on the y-axis at differ-
ent points. FPR is the percentage of wrongly identified benign programs.
The higher AUC of an algorithm indicates that this algorithm is more ro-
bust and better in classification. In many situations, accuracy can also be
a reasonable estimator of performance (the performance on completely
new data). However, AUC has the benefits of being independent of class
distribution and cost [98] unless the skewness of the class distribution is

extreme.
TP

DetectionRate = TP+ EN (7.4)
FN
] == 7.
FalseNegativeRate TP+ EN (7.5)
TP+ TN
Accuracy = TP+ TN+ EP £ EN (7.6)

7.5 Results

The main experimental results, that is, the AUC of the seven included al-
gorithms on the 19 data sets, are shown in Table 7.1. In this table, ZeroR
is used as a baseline (and can be regarded as a random guesser) with
AUC of 0.500 (0.000) for all the data sets. All algorithms had performed
better than base algorithm. Random Forest outperformed the other al-
gorithms and its best performance (DR of 0.977, FNR of 0.023 and FPR of
0.197) was recorded at the 60 % keep level (a data set with 974 features).
The Naive Bayes yielded an acceptable detection rate (0.857), but its FPR
at different data sets was too high (i.e., up to 0.688) for practical use.
Moreover, Naive Bayes also exhibited a high variance in performance re-
lated to the different data sets. Due to this behavior, it is not possible to
consider this algorithm as reliable for the studied problem. On the same
data set other algorithms also achieved either the highest AUC or near
to the highest value with ignorable differences such as SMO achieved

79

7. SCAREWARE DETECTION

Table 7.1: Learning algorithms AUC results for different levels of feature selection

Data ZeroR SMO Naive Bayes IBk Jrip J48 Random Forest
5% 0.500(0.000) 0.717(0.119) 0.787(0.030) 0.778(0.030) 0.657(0.129) 0.500(0.000) 0.781(0.030)
10% 0.500(0.000) 0.812(0.038) 0.829(0.044) 0.851(0.036) 0.809(0.040) 0.788(0.031) 0.857(0.036)
15% 0.500(0.000) 0.860(0.045) 0.802(0.049) 0.896(0.037) 0.817(0.054) 0.869(0.043) 0.937(0.027)
20% 0.500(0.000) 0.878(0.040) 0.814(0.045) 0.928(0.036) 0.868(0.047) 0.877(0.048) 0.958(0.021)
25% 0.500(0.000) 0.864(0.042) 0.809(0.045) 0.924(0.034) 0.872(0.044) 0.874(0.054) 0.959(0.020)
30% 0.500(0.000) 0.883(0.041) 0.804(0.045) 0.908(0.043) 0.885(0.038) 0.876(0.056) 0.960(0.021)
35% 0.500(0.000) 0.885(0.041) 0.805(0.045) 0.927(0.036) 0.883(0.044) 0.880(0.053) 0.962(0.022)
40% 0.500(0.000) 0.880(0.043) 0.815(0.045) 0.938(0.032) 0.885(0.041) 0.901(0.043) 0.964(0.018)
45% 0.500(0.000) 0.892(0.041) 0.832(0.044) 0.930(0.034) 0.887(0.043) 0.904(0.047) 0.965(0.021)
50% 0.500(0.000) 0.900(0.036) 0.855(0.043) 0.932(0.031) 0.893(0.043) 0.896(0.048) 0.966(0.019)
55% 0.500(0.000) 0.906(0.035) 0.897(0.040) 0.928(0.033) 0.893(0.041) 0.896(0.051) 0.969(0.020)
60% 0.500(0.000) 0.910(0.033) 0.923(0.033) 0.935(0.029) 0.894(0.047) 0.900(0.044) 0.972(0.017)
65% 0.500(0.000) 0.910(0.031) 0.879(0.056) 0.938(0.028) 0.893(0.042) 0.894(0.046) 0.972(0.017)
70% 0.500(0.000) 0.909(0.031) 0.710(0.056) 0.938(0.028) 0.901(0.038) 0.893(0.047) 0.970(0.019)
75% 0.500(0.000) 0.909(0.031) 0.667(0.044) 0.938(0.028) 0.898(0.039) 0.893(0.047) 0.968(0.021)
80% 0.500(0.000) 0.909(0.031) 0.657(0.043) 0.938(0.028) 0.901(0.039) 0.916(0.041) 0.970(0.021)
85% 0.500(0.000) 0.909(0.031) 0.656(0.043) 0.938(0.029) 0.898(0.043) 0.915(0.037) 0.971(0.018)
90% 0.500(0.000) 0.911(0.031) 0.658(0.042) 0.939(0.027) 0.896(0.039) 0.910(0.036) 0.970(0.019)
95% 0.500(0.000) 0.915(0.031) 0.668(0.044) 0.938(0.028) 0.901(0.039) 0.906(0.038) 0.971(0.022)

&

7.6. Analysis

int 0x21

push sp

push word 0x7369
and [bx+si+0x72],dh
outsw

Figure 7.4: A disassembled function in one particular scareware instance

AUC 0.910 and highest AUC with 95 % features was 0.915, IBk achieved
0.935 while the highest AUC was 0.938 for dataset of 65 % features. JRip
and J48 both achieved AUC of 0.894 and 0.900 respectively while their
highest AUC was 0.901 and 0.916 for data sets with 70 % and 80 % fea-
tures. Due to these ignorable minor differences in results, we considered
that data set with 60 % features is a better option for our problem.

7.6 Analysis

We created 19 different data sets and each data set was having 5 % less
features than its successor. Experimental results indicated that a step of
5 % was not enough to create significant difference in the result. NB
has been an exception to this, which showed a random trend with in-
creased or decreased percentage of features. However, if we look at the
data sets created with the difference of 10 % features then the difference
in results is quite prominent. If the step is increased up to 20 % differ-
ence of features, then a clear and understandable difference of results is
present. If we review the overall performances on the various data sets,
it is clear that the performance of most algorithms was quite high on the
60 % feature selection level. It seems that number of kept features at this
level is properly balanced with the number of instances from each class.

In order to understand the classification process and to find interest-
ing features, we analyzed the models generated by JRip, J48, and SMO.
Models created by other algorithms cannot be visualized, so it was not
possible to perform their analysis. We found three kinds of features i.e.,
features present only in scareware, features present only in legitimate,

81

7. SCAREWARE DETECTION

features which were treated differently by different algorithms. Table
7.2. shows some selected features with a high impact on the classifica-
tion decision. Features 1 and 7 are used to indicate scareware by all three
models. However, features 2, 5, 8, and 9 were considered as a scareware
indicative feature by two algorithms, but were ignored by the remaining
algorithms. Features 2, 3, 6, and 10 seem to be considered as legitimate
software indicative features by all algorithms. Finally, feature 4 is re-
garded as a legitimate indicator by JRip, but as a scareware indicator by
SMO.

In order to demonstrate the information provided by a single feature,
we traced the features from Table 7.2. to the disassembled binary files.
One such example is provided in Figure 7.4. As per our understanding,
the function in Figure 7.4. seems to indicate an attempt to transfer some
specific string data to the user for display or transfer from user to some
other end. The particular contents of the memory are not available to
us since we are performing a static analysis and thus to get a deeper
understanding, we would have to manually analyze a larger portion
of disassembled code. However, it is clear that some functionality is
present only in scareware instances, which would suggest that it is pos-
sible to differentiate them from benign files on a general level. However,
it would be hard for a human expert to detect and analyze such subtle
differences; therefore, we argue that our automatic approach is supe-
rior, especially when considering the fact that regular applications can
contain several thousands of lines of code.

7.7 Conclusions and Future work

We have extended the heuristic-based detection technique using a vari-
able length instruction sequence mining approach for the purpose of
scareware detection. Since scareware is a rather recent software secu-
rity threat, there are no publicly available data sets to generate clas-
sification models from. We have, therefore, obtained a large sample
of scareware applications and designed an algorithm for extracting in-

82

7.7. Conclusions and Future work

Table 7.2: Selected features and their number of occurrence in each class

Jrip J48 SMO
FENo Feature S L S L S L
1 pushpushandoutsw >0 >0 -0.1420
2 ormovadd >0 -0.0813
3 inswpopaw >=1 0.1940
4 incoutswoutsb >=1 -0.0195
5 addmovmovmovcmp >0 -0.0615
6 leadb >1 >0 0.2016
7 dbdecmov >0 >0 -0.0848
8 outswarplfs >0 -0.0223
9 movpushmov >0 -0.0572
10 pushaddpush >1 0.1704

struction sequences from these applications (and similarly for legitimate
software). The data sets used in this study will be publicly available at
http://www.bth.se/com/rks. The experimental results are promis-
ing: the Random Forest algorithm managed to yield an AUC score of
0.972 after the complete data set was processed using the categorical
proportional difference feature selection algorithm. Moreover, the re-
sults also indicate that our method is trustworthy since the false nega-
tive rate (the rate of scareware classified as legitimate) is considerably
low (0.023). For future work, we aim to conduct further experiments on
an even larger collection of scareware and benign files. We also plan
to employ a hybrid identification method, which would integrate vari-
able length instruction sequences with features extracted from, e.g., the
end user license agreement or the information about the system calls a
particular program makes.

83

Eight

Accurate Adware Detection
using Opcode Sequence
Extraction

Raja Khurram Shahzad, Niklas Lavesson, Henric Johnson

Abstract

Adware represents a possible threat to the security and pri-

vacy of computer users. Traditional signature-based and heuristic-
based methods have not been proven to be successful at detecting
this type of software. This paper presents an adware detection
approach based on the application of data mining on disassem-
bled code. The main contributions of the paper is a large publicly
available adware data set, an accurate adware detection algorithm,
and an extensive empirical evaluation of several candidate machine
learning techniques that can be used in conjunction with the algo-
rithm. We have extracted sequences of opcodes from adware and
benign software and we have then applied feature selection, using
different configurations, to obtain 63 data sets. Six data mining al-
gorithms have been evaluated on these data sets in order to find an
efficient and accurate detector. Our experimental results show that
the proposed approach can be used to accurately detect both novel
and known adware instances even though the binary difference
between adware and legitimate software is usually small.

85

8. ADWARE DETECTION

8.1 Introduction

The aim of this study is to investigate adware detection and to develop
an algorithm that accurately detects known and unknown adware in-
stances. Adware may be defined as software that is installed on the
client machine with the objective of displaying ads for the user of that
machine [22]. Basic adware may also be bundled with extra function-
ality or software to invade the privacy of a user by monitoring his or
her surfing activities or preferences in order to display related pop-up
or pop-under advertisements. However, advanced adware may, for ex-
ample: read data from locally stored files, collect surfing or chat related
information, and even create remote connections for transferring and in-
stalling software in the future by making a system vulnerable and com-
promised [22]. These and similar capabilities may even turn the adware
into a spyware or some other type of malicious software (malware). Ar-
guably, adware compromises the confidentiality, and in some cases also
the integrity and availability of computer systems. Analogously to com-
puter viruses, which infect executable computer files, adware may be
installed automatically when the user visits infected websites, installs
freeware or shareware or when the user tries to open infected E-mail
attachments [111]. The presence of adware is often mentioned in the
End User License Agreement (EULA), but in a manner, which makes it
difficult for the average users to comprehend or even notice [94]. As a
consequence, the user’s informed consent is thus not obtained. Because
of its presence in the EULA, adware vendors often claim that their soft-
ware should be regarded as benign [94]. Such claims along with the
differences in policies and regulations decided upon by different coun-
tries place adware in a grey zone in terms of legal status.

The adware problem is growing continuously due to the profound mon-
etary gains for adware developers [22,112]. The users’ awareness about
adware and its potential consequences is generally considered to be
low [111]. Currently, the major commercial anti-virus tools try to de-
tect instances of adware by relying on static or dynamic analysis such
as signature-based and heuristic approaches (which were developed for

86

8.1. Introduction

detection of viruses). These techniques have a deficiency in detecting
unknown or new instances and can be bypassed in different ways [29].
Two popular commercial tools for adware detection are SpyBot' and
AdAware?, which rely on signature based approach. Hence they require
frequent update of their signature database and can detect only known
instances.

Consequently, in this paper, we present a (static) detection method based
on data mining. We have proposed an automated means for extracting
instruction sequences (ISes) from adware and benign files in order to
capture the behavior of the corresponding software. Our method ex-
tracts the operation code (opcode) from each instruction and then pro-
duces a data set in which each instance is described by sequences of
opcodes. As the remainder of this paper will show, our approach is fea-
sible for detecting adware despite the fact that the binary files of this
type of software are sometimes quite similar to legitimate software.

8.1.1 Aim and Scope

In this paper, we present the results from an experimental study of ad-
ware detection. The aim is to determine the success of using data mining
techniques for the detection of unseen and new instances of adware. Ad-
ditionally, we investigate the relationship between opcode n-gram size
and the number of features required to generate accurate detection mod-
els. Our hypothesis is that: it is possible to find a balance between the
size of n-grams (that are used to represent opcode sequences) and the
number of features (the number of n-grams) that yields a model of rea-
sonable classification performance.

Thttp:/ /www.safer-networking.org /
Zhttp:/ /lavasoft.com

87

8. ADWARE DETECTION

8.2 Background

Adware is different from other malware since it may be installed with
or without the consent of the user [23]. Users may accept its presence
knowingly for using freeware software or unknowingly when it is obfus-
cated in the EULA. The user may also be fooled into installing adware
when trying to install other software or the installation of adware may
be carried out as a background task without any human interaction at
all [23]. Thus, it is important to be able to automatically detect adware.
As mentioned earlier, traditional detection techniques, i.e., signature-
based and heuristic methods have a deficiency in detecting novel in-
stances of traditional malware, spyware and adware. In the signature-
based technique, specific features or unique strings are extracted from
binaries, which are later used for detection of malware. However, a copy
of the malware is required to extract and develop a signature for detec-
tion purposes. Due to this fact, signature-based techniques are usually
not capable of detecting novel (unseen) instances of malware. In the
heuristic technique, human experts define rules for detecting behavioral
patterns for malware detection. This technique is capable of detecting
novel instances albeit with limited capacity and may be prone to false
alarms.

8.2.1 Data Mining-based Detection

To overcome the aforementioned deficiency in detection techniques, Ma-
chine Learning (ML) methods, as an alternative approach, were applied
for malware detection in 2001 [33]. Since then, different studies have
been conducted for detection of traditional malware such as viruses,
worms, and so forth, by applying ML and Data Mining (DM) technolo-
gies. DM helps in analyzing the data, with automated statistical analysis
techniques, by identifying meaningful patterns or correlations. The re-
sults from this analysis can be summarized into useful information and
can be used for prediction [38]. ML algorithms are used for detecting
patterns or relations in data, which are further used to develop a classi-
fier or a regression function [38].

