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ABSTRACT 

Parallel programming models are quite challenging and emerging topic in the parallel 

computing era. These models allow a developer to port a sequential application on to a 

platform with more number of processors so that the problem or application can be solved 

easily. Adapting the applications in this manner using the Parallel programming models is 
often influenced by the type of the application, the type of the platform and many others. 

There are several parallel programming models developed and two main variants of parallel 

programming models classified are shared and distributed memory based parallel 
programming models. 

The recognition of the computing applications that entail immense computing requirements 

lead to the  confrontation of the obstacle regarding the development of the efficient 
programming models that bridges the gap between the hardware ability to perform the 

computations and the software ability to support that performance for those applications 

[25][9]. And so a better programming model is needed that facilitates easy development and 

on the other hand porting high performance. To answer this challenge this thesis confines 
and compares four different shared memory based parallel programming models with respect 

to the development time of the application under a shared memory based parallel 

programming model to the performance enacted by that application in the same parallel 
programming model.  The programming models are evaluated in this thesis by considering 

the data parallel applications and to verify their ability to support data parallelism with 

respect to the development time of those applications. The data parallel applications are 

borrowed from the Dense Matrix dwarfs and the dwarfs used are Matrix-Matrix 
multiplication, Jacobi Iteration and Laplace Heat Distribution. The experimental method 

consists of the selection of three data parallel bench marks and developed under the four 

shared memory based parallel programming models considered for the evaluation. Also the 
performance of those applications under each programming model is noted and at last the 

results are used to analytically compare the parallel programming models. 

Results for the study show that by sacrificing the development time a better performance is 
achieved for the chosen data parallel applications developed in Pthreads. On the other hand 

sacrificing a little performance data parallel applications are extremely easy to develop in 

task based parallel programming models. The directive models are moderate from both the 

perspectives and are rated in between the tasking models and threading models. 

Keywords: Parallel Programming models, Distributed memory, Shared memory, Dwarfs, 

Development time, Speedup, Data parallelism, Dense Matrix dwarfs, threading models, 

Tasking models, Directive models. 
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INTRODUCTION 

This chapter presents an introduction to parallel programming models. An ensemble of 
parallel programming models with their connections, existence and entanglements in using 

the parallel programming models is presented. 

Parallel programming refers to the computational form where applications achieve high 
performance by parallelizing the operations and executing them simultaneously. 

Parallelization of the computations or operations can often be achieved in two ways.  

 By replicating the hardware components (processor, memory, bus).  

 By interleaving and organizing the single processor execution between multiple 

tasks. 

1.1 Parallel programming 

This thesis deals with the former concept mentioned above which is prominently known as 

parallel processing. This word can be used interchangeably with the term parallel 
programming. Parallel programming means performing multiple tasks in parallel using the 

duplication of the functional components. Parallel programming is used extensively for a 

wide range of applications ranging from scientific applications to the commercial 
applications. Example applications include transaction processing, computer games and 

graphics, weather simulation, heat transfer, ray tracing and many others. 

1.2 Parallel Hardware 

It is necessary to know about the parallel hardware before going deep into the study. The 

traditional uni-processor computer is said to follow Von-Neumann architecture which 
consists of a single memory connected to processor via data paths and works on the ―stored 

memory concept‖. These kinds of architectures often represent a bottle neck for sequential 

processing and the performance associated with them is limited. So to relieve from these 
bottle necks one possible way is to use the redundancy /duplication of the hardware 

components. Various types of parallel platforms are designed to support the better parallel 

programming. The hardware used for parallel programming is known as multiprocessors. 

[27], [3] provides a very good introduction to the classification of multi-core platforms. They 
are in general classified into two types  

 SIMD architectures - involves multiple processors sharing the same instructions but 

rather executing them on multiple data. 

 MIMD architectures – involves multiple processors each having its own set of 

instructions and data. 

Parallel data structures are the ones that benefit more by using the SIMD architectures. 

Usually these types of computations are known as structured computations. Often it is 

necessary to selectively turn of operations on certain data items. SIMD paradigms are known 
for the usage of an activity mask where a central control unit turns off selectively the 

operations on certain data items done by a processor array. Such conditional execution can 

be complex by nature, detrimental to the performance and can be used with care. In contrast 

to SIMD architectures, MIMD computers have the capability of executing independent 
instruction and data streams. A simple variant of this model is called the Single program 

multiple data (SPMD) model, relies on multiple instances of the same program executing on 

different data. SPMD model is widely used by many parallel platforms and requires minimal 
architectural support. 



  8 

1.3 Parallel Programs 

This idea of parallelizing the tasks was first encountered in the year 1958 by Gill [35]. Later 

in 1959 Holland pointed about a computer capable of running an arbitrary of sub programs 
simultaneously [35]. Conway presented the design of a parallel computer and its 

programming in 1963[35]. In 1980‘s a naive idea is that the performance of computers is 

increased by creating fast and efficient processors. But as the hardware developments 
progressed and this was challenged by the parallel processing by encompassing multiple 

cores in a single die. Thus leading to the development of the parallel programming models 

and paradigm shift has been encountered from the traditional uni-processor software to the 
revolutionary parallel programming software. 

1.4 Why are parallel computers important? 

Parallel computing allows solving problems that usually pose high requirements on the 

memory and processing power i.e. applications that can‘t be run using a single CPU. Also 
some problems are time critical; they need to be solved in a very limited amount of time. 

Using uni-processors for those applications can‘t achieve the desired performance and 

therefore parallel computers are used to solve that sort of problems. By using parallel 
computers we can run large problems, faster, and many more cases. The main intention in 

using the parallel systems is to support high execution speeds. The scope of parallelization of 

an application comes from the identification of multiple tasks of the same kind, which is a 
major source of speedup achieved by the parallel computers. Parallel computers are also 

used to overcome the limits of sequential processing like with sequential processing the 

available memory, performance is often a limitation to the processing for achieving high 

performance.  

1.5 Problem Domain 

The research discipline is confined to the software based shared memory parallel 

programming models. These models are designed for achieving considerable gain in 
performance by running the applications efficiently on the underlying platforms. Even 

though a comparison of parallel programming models is done by few researchers, this study 

is new of its kind and also no definite literature is available for this study. This area of 
research is quiet dominant and emerging because of the challenges posed in section (Chapter 

2).  This thesis considers the chance of answering those research challenges faced by the 

most of the industries in this field. 

1.6  Problem and Research Gap 

The true objective of the parallel computing is to solve the problems that require large 

resources and to achieve high performance of the application. But achieving the high 

performance is not the only challenge faced in the field of parallel computing. One of the 
main challenges faced by the parallel computing industry is to bridge the gaps between the 

parallel hardware and parallel software with respect to the increasing capabilities of parallel 

hardware [30]. Modern computer architectures (Multi-core and CMPs) tend to follow the 
computational power argument [3] and reaching the limits of the Moore‘s law. Software for 

parallel computers is slowly but steadily increasing [3] need to be bridged with the 

increasing capabilities of the parallel hardware. Software applications are vast from various 

disciplines and must be adapted to execute in a diverse set of parallel environments. One 
obvious solution to face this challenge is to arrive at a solution of a problem with minimal 

effort and time [30]. Thus an important metric that for evaluating various approaches to code 

development is the ―time to solution‖ also called the ―development time‖ metric. On the 
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other hand the time to solution has its impact on affecting the performance of the application. 

One obvious follow-up question drawn from the above statement is that; how the 

performance of the parallel application is achieved with respect to the development time. 
The answer for this depends on the support for development of an application under a 

parallel programming model while at the same time the performance offered by using the 

model specific primitives. For a parallel programming model to face the above challenges, it 
is a tradeoff between the development time of the application and the speedup of an 

application [30]. The main goal is to reduce the time to solution, by sacrificing either of the 

parameters, the speedup of an application or the development time of the application or both 

if necessary. For example the expending the development effort for tuning the performance 
of the application may leads to the decrease in orders of magnitude of  the execution times or 

may lead to less improvement in the execution times, which has its effects on achieving 

greater speedups of the parallel application. Barriers need to be identified for development 
time and speedup for a parallel programming model, such that time to solution is minimized. 

These values will differ based on the type of the problem, the type of the parallel 

programming model used and also on the type of the language used for development. If the 
code will be executed many times, many of the costs of the increasing development time can 

be amortized across the multiple runs of the software and balancing against the cumulative 

reduced execution time conversely, if the code will be executed only once the benefit of 

increasing effort in tuning the code may not be as large [30]. 

1.7 Research Questions 

This thesis is mainly aimed to compare the shared memory based parallel programming 

models. (Chapter 2) describes the goals and objectives in detail. 

The following research questions are studied in the thesis. 

 RQ1.What is the speedup of the application achieved under the chosen parallel 

programming model?  

 RQ2. What is the development time of the application under each parallel 

programming model?  

 RQ3. Which model is best when compared to the relative speedup and the total 

development time of the application? 

The research methodology followed for this study in order to answer the research questions 

is a quantitative methodology. The methodology is presented in detail in Chapter 3.  

1.8 Structure of the thesis 

Chapter 1 explains the background of the study; chapter 2, explains the problem definitions 

and goals identified for this study; chapter 3, presents the methodology; chapter 4, presents 

the Benchmarks used for this study; Chapter 5 describes the Qualitative work; chapter 6, the 
empirical case study; Chapter 7, the results; Chapter 8 the Analysis and Discussions. 
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CHAPTER 2: BACKGROUND 

2.1 Parallel hardware  

Parallel hardware is equally important for a parallel application developer because there are 

several details that the developer has to consider while developing applications in a parallel 

programming model like for example the underlying processor architecture, the memory 
architecture, the cache organization and so-on. Parallel hardware incorporates details about 

the processors, memory hierarchy, and the type of inter-connection used. Parallel hardware is 

used to provide a framework on which the parallel software resides. 

2.1.1 Processors 

The hardware used for the parallel systems comes in a varying number of cores and 

complexities. The performance achieved depends on the underlying processor architecture.  

For high efficiency, the programming model must be abstracted from the underlying 

processors and is independent of the number of processors and the design complexity 
involved (like the interconnections used and the number of threads per processor core) [21] 

[20]. 

2.1.2 Memory hierarchy 

Memory organization is an important issue that supports the levels of parallelism and takes a 
different form for parallel architectures on which the parallel programming model is relying 

on, than in uni-processor architecture. Memory consistency issues must be dealt with more 

care; otherwise they could introduce long delays, ordering and visibility issues. Having 

memory on chip improves the efficiency of the programming model Rather having the off 
chip memory [20], [21]. For this high speed and smaller memory components called caches 

are used. Programming models need to be designed for the efficient use of those caches. 