88

8.2. Background

For DM purposes, researchers have prepared their experimental data
sets either by using different representations of binary files or by ex-
tracting a certain type of features that is present in the files. A binary
file may be converted into hexadecimal code, binary code or ISes as a
means for representation. Moreover, these representations may be fur-
ther used to create n-grams, which are fixed-size strings. Other features
that are commonly present in files are printable text strings or calls to an
application-programming interface. The use of opcodes as an alternative
representation has also been suggested in [102]. An opcode is a part of
the instruction for an operation in machine language. It may or may not
include one or more operands for performing an operation such as an
arithmetical operation or transferring program control.

When the data set is prepared for machine learning classification tasks,
a class imbalance problem may arise. Typically, the imbalance problem
occurs in a data set when one class has significantly more instances in
comparison to another class or other classes. Due to this problem, the
generated classifier tends to misclassify instances of the least represented
class(es) and thus the problem may result in degradation of classification
performance. Therefore, it is necessary to address the imbalance prob-
lem during data set preparation. One approach is of course to try to
ensure that all classes are equally represented. This approach, however,
turns out to be practically impossible to adopt in many real world prob-
lems since there usually is a great shortage of data instances of certain
classes.

8.2.2 Feature Selection

Another important task when preparing the data set is to reduce the
data set complexity while maintaining or improving performance of the
classification model. For this purpose, the most common approach is to
apply a feature selection algorithm. The objective of feature selection is
basically to apply a feature quality measure to prioritize the available
features and then keep only the best features from the prioritized list. In

89

8. ADWARE DETECTION

the information retrieval domain, the bag-of-words model (in which the
logical order of words has no importance) performs better than other
models in representing text documents [113].

Different feature selection measures, such as Document Frequency, Gain
Ratio, and Fisher Score, are commonly used for obtaining reduced data
sets [38]. Categorical Proportional Difference (CPD) is a relatively new
addition in the feature selection algorithm family for text classification
tasks [104]. The experiments have shown that CPD outperforms com-
mon feature selection methods such as chi-square and information gain.
CPD represents a measure of the degree to which a word contributes to
differentiating a specific class from others [104]. The possible value of
CPD is within the interval of -1 and 1. A CPD value close to -1 indicates
that a word to large extent occurs in an equal number of instances in all
classes and a value in proximity of 1 indicates that a word occurs only in
one class. Given that A is the number of times word w and class ¢ occur
together and B is the number of times word w occurs without class c,
then we may define CPD for a particular word w and class ¢ as follows
(see Equation (8.1)):
A—B

CPD(w,c) = A8 (8.1)
The reduced feature sets can then be used for data mining purposes and
can be used as input to learning algorithms. Many types of learning
algorithms are available. Therefore, it is important to choose suitable
algorithms with respect to the problem at hand.

8.3 Related Work

Due to legal issues and lawsuits from adware vendors, anti-virus ven-
dors are hesitant to classify any software as adware [112]. Therefore,
we have not been able to find any specific approaches for detecting ad-
ware. However, we argue that it is important to detect adware to let
users exercise the right to make an informed choice about the software
they install. In previous work, opcodes have been used for detection of

90

8.4. Method

different variants of worms and some types of spyware [69]. From the
original malware, opcodes were extracted and paired with labels. With
these pairs, researchers developed signatures, which were matched with
pairs of variants of malware. A three-stage scanning was performed,
which was successful in detecting the different variants. In another
study, an attempt to detect unknown malware was made by extracting
opcodes from malware and then converting them into sequences of op-
codes [29]. In their experiment, the researchers applied three classifiers
out of which two were boosted and achieved 93 per cent accuracy. In yet
another study, variable length instruction sequences were used as a rep-
resentation for the detection of worms. This time, researchers applied
Bagging and were successful in achieving 96 per cent accuracy [71]. In
an attempt to detect spyware, n-grams of hexadecimal representation
were used as features [20]. This attempt was successful in obtaining 90.5
% accuracy. Most of the reviewed detection experiments on traditional
malware were performed using hexadecimal n-grams as features. Only
a few researchers seem to have considered opcodes as features and then
only from the code segment of the studied files [29,71]. The files in
these experiments were disassembled using commercial dissemblers to
obtain the IS. Moreover, most of these studies have not considered the
class imbalance problem, which may lead to unnecessarily high rates of
misclassification. In conclusion, most of the work concerning malware
detection focuses on viruses, worms, and trojans. It is not clear whether
the same type of detection methods would be successful when dealing
with adware, which is more similar to legitimate software than such
types of malware. Nevertheless, adware represents a serious threat to
privacy and, as such, the research on adware is important, especially in
terms of detection approaches.

8.4 Method

We propose a static DM-based analysis method, which includes disas-
sembling the adware and benign files during preprocessing. We aim
to evaluate our proposed method for detecting unknown and new in-

91

8. ADWARE DETECTION

stances as well as existing instances of adware.

8.4.1 Overview

The focus of our analysis is Windows-based executable files, since the
Windows operating system has been considered to be more vulnerable
to adware as opposed to, say, Unix-based operating systems. When any
software is disassembled, the generated output contains text, which may
represent hexadecimal dumps, binary dumps or ISes. We argue that
text categorization techniques can, therefore, be applied on disassem-
bled output to distinguish between adware and benign software. Thus,
we disassemble executable files to obtain ISes and then extract opcodes
from those instruction sequences. The extracted opcodes are converted
into a vocabulary data set. Each word in the vocabulary data set is an n-
gram of a specific size, which represents a feature. Although the size of
each word in a particular vocabulary set is fixed, the length is variable.
For example, if we observe a data set where the n-gram size is 4 then
each word is constructed by joining four opcodes, where each opcode
may have a different length. We use Term Frequency - Inverse Docu-
ment Frequency (tf-idf) to measure the significance of every word in or-
der to extract significant features. The generated data is converted into
the Attribute-Relation File Format (ARFF) data set file format. The ARFF
files are further processed with CPD to obtain feature-reduced data sets,
which are used as input to the Waikato Environment for Knowledge
Analysis (Weka) [97] to perform the classification experiments. Weka is
a suite that includes a large set of machine learning algorithms as well
as analysis tools for solving data mining problems.

8.4.2 Data Set Generation

No public data set is available for use in adware detection experiments
as opposed to what is available for, e.g., virus and intrusion detection.
Therefore, we have created a data set with 600 files out of which 300
files are adware and 300 files are considered as benign. All files rep-
resent executable binaries for the Windows operating system. The be-

92

8.4. Method

nign files stem from two sources: a copy of the Windows XP operating
system was installed on a clean computer to obtain benign files, e.g.,
small programs such as notepad, paint, clock, and so forth. Second,
to represent files available on the Internet, programs were downloaded
from CNET Download®. This website claims to provide spyware free
software; however, when downloaded data set was scanned with a com-
mercial version of the F-Secure Client Security software?*, some instances
were found infected by so-called riskware. The infected instances were
replaced by other benign files. Adware files were obtained from a mal-
ware database’.

8.4.3 File Size and Data Size Analysis

File size and data size analysis has to be performed to investigate po-
tential imbalance problems. When adware and benign programs were
collected, it was observed that the mean file size of the two software pro-
gram groups was quite different. Therefore, it was necessary to avoid
an unbalanced number of instructions since different file sizes may pro-
duce a varying number of ISes. This may further lead to a class based
difference in the generated vocabulary, which in turn may lead to an
imbalance problem. Therefore, we decided to restrict the maximum file
size to 512 KB for this particular study. It was also considered that the
total number of files and the total size of these files should be approxi-
mately equal in both data sets.

8.4.4 Disassembly and Opcode Extraction

The collected programs were disassembled to get instruction sequences
in assembly Language. This step was performed using the Netwide dis-
assembler® (Ndisasm), which is commonly available for UNIX/Linux
operating systems. Ndisasm disassembles binary files without under-

3http:/ /download.com

*http:/ /f-secure.com

Shttp:/ /lavasoft.com

®http:/ /http:/ /www.nasm.us/

93

8. ADWARE DETECTION

standing (correctly processing) object file formats. The generated output
contained the memory address of the instruction, the byte-based loca-
tion in the file and the instruction itself, i.e., the combination of opcode
and operands. An application was further developed to extract the op-
codes from the disassembled file. We did not just include the opcodes
from the code segment of the files, but instead used opcodes extracted
from any segment in the file.

8.4.5 Parsing and n-Gram Size

The extracted opcode data were processed further with a parser that
tokenized the data to produce vocabulary/words as per a selected n-
gram size. In a previous research study, an n-gram size of 4 or 5 yielded
promising results for the hexadecimal representation [66,92]. In another
study, an n-gram size of 2 for opcode representation yielded the best
performance [29]. Therefore, we decided to use n-grams of sizes rang-
ing from 2 to 8 while considering 4 and 5 as intermediary values. The
purpose of selecting this range was to evaluate n-gram sizes in proxim-
ity of what has been considered adequate settings in previous research.
We created seven master data sets using these n-gram sizes. Each row
in these data sets represented one word, which is an n-gram of a spe-
cific size. Thus we obtained features of n-grams with seven different
n-gram sizes. These data sets contain the features with different number
of occurrences in each class. We also calculated the number of unique
features in one class. Table 8.1. presents the vocabulary statistics for
each class and data set.

8.4.6 Feature Selection

The main objective of our particular feature selection step was to ob-
tain sets of features with a different amount of data that represents both
adware and benign programs. The output obtained from the previous
steps, contains huge vocabularies, which may lead to two problems, i.e.,
ML algorithms may not process this huge vocabulary and all words in
vocabulary do not provide valuable information for classification. We

94

8.4. Method

Table 8.1: Vocabulary Statistics

Adware Benign Final
Total Unique Total Unique (tf-idf)

4497344 35666 4381315 25921 1236
2998173 452915 2920818 228780 1340
2248586 876451 2190581 440580 1413
1798843 881768 1752439 565536 1518
1499012 804138 1460335 630851 1630
1284845 727570 1251705 656345 1676
1124215 660092 1095219 643148 1753

NVl WN |3

used tf-idf for initial feature selection. The frequency n is number of
times a word (or n-gram in our case) appears in single document, dj.
It is not feasible to use this frequency as basis for selection of words
as documents may be of different length so that some words will be
more frequent regardless of their actual importance. For normalization
purposes, we use Term Frequency (#f), which gives a measure of the im-
portance of a word (also known as term) in document dj. This measure
is obtained by dividing the frequency of a word, ni,j, with the sum of all
frequencies of all words in the document dj. For obtaining the general
importance of word in a document set, D, we use Inverse Document Fre-
quency, idf. For obtaining idf, D is divided by the number of documents
that include that particular word and then the logarithm of that value is
taken. To get the final measure of a word and filter out common words,
we use Term Frequency - Inverse Document Frequency. The tf-idf of a
word is obtained by multiplying #f and idf of that particular word. By
using tf-idf, we obtained the final data sets. The total number of final
words in every data set varies. In information retrieval, it is common to
use a predefined number of words obtained from t#f-idf (such as the top
1,000 words for both classes or each class). We argue that our problem is
different from normal text classification in terms that when the n-gram
size increases, the number of unique words in each class is also increased

95

8. ADWARE DETECTION

(see Table 8.1). Therefore, we let the number of selected words depend
on the data set in question instead of a predefined number. There is an
additional benefit derived from this feature selection step: suppose a file
in the benign data set may be infected with a zero-day threat or that the
features extracted from some files are really part of the data segment in-
stead of the code or images. For these cases, the corresponding features
will be ignored due to their absence in other files of the same class.

Moreover, the output from the previous step was further processed us-
ing the CPD algorithm to create the final data sets. CPD has shown
promising results in text classification, but has not been used previously
for malware classification. We expected that the use of CPD would lead
to better detection performance than other common feature selection
methods. As the exact percentage of features to keep in order to yield
optimal performance is not known beforehand, we chose to discard fea-
tures in increments of 10 per cent for every generated data set. Nine
final data sets for each n-gram size were created. These data sets can be
downloaded from http://www.bth.se/com/rks.

8.4.7 Data mining algorithms

Previous studies on similar problems are not conclusive regarding which
learning algorithm generates the most accurate classifiers. In a number
of studies of malware detection, Ripper (JRip), C4.5 Decision Tree (J48),
Support Vector Machines (SMO), and Naive Bayes (NB) performed bet-
ter than other algorithms. In a previous study of text categorization [23],
k-nearest neighbor (IBk) outperformed NB and other algorithms. Based
on previous research, we selected these algorithms as candidates and
compared them against ZeroR as a baseline.

ZeroR

ZeroR is a simple, deterministic rule-based algorithm. ZeroR resembles
as a random guesser, which could be used to model a user that makes an
uninformed decision about software by always predicting the majority

96

8.4. Method

(€70°0)868°0 (FF0'0)¥88°0 (620°0)S€6'0 (920°0)S¥6'0 (F70°0)8¢8°0 %08
(9€0°0)106'0 (S70°0)588°0 (F20°0)6¥6'0 (1€0°0)6€6°0 (2F0°0)8€8°0 %0
(170°0)906'0 (6¥0°0)888°0 (¥20°0)s¥6'0 (1€0°0)2F6'0 (2F00)£98°0 %09
(S70°0)06'0 (670°0)988°0 (1€0°0)¥¢6'0 (1€0°0)S76'0 (9€0°0)268°0 %08
(9€0°0)906'0 (£50°0)968°0 (£€0°0)926°0 (£€0°0)2£26'0 (6£0°0)106°0 %0F
(870°0)688°0 (SF0'0)¥88°0 (2€0°0)026'0 (9€0°0)9060 (9%0°0)6£8°0 %0€
(#90°0)818°0 (850°0)2€8°0 (£¥0°0)988°0 (£F0°0)8¥8°0 (990°0)TSZ°0 %0¢
(190°0)218°0 (£80°0)¥28°0 (Z¥0°0)¥88°0 (850°0)ST8°0 (6S0°0)0T8°0 %01
dry(sv(¥4I OIS safeq 2ArRN = 9ZIG-U

¥ Jo az1s wread-u 10J anJea 2AIND) DO IOPU) LdIY 7' el

97

8. ADWARE DETECTION

class [38]. This algorithm is frequently used as a baseline to measure the
performance gain of other algorithms in classification against chance.

JRip

JRip is an implementation of the Ripper algorithm [105], which tries
to generate an optimized rule set for classification. Rules are added on
the basis of coverage (that is, how many data instances that are matched)
and accuracy. Ripper includes intermediate and post pruning techniques
to get increase the accuracy of the final rule set.

J48

J48 is a decision tree induction algorithm, extended from the ID3 al-
gorithm, which uses the concept of information entropy [106]. Decision
trees recursively partition instances from the root node to some leaf node
and a tree is constructed.

SMO

SMO is an implementation of the support vector machines (SVM) algo-
rithm using Platts sequential minimization optimization. During classi-
fication, SMO tries to find the optimal hyperplane, which maximizes the
distance/margin between two classes thus defining the decision bound-
aries. It is used for classification and regression [107]. SMO has been
generalized in order to be applicable for problems in which there are
more classes than two.

Naive Bayes

Naive Bayes is based on Bayes theorem and generates a probabilistic
classifier with independence assumptions, i.e., the different features in
the data set are assumed not to be dependent of each other [108]. Clearly,
such an assumption is violated in most real-world data sets. Neverthe-
less, the Naive Bayes algorithm has proven to generate quite accurate
classifiers for many problems.

98

8.5. Evaluation Metrics

IBk

IBk is an implementation of the k-nearest neighbor (KNN) algorithm,
which computes the Euclidean distance between the instance to be clas-
sified and the instances included in the training set. Predictions from the
neighbors is obtained and weighted according to their distance from the
test instance. The majority class of the closest k neighbors is assigned to
the new instance [109].

8.5 Evaluation Metrics

We evaluated each learning algorithm by performing cross-validation
tests. Confusion matrices were generated by using the responses from
classifiers. The following four estimates defined the elements of such
a matrix: True Positives (TP) represent the correctly identified adware
programs. False Positives (FP) represent the incorrectly classified benign
programs. True Negatives (TN) represent the correctly identified benign
programs and False Negatives (FN) represent the incorrectly identified
adware programs.

The performance of each classifier was evaluated using Detection Rate
(DR), which is the percentage of correctly identified adware. False Alarm
Rate (FAR), which is the percentage of wrongly identified benign pro-
grams and Accuracy (ACC), the percentage of correctly identified pro-
grams. We argue that, for our problem, False Negative Rate, which is the
percentage of incorrectly identified adware programs, is more important
than FAR. The last evaluation parameter was Area Under Receiver Op-
erating Characteristic Curve (AUC). AUC is essentially a single point
value derived from a ROC curve, which is commonly used when the
performance of a classifier needs to be evaluated for the selection of a
high proportion of positive instances in the data set [38]. Therefore, it
plots the DR on the x-axis in function of the FAR on the y-axis at different
points. In many situations, ACC can be a reasonable estimator of predic-
tive performance. However, AUC has the benefits of being independent
of class distribution and cost [98]. In many real-world problems, the

99

8. ADWARE DETECTION

classes are not equally distributed and the cost of misclassifying one
class may be different to that of misclassifying another. For such prob-
lems, the ACC metric is not a good measure of performance, but it may
be used as a complementary metric.

8.6 Experimental Procedure

To investigate our hypothesis that it is possible to find a suitable com-
bination of n-gram size and the number of features to yield a model
of reasonable classification performance, a comprehensive set of eval-
uation runs was designed. Our experiment used seven different sizes
of n-grams to create data sets and for each specific n there were nine
sub sets ranging from 10 % features to 90 % features. In total, we con-
ducted 630 10-fold cross-validation (CV) tests for each classifier, which
resulted in 3,780 runs in total. Default configurations were used for all
algorithms. We used corrected paired t-test (confidence 0.05, two tailed)
to compare each classifier with the base line classifier ZeroR.

8.7 Results

Most of the algorithms performed well when using an n-gram size of 4
and the 70 % features data set. The results of all algorithms were com-
pared with the results of ZeroR, which achieves an AUC score of 0.50
(random guessing). Figure 8.1. shows the comparison of all algorithms
in terms of AUC score for n-gram size of 4 with 70 % features data set.
The AUC scores for IBk for aforementioned data set are presented in Ta-
ble 8.2. Considering AUC as the primary performance metric, the results
clearly show that our proposed methodology is successful in detecting
novel (unseen) instances of adware. IBk achieved the best result (AUC =
0.949, FNR = 0.022 and FAR = 0.115 with n=4 and 70 % attributes kept).
In terms of FNR on the 70 % data set for different n-gram sizes, most
of the algorithms achieved the highest FNR at n-gram size of 2. NB
has shown high variance among all n-gram sizes for FNR and FAR with
highest FNR value of 0.475 for n-gram size 2 and highest FAR value of

100

8.8. Analysis

1.00 1

0.95

0.90

0.85

AUC Value

0.80

0.75

0.70

0.65

2 3 4 5 6 7 8
n-gram Size
H Naive Bayes DSMO © Bk MJ48 K JRip

Figure 8.1: AUC of 70 % data set for all n-gram sizes

0.335 for n-gram size of 3. All other algorithms gave their highest FNR
and FAR for n-gram size of 2. The IBk achieved highest FAR, i.e., 0.462
for n-gram size of 8.

8.8 Analysis

The results clearly show the possibility to detect adware using data min-
ing on disassembled code and thus strengthen the validity of our hy-
pothesis. The aim of this study is twofold. Firstly, we need to evaluate
our methodology for detection and secondly, we need to find a suitable
combination of n-gram size with percentage of features. Results have
shown that adware could be detected using n-grams of opcodes. We
have used opcode sizes ranging from 2 to 8. For our experiments, we
have not considered an n-gram size of 1 since it has been concluded in
a previous study that sequences of opcodes are more suitable than a

101

8. ADWARE DETECTION

single opcode for representation [29]. We have considered the false neg-
ative rate (adware classified as benign) because this is more important
for a user than the false alarm rate (benign classified as adware). We
argue that, if a benign file is classified as adware it may not affect the
system as much as if an adware application is classified as benign and
thus installed on the system.

8.8.1 Algorithm Performance Analysis

The classifier generated from the IBk algorithm has shown the most
promising results in terms of AUC and accuracy for an n-gram size of
4 especially for higher percentages of kept features. kNN and SVM are
effective when the data are noisy. kNN has an advantage that its classifi-
cation performance is refined incrementally when new training samples
are introduced. J48 also has shown variance in results for smaller per-
centages of data. This may be attributed to the fact that for small data
sets or in presence of noise, J48 is prone to over-fitting the training data.

NB has not been successful in classification as compared with other clas-
sifiers. It is evident that, as n-gram size and percentage of data are in-
creased, the performance of NB classifier is varying significantly. This
may be because, as the n-gram size increases, the number of unique
combinations of opcodes in each data set increases as shown in Table
8.1. NB assigns probability to each feature. These unique combinations
may be present in only a few instances and so the probability of occur-
rence is determined to be low in one class. However, this is not the case
when using an n-gram size of 2 since the occurrence of any combination
can be high.

For the studied problem, we may draw the conclusion that an n-gram
size of 4 seems to be reasonable for good detection. The reason for this
could be that at this size each n-gram is representing combination of
four instructions sequences, which may be referring a function or inter-
esting feature in the file. This is also easy to track this combination in
the malware or benign files for further analysis.

102

8.8. Analysis

8.8.2 State-of-the-Art

In a previous study on opcode-based malware detection [29], n=2 yielded
the best results, but we argue that such short combinations of opcodes
may not indicate any important function or set of instructions in the files.
Due to these reasons it may be difficult to perform analysis. In another
study [71], Bagging was used in conjunction with the Random Forests
algorithm. However the basis for this selection was not reported. These
experiments were performed on worms and viruses and have shown
promising results for detection, but worms and viruses are quite dif-
ferent from adware in that they may exhibit clearly malicious routines;
these routines can then easily be identified by human experts. But in
the case of adware, the resemblance to benign software is greater. Nor-
mal characteristics of adware (such as: the displaying of ads in popup
windows or the transferring of information over the network) are also
present in several instances of legitimate software. Therefore, it is diffi-
cult for human experts to classify a piece of software as adware on the
basis of such characteristics.

8.8.3 Opcode Analysis

We decided to use ISes rather than other common representations, such
as: hexadecimal n-gram representations, printable strings, API calls, or
messages because ISes include program control flow information. More-
over, a group of ISes may indicate an interesting function, which can be
easily tracked back in the program for deeper analysis. In order to find
interesting functions we analyzed models generated by SMO, JRip, NB
and J48 for n-gram size of 4 with 70 % features. We found that most
of the features that were linked to adware by other models were not
considered by J48 (e.g., pushcallsbbinc and incaddandinc). This may be
because J48 is considered unstable as a small variation in data set results
in selection of different attributes, which affect the descendent sub trees.

103

8. ADWARE DETECTION

8.8.4 Practical Considerations

DM techniques have performed well in detecting adware. But in the
case of advanced adware with encrypted functionalities, the static anal-
ysis method used in this paper may not be successful albeit the presence
of an encrypted segment can potentially be considered as an indication.
It could be the case that a dynamic analysis approach has to be applied
to detect these instances of advanced adware.

In terms of converting our approach into a practical solution for gen-
eral users or experts, we argue that IBk represents a good choice of
algorithm. IBk is the simplest algorithm with respect to working as it
classifies an instance on basis of majority vote of its k nearest neighbors.
The k is a small positive integer due to which the duration for training
and building classifier from IBk was less than tree based and rule based
algorithms where new trees or rules are required to generate or update
previous. JRip algorithm was most expensive algorithm in terms of time
consumed to train and generate the model, due to which this may not
be considered feasible option for users. J48 algorithm was better than
JRip in terms of results and time consumed for the training, but still it
was expensive than other classifiers, due to which it is also not suitable
candidate. SMO was nearest to IBk, so it may be used as an alternative
or to complement the results of IBk. Another alternative for adware de-
tection may be combining DM techniques with EULA analyzer as many
adware vendors mention the presence of their adware in EULA to avoid
legal consequence. In this way, we argue that advanced adware with
encrypted routines can also be detected.

8.9 Conclusion and Future work

Many papers have been devoted to the study of detection approaches
for malware such as viruses, worms, and trojans. However, less work
has been done in the area of adware detection. We argue that this has
little to do with the fact that adware is considered less harmful. Rather,
it seems that the area of adware is avoided due to the fact that this type

104

8.9. Conclusion and Future work

of software resides in a legal grey zone: some people regard adware as
legitimate and others perceive adware as harmful. This paper considers
the latter perception. We have presented a static file analysis method,
based on operation code mining, for adware detection. A series of ex-
periments with data sets generated using different n-gram sizes were
performed. The experiments show promising results in terms of the
area under the ROC curve (AUC) for the detection of novel instances of
adware based on previously unseen examples, while maintaining a low
false negative rate. The highest classification performance (AUC score of
0.949) was achieved by the k-nearest neighbor algorithm. Another con-
clusion inferred from these experiments is that, as the size of n-grams
and the percentage of features are increased, the detection performance
also increases. However, an n-gram size of 4 seems to represent a local
optimum, at least for the studied algorithms. For future work, we plan
to perform experiments on a larger collection of adware and benign files
by introducing a hybrid identification method, which uses the combina-
tion of n-grams of opcodes and features extracted from EULAs. We plan
to combine dynamic and static analysis techniques to be able to detect
basic as well as advanced adware.

105

Nine

Comparative Analysis of Voting
Schemes for Ensemble-based
Malware Detection

Raja Khurram Shahzad, Niklas Lavesson

Abstract

Malicious software (malware) represents a threat to the secu-
rity and the privacy of computer users. Traditional signature-
based and heuristic-based methods are inadequate for detecting
some forms of malware. This paper presents a malware detec-
tion method based on supervised learning. The main contribu-
tions of the paper are two ensemble learning algorithms, two pre-
processing techniques, and an empirical evaluation of the pro-
posed algorithms. Sequences of operational codes are extracted
as features from malware and benign files. These sequences are
used to create three different data sets with different configura-
tions. A set of learning algorithms is evaluated on the data sets.
The predictions from the learning algorithms are combined by an
ensemble algorithm. The predicted outcome of the ensemble algo-
rithm is decided on the basis of voting. The experimental results
show that the veto approach can accurately detect both novel and
known malware instances with higher recall in comparison to ma-
jority voting, however, the precision of the veto voting is lower

107

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

than the majority voting. Veto voting is further extended as trust-
based veto voting. A comparison of the majority voting, the veto
voting, and the trust-based veto voting is performed. The exper-
imental results indicate the suitability of each voting scheme for
detecting a particular class of software. The experimental results
for the composite F1-measure indicate that the majority voting is
slightly better than the trusted veto voting while the trusted veto
is significantly better than the veto classifier.

9.1 Introduction

Malicious software (malware) is a common computer threat and is usu-
ally addressed through the static and the dynamic detection techniques.
Anti-malware tools are only able to detect known malware instances
and the success rate is circa 30 % [11] in the wild. In an effort, to ex-
tend both the static and dynamic approaches, some researchers apply
machine learning (ML) algorithms to generate classifiers, which show
promising results both in detecting the known and novel malware. To
increase the detection accuracy, the output (prediction) of different clas-
sifiers is combined (based on different parameters) to form an ensem-
ble [114]. Ensembles can be data dependent such as multiple algorithm
trained on the same data set, or independent from the data, i.e., using
statistical measures [115]. The prediction of each participating classifier
in the ensemble may be considered as a vote for a particular class, i.e.,
benign class or malware class. The ensemble’s outcome is generally de-
rived on the basis of different voting strategies. Different voting strate-
gies may give different results depending upon different factors such
as families of algorithms used. Among different voting strategies, the
majority voting is generally used for different problems. The majority
voting is considered as a simplest and effective scheme [116]. The ma-
jority voting scheme follows democratic rules, i.e., the class with highest
number of votes is the outcome. Majority vote does not assume prior
knowledge about the problem in hand or classifiers used and may not
require training [116]. The majority voting scheme has different limita-
tions such as a subset of classifiers (majority in number) may agree on

108

9.1. Introduction

the misclassification of an instance by a chance. An alternative voting
scheme is the veto voting, i.e., one single classifier vetoes the decision of
other classifiers. The veto voting scheme is used in the fault diagnosis,
the author identification and the malware detection [117,118]. For the
malware detection a ML-based detection model is proposed in which the
inductive biases of different algorithms are combined, and the final pre-
diction is given on the basis of veto voting, i.e., if an algorithm predicts
the instance as a malware, this prediction may veto all the other predic-
tions and the outcome is malware [118]. The veto voting may also affects
the performance of the ensemble as outcome may depend on one single
algorithm. However, the veto voting can achieve higher classification ac-
curacy on the assumption that the data set contains abundant instances
of a particular class (favored by veto) [119]. Thus, it is worth to investi-
gate which voting scheme, i.e., majority voting or veto voting is suitable
for the malware detection. After the comparison of the majority voting
and the veto voting, the veto voting is extended from a simple veto vot-
ing to the trust-based veto voting. The trust-based veto voting considers
the trust of each algorithm to determine whether an algorithm or set
of algorithms can veto the decision. The trust-based veto voting is also
applied on the same data set and results are compared with the majority
voting and the veto voting. The majority voting is suitable for detecting
benign applications and lacks the accuracy in the detection of malware
in comparison to the veto voting. Similarly, the veto voting is suitable
for detecting the malware and is less accurate for the detection of be-
nign. The experimental results indicate that the proposed trust-based
veto voting algorithm may be used to overcome the deficiencies of both
the majority voting and the veto voting up to some extent. The trust-
based veto voting accurately detect both novel and known instances of
malware better than the majority voting and accurately predicts about
benign instances better than the veto voting. The experimental results
also indicate that if composite measure is taken into account, majority
voting is slightly better than the trust-based veto voting.