Otherwise it is the responsibility of the programmer to optimize the program for the cache 
efficiency. Often there are few parallel programming models like Cilk++ and Intel‘s TBB 

(threading building blocks) that are designed to optimize for the cache usage. 

2.1.3 Interconnection network 

Interconnects specify how the processor nodes in a parallel computers are connected. The 

information about various topologies are defined in [27], [3] few of the most widely used are 
ring, bus, hypercube and tree based topologies. The type of the interconnection used is 

affected in terms of the cost and scalability. Some topologies scale well in terms of area and 

power while increasing the cost whereas some other topologies comes at low cost but not 
well scalable.  The choice of the interconnection used is often a trade-off between these two 

factors. Also the inefficient way of interconnecting the processor nodes in a multiprocessor 

leads to performance dropdown by introducing high latency in the communications even 
though the architecture is scalable. The best interconnection model must scale with the 

number of the processor nodes, with introducing low latency during communications (fully 

discussed in section 2.1.4). Often it is suggested that processor nodes should be 

interconnected in terms of small ring or bus topologies and interconnecting them using 
mesh[21].  

2.1.4 Communication 

The communication models used in the parallel architecture classifies the type of the 

multiprocessors [10]. Multiple processors that share the global address space are classified 
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under shared-memory multiprocessors. The multi-processors in these systems 

communicate with each other through global variables stored in a shared address space. 

Another complete variant architecture for the one mentioned above is known as distributed-

memory multiprocessors where each processor has its own memory module and the data at 

any time instant is private to the processors. These types of systems are constructed by 

interconnecting each component with a high-speed communications network. These 
architectures rely on the send/receive primitives for communication between multiple 

processors communicate to each other over the network. Parallel programming models that 

rely on shared memory based multiprocessors are called shared memory based parallel 

programming models and parallel programming models that rely on distributed memory 
architectures are called distributed memory based parallel programming models (discussed 

in the section 2.3). 

2.2 System Software 

The system software includes the compilers and operating systems that support the parallel 

programming models. These help to span the gap between the applications and the hardware 

[21]. Each of these has the potentiality in affecting the performance of the programming 
models. This is because the parallel code generated by a computer often depends on the 

system software employed where the responsibility is ensured by the compilers and 

autotuners [21]. Again there is a tradeoff between autotuners and compilers about which 

software to use for parallelizing of the applications. 

2.3 Shared memory vs. Distributed memory based 

parallel programming  

Parallel programming models are not new and dates back to the cell processors [20]. There 
are several programming models that have been proposed for multi-core processors. They 

can be classified based on the communication model used. A good literature on Share 

memory versus Distributed memory parallel programming is found in [5]. 

2.3.1  Shared memory based parallel programming  

These are the models that rely on the shared memory multiprocessors. Shared memory based 

parallel programming models communicate by sharing the data objects in the global address 

space. Shared memory models assume that all parallel activities can access all of memory. 

Consistency in the data need to be achieved when different processors communicate and 
share the same data item, this is done using the cache coherence protocols used by the 

parallel computer. All the operations on the data items are implicit to the programmer. For 

shared memory based parallel programming models communication between parallel 
activities is through shared mutable state that must be carefully managed to ensure 

correctness. Various synchronization primitives such as locks or transactional memory are 

used to enforce this management. The advantages with using shared memory based parallel 
programming models are presented below. 

 Shared memory based parallel programming models facilitate easy development of 

the application than distributed memory based multiprocessors. 

 Shared memory based parallel programming models avoids the multiplicity of the 

data items and the programmer doesn‘t need to be concerned about that which is the 

responsibility of the programming model. 

 Shared memory based programming models offer better performance than the 

distributed memory based parallel programming models. 
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The disadvantages with using the shared memory based parallel programming models are 

described below. 

 The hardware requirements for the shared memory based parallel programming 

models are very high, complex and cost oriented. 

 Shared memory parallel programming models often encounter data races and 

deadlocks during the development of the applications. 

2.3.2 Distributed memory based parallel programming  

These kind of parallel programming models are often known as message passing models, 

that allows communication between processors by using the send/receive communication 
routines. Message passing models avoids communications between processors based on 

shared/global data [20]. Typically used to program clusters, where each processor in the 

architecture gets its own instance of data and instructions. The advantages of distributed 

memory based programming models are shown below. 

 The hardware requirement for the message passing models is low, less complex and 

comes at very low cost.  

 The message passing models avoids the data races and as a consequence the 

programmer is freed from using the locks. 

The disadvantages with distributed memory based parallel programming model. 

 Message passing models on contrast encounters deadlocks during the process of 

communications. 

 Development of applications on message passing models is hard and takes more 

time.  

 The developer is responsible for establishing communication between processors.  

 Message passing models are less performance oriented and incur high 

communication overheads. 

2.4 Shared memory based parallel programming models 
 

A diverse range of shared memory based parallel programming models are developed till 

date. They can be classified into mainly three types as described below. 

2.4.1 Threading models 

These models are based on the thread library that provides low level library routines for 

parallelizing the application. These models use mutual exclusion locks and conditional 

variables for establishing communications and synchronizations between threads. The 
advantages with threading models are shown below. 

 More suitable for applications based on the multiplicity of data.  

 The flexibility provided to the programmer is very high.  

 Threading libraries are most widely used also it is easy to find tools related to the 

threading models.  

 Performance can still be improved by using conditional waits and try locks.  

 Easy to develop parallel routines for threading models. 