109

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

9.1.1 Aim and Scope

The aim is to evaluate the malware detection methods that combine the
output of a set of classifiers and provides a classification on the basis of
the majority voting or the veto voting. A malware detection application
is developed, which implements the majority voting, the veto voting and
the trust-based veto voting. The prediction results from all voting strate-
gies are compared with each other. To achieve better predictive results,
the quality of information (i.e., the information, which provides valu-
able input for classification) derived from the data in the pre-processing
stage is very important. Therefore, two pre-processing techniques are
also proposed and investigated.

9.1.2 Contribution

The contributions are: first, a malware detection model is proposed and
implemented, which combines the inductive biases of different algo-
rithms and uses contrary voting strategies for the prediction. Second,
an extension to a particular voting strategy, i.e., the veto voting is pro-
posed and implemented. Third, the empirical results of different voting
strategies are analyzed. Fourth, two pre-processing techniques are pro-
posed to extract features from executable files. These pre-processing
techniques can be used to extract both hexadecimal based features or
assembly instruction based features of different sizes.

9.1.3 Outline

The remainder of the article is organized as follows: Section 9.2 discusses
the background, terminology and related work. Section 9.3 presents
the veto-based classification by discussing it’s architecture. Section 9.4
discusses the pre-processing techniques. Section 9.5 describes the ex-
perimental procedure for the first experiment (i.e., Experiment I) and
compares the results of the majority voting and the veto voting. Section
9.6 describes the trust-based veto voting, presents the second experiment
(i.e., Experiment II), and analyzes the experimental results. Finally, Sec-
tion 9.7 concludes the work and describes future directions.

110

9.2. Background

9.2 Background

One of the challenges faced by computer users is to keep the information
and communication away from unwanted parties who exploit vulnera-
bilities present in the operating system (OS) or third party software to
jeopardize the communication and access the information. A popular
way to exploit vulnerabilities remotely is by using a malware [1]. Tra-
ditionally, the malware detection is conducted either by using the static
analysis, i.e., by matching specific patterns called signatures or on the
basis of a rule set, or the dynamic analysis, i.e., changes occurring in the
system due to the execution of a specific file. The main deficiency of
these techniques is that they fail to detect the zero-day attacks.

The use of ML has been investigated in fields such as natural language
processing, medical diagnosis, and malware detection. ML can be di-
vided into two broad categories. In supervised learning, algorithms are
used to generate a classifier or a regression function using the labeled
data. To achieve the better predictive performance, a finite set of classi-
fiers can be combined as an ensemble. The prediction of most ensembles
is based on the majority voting [114]. If the data is incompletely labeled,
unsupervised learning is used. To achieve better predictive performance
in unsupervised learning, deep learning can be used. In deep learning,
algorithms learn from different levels of representations to find the com-
plex patterns in the data.

Any algorithm used in supervised or unsupervised learning has its own
inductive bias. Inductive bias of learning algorithms refers to the set
of assumptions that a learning algorithm uses for predicting the out-
put of unseen inputs [39]. In other words, it is a set of assumptions
that is used by a learning algorithm to prefer one hypothesis over the
other hypothesis in the search space, in order to find a suitable hypoth-
esis which can provide better predictions for the problem in question.
These factors affect the classifier performance [38]. In the case of mal-
ware classification, an algorithm may be more accurate in classifying
viruses than adware. Due to these reasons, detection results may vary

111

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

from one learning algorithm to another learning algorithm. Therefore,
it may be appropriate to join the results of classifiers trained at different
representations to achieve the improved accuracy in predicting the class
of unseen instances.

9.2.1 Terminology
Data set

A piece of information from a particular object such as a binary file or an
image in a specific format is called a feature. The format of the feature is
called feature representation. Each instance present in the original data
is represented by its specific features for the ML processable data sets.
For the malware detection task, different features can be used to repre-
sent the binary files such as files may be converted into the hexadecimal
code [20,33] or assembly instructions [24] to produce the data sets. Fea-
tures may also be extracted from the binary files such as printable strings
or system calls [33] to generate the data set.

Feature Selection

To improve the accuracy of ML algorithms, complexity of the data sets is
reduced. For this purpose, the most common approach is to apply a fea-
ture selection algorithm, which measures the quality of each feature and
prioritize features accordingly [38]. Only features that can provide the
valuable information for the classification are kept, and the rest are dis-
carded. In the malware detection, an extensive feature set is produced
from the binary files data set. This feature set contains many invaluable
features, which can degrade the performance of a ML algorithm. There-
fore, it is necessary to obtain a subset of valuable features by applying
the feature selection.

Classification

In ML, the classification is divided into two stages, i.e., training and
testing. Learning algorithms are applied on the training set to build a

112

9.2. Background

model (commonly called classifier) [39]. This stage is called training.
During the testing stage, the generated classifier is used to predict the
class of unseen instances.

Ensemble

Ensemble are capable of combining multiple models for the improved
accuracy [38]. The different models for the ensemble may be generated
from the same base algorithm on different subsets of the data or different
algorithms on the same data set. Ensembles perform better than a single
model due to the diversity of base models [120].

Trust

Trust is primarily related to the human behavior of believing a person
to meet expectations. Trust has different meanings in different contexts.
Trust can be defined as "Trust is quantified belief by a trustor with respect
to the competence, honesty, security and dependability of a trustee within a
specified context” [121]. For the problem in hand, the terms trustor and
the trustee refers to an algorithm that quantify the trust. Trust can be
quantified as +1 or -1; the increased or decreased value can assist in
determining the extent of the trust. The trust can be quantified as the
single trustor or the group trust. The trust especially the group trust is
quantified for different computational problems such as for the authen-
tication, in the peer-to-peer networks, in the mobile ad-hoc networks, for
resisting the different network attacks and for spam emails.

9.2.2 Related Work

A significant amount of research for classification tasks has applied tech-
niques ranging from statistical methods to machine learning like super-
vised learning and deep learning (DL). The use of DL has been inves-
tigated to learn different levels of the representation in order to model
complex relationships in the data to classify patterns and objects [122].
DL has also been used to extract features and represent them at differ-
ent layers with different representations or abstraction to be used for

113

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

vision, face recognition, and hand written digit recognition. Similarly,
the layered architecture has also been used for detecting the malicious
behavior [11]. In some cases, the decision from an individual model or
even from several models may be insufficient to obtain the final pred-
ication, especially when the cost of misclassifying one class is higher
than misclassifying the other class. As a solution, a few researchers have
used veto voting for automated identification of a disease pulmonary
embolism [123] and authorship identification [124].

For the malware detection, several researchers have used ensemble based
on the majority voting. The majority voting is compared with different
ensemble methods on five different malware data sets [125]. The major-
ity voting is also used to generate the rules, according to the Dempster-
Shafer theory, to classify the malicious codes based on the n-gram fea-
tures of the binary files [126]. Some researchers have applied the vari-
ation of majority voting such as the weighted majority voting for the
malware detection [67]. The concept of the veto voting is not investi-
gated for the malware detection. Therefore, it is worth to investigate the
veto voting for the malware detection.

To support the veto voting, the concept of trust may be used. In an
early work on the authentication in open networks, the trust is used to
accept or reject an entity for a task [127]. A set of inference rules is used
to determine the value of trust, i.e., 0 < trust < 1 and derived value is
further used for the decision. Both direct and group trusts are used. In
a study, trust value is used for resisting the non-trivial attacks on the au-
thentication of the origin of the message in the distributed system [128].
A quantitative framework based on the attack values for resisting the
attack is proposed [129,130]. The proposed framework uses the group
trust metric and calculates a trust value for all the nodes simultaneously.
The values are further used to build a distributed name server, verify the
meta-data in peer-to-peer networks, and resistance to the Spam e-mails.
The authors also present a real world example, i.e., Advogato website!.

Thttp:/ /www.advogato.org/

114

9.3. Veto-based Classification

A common trust based algorithm for the peer-to-peer network is the
EigenTrust algorithm [131]. The EigenTrust algorithm uses peer nodes
to assign the trust to each node. The assigned trust is used to computes
global trust values in a distributed manner and node-symmetric man-
ner. Global trust value is also used to distinguish malicious nodes in the
system. The priority is given to the opinion of high reputation nodes.
The EigenTrust algorithm is used to proposed a non-manipulable trust
system for peer-to-peer networks [132]. The authors propose a partition-
ing technique that is used to partition the peers in groups and incentives
for the peers to share files. Mobile ad hoc networks are decentralized
networks and nodes in such network cooperate with each other [133].
The trust value of each node is used to improve the security of network.
The authors use the local trust and recommendation trust, which are
combined to obtain the combination trust. Finally, the combination trust
value is used to evaluate the level of risk for ongoing tasks. In the field
of multi-agent systems and ML, trust is used to make a reputation sys-
tem for auction systems [134]. A generic ML based trust framework is
proposed to calculate the trust of a transaction by an agent. The trust
is calculated on the basis of previous successful transactions based on
distinguishing features of successful and unsuccessful transactions. The
distinguishing features are given as input into ML algorithms to extract
the relationship. The extracted relationships are further used to predict
about the success of the current transactions.

9.3 Veto-based Classification

In certain situations, the recommendation from more than one expert
may be required. In such cases, a committee of experts is formed as it is
expected that a committee always performs better than a single expert.
Normally the committee uses the majority voting for combining the deci-
sions of experts to reach a final conclusion. In some cases, the committee
may grant the right to veto the decision of the committee to any member.
In ML, multiple algorithms can be used to generate multiple classifiers
(experts) for a classification task. Every classifier has its own inductive

115

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

bias, which affects the predictive performance. Research results indi-
cate that ensemble perform better than single classifier in fields of text
categorization [135] and data classification, etc. Several rules such as
majority voting, i.e., bagging [38], weighted combination where weights
represent effectiveness of member classifiers such as boosting [38], dy-
namic classifier selection [136,137] and the veto voting [123,124] can be
used for combining the decisions and having a final prediction. Veto
voting is used to give importance to a single expert (classifier) who pre-
dicts against the majority.

In malware detection, ignoring the correct prediction about a malicious
file from a single expert may incur a higher cost in terms of security
violations. The security violations may cause serious data loss, privacy
or monetary damages to the user. Therefore, a veto voting based classi-
fication model is more appropriate than a majority voting based model.
A model is proposed, which combines the inductive biases of individual
classifiers and the final decision is given on the basis of veto voting. For
brevity, the veto voting based classification system is referred to as veto
classifier in later sections.

9.3.1 Voting Rules

The main objective of veto based classification is to combine the multiple
predictions to reach a final decision. Formally, a veto based classification
system consists of candidate classifiers (C) set and vote set V. The set of
candidate classifiers C, and the set of votes (V) is a finite set (C, V) with
predetermined fixed number of maximum classifiers and votes. The vote
from each classifier is considered on the basis of rules given below. Some
rules mentioned below are also recommended for the general voting
[138].

Anonymity All votes in the vote set (V, a finite set with a predetermined
number of votes) are treated equally, and the outcome of the clas-
sifier committee remains consistent with any permutation of the
votes.

116

9.3. Veto-based Classification

Neutrality All candidates in the classifier set (C, a finite set with a pre-
determined number of classifiers) are considered equally without
any additional weighting.

Independence Candidate classifiers are independent of each other, and
the outcome of the voting system remains consistent with any com-
bination of classifiers with votes, i.e., (Cy, V) U (Cy, V) C (C, V)
where C; and C; are different combinations of classifiers.

Completeness All votes from the classifiers are considered and counted
only once.

Veto Any vote indicating an instance as malware, alone can determine
the outcome of the classification task regardless of the number of
other votes.

Consistency The result of the voting remains consistent even if the base
classifiers are split into two disjoint sets and each set vote sepa-
rately. The votes from each subset create a single vote set. For-
mally this can be mentioned as (C, V1) N (C, V2) C (C, V) where
V1 and V; are the partitions of votes.

Usability Voting procedure can be used for other similar problems.

Verifiability Any user of the voting system can verify the outcome of
voting by counting the votes manually.

Ideally veto based voting performs better than the single classifier be-
cause if any classifier in the committee predicts the class of an instance
as malware, it may veto all the other predictions from the other classi-
fiers. For the neutrality, the results from all the classifiers are combined
without any additional weighting or filtering. It is also possible to use
weighting method [139] for the votes such as by assigning more weight
to the vote of a classifier who outperformed all other classifiers in terms
of accuracy during the training stage.

117

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

9.3.2 Architecture

The model can be implemented in two possible ways, i.e., N-layers im-
plementation and parallel implementation. N-layers implementation is
based on the serial implementation.

N-Layers implementation The model can be implemented in n-layers
with any permutation of classifiers, see Figure 9.1. Each layer can
be customized with different n-gram sizes, several feature repre-
sentations, various feature selection algorithms and learning algo-
rithms. It is recommended that different classifiers shall be used
while maintaining their neutrality as much as possible to increase
the effectiveness [120]. From the lower layer, the instances that are
declared as benign are given to the upper layer for the reclassifi-
cation. In each layer, all classifiers give their predictions about the
instances from the lower layer (or data sources). If at any layer, an
instance is classified as malware, it is not fed into the next layer.
The classification results from all the layers are given to the veto
classifier. The malware prediction at any layer for any instance
may be considered as veto for that particular instance. However,
the final decision about the class of particular instance is taken by
the veto classifier.

Parallel Implementation Instead of using layers, all the possible per-
mutations of classifiers can be implemented in a distributed or
parallel manner. Each learning algorithm is trained over the en-
tire data set for generating the classifiers. Instead of testing only
positive instances by some classifiers, each classifier works inde-
pendent of results from other classifiers. All the votes from the
classifiers are collected at a central location where the veto classi-
fier outputs the final prediction.

9.4 Pre-processing Techniques

The selection of representative features affects the predictive perfor-
mance of a classifier. Consequently, two n-gram extraction techniques

118

9.4. Pre-processing Techniques

Data Sources

Classifier 1 LN Classifier ... coe Classifier n

Layer 1

—_—
Predicted as
Malware

Benign

Classifier 1 LN Classifier ... coe Classifier n

Layer 2

—_—p
Predicted as
Malware

|
|
|
|
l Predicted as |
|
|
|

Predicted as
Benign

Veto Classifier

Classifier 1 e Classifier ... cee Classifier n E—

Layern

All predictions

Figure 9.1: N-layer Implementation

are proposed. Most of the research studies for the malware detection
demonstrate the use of either the hexadecimal-based n-gram data set or
the opcode-based n-gram data set for an experiment. The proposed ex-
traction techniques can be used to extract both representations. For this
study the opcode n-gram extraction is performed, therefore, the pro-
posed techniques are explained in the context of opcode n-grams only.

Traditionally the n-gram extraction is performed by using a fixed size
window with a fixed step; the step size is equal to the window size.
The fixed size window traverse the data file to extract the specific size n-
grams. The generated output contains adjacent n-grams. To explain this
process, assume that a disassembled binary file contains the following

119

Final Prediction

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

given data. A pair of characters represents an opcode (or a hexadecimal
code). The task is to create bi-grams, i.e., n-gram of size 2 from this data
file.

aa bb cc dd ee ff gg hh ii jj kk Il mm nn oo pp

The generated bi-grams from this file are "aabb ccdd eeff gghh iijj kkll mmnn
oopp" and so on. The fixed size window is unable to extract some n-
grams such as "bbcc" or "ddee". If the file size is large and the data is
redundant then there is a probability to have missing combinations, but
still missing n-grams cannot be produced in the appropriate frequency
and can have less importance for the classification task.

9.4.1 Overlapping n-grams

To address the problems of missing n-grams, the use of configurable
sliding window to generate overlapping n-grams is proposed. The win-
dow can be configured with two parameters, i.e., size and step. The size
parameter defines the size of a n-gram to be extracted, and the step pa-
rameter defines the number of opcodes to be skipped before extracting
the next n-gram. It is expected that all possible combinations can be
extracted by this extraction technique. Referring the example in Section
9.4, if the window is configured as following, size = 2, i.e., two adja-
cent opcodes are extracted to form a n-gram and step = 1, i.e., after the
n-gram extraction window skips one opcode (first opcode) to move for-
ward. This configuration generates "aabb bbcc ccdd ddee eeff ffgg gghh
hhii iijj jjkk" and so on.

9.4.2 Non-adjacent Opcode Extraction

Either by using the traditional n-gram extraction or the overlapping n-
gram extraction, extracted n-grams can provide the information only
about the dependencies of the adjacent opcodes. It is valuable to look
at the information provided by non-adjacent opcodes. Non-adjacent
opcodes have dependencies such as they can be function header and

120

9.5. Experiment I

tail. Some changes are proposed in the overlapping n-gram extraction
method to explore the information both from non-adjacent opcode and
non-adjacent adjacent opcode. The size parameter is changed to the
start-end size parameter. The start-end size parameter defines the num-
ber of adjacent opcodes to be extracted for the start and the end of a
n-gram. The step size parameter defines the number of opcodes to be
skipped for extracting a new n-gram. A new parameter is introduced,
i.e., gap size, which specifies the interval between start and end opcode
or number of opcodes to be skipped between the start and the end op-
code of a n-gram. The example mentioned in the Section 9.4 can be used
to describe this procedure. If the window is configured as following for
extracting non-adjacent bi-grams, start-end size = 1, i.e., one opcode for
the start and one opcode for the end of a n-gram are extracted, step = 1
and gap =1, i.e., one opcode between the start opcode and the end op-
code of a n-gram is skipped. This configuration produces the bi-grams,
which contains non-adjacent opcodes. The generated output is "aacc bbdd
ccee ddff eegg" and so on. To have non-adjacent adjacent opcodes in a n-
gram, the configuration can be changed as follow: start-end = 2, i.e., two
adjacent opcodes for the start and the end of a n-gram are extracted; the
step size and the gap size are kept 1. The generated output is "aabbddee
bbcceeff ccddgghh" and so on. If the value of the gap size and the step
size parameters is changed from 1 to 2, the generated output is "aabbeeff
ccddgghh eeffiijj" and so on.

9.5 Experiment |

The aim of the experiment is to evaluate the proposed veto voting based
malware detection method and impact of the proposed data pre-processing
techniques and compare the results with the majority voting. The pro-
posed method can be used to detect either a specific type of malware
or different types of malware; however in this study a single family of
malware is used. The experimental data set contains Windows-based ex-
ecutable files. Windows is a common OS for novice users and contains

121

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

Table 9.1: Experiment with one data set and three algorithms

Data Set’ Algorithm TP TN FP FN R’ P’ F1°

JRip 243 184 66 07 0972 0.786 0.869
g J48 226 225 25 24 0904 0900 0.902
b7 1Bk 224 225 25 24 0.89% 0.899 0.897
= Veto® 243 203 47 07 0972 0.837 0.900

Majority® 223 233 17 26 0.895 0929 0.912

JRip 238 197 53 12 0952 0.817 0.879
E‘ J48 232 234 16 18 0928 0935 0.931
§ IBk 224 224 26 26 0.896 0.896 0.896
o) Veto 246 208 42 04 0984 0.854 0914

Majority 230 240 10 20 0920 0958 0.938
2 JRip 209 215 35 41 0.836 0.856 0.846
< J48 215 205 45 35 0860 0.826 0.843
= IBk 164 237 13 86 0.656 0.926 0.768
i Veto 242 139 111 08 0.968 0.685 0.802

Majority 220 204 46 30 0.880 0.827 0.852

a
The full names of data sets are n-gram data set, overlap data set and sliding window data set.

bR is Recall, P is Precision, and F1 is F-Measure.
CVeto is Veto Classifier and Majority is Majority voting.

Veto Classifier and Majority voting both are applied on all the three data sets.

different vulnerabilities?, which can be exploited by a malware. When
a binary file in the data set is disassembled, different file features such
as assembly language instructions and printable strings, are produced
in the text format, which are further processed to extract the assembly
directives, i.e., opcode. Opcodes are further processed to produce the
bi-gram data sets using different strategies. Different text categorization
techniques can be applied to the output generated in the previous step
to get discriminating features of benign and malware. Term Frequency-
Inverse Document Frequency (tf-idf) is used to derive the significant
features from the data sets. The extracted features are used to create

Zhttp:/ /technet.microsoft.com/en-us/security /bulletin/

122

9.5. Experiment I

Attribute-Relation File Format (ARFF)? files. ARFF file is a structured
ASCII text file that includes a set of data instances, each described by a
set of features [38]. ARFF files are used as input to the proposed model,
which uses Waikato Environment for Knowledge Analysis (Weka) ap-
plication programming interface (API) [97] for applying learning algo-
rithms to build and analyze classifiers. A pre-experiment is performed
for the selection of learning algorithms. The first experiment is divided
into two sub-experiments. In the first experiment, the inductive biases
of the different classifiers built on the same data set are combined. Sec-
ond experiment combines the inductive biases of individual classifiers
built on different data sets. In both experiments, the results from all the
classifiers are given to the veto classifier for the final prediction.

9.5.1 Feature Representation

Opcode is used for generating bi-grams as features. It is concluded in
the previous studies that opcode n-grams are better choice for the mal-
ware detection in comparison to other features such as printable strings,
systems calls or byte code (hexadecimal) n-grams [24]. The opcode n-
grams are capable of providing the information about the program flow,
structure and function that cannot be deduced from other representa-
tions.

9.5.2 Data Set Creation

For the experiment, scareware (rouge) software is selected as malware
representation. The reason for this choice is, there is a subtle difference
between scareware and benign. In case of traditional malware, presence
of malicious payload distinguishes a malware from the benign. How-
ever, in scareware no specific malicious payload is available that can be
used to differentiate a scareware from the benign. Absence of malicious
payload may deceive human expert for the classification of a particular
software as scareware.

3http:/ /www.cs.waikato.ac.nz/ml/weka/arff.html

123

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

Scareware are scam software that usually masquerade as an anti-virus
software and resembles the benign software in functionality. Scareware
generates the false alarm about the presence of malware in the user’s
machine. The false alarms are used to scare the users into disclosing
their credit card information for buying the protection*. No public data
set e.g., virus, Trojan, and worm data sets is available for the scareware
detection experiments. Therefore, a data set with 500 files is created;
out of which 250 files are scareware, and 250 files are representing be-
nign. The benign files are default applications of Windows OS such as
notepad, paint and applications available online for download at CNET
Download®. All the benign files are scanned with commercial security
software (anti-malware) to reduce the chances of malware presence in a
benign file. Scareware files are obtained from the malware database of
Lavasoft®.

9.5.3 Pre-Processing

The disassembled file is a standard text file, which contains three fields,
i.e., the memory address of the instruction, the byte-based location in
the file and the instruction itself (combination of opcode and operands).
The next step is to extract only opcodes from the files and discard ir-
relevant information, i.e., operands. The extracted opcodes are saved in
the original order. After opcodes extraction from the disassembled files,
three different procedures are used to tokenize the data to produce bi-
grams for three different data sets. Each row in a data set represents a
bi-gram, i.e., concatenation of two opcodes. Hereafter, these three data
sets are referred to as bi-gram data set, overlap data set and sliding win-
dow data set respectively to indicate the method used in creating that
particular data set. The bi-gram size has yielded the best performance in
a previous study [29] and possible combinations of opcodes to produce
bi-grams are limited, depending upon the number of reserve words in
the assembly language.

“http:/ /news.bbc.co.uk/2/hi/8313678.stm
Shttp:/ /download.com
bhttp:/ /lavasoft.com

124

9.5. Experiment I

For the bi-gram data set, a fixed size window traverse each input file
from top to bottom. In every step, a n-gram consisting of two opcodes is
extracted and recorded in another file having the similar file name, but
different extension. The purpose of keeping the similar name is to keep
track of benign files and scareware files, so each file can be represented
at the same position in all three data sets and finally in the ARFF file.
For overlap data set method mentioned in the Section 9.4.1 is followed
with the configuration, i.e., size = 1 and step = 1. For the sliding window
data set, start-end size and step parameters are kept one. To obtain the
nonadjacent opcode bi-grams, each file is processed in four consecutive
passes with a gap size ranging from 1-4. Due to the changing gap size,
the first generated bi-grams are having a gap of one opcode between the
start opcode and the end opcode, in the second pass there is a gap of
two opcodes and so on. The process of generating the sliding window
data set is slower than generating the bi-gram data set and the overlap
data set. However, the computational cost and memory requirements
for generating the sliding window data set are lower than creating large
size n-grams.

9.5.4 Feature Selection

Many real world problems are complex. To apply learning algorithms,
the dimensionality of the complex problem is reduced by choosing a
subset of significant features from the given set of (raw) features. The
selected subset of features plays significant role in the increase/decrease
of either classification and/or computational performance. Significant
feature selection is done by using a feature selection algorithm, remov-
ing features that are deemed unlikely to improve the classification pro-
cess. In the field of text classification, tf-idf shows promising results for
the valuable features selection. In this experiment tf-idf is applied on
data sets to limit the number of features to top 1000 features per data
set. The tf-idf is a statistical measure of importance of a bi-gram in the
entire data set [140]. The ff is the number of times a bi-gram occurs in
a file; df is the number of files in a class that contain a specific bi-gram.

125

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

The idf of a bi-gram is obtained by dividing the total number of files (N)
by the df and then taking the logarithm.

9.5.5 Performance Evaluation Criteria

Each learning algorithm is evaluated by performing cross-validation tests.
Confusion matrices are generated by using the responses from the clas-
sifiers. The following four estimates define the elements of a confusion
matrix: True Positive (TP) represents the correctly identified scareware
programs. False Positive (FP) represents the incorrectly classified benign
programs. True Negative (TN) represents the correctly identified benign
programs, and False Negative (FN) represents the incorrectly identified
scareware programs. The performance of each classifier is evaluated
using Recall (R), which is the ratio of scareware programs correctly pre-
dicted from the total number of scareware programs, Precision (P), ratio
of scareware programs correctly identified from the total number of pro-
grams identified as scareware. F-Measure (F1) is the harmonic mean of
the precision and the recall and is the final evaluation measure.

9.5.6 Pre-Experiment for Algorithm Selection

A number of studies have addressed the similar problem with different
learning algorithms; however, none of the authors is conclusive on the
choice of algorithms either for the malware detection or according to the
produced data set. In a number of studies Ripper (JRip) [91], C4.5 Deci-
sion Tree (J48) [106], k-nearest neighbor (IBk) [109] Naive Bayes [38] and
SMO [107] outperformed other algorithms. Based on previous research,
a pre-experiment is performed to evaluate all these algorithms on all
the three data sets. The top three algorithms, i.e., JRip, J48 and IBk are
considered as candidates, to combine their inductive biases for the final
prediction in the proposed model.

126

9.5. Experiment I

9.5.7 Results and Discussion

In the first experiment, one data set is used to build classifiers from three
different algorithms. In the second experiment, three data representa-
tions are used and one classifier is trained from each representation.
Majority voting is compared to the veto voting. In the first experiment,
the predictions from three classifiers are collected and given to the veto
classifier and the majority voting. The predictions from all the classifiers
including both voting strategies on each data set are shown in Table 9.1.
In the second experiment, three algorithms, i.e., JRip for n-gram data
set, JRip for the overlap data set, and J48 for the sliding window data
set are selected on the basis of the recall in the first experiment. These
algorithms are used to built three classifiers and the predictions about
each instance from these classifiers is given to the veto classifier and the
majority voting for the final prediction. The results of this experiment
(see Table 9.2) indicate that the recall of the veto classifier is better than
the recall values in the first experiment. Majority voting shows the sim-
ilar behavior for the precision.

The experimental results indicate that combining the inductive biases of
different algorithms trained on multiple representations predicts better
for the malware detection than combining the inductive biases of differ-
ent algorithms trained on the same data set. The experimental results
of both voting strategies can be discussed in three dimensions by using
three measures, i.e., recall, precision, and f-measure. The experimental
results show that the veto classifier has better recall than the majority
voting, i.e., veto classifier reduces the number of misclassified scare-
ware. Recall is the key measure as the objective of the veto approach is
to reduce the likelihood of malware misclassification while tolerating a
percentage of false positives or decrease in the precision. If the system is
tuned to predict all applications as malware, it will produce a high false
positive rate, which is undesirable from a user’s point of view. Users
need the accurate prediction both for the malware and benign applica-
tions. Therefore, the precision is also considered as a complimentary
measure with the recall. The veto classifier shows a higher tendency

127

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

for the correct detection of scareware while the majority voting shows
a tendency towards the detection of benign applications. Therefore, the
precision rate is higher for the majority voting. There are few instances,
which are misclassified by both voting schemes. Most of these instances
are benign, but predicted as scareware by both the veto classifier and
the majority voting. However, the number of such instances is minimal.
The precision and the recall have an inverse relationship if the precision
increases, the recall decreases. Therefore, another evaluation measure is
required, which combines the precision and the recall. Thus, the final
evaluation measure is F-measure, which evenly weights the precision
and the recall. It may be argued that the arithmetic mean of the preci-
sion and the recall can also be used as a composite measure. However,
the arithmetic mean is an inappropriate measure as with 100 % R and
0 % P or vice versa; the arithmetic mean is always 50 %. This is not
the case with the harmonic mean as the harmonic mean is always less
than or equal to the arithmetic mean [141]. If there is a difference be-
tween the value of R and the P such that the value of R is significantly
smaller than P, the harmonic mean tends strongly towards the recall. F1
of the majority voting is higher than the veto classifier, which favors the
use of majority voting for the problem in question. However, the recall
for the majority voting, which is a key measure, is lower than the veto
classifier so it may be argued that the veto is a better approach for the
malware detection. Thus, the veto classifier shall be extended to increase
the precision.