The disadvantages associated with threading models are described below. 
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 Hard to write applications using threading models, because establishing a 

communication or synchronization incurs code overhead which is hard to manage 

and thereby leaving more scope of causing errors.  

 The developer should be more careful in using global data otherwise this leads to 

data races, deadlocks and false sharing.  

 Threading models stand at low level of abstraction, which isn‘t required for a better 

programming model. 

2.4.2 Directive based models 
 

These models use the high level compiler directives to parallelize the applications. These 
models are an extension to the thread based models. The directive based models takes care of 

the low level features like partitioning, worker management, synchronization and 

communication among the threads. The advantages with directive models are presented 

below. 

 Directive based models emerged as a standard.  

 It is easy to write parallel application.  

 Less code overhead is incurred and it is easy manage the code developed using 

directives.  

 This model stands at low level of abstraction.  

 The programmer doesn‘t need to consider issues like data races false sharing, 

deadlocks. 

 The disadvantages associated with using directive based models are presented below. 

 These models are less popularly used.  

 The flexibility provided to the programmer is low.  

 Also the support of the tools for development is low. 

2.4.3 Tasking models  
 

Tasking models are based on the concept of specifying tasks instead of threads as done by 

other models. This is because tasks are of short span and more light weight than threads. 

Tasks in general are 18X faster than threads in UNIX implementations and 100X faster than 
threads in windows based implementations [14]. One difference between tasks and threads is 

that tasks are always implemented at user mode [20]. Also tasks are parallel but not 

concurrent as a result they are non-preemptive and can be executed sequentially. The 
advantages with task based models are presented below. 

 Tasks are proved to lessen the overhead associated with communications as is 

incurred in other models. 

 Facilitates easy development of the parallel applications. 

 Easy to find tools related to task based models. As a consequence it is easy to debug 

errors faced in task based models. 

The disadvantages associated with using task based models are presented below. 

 Task based models are not emerged as standard. 

 Task based models are hard to understand. 

 The flexibility associated with them is very low. 
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2.5  Programming Models Evaluated 

This section describes the parallel programming models that are evaluated during this study. 

In this study, only the shared memory based parallel programming models were considered. 
There are several reasons for this, but few of the important reasons are discussed below. 

 The shared memory platforms were dominant in the near future that poses a 

challenge of proposing new shared memory based parallel programming models that 

ease the development of parallel applications on those architectures. 

 Programming for shared memory platforms is easier rather than the distributed 

parallel programming models which delve the mind of the developers making them 

responsible for establishing the parallel features. 

 Shared memory based parallel programming models are more convenient to achieve 

good performance scales on the architecture employed with less effort than 

distributed memory parallel programming models. 

 Various parallel programming models for shared memory platforms based on 

different features exist till date it is necessary to evaluate those models regarding the 

performance and development time (as mentioned in the challenges).  

This thesis considers the shared memory parallel programming models based on the features 

of expressing the parallelism. Three of the various types of expressing the shared memory 

based parallelism are presented below. These models are selected for the study because of 

strictly confining the study only to the parallel programming libraries. 

 Threading models. 

 Directive based models.  

 Task based models. 

A detailed description of the above models is presented in the Chapter-3. The models 

selected based on these features are under threading model is the Pthreads model, under 
directive based model comes  the OpenMP model and under task models the selected models 

are Intel‘s TBB and Cilk++. 

2.5.1 Pthreads 

Portable Operating System Interface (POSIX) threads [8] are an interface with a set of C 

language procedures and extensions used for creating and managing threads. It is first 
developed for uni-processor architectures to support for the multi-tasking/multi-threading on 

UNIX platforms and later emerged as an ANSI/IEEE standard POSIX 1003.1 C in 1995. 

They can be easily extended to multiprocessor platforms and are capable for realizing 
potential gain in performance of parallel programs. It is raw threading model that resides on 

a shared memory platform leaving most of the implementation details of the parallel 

programs and more flexible to developer. Pthreads has very low level of abstraction and 
hence developing the application in this model is hard from the developer perspective.  With 

Pthreads the parallel application developer has more responsibilities like work load 

partitioning, worker management, communication and synchronization & task mapping. It 

defines a very wide variety of library routines categorized according to the responsibilities 
presented above. 



  15 

2.5.2 OpenMP 

Open Message passing or Open specification for multiprocessing [6] is an application 

program interface, which defines a set of program directives, Run time library routines and 

environment variables that are used to explicitly express direct multi-threaded, shared 
memory parallelism. It can be specified in C/C++/FORTRAN. It is an open parallel 

programming model defined by major computer vendor companies. OpenMP stand at high 

level of abstraction which eases the development of parallel applications from the 

perspective of the developer. OpenMP hides and implements by itself the details like work 
load partitioning, worker management, communication and synchronization. The developers 

only need to specify the directives in order to parallelize the application. It is the best 

programming model known till date. OpenMP is not widely used as Pthreads and is not 
emerged as a standard. It is hard to find the tools related to OpenMP. Moreover, the 

flexibility with this model is less compared to Pthreads. OpenMP is best suitable for task 

based applications. 

2.5.3  TBB  

Threading building blocks [14] is a parallel programming library developed by the Intel 
Corporation.  It offers a very highly sophisticated set of parallel primitives to parallelize the 

application and to enhance the performance of the application on many cores. Intel‘s 

threading building blocks is a high level and supports the task based parallelism to 
parallelize the applications; it not only replaces the threading libraries, but also hides the 

details about the threading mechanisms for performance and scalability. Creating and 

managing threads are slower than that of the tasks in general tasks are 18X faster than 
threads on a Linux based system and almost 100X faster than a windows based system [14]. 

Intel TBB relies on offering the scalable data parallel programming which is much harder to 

achieve by making use of the performance as the number of processor cores increases. 

Threading building blocks is a library that supports the scalable parallel programming by 
using the C++ code and does not require any special languages or compilers. Threading 

building blocks provides the standard templates for common parallel iteration sequences to 

attain increased speed from multiprocessor cores without having to be experts in 
synchronization, load balancing, cache optimization. Programs using TBB will run on 

systems with a single processor, as well as on systems with multiple processor cores. 

Additionally it fully supports nested parallelism, so that you can develop larger parallel 
components form smaller components easily.  To efficiently use the library the developer has 

to specify tasks instead of probing into the library by managing threads. The underlying 

library is responsible for mapping the tasks on to the threads in an efficient manner. As a 

result TBB enables you to specify parallelism more efficiently than using other models for 
scalable data parallel programming. In general as one goes deep into the TBB parallel 

programming model it is hard to understand the model and in some cases increases the 

development time this is because TBB stands at a high level of abstraction. The benefits of 
TBB are discussed below. 

 Threading building blocks works at a higher level of abstraction than raw threads yet 

does not require exotic languages or compilers. You can use it with any compiler 

supporting ISO C++. This library differs from typical threading packages in these 

ways. 

 Threading building blocks enables the developer to specify tasks instead of threads. 

This model has the effect of compelling the developer to think about the application 

in terms of modules. 
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 Threading building blocks targets threading for performance and is compatible with 

other threading packages, like it can be successively used with other packages like 

Pthreads and/or OpenMP. 

 Threading building blocks emphasizes scalable data parallel programming and relies 

on the concept of generic programming. 

 Threading building blocks is the first to implement the concepts like recursive 

splitting, algorithms and task stealing. Task stealing is proved to be popular and a 

dominant model to achieve greater speedups for task based applications.  

2.5.4 Cilk++ 

Cilk++ [34] developed by Cilk arts was founded by a student of MIT, but was later over 

taken by Intel. It is a task based parallel library. It facilitates the fastest development of the 

parallel applications by just using the three Cilk++ components and a runtime system that are 
capable of extending to the realms of the parallel programming. Other than this a little 

change to the serial code is required to convert it into a parallel program. Cilk++ source 

retains the serial source semantics making the programmers easier to use the tools that exist 

in the serial domain making Cilk++ easier to learn and use. This model ensures no 
introduction of new serial bugs by unchanging the serial debug and regression systems and 

there by introducing no more newer ones. Serial correctness is assured.  Cilk++ is a new 

technology that enables the creation of parallel programs by writing a new application or by 
parallelizing the serial application. It is based on the C++. It is well suited for problems 

based on the divide and conquer strategy. Recursive functions are often used that are well 

suitable for the Cilk++ language. The Cilk++ keywords identify function calls and loops that 
can run in parallel. The Intel Cilk++ runtime schedules these tasks to run efficiently on the 

available processors. Eases the development of the applications by imposing the developer to 

create tasks and also enables to check for the races in the program. The benefits in using 

Cilk++ are discussed below. 

 Eases the development of parallel applications using a simple model and 

concentrates more on the programming methodology. Like for example with only 

three keywords to learn, C++ developers can migrate quickly into the Cilk++ 
parallel programming domain.  

 Cilk++ is designed to optimize for the performance it is the first to implement the 

concept of Hyper object libraries. These libraries are used to  resolve race conditions 

without the impacting the performance by increasing the overhead encountered by  
traditional locking solutions, and the scalability analyzer which is a new concept 

used to predict the performance of the applications when migrating to the systems 

with many cores. 
 Cilk++ is ported with built in tools that eases the development of parallel 

applications. Like for example the leverage of existing serial tools which means that 

the serial semantics of Cilk++ allows the parallel program developer to debug in a 
familiar serial debugger. 

 Proposes the use of race detector which is also a rather new concept that decreases 

the scope of the errors encountered during development. This race detector 

guarantees the operation of the parallel program in a race – free manner that 
eliminates the tension about the bugs associated with the application. 

 Provides good scaling of the applications performance when migrating to the 

systems with respect to the increasing number of the cores. 
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2.6 Summary 

This chapter presents a qualitative survey about the models that are evaluated under this 

thesis. The domain of the models studied in this thesis are confined to shared memory based 
parallel programming models and the models selected are Pthreads, OpenMP, Intel‘s TBB 

and Intel‘s Cilk++. Also the reasons for using the shared memory based parallel 

programming models and the benefits of using each of the models are highlighted in this 
chapter. 
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CHAPTER 3: PROBLEM DEFINITION / GOALS 

3.1 Purpose of the study 

The main intention of the research study is to compare the shared memory based parallel 

programming models. The comparison of the models is based on the development time of an 

application implemented under a specific programming model and the speedup achieved by 
an application implemented in a programming model. The purpose of the study is to answer 

the problems faced by the parallel programming community in the form of the research 

questions posed in the Chapter 1 and section 1.8.  

3.2 Challenges  

This study compares the models based on the speedup and development time. The use of 

these two independent metrics for the comparison is because of the challenges faced by the 
organizations due to the conflicting requirements speedup and development time while 

developing the applications. Here are few key challenges faced by the HPC industry 

regarding the development time and speedup.  