Bi-grams are used as the feature in the experiment because they are
computationally inexpensive to produce. Generally such short combina-
tions may not represent an important function or set of instructions in
the files and are difficult to analyze. However, bi-grams in the sliding
window data set can provide the valuable information for the scareware
analysis due to the combination of non-adjacent opcodes. Scareware re-
sembles the benign applications such as displaying popup windows or
alert messages, and showing the dialog boxes. Therefore, it is difficult
for the human experts to predict about the scareware by analyzing the
functionality of an application only. The proposed model helps the hu-

128

9.5. Experiment I

Table 9.2: Experiment with three data sets and one algorithm on each
data set

Data Set” Algorithm TP TN FP FN R’ PP F1°

n-gram JRip 243 184 66 07 0972 0.786 0.869
Overlap JRip 238 197 53 12 0952 0.817 0.879
S. Window J48 215 205 45 35 0.860 0.826 0.843

Veto 248 195 55 02 0992 0.818 0.896

Majority? 223 247 03 26 0.895 0.986 0.938
Trust Veto® 235 230 20 15 0940 0.922 0.931

a
The full names of data sets are n-gram data set, overlap data set and sliding window data set.

bRis Recall, P is Precision, and F1 is F-Measure.
CVeto is Veto Classifier and Majority is Majority voting.
AVeto Classifier,Majority voting and Trust-based veto Classifier are applied on all the three data sets.

€Trust Veto is Trust-based Veto Classifier.

man expert by automating the process of analyzing and predicting the
scareware (malware). JRip and J48 algorithm are considered expensive
algorithms in terms of time consumed to train and generate the model.
However, it is easy to analyze the rules and trees generated to differen-
tiate the scareware and benign.

The decisions of the different classifiers are combined to produce bet-
ter results, and such combination shall not be considered as a substitute
of a good classifier [142]. The proposed veto classifier follows the same
principle. Veto classifier is neither a substitute of a good classifier nor
replacing the majority voting. In the domain of decision theory, it has
been suggested that different voting strategies shall be adopted for dif-
ferent tasks according to the problem in question. We argue that the
veto classifier is a better choice for the malware detection task as this
approach addresses the problems of the majority voting. There are dif-
ferent problems related with the majority voting such as majority voting
may ignore the right decision of the minority. While ignoring the de-
cision from the minority votes, the total number of majority votes may
have an ignorable difference in comparison with the total number of mi-

129

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

nority votes. Another problem of the majority voting is the choice of
the number of candidate classifiers. If the number of selected classifiers
is an odd, then a simple majority can be obtained, but if the number
of selected classifiers is an even then a situation may arise where equal
numbers of votes are given to both the benign and malware classes. In
the domain of ML, different variations of majority voting has been sug-
gested such as restricted majority voting, enhanced majority voting, and
ranked majority voting to address the problems of majority voting [143];
such problems are avoided with the proposed veto classifier.

The results of the veto classifier depend upon a suitable permutation
of the algorithms. Some permutations may obtain 100 % recall by just
predicting all applications as malware. Some permutation can achieve
100 % precision, if all the instances are predicted as benign applications.
Before permutation, classifiers selection is a critical and complex task.
For a small number of classifiers, an optimal combination can be found
exhaustively, but as the number of classifiers increases, the complexity
of selection is increased due to their different inductive biases, search
limits and practical applicability. The classifier selection process can be
improved by a static selection or dynamic selection method [144].

9.6 Experimentll

Results of the experiment I in the Section 9.5.7 suggest that the veto
classifier is a better choice for the malware detection problem. Results
also indicate that the majority voting skews towards benign applications
and the veto classifier skews towards malicious applications. In the Ex-
periment I, all algorithms are treated equal for the final prediction to
assure the "neutrality" property for the veto classifier. Consequently,
algorithms who generally demonstrate higher misclassification in com-
parison to other algorithms (generally referred to as weak learners), su-
persede the correct prediction. This phenomenon produces a high false
positive rate and the precision of the veto classifier is significantly lower
than the majority voting. To address the above mentioned problems in

130

9.6. Experiment II

the veto classifiers, use of the algorithm’s "trust" is suggested and the
veto classifier is extended as a trust-based veto classifier. The aim of this
experiment is to evaluate the trust-based veto classifier for the malware
detection and compare the performance of the proposed algorithm with
the majority voting and the veto classifier.

9.6.1 Trust-based Veto algorithm

Trust as a quantitative measure can be quantified with integer values.
The positive integer may represent the trust while a negative integer
may be used to represent the distrust. The quantified trust value in
computational problems can be calculated for participating nodes, algo-
rithms, and agents. For the machine learning problems, different kinds
of trust can be calculated for algorithms contending in the system. Con-
sequently, an algorithm is proposed, which generate trust-based veto
classifier for the malware detection. The trust-based veto algorithm in-
volves three kinds of trust, i.e., local trust (can also be referred to as
direct trust), recommended trust, and global trust. Each algorithm in
the system calculates its trust level for other algorithms in the system,
i.e.,, how much algorithm, trusts the algorithm, in terms of predicting
the class of an instance, called local trust (t), see Figure 9.2. The local
trust value is further used to calculate the recommended trust (RT) for
each algorithm, see Figure 9.2. The recommended trust aids in calculat-
ing the global trust value (GT) of each algorithm. The global trust value
is used for having a veto decision.

Local Trust Calculation

Local trust of an algorithm, on algorithm, (t, : algo, — algoy) is cal-
culated by comparing the predictions (d) of both algorithms with each
other and the actual class (C) of the instance, see Algorithm 1. Suppose,
from a data set of benign and malicious instances, an instance of be-
nign class is given to the algorithm, and the algorithm, for predicting
the class of the instance. There is a finite set of possible predictions,
i.e., both algorithms may predict correct, or both algorithms may predict

131

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

N
a) Local Trust " .
Ny P
~ 7
= -
Algo,

Algo,: Trustor algorithm in (a) and (b)
Algo,: Trustor algorithm in (a) Trustee algorithm in (b) b) Recommended Trust

Algo,: Trustee algorithm for Algo, and Algoy in (b)
—p :local Trust
—--p :Multiple local trust, used to calculate Recommended Trust

Figure 9.2: The direct trust and the recommended trust of algorithms

incorrect, or any one of the algorithms may predict the correct class. If
both algorithms have the same prediction for the instance, either correct
or incorrect; trust is not affected. However, if the algorithm, predicts the
incorrect class and algorithm, predicts the correct class, the algorithm,
increases the trust level (sat) of the algorithm, with +1. In case, the
algorithm, predicts the correct class and the algorithm, predicts incorrect
class, the algorithm, increase the distrust level (unsat) of the algorithm,
with +1. All the instances in the data set are given to both algorithms
sequentially for the prediction. At the end of process, local trust of the
algorithmy is calculated by dividing trust (sat) with the sum of the trust
(sat) and the distrust (unsat), see Algorithm 1.

Recommended Trust Calculation

The local trust shows the unique trust on a particular algorithm (e.g.,
algoy) from another algorithm (e.g., algo,). This value varies from the
algorithm to the algorithm in the system and cannot be used as a final
metric for deciding about a veto in the system. The Recommended trust

132

9.6. Experiment II

Algorithm 1 Trust Calculation
Require: Actual Class of Instance (C), prediction of algo, (dy), predic-
tion of algo, (d,)

function LocALTRUST
repeat
if dx = dy then > Prediction of both algorithms may be correct
or incorrect
movenext
end if
if dx # dy then > Compare the prediction with the C
if dx = C then
unsat < unsat(algoy,algo,) + 1
else
dy #C
sat < sat(algoy, algo,) + 1
end if
end if
until 'EOF
end function

(ty = algox — algoy) sat(algoy,algoy)

sat(algoy,algoy,)+-unsat(algoy,algoy)

is calculated to address this problem. The local trusts on an algorithm
from all the other algorithms in the system are summed to calculate the
recommended trust. The recommended trust value represents the com-
bine trust of all algorithms in the system on that particular algorithm.
If the set of all algorithms is S = {algog, algo1,algoy, ..., algo,} then we
may have a two subsets S’ = {algop} and S” = {algoy,algo,, ..., algo,}.
The subset S” is having all the algorithms in the system as members ex-
cept the algorithm algog for which the RT is calculated. The algorithm
algop is the member of the subset S’. The RT is calculated by using the
Equation (9.1).

133

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

n
RTy < Z(ty :algo, — algoy) Valgo, € S” 9.1)

n=1

Global Trust Calculation

The RT varies from algorithm to algorithm and may not be compared
on the similar scale. Consequently, RT of an algorithm is normalized to
obtain the global trust of that particular algorithm. The term normaliza-
tion represents distinct, but related meanings in different contexts. The
basic purpose of normalization is to convert the different values on a
notionally standard scale to compare them equally with each other. The
normalized GT value lies in the interval of the [0-1] and is calculated by
using the Equation (9.2):

RT,

vV =1 RT}

GT, + (9.2)

Veto Decision

The calculated GT value is used for deciding a veto for the prediction of
a set of algorithms by another algorithm or set of other algorithms. Sup-
pose a system in which seven algorithms are participating for predicting
the class (benign or malicious) of an instance that belongs to the mali-
cious class. A subset M of four algorithms in the system predicted the
class of the instance as benign, and a subset V' of three algorithms pre-
dicted the class of the instance as malicious. The mean of both groups
is calculated. If the mean of V is greater than the mean of M, the V can
veto the decision of the M and the outcome will be the prediction of the
V.

However, for this experiment, there is a change in the veto decision func-
tion due to less algorithms. The change is explained as following. There
are three algorithms in the system, i.e., algoy, algo,, and algo,. If two
algorithms, i.e., algo,, and algo, classify the instance as a benign and

134

9.6. Experiment II

only one algorithm, i.e., the algo, classify the instance as a malware; the
algo, can veto according to Equation (9.3). The change in the prediction
strategy is to reduce the random decision errors.

Veto : GT, > % 9.3)

9.6.2 Results and Discussion

The classifiers combination to form an ensemble can be divided roughly
into two categories, i.e., multiclassifier and multirepresentation [115]. In
the multiclassifier approach, a set of classifiers is trained on the same
representation of the data. In the multirepresentation approach, differ-
ent classifiers are trained on the multiple representations. On the basis
of the experimental results presented in the Section 9.5.7, the trust-based
veto classifier is applied only for combining the inductive biases of sev-
eral algorithms trained on the different representations. The experimen-
tal results are shown in the Table 9.2. Experimental results indicate two
issues. First, the low TN of the veto classifier that leads to a high FP;
the low TN is because of veto classifier’s skew towards malware. Sec-
ond, the low TP of the majority voting that leads to a high FN; the low
TP is because of the majority voting’s skew towards benign programs.
The trust-based veto classifier performs better than the veto classifier in
terms of TN and reduces the FP. The trust-based veto classifier is also
better than the majority voting in terms of TP and reduces the FN. How-
ever, TP of trust-based veto classifier is better than the majority voting
and less than the veto classifier. Recall of the trust-based veto classifier is
better than the majority voting and less than the veto voting. In terms of
F-Measure, the difference between the values of f-measure of the major-
ity voting and the trust-based veto classifier is minimal, so one can argue
that the trust-based veto classifier is an optimal choice for the malware
detection due to inherited skewness towards the malware. The major-
ity voting and the veto classifier are computationally inexpensive as the
prediction from each algorithm is counted for the outcome. In trust-
based veto classifier, each algorithm evaluates the trust and maintains

135

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

the trust info locally in a trust table without significantly increasing the
processing overhead; however, the storage requirement is higher than
the majority voting and the veto classifier as they do not store any infor-
mation. The locally stored trust information is provided to the system
for the decision purpose, when required. Trust-based veto classifier pro-
vides a direct experience of the trust on each algorithm. Due to direct
experience, there is no central authority for maintaining the trust infor-
mation, which makes the proposed algorithm a self-policing algorithm.

One property mentioned in the voting rule set is anonymity (see section
9.3.1). The trust-based veto classifier maintains the anonymity prop-
erty as all votes are treated equally and no vote is discarded. However,
the veto property is not followed as it is mentioned in section 9.3.1 for
the trust-based veto classifier experiment. In the changed veto decision
strategy, a single algorithm indicating the instance as the malware can-
not affect the outcome of the detection task. Now for the veto, algorithm
or set of algorithms need to meet certain criteria, which reduced the
chances of errors and terminate the prediction of weak learners. How-
ever, with the proposed strategy, there is a probability that the prediction
of weak learner/s may be always ignored, if the trust on that particular
algorithm is significantly less than the trust on other algorithms. Sup-
pose a detection system with five algorithms where two algorithms are
weak learner with significantly low trust levels. This particular group
of algorithms may not veto the decision of all other algorithms for all
the cases, even if the prediction was correct. However, the changes in
the veto strategy will increase the robustness of trust-based classifier as
any number of algorithms can compete for the veto decision with any
number of algorithms.

To follow the veto strategy mentioned in the section 9.3.1, one alter-
native direction is to allocate the trust to each algorithm on the basis of
predetermined criteria such as previous performance. The trust of all
algorithms may be readjusted regularly on the basis of prediction per-
formance. All the algorithms vote for the decision. For the veto decision,
when an algorithm predicts the instance as malware the trust of that par-

136

9.7. Conclusion and Future Work

ticular algorithm can be compared with a specific threshold to obtain the
final decision. However, it is worth to note that veto strategy does not
perform as expected for the encrypted malware, i.e., malware with the
encrypted malicious routine. The encrypted part of the malware cannot
be disassembled to obtain accurate instruction sequences or byte code.
The presence of encryption in a file can be considered as the indication
of the malicious behavior. The encrypted malware can be decrypted
or executed to decrypt in a controlled environment to obtain the data
files. The data files can be further disassembled to extract instruction
sequences or byte code.