 All the metrics for the HPC are based on the estimations of certain factors, there is 

very less evidence [15] and do not hold much in the HPC community.  

 Development of parallel application software is constrained by the time and effort 

[3]. It is necessary to empirically study the trade-offs associated with the 

development time of parallel applications.   

 Requirements often need sophisticated empirical models to be defined [24] for 

calculating the development metrics.  

 The main intention of a better programming model is to support better performance 

on the other hand assist easy development of the reliable and scalable applications. 

[9] Presents this as three key challenges of the multi-core revolution in the form of a 

―software triad‖.   

 The outcome of a HPC project is influenced mainly by two factors the type of the 

problem and the programming model [36]. [16] Describes this as a growth of 
computing requirements of the application and the potential of the programming 

model to support those requirements. 

 Finally there are no efficient metrics to compare the development time and speedup 
of a programming model this is because very less work has been done on this 

concept.  

3.3 Goals and Objectives 

The main goal of the study is to compare the shared memory based parallel programming 
models from the perspective of two independent dimensions. Here are the objectives and 

goals of the study. 

 One important goal of the study is to determine the impact of the individual parallel 

programming model on the development time and speedup.  

  To characterize the programming models by comparing the models for the speedup 
and development time from the model proposed in this paper. 

  To identify the model specific barriers/trade-offs for development time and 

speedup of the parallel programming models proposed in this study. 
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3.4 Problem statement and Research Questions 

Software programmers tend to use the parallel programming models to develop applications 

that are effective and scalable. The problem is that which model to use for developing 
applications? A plethora of parallel programming models exist in the field of high 

performance computing. The models are categorized based on several factors like their 

working environment, the type of applications they are going to deal with, the level of 
parallelism they can implement and so on. But however the aim of each model is to improve 

the productivity, efficiency and correctness of the applications running over it [21]. All the 

three goals are very important and are also conflicting for a programming model. This is 
because of the dependency of the models on the above mentioned factors. It is hard to define 

the best model for all kinds of problems because of the conflicting goals the parallel 

programming model has to satisfy. The landscape of parallel computing research a view 

from Berkley has defined some ideal characteristics for a better parallel programming model. 
They are the parallel programming model must satisfy at least the following factors [21]. 

 Be independent of the number of nodes. 

 Support rich set of data sizes. 

 Support proven styles of parallelism. 

 Goal of the problem. 

 

 ―The aim of the thesis is to experimentally compare and evaluate the software 
implementations of shared memory based parallel programming models in terms of the 

speedup and development time[30][36][15]‖.  

The following research questions are to be studied in the thesis in order to achieve the 

aims described above.  

 RQ1. What is the speed up of the application supported by a shared memory based 

parallel programming model?  

 RQ2. What is the development time for an application in each of the shared memory 

based parallel programming model?  

 RQ3. Which programming model is best in terms of speedup and development time 

among the three models? 

3.5 Expected outcomes 

The expected outcome of the research study is to compare the shared memory based parallel 

programming models in terms of the speedup and development time and to identify the 
speedup and development time trade-offs for the parallel programming models evaluated in 

this study. This is done by comparing the results obtained from the empirical study in terms 

of development time of the application under a specific programming model versus the 
speedup of the application under the same programming model. 

3.6 Summary 

This chapter presents the purpose of the study, the challenges, the problem definition, 

research questions, goals and expected outcomes of the thesis.  
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CHAPTER 4: BENCHMARKS 

4.1  Why using Benchmarks? 

Generally a benchmarking suite is considered to evaluate the parallel computation models. A 

benchmark is usually a standard process or a program used to objectively evaluate the 

performance of an application.  But this has few problems like the pace of the expressing the 
innovations in parallelism at its best is obscure with current benchmarking models. Bench 

marks don‘t consider any architectural or parallel application requirements which are very 

important to consider while evaluating parallel programming models; they are most of the 
time generic. Therefore a need for more high abstraction is identified in [21] where the result 

is a term called ―Dwarf‖.  

The main intention is to portray the application requirements in a manner that 
is not confined to scientific applications (or) overly specific to some individual applications 

(or) the optimizations used for certain hardware platforms so that we can draw broader 

conclusions about hardware requirements. This type of classification of the standards is 

preferred because the parallel applications and methods of parallel computations change over 
time but the underlying patterns remain constant and therefore comes the use of the concept. 

4.2  Dwarfs 

Dwarfs are first proposed by Phil Colella [21].  ―A dwarf is an algorithmic method that 
captures a pattern of computation and communication [21]‖. A dwarf specifies in high level 

of abstraction about the behavior and requirements of the parallel computations. Proposing 

the dwarfs is often challenged by two factors described below. 

 How well they present the abstraction for capturing the applications? 

 What are the dwarfs added over time to cover the missing areas beyond High 

Performance Computing? 

The eligibility of an application as a dwarf can be decided based on the similarity in 

computation and data movement. Dwarfs can be classified based on their distribution on a 

platform in two different ways and can be defined by using the communication between 
dwarfs. The dwarfs included in a parallel application can be mapped on two different 

environments [21]. They can be classified into temporal distribution environment (based on 

the concept of sharing the same dwarf) (or) spatial distribution environment (based on the 
concept of running separate dwarfs on each of the processors). Various kinds of dwarfs are 

identified till now by [21]. 