9.7 Conclusion and Future Work

There are a several strategies to obtain the result of an ensemble such
as the majority voting and the veto voting. However, it is not inves-
tigated which decision strategy is optimal for the malware detection.
Most of the researchers have used the majority voting for the malware
detection. A veto-based classification was proposed that was able to
predict about malware better than the majority voting. A series of ex-
periments with n-gram data sets, generated from different strategies,
were performed. A recent threat, i.e., scareware was used as malware
representation. The results indicated that the proposed model reduced
the number of false negatives (malware detected as legitimate applica-
tion), however, the false positive of proposed model was very high. The
decision strategy of proposed model was improved, i.e., trust-based veto
classifier. The experimental results indicated that the improved classifier
perform better than the previous approach in terms of the false posi-
tive rate. The proposed trust-based veto classifier performed better in
the recall than the majority voting. However, for the composite measure
F1, the majority voting was slightly better than the trusted-veto classi-
fier and the trusted veto classifier was better than the veto voting. The
experimental results also indicated the suitability of each voting scheme
for detecting a particular class of software. For the future work, the aim
is to further improve the proposed model in two different directions, i.e.,

137

9. VOTING SCHEMES FOR ENSEMBLE-BASED MALWARE DETECTION

improvement in the selection of classifiers for the optimal results, and
parameter tuning of the selected classifiers. The proposed model will
also be tested for the detection of different types of malware and for the
multi-class prediction.

138

Bibliography

[5]

William Stallings. Network Security Essentials: Applications and Stan-
dards. Prentice Hall, 4th edition, 2011.

Lynn Greiner. The new face of malware. netWorker, 10(4):11-13,
2006.

Rehan Shams, Muhammad Farhan, Sajid Ahmed Khan, and Fa-
had Hashmi. Comparing anti-spyware products — a different ap-
proach. In Proceedings of the 6th IEEE Joint International Information
Technology and Artificial Intelligence Conference, volume 1, pages 75—
80, 2011.

Erin Egan and Tim Jucovy. Building a better filter: How to create
a safer internet and avoid the litigation trap. IEEE Security and
Privacy, 4(3):37-44, 2006.

Ming-Wei Wu, Yi-Min Wang, Sy-Yen Kuo, and Yennun Huang.
Self-healing spyware: Detection, and remediation. IEEE Transac-
tions on Reliability, 56(4):588-596, 2007.

Madhusudhanan Chandrasekaran, Vidyaraman Sankara-
narayanan, and Shambhu J. Upadhyaya. SpyCon: Emulating
user activities to detect evasive spyware. In Proceedings of the
International Performance Computing and Communications Conference,
pages 502-509, 2007.

139

BiBLIOGRAPHY

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

140

Alan Westin. Privacy and Freedom. Atheneum, 1st edition, 1967.

Thomas F. Stafford and Andrew Urbaczewski. Spyware: The ghost
in the machine. Communications of the Association for Information
Systems, 14(1), 2004.

Paul McFedries. Technically speaking: The spyware nightmare.
IEEE Spectrum, 42(8):72-72, 2005.

Charles D. Curran. Combating spam, spyware, and other desktop
intrusions: Legal considerations in operating trusted intermediary
technologies. IEEE Security and Privacy, 4(3):45-51, 2006.

Lorenzo Martignoni, Elizabeth Stinson, Matt Fredrikson, Somesh
Jha, and John C. Mitchell. A layered architecture for detecting ma-
licious behaviors. In Proceedings of the 11th International Symposium
on Recent Advances in Intrusion Detection, pages 78-97, 2008.

Nathanael R. Paul. Disk-level behavioral malware detection. PhD dis-
sertation, University of Virginia, USA, 2008.

Paul Piccard and Jeremy Faircloth. Combating Spyware in the Enter-
prise. Syngress Publishing, 2006.

John Von Neumann. Theory of Self-Reproducing Automata. Univer-
sity of Illinois Press, 1966.

Thomas M. Chen and Jean marc Robert. The evolution of viruses
and worms. In Statistical Methods in Computer, 2004.

Zhen Li, Qi Liao, and Aaron Striegel. Botnet economics: Uncer-
tainty matters. In Managing Information Risk and the Economics of
Security, pages 245-267. Springer, 2009.

Cong Zheng, Lansheng Han, Jihang Ye, Mengsong Zou, and Qi-
wen Liu. A fuzzy comprehensive evaluation model for harms of
computer virus. In Proceedings of the 6th International Conference on
Mobile Adhoc and Sensor Systems, pages 708-713, 2009.

Bibliography

[19]

[25]

[26]

Martin Boldt and Bengt Carlsson. Privacy-invasive software and
preventive mechanisms. In Proceedings of the International Confer-
ence on Systems and Networks Communication, pages 21-27. IEEE
Computer Society, 2006.

Alvin Loh, Angela K. Butcher, Jason Garms, Kalid M. Azad,
Marc E. Seinfeld, Paul J. Bryan, and Sterling M. Reasor. System
and method for identifying and removing potentially unwanted
software, 2006. EP Patent 1,708,115.

Raja Khurram Shahzad, Syed Imran Haider, and Niklas Lavesson.
Detection of spyware by mining executable files. In Proceedings of
the 5th International Conference on Availability, Reliability, and Secu-
rity, pages 295-302. IEEE Computer Society, 2010.

Richard H. Stern. FTC cracks down on spyware and pc hijacking,
but not true lies. IEEE Micro, 25(1):6-7, 2005.

Geoff Shaw. Spyware & adware: the risks facing businesses. Net-
work Security, 2003(9):12-14, 2003.

Sarah Gordon. Fighting spyware and adware in the enterprise.
Information Systems Security, 14(3):14-17, 2005.

Raja Khurram Shahzad and Niklas Lavesson. Detecting scareware
by mining variable length instruction sequences. In Proceedings of
the 10th Annual Information Security South Africa Conference, pages
1-8. IEEE Press, 2011.

Niklas Lavesson, Paul Davidsson, Martin Boldt, and Andreas Ja-
cobsson. Spyware Prevention by Classifying End User License Agree-
ments, volume 134. Springer, 2008.

Yanfang Ye, Tao Li, Qingshan Jiang, and Youyu Wang. Cimds:
adapting postprocessing techniques of associative classification for
malware detection. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, 40(3):298-307, 2010.

141

BiBLIOGRAPHY

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

142

Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Diissel,
and Pavel Laskov. Learning and classification of malware behav-
ior. In Proceedings of the 5th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 108-125.
Springer, 2008.

Adrian Stepan. Improving proactive detection of packed malware.
Virus Bulletin, pages 11-13, 2006.

Robert Moskovitch, Clint Feher, Nir Tzachar, Eugene Berger, Ma-
rina Gitelman, Shlomi Dolev, and Yuval Elovici. Unknown mal-
code detection using OPCODE representation. In Proceedings of
the 1st European Conference on Intelligence and Security Informatics,
pages 204-215. Springer, 2008.

Oren Drori, Nicky Pappo, and Dan Yachan. New malware distri-
bution methods threaten signature-based AV. Virus Bulletin, pages
9-11, 2005.

Jose Nazario. Defense and Detection Strategies against Internet Worms.
Artech House, Inc., 2003.

Andreas Marx. Antivirus outbreak response testing and impact.
Virus Bulletin, 2004.

Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J.
Stolfo. Data mining methods for detection of new malicious ex-

ecutables. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 38-49, 2001.

Moheeb Abu Rajab, Lucas Ballard, Panayiotis Mavrommatis, Niels
Provos, and Xin Zhao. The nocebo effect on the web: an analysis of
fake anti-virus distribution. In Proceedings of the 3rd USENIX Con-
ference on Large-scale exploits and Emergent threats: Botnets, Spyware,
Worms, and more, pages 3-3. USENIX Association, 2010.

Aristotle. The Complete Works of Aristotle: The Revised Oxford Trans-
lation, volume 2. Princeton University Press, 1984.

Bibliography

[42]

[43]

[44]

[45]

Samuel Warren and Louis D. Brandeis. The right to privacy. Har-
vard Law Review, 4(5), 1890.

Batya Friedman, Edward Felten, and Lynette I. Millett. Informed
Consent Online: A Conceptual Model and Design Principles.
Technical report, University of Washington, 2003.

Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann Inc., 3rd
edition, 2011.

Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., 1 edi-
tion, 1997.

Fred Cohen. Computational aspects of computer viruses. Comput-
ers & Security, 8(4):297-298, 1989.

Fred Cohen. Computational aspects of computer viruses, chapter in
Rogue programs: viruses, worms and Trojan horses, pages 324—
355. Van Nostrand Reinhold, 1990.

Jeffrey M. Voas, Jeffrery E. Payne, and Frederick B. Cohen. A
model for detecting the existence of unknown computer viruses
in real-time. In Proceedings of 5th International Computer Virus &
Security Conference, 1992.

Grégoire Jacob, Hervé Debar, and Eric Filiol. Behavioral detec-
tion of malware: from a survey towards an established taxonomy.
Journal in Computer Virology, 4:251-266, 2008.

Peter J. Denning, editor. Computers under attack: intruders, worms,
and viruses. ACM, 1990.

Nwokedi Idike and Aditya P. Mathur. A survey of malware detec-
tion techniques. Technical report, Purdue University, 2007.

Clemens Kolbitsch, Paolo Milani Comparetti, Christopher
Kruegel, Engin Kirda, Xiaoyong Zhou, and XiaoFeng Wang. Ef-
fective and efficient malware detection at the end host. In Pro-

143

BiBLIOGRAPHY

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

144

ceedings of the 18th Conference on USENIX security symposium, pages
351-366. USENIX Association, 2009.

Mihai Christodorescu, Somesh Jha, Douglas Maughan, Dawn
Song, and Cliff Wang. Malware Detection (Advances in Information
Security). Springer, 2006.

Heng Yin. Malware Detection and Analysis Via Layered Annotative
Execution. BiblioBazaar, 2011.

Christian Kreibich and Jon Crowcroft. Honeycomb - creating in-
trusion detection signatures using honeypots. In Proceedings of the
2nd Workshop on Hot Topics in Networks, 2003.

Christopher Kruegel and Thomas Toth. Using decision trees to
improve signature-based intrusion detection. In Recent Advances
in Intrusion Detection, volume 2820, pages 173-191. Springer, 2003.

Carey Nachenberg. Generic exploit blocking. Virus Bulletin, 2005.

Carey Nachenberg. Generic exploit blocking: Prevention, not cure.
Information Systems Audit and Control Association, 2005.

Kent Griffin, Scott Schneider, Xin Hu, and Tzi-Cker Chiueh. Au-
tomatic generation of string signatures for malware detection. In
Proceedings of the 12th International Symposium on Recent Advances
in Intrusion Detection, pages 101-120. Springer, 2009.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed
automated random testing. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, pages 213-223. ACM, 2005.

Cristian Cadar and Dawson Engler. Execution generated test
cases: how to make systems code crash itself. In Proceedings of
the 12th International Conference on Model Checking Software, pages
2-23. Springer, 2005.

Bibliography

[58]

[62]

Jeffrey O. Kephart and William C. Arnold. Automatic extraction
of computer virus signatures. 4th Virus Bulletin International Con-
ference, pages 178-184, 1994.

Asaf Shabtai, Robert Moskovitch, Yuval Elovici, and Chanan
Glezer. Detection of malicious code by applying machine learning
classifiers on static features: A State-of-the-Art survey. Information
Security Technical Report, 14:16-29, 2009.

William B Cavnar and John M Trenkle. N-Gram-Based text catego-
rization. Proceedings Of 3rd Annual Symposium on Document Analy-
sis and Information Retrieval, pages 161-175, 1994.

ChengXiang Zhai. Statistical Language Models for Information Re-
trieval. Morgan & Claypool, 2009.

Vlado Keselj, Fuchun Peng, Nick Cercone, and Calvin Thomas.
N-gram-based author profiles for authorship attribution. Compu-
tational Linguistics, 3, 2003.

Gerald Tesauro, Jeffrey O. Kephart, and Gregory B. Sorkin. A
neural network virus detector. In Proceedings of the IBM Security
ITS, 1994.

Gerald Tesauro, Jeffrey O. Kephart, and Gregory B. Sorkin. Neural
networks for computer virus recognition. In IEEE Expert, pages 5-
6, 1996.

William Arnold and Gerald Tesauro. Automatically generated
win32 heuristic virus detection. In Proceedings of the 2000 Inter-
national Virus Bulletin Conference, 2000.

Jeremy Z. Kolter and Marcus A. Maloof. Learning to detect and
classify malicious executables in the wild. The Journal of Machine
Learning Research, 7:2721-2744, 2006.

Tony Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Swei-
dan. N-gram based detection of new malicious code. In Proceedings

145

BiBLIOGRAPHY

[66]

[67]

[68]

[69]

[70]

[71]

[72]

146

of the 28th Annual International Computer Software and Applications
Conference, pages 41-52. IEEE Computer Society, 2004.

Olivier Henchiri and Nathalie Japkowicz. A feature selection and
evaluation scheme for computer virus detection. In Proceedings of
the 6th International Conference on Data Mining, pages 891-895, 2006.

Robert Moskovitch, Dima Stopel, Clint Feher, Nir Nissim, and Yu-
val Elovici. Unknown malcode detection via text categorization
and the imbalance problem. In Proceedings of the International Con-
ference on Intelligence and Security Informatics, pages 156—61. IEEE,
2008.

Muazzam Siddiqui, Morgan C. Wang, and Joohan Lee. Detecting
trojans using data mining techniques. In Proceedings of the Inter-
nationa Multi-Topic Conference, volume 20, pages 400-411. Springer,
2008.

Anthonius Sulaiman, K. Ramamoorthy, Srinivas Mukkamala, and
Andrew H. Sung. Disassembled code analyzer for malware
(DCAM). In Proceedings of the International Conference on Information
Reuse and Integration, pages 398-403, 2005.

Raja Khurram Shahzad, Niklas Lavesson, and Henric Johnson. Ac-
curate adware detection using opcode sequence extraction. In Pro-
ceedings of the 6th International Conference on Availability, Reliability,
and Security, pages 189-195. IEEE Press, 2011.

Muazzam Siddiqui, Morgan C. Wang, and Joohan Lee. Detecting
internet worms using data mining techniques. Journal of Systemics,
Cybernetics and Informatics, 6(6):48-53, 2008.

Lili Bai, Jianmin Pang, Yichi Zhang, Wen Fu, and JiaFeng Zhu. De-
tecting malicious behavior using critical api-calling graph match-
ing. In Proceedings of 1st International Conference on Information Sci-
ence and Engineering, pages 1716-1719, 2009.

Bibliography

[74]

[80]

Shanhu Shang, Ning Zheng, Jian Xu, Ming Xu, and Haiping
Zhang. Detecting malware variants via function-call graph sim-
ilarity. In Proceedings of 5th International Conference on Malicious and
Unwanted Software, pages 113-120, 2010.

Joris Kinable and Orestis Kostakis. Malware classification based
on call graph clustering. Journal in Computer Virology, 7:233-245,
2011.

Mehmed Kantardzic. Data Mining: Concepts, Models, Methods, and
Algorithms. Wiley-IEEE Press, 2nd edition, 2011.

David]. Sheskin. Handbook of Parametric and Nonparametric Statisti-
cal Procedures. Chapman & Hall (CRC Press), 4 edition, 2007.

William R Shadish, Thomas D Cook, and Donald T Campbell. Ex-
perimental and quasi-experimental designs for generalized causal infer-
ence. Houghton Mifflin, 2001.

Colin Robson. Real World Research. John Wiley & Sons Inc, 2011.

Donald T. Campbell and Julian C. Stanley. Experimental and Quasi-
Experimental Designs for Research. Houghton Mifflin Company,
1966.

John W. Creswell. Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. SAGE Publications Ltd., 3rd edition,
2008.

Thomas D. Cook and Donald T. Campbell. Quasi-Experimentation:
Design & Analysis Issues for Field Settings. Houghton Mifflin, 1979.

Ming-Wei Wu and Sy-Yen Kuo. Examining web-based spyware
invasion with stateful behavior monitoring. In Proceedings of the
13th Pacific Rim International Symposium on Dependable Computing,
pages 275-281. IEEE Computer Society, 2007.

Ravi S. Sandhu. Lattice-based access control models. Computer,
26(9-19), 1993.

147

BiBLIOGRAPHY

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

148

Narges Arastouie and Mohammad Reza Razzazi. Hunter: An anti
spyware for windows operating system. In Proceedings of the 3rd
International Conference on Information and Communication Technolo-
gies: From Theory to Applications, pages 1-5, 2008.

Terry Bollinger. Software in the year 2010. IT Professional, 6(6):11-
15, 2004.

Qing Hu and Tamara Dinev. Is spyware an internet nuisance or
public menace? Communications of the ACM, 48(8):61-66, 2005.

Wes Ames. Understanding spyware: Risk and response. IT Profes-
sional, 6(5):25-29, 2004.

Cumbhur Doruk Bozagac. Application of data mining based mali-
cious code detection techniques for detecting new spyware. White
paper, Bilkent University, 2005.

Ming-Wei Wu, Yennun Huang, Yi-Min Wang, and Sy-Yen Kuo. A
stateful approach to spyware detection and removal. In Proceedings
of the 12th IEEE Pacific Rim International Symposium on Dependable
Computing, pages 173-182. IEEE Computer Society, 2006.

Ian H. Witten and Eibe Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2 edition, 2005.

William W. Cohen. Fast effective rule induction. In Proceedings
of 12th International Conference on Machine Learning, pages 115-23.
Morgan Kaufmann Publishers, 1995.

Yuval Elovici, Asaf Shabtai, Robert Moskovitch, Gil Tahan, and
Chanan Glezer. Applying machine learning techniques for detec-
tion of malicious code in network traffic. In KI 2007: Advances in
Artificial Intelligence, volume 4667, pages 44-50. Springer, 2007.

Jau-Hwang Wang, Peter S. Deng, Yi-Shen Fan, Li-Jing Jaw, and
Yu-Ching Liu. Virus detection using data mining techinques. In
Proceedings of the IEEE 37th Annual International Carnahan Confer-
ence on Security Technology, pages 71-76, 2003.

Bibliography

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Niklas Lavesson, Martin Boldt, Paul Davidsson, and Andreas Ja-
cobsson. Learning to detect spyware using end user license agree-
ments. Knowledge and Information Systems, 26(2):285-307, 2011.

D. Krishna Sandeep Reddy, Subrat Kumar Dash, and Arun K.
Pujari. New malicious code detection using variable length n-
grams. In Information Systems Security, volume 4332, pages 276—
288. Springer, 2006.

Anders Isaksson, Mikael Wallman, Hanna Goransson, and Mats G.
Gustafsson. Cross-validation and bootstrapping are unreliable in
small sample classification. Pattern Recognition Letters, 29:1960—
1965, 2008.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Pe-
ter Reutemann, and Ian H. Witten. The WEKA data mining soft-
ware: an update. ACM Special Interest Group on Knowledge Discovery
and Data Mining Explorations, 11:10-18, 2009.

Foster J. Provost, Tom Fawcett, and Ron Kohavi. The case against
accuracy estimation for comparing induction algorithms. In Pro-
ceedings of the 15th International Conference on Machine Learning,
pages 445-453. Morgan Kaufmann Publishers Inc., 1998.

Graham Cluley. Malware trends: Sizing up the malware threat -
key malware trends for 2010. Network Security, 2010(4):8-10, 2010.

Marco Cova, Corrado Leita, Olivier Thonnard, Angelos D.
Keromytis, and Marc Dacier. An analysis of rogue av campaigns.
In Proceedings of the 13th International Conference on Recent Advances
in Intrusion Detection, pages 442-463. Springer, 2010.

Luis Corrons. The business of rogueware. In Web Application Secu-
rity, volume 72, pages 7-7. Springer, 2010.

Shlomo Dolev and Nir Tzachar. Malware signature builder and
detection for executable code, 2010. EP Patent 2,189,920.

149

BiBLIOGRAPHY

[103] Gerard M. Salton, Andrew Wong, and ChungShu Yang. A vector
space model for automatic indexing. Communications of the ACM,
18:613-620, 1975.

[104] Mondelle Simeon and Robert Hilderman. Categorical propor-
tional difference: A feature selection method for text categoriza-
tion. In Proceedings of the 7th Australasian Data Mining Conference,
volume 87, pages 201-208. ACS, 2008.

[105] William W. Cohen. Learning trees and rules with set-valued fea-
tures. In Proceedings of the 13th national Conference on Artificial intel-
ligence, pages 709-716. AAAI Press, 1996.

[106] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kauf-
mann Publishers Inc., 1993.

[107] John Platt. Sequential minimal optimization: A fast algorithm
for training support vector machines. Advances in Kernel Methods-
Support Vector Learning, 208:98-112, 1999.

[108] Cao Feng and Donald Michie. Machine learning of rules and trees,
& 8
pages 50-83. Ellis Horwood, 1994.

[109] Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern
classification. IEEE Transactions on Information Theory, 13(1):21-27,
1967.

[110] Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

[111] E. Eugene Schultz. Pandora’s box: spyware, adware, autoexecu-
tion, and ngscb. Computers & Security, 22(5):366-367, 2003.

[112] Juraj Malcho. Is there a lawyer in the lab ? In Proceedings of the
19th Virus Bulletin International Conference, 2009.

[113] Sam Scott and Stan Matwin. Feature engineering for text classifi-
cation. In Proceedings of the 16th International Conference on Machine
Learning, pages 379-388. Morgan Kaufmann Publishers Inc., 1999.

150

Bibliography

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Yanmin Sun, Mohamed S. Kamel, and Andrew K. C. Wong. Em-
pirical study on weighted voting multiple classifiers. In Proceedings
of the 3rd International Conference on Advances in Pattern Recognition
and Data Mining, pages 335-344, 2005.

Mohamed S. Kamel and Nayer M. Wanas. Data dependence in
combining classifiers. In Proceedings of the 4th International Confer-
ence on Multiple Classifier Systems, pages 1-14. Springer, 2003.

Louisa Lam and Simon. Y. Suen. Application of majority voting to
pattern recognition: an analysis of its behavior and performance.
IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems
and Humans, 27(5):553-568, 1997.

Yu-An Sun and Christopher R. Dance. When majority voting fails:
Comparing quality assurance methods for noisy human computa-
tion environment. Computing Research Repository, 1204.3516, 2012.

Raja Khurram Shahzad and Niklas Lavesson. Veto-based malware
detection. In Proceedings of 7th International Conference on Availabil-
ity, Reliability, and Security, pages 47-54. IEEE Press, 2012.

Chao Ren, Jian-Feng Yan, and Zhan-Huai Li. Improved ensemble
learning in fault diagnosis system. In Proceedings of the International
Conference on Machine Learning and Cybernetics, volume 1, pages 54—
60, 2009.

Ludmila I. Kuncheva. Diversity in multiple classifier systems. In-
formation Fusion, 6(1):3-4, 2005.

Tyrone W. A. Grandison. Trust management for internet applications.
PhD thesis, Imperial College, 2003.

Alexander Gepperth. Object detection and feature base learning
with sparse convolutional neural networks. In Artificial Neural Net-
works in Pattern Recognition, pages 221-232, 2006.

151

BiBLIOGRAPHY

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

152

Domonkos Tikk, Zsolt Tivadar Kardkovacs, and Ferenc. P Szi-
darovszky. Voting with a parameterized veto strategy: Solving
the KDD cup 2006 problem by means of a classifier committee.
ACM Special Interest Group on Knowledge Discovery and Data Mining
Explorations, 8(2):53-62, 2006.

Roman Kern, Christin Seifert, Mario Zechner, and Michael Gran-
itzer. Vote/veto meta-classifier for authorship identification - note-
book for pan at clef 2011. In Proceedings of the Conference on Multi-
lingual and Multimodal Information Access Evaluation, 2011.

Eitan Menahem, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Im-
proving malware detection by applying multi-inducer ensemble.
Computational Statistics & Data Analysis, 53(4):1483-1494, 2009.

Boyun Zhang, Jianping Yin, Jingbo Hao, Dingxing Zhang, and
Shulin Wang. Malicious codes detection based on ensemble learn-
ing. In Autonomic and Trusted Computing, volume 4610, pages 468—
477. Springer, 2007.

Thomas Beth, Malte Borcherding, and Birgit Klein. Valuation of
trust in open networks. In Proceedings of the 3rd European Sympo-
sium on Research in Computer Security, pages 3-18, 1994.

Michael K. Reiter and Stuart G. Stubblebine. Path Independence
for Authentication in Large-Scale Systems. In Proceedings of the

ACM Conference on Computer and Communications Security, pages
57-66, 1997.

Raph Levien. Attack resistant trust metrics. Technical report, UC
Berkeley, 2004.

Raph Levien. Attack-resistant trust metrics. In Computing with
Social Trust, pages 121-132. Springer, 2009.

Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-
Molina. The eigentrust algorithm for reputation management in

Bibliography

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

p2p networks. In Proceedings of the 12th International Conference on
World Wide Web, pages 640-651, 2003.

Zoé Abrams, Robert McGrew, and Serge Plotkin. A non-
manipulable trust system based on eigentrust. Special Interest
Group on Electronic Commerce Exchanges, 5(4):21-30, 2005.

Xia Li, Jill Slay, and Shaokai Yu. Evaluating trust in mobile ad hoc
networks. In Proceedings of the International Conference on Computa-
tional Intelligence and Security Workshops, 2005.

Xin Liu, Gilles Trédan, and Anwitaman Datta. A generic trust
framework for large-scale open systems using machine learning.
Computing Research Repository, 1103.0086, 2011.

Sholom M. Weiss, Chidanand Apte, Fred]J. Damerau, David E.
Johnson, Frank J. Oles, Thilo Goetz, and Thomas Hampp. Maxi-
mizing text-mining performance. IEEE Intelligent Systems and their
Applications, 14(4):63-69, 1999.

Giorgio Giacinto and Fabio Roli. Methods for dynamic classifier
selection. In Proceedings of International Conference on Image Analysis
and Processing, pages 659-664, 1999.

Alixandre Santana, Rodrigo G. F. Soares, Anne M. P. Canuto, and
Marcilio Carlos Pereira de Souto. A dynamic classifier selection
method to build ensembles using accuracy and diversity. In Pro-
ceedings of the 9th Brazilian Symposium on Neural Networks, pages
3641, 2006.

Fatima Talib. Computational aspects of voting: A literature survey.
Masters Thesis, Rochester Institute of Technology, 2007.

Herve Moulin. Voting with proportional veto power. Econometrica,
50(1):145-62, 1982.

Gerard Salton and Christopher Buckley. Term-weighting ap-
proaches in automatic text retrieval. In Information Processing and
Managment, pages 513-523, 1988.

153

BiBLIOGRAPHY

[141] Raymond H. Walpole, Ronald E.and Myers and Sharon L. Myers.
Probability & Statistics for Engineers & Scientists. Prentice Hall, 2012.

[142] J. Franke, Louisa Lam, Raymond Legault, Christine P. Nadal, and
Ching Y. Suen. Experiments with the CENPARMI data base com-
bining different classification approaches. In Proceedings of 3rd In-
ternational Workshop Frontiers Handwriting Recognition, pages 305—
311, 1993.

[143] Ahmad E R. Rahman, Hassan Alam, and Michael C. Fairhurst.
Multiple classifier combination for character recognition: Revisit-
ing the majority voting system and its variations. In Proceedings
of the 5th International Workshop on Document Analysis Systems, vol-
ume 2423, pages 167-178. Springer, 2002.

[144] Dymitr Ruta and Gabrys Bogdan. Classifier selection for majority
voting. Information Fusion, 6(1):63-81, 2005.

154

ABSTRACT

Malicious software authors have shifted their
focus from illegal and clearly malicious soft-
ware to potentially unwanted programs (PUPs)
to earn revenue. PUPs blur the border between
legitimate and illegitimate programs and thus
fall within a grey zone. Existing anti-virus and
anti-spyware software are in many instances
unable to detect previously unseen or zero-
day attacks and separate PUPs from legitimate
software. Many tools also require frequent up-
dates to be effective. By predicting the class
of a particular piece of software, users can get
support before taking the decision to install the
software. This Licentiate thesis introduces ap-
proaches to distinguish PUP from legitimate
software based on the supervised learning of
file features represented as n-grams.

The overall research method applied in this
thesis is experiments. For these experiments,
malicious software applications were obtained
from anti-malware industrial partners. The le-
gitimate software applications were collected
from various online repositories. The general
steps of supervised learning, from data prepa-

2013:02

ration (n-gram generation) to evaluation were,
followed. Different data representations, such
as byte codes and operation codes, with diffe-
rent configurations, such as fixed-size, variab-
le-length, and overlap, were investigated to ge-
nerate different n-gram sizes. The experimental
variables were controlled to measure the cor-
relation between n-gram size, the number of
features required for optimal training, and clas-
sifier performance.

The thesis results suggest that, despite the
subtle difference between legitimate software
and PUP, this type of software can be classi-
fied accurately with a low false positive and
false negative rate. The thesis results further
suggest an optimal size of operation code-ba-
sed n-grams for data representation. Finally,
the results indicate that classification accuracy
can be increased by using a customized en-
semble learner who makes use of multiple re-
presentations of the data set. The investigated
approaches can be implemented as a software
tool with a less frequently required update in
comparison to existing commercial tools.

ISSN 1650-2140
ISBN: 978-91-7295-247-8