The composition of dwarfs selected for the study is based on the model set used and 
the implementation of the dwarfs. The model set is described in the methodology Chapter 6 

and the sections 4.4 to 4.7 present the proposed implementation of the dwarfs. The dwarfs 

selected for the thesis are the dense linear algebra application. This particular set of dwarf 

constitutes algorithms based on the dense matrices. Dense matrices are the matrix where the 
behavior of each and every element of the matrix is defines, i.e. there are no zero entries in 

the matrix. Few of the Algorithms which are based on this concept are classified as shown 

below. 

 Matrix - Matrix multiplication. 

 Matrix - Vector Multiplication. 

 Gaussian Elimination. 

 Jacobi iteration. 
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 Laplace heat Distribution.  

These kinds of applications tend to follow a regular structure and are called data parallel 

algorithms. These algorithms are best suitable for data parallelism and facilitate the data 

decomposition. 

4.3 Problem Domains 

The dwarfs used in the study are identified to be used in the following areas.   

4.3.1 Linear Algebra 

A matrix represents a collection of elements; where each element defines the behavior of the 
matrix at that position. Matrices are most popularly used in linear Algebra. One important 

use of matrix – matrix multiplication is to propose the linear transformations to represent the 

higher dimensional simplifications and similarities of linear functions of the form f(x) = cx, 

where c corresponds to the constant. For the Multiplication of matrices various methods are 
proposed for matrix multiplication. The algorithm selected in this category is a dense matrix-

matrix multiplication. 

4.3.2 Linear System of Equations 

A set of mathematical equations are said to be linear if they involve n unknown variables in 
the equation. The linear system of equation takes the form as shown below [7]. 

 

                                                           . 

                                                           . 

                                                           . 

 

 
                                         

 

 
 
 For example 

        --------- (1) 

      ---------- (2) 

   --------- (3) 

 

The above equations can be solved easily by writing them in the matrix form AX = B as 
shown below. 

 

      *       =   

 
Solving a system of linear equations AX = B. The system of linear equations can be solved 

by using direct solvers or by using iterative solvers. The algorithm used is based on iterative 

solvers and is the Jacobi iteration method. 

4.3.3 Convergence methods 

Convergence methods are more frequently encountered in numerical analysis techniques.  
This involves applications which concern about the study of an effect on a set of data points 
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residing on a mesh. This involves computation of the new values or points from already 

defined boundary values. For example, we compute the values sequentially in natural order 

from like  ……… . When  has to be computed it can be done by iteratively 

calculating the value from previously computed  . . . . . . . . . . . .  Values.  This 

kind of applications are more frequently used in computer graphics, image processing and 

weather forecasting techniques and heat distribution e.t.c. Gauss – Seidel relaxation method 

is used to solve the fast convergence series.  

The algorithms selected for the thesis are based on the concept of reflecting the 

communication and computation patterns posed by different algorithms and the algorithms 

selected are presented below. These algorithms are selected based on the factor of facilitating 
the easy development which could be an added benefit for this study. 

 Matrix multiplication.  

 Jacobi iteration problem. 

 Laplace heat distribution. 

4.4 Matrix - Matrix Multiplication 

4.4.1 Sequential Application 

This section presents the details about the matrix multiplication algorithm that is 

implemented in this thesis. A Matrix defines a behavior of elements or a set of elements 
where every element can be individually accessed by the coordinates row number and 

column number . For example  refers to the element at  row and  column. 

Matrix multiplication can be done on any two dense matrices of same size (for square 
matrices) n X n or two matrices (for rectangular matrices) where the number of rows in one 

matrix must necessarily be equal to the number of columns in the second matrix. For 

example a matrix of n X p and another of size p X m then the resultant matrix is of size n X 
m. This thesis considers only the multiplication of the square matrices. This is because if the 

implementation is successful with the square matrices they can be easily adaptable to 

rectangular matrices and also sparse matrices as well. Let A, B be two square matrices of 
size n X n then the result of the matrix multiplication is another matrix of the size n X n.  

The procedure for multiplication of two matrices is shown below where a single element   

of the resultant matrix is computed by the adding the partial sums obtained by multiplying 

each element in matrix A at  row with the corresponding element in Matrix B at the  

column. And the asymptotic time complexity for this is O ( ). 
 

 
Figure 4.1:  General Matrix - Matrix Multiplication [7]. 

4.4.2 Implemented parallel solution 

The idea is to compute the algorithm in parallel by allowing each thread to compute only n/q 

X n/q rows of the resultant matrix. Row wise partitioning is used for decomposing the 
algorithm. In this algorithm the matrices A and B are placed in global memory and are 

shared among the threads and each thread is confined to only computing the values of n/p 

rows of the resultant matrix. This can be shown below. 
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Figure 4.2:  Implemented parallel Solution for Matrix – Matrix Multiplication 

[3]. 

4.5 Jacobi Iteration 

4.5.1 Sequential Jacobi Iteration 

It is an iterative solver for solving a system of linear equations. The traditional way of 
solving the Jacobi iteration is as shown below. Where a set of equations in n unknowns is 

given and the unknowns involved in the n equations need to be solved. In the iterative based 

solution the linear system of equations are represented in the form of matrices as shown 

below with the co-efficient of the unknowns in a 2-dimensional square matrix A and set of 
unknowns in the form of a vector X. And the result of the equations in the resultant vector B. 

This notation can now be abstractly represented using the matrices as AX =B. The Jacobi 

iteration is done in three phases and starts by computation of the new values of the 
unknowns into the matrix x_new using the formula shown below. This is the first phase of 

the algorithm. 

   [7] 

The second phase of the algorithm to compare all the new values of the unknowns in the X 

vector are verified for acceptance values, which specifies the convergence of the solution and 

if the values reach the convergence the iteration stops otherwise the old values are swapped 
with the new values which is the last phase of the computation and the iteration proceeds 

until the convergence. A variety of solutions for measuring the convergence are presented in 

[7]. And the convergence selected in this solution is based on the approximate value obtained 

by substituting the new values in the equation and the difference between the results must be 
less than the selected tolerance value. The termination condition is specified below 

    < Tolerance [7] 

 
Apart from this the reading of the values in the matrix is done in such a way that the co-

efficient matrix is diagonally dominant. This is the necessary and sufficient condition for the 

matrix to converge i.e, 

  [7] 

4.5.2 Implemented parallel solution 

The sequential time complexity for this problem is . This is the problem based on 
global communications. Where the coefficient matrix, the vector with unknowns and the 
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resultant vector is shared among the threads and the values of the unknowns calculated are 

confined to only the n/p rows of the new resultant vector [7]. 

 

 
Figure 4.3:  Implemented parallel solution to Jacobi Iteration. 

4.6 Laplace heat distribution 

4.6.1 Sequential Laplace Heat Distribution 

This method is used to calculate the effect of heat distribution. This algorithm consists of a  

global matrix which represents the number of cells of a metal surface or simply the surface 

whose effect of heat on those cells need to calculated by performing the computations on the 

matrix. For example let A is the matrix to represent the surface on which the distribution of 
heat has to be calculated. The effect of heat is calculated using the formula shown below. 

    [7] 

 This method calculates the new values of the matrix by using the most recent values of the 

matrix already computed. This method of using the most recent values in computing the new 

values is called Gauss-Seidel Relaxation. And the newly computed values are verified for the 

convergence where the largest change encountered by the cell is compared with the 
acceptance value.  

 
Figure 4.4: Sequential Laplace Heat Distribution [7]. 

4.6.2 Implemented parallel solution  

This is the problem based on the local communications where threads are communicated 
using their maximum local value of heat change occurred in a cell. This computation uses 

the most recently computed values for the computation of new   and therefore uses the 

red-black ordering algorithm pointed in [7]. This procedure can be depicted below.  The 
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partitioning of the matrix is done wise to ensure the computation in parallel. Therefore each 

process is limited to compute the new values only up to n/p * n rows. 

 
Figure 4.5:  Implemented parallel solution for Laplace Heat Distribution [7]. 

4.7 Summary 

This chapter describes in detail about the dwarfs and the need for using the dwarfs in parallel 
computing rather than using the benchmark standards. This chapter also describes in detail 

the dwarfs considered for this thesis, the type of algorithms selected, and the requirements 

for those algorithms and the implemented solution for those algorithms.    
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CHAPTER 5: RESEARCH METHODOLOGY  

5.1 Research Approach 

The research approach used is a quantitative study and the process starts with the collection 

of data about the shared memory based parallel programming models that are considered for 

the evaluation of the thesis. For this research first a theoretical study is done on the 
programming models and the dwarfs selected for the thesis. Later an empirical study will be 

conducted for developing the dwarfs selected on each parallel programming model and 

calculate practically the factors development time and speedup for an application. The results 
obtained from the experiments are used to analyze and compare the parallel programming 

models.  

5.1.1  Quantitative Research  

Answering the above research questions involves conducting quantitative research 

procedures in the concerned field of study. In order to understand how the application‘s 
development time and performance are affected by a specific parallel programming model a 

series of controlled human-subject experiments are conducted. The experiments are 

conducted for four different parallel programming models and for three different dwarfs (can 
be explained in detail in Chapter- 6). These experiments are used to collect data about the 

factors involved in this study and to later evaluate and compare those factors. This research 

study involves answering the research questions drawn from the problem statement as 
mentioned in Chapter-2. All the research questions are drawn with shared memory based 

parallel programming models into consideration and focuses on comparing the directive 

based models, thread based models and task based models.  

For answering the research question RQ1; during the empirical study the performance 
measurements are taken and the required parameters are calculated. After calculating the 

results an investigation is done on the performance results obtained from the empirical study 

and are used for the comparison. Section 5.4.1 presents the procedure followed for the 
calculation of the performance parameter and the comparison of the programming models 

Chapter - 9 presents the answer to the RQ1. 

Answering the research question RQ2 involves investigating the development time results 
gathered from the empirical study. The empirical study involves coding the application for 

all parallel programming models and data regarding the calculation of the development time 

are taken. The methods for calculating the development time are presented in the section 5-7. 

The data thus collected is used to calculate the overall development time according to the 
model proposed in this study. The same experiment is done for all the applications for each 

parallel programming model. The final development times of the applications thus obtained 

are used to compare the parallel programming models.  

RQ3. This question can be answered by using the results obtained by conducting the 

experiments from the two perspectives i.e., from the development time perspective and the 

performance perspective. An investigation is done on the experimental results obtained and 

the comparison is done based on the trade-off between these two different factors. Section 
5.6 presents a qualitative description to this question and the answer to this question is 

presented in Chapter-9. 

5.2 Variables 

This study involves collection of data about the variables from the controlled human-subject 

experiments conducted for the thesis. It is necessary to classify those variables or parameters 
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that are involved in the study. As pointed by Creswell [19] the variables in this study are 

identified to be as independent variables and are categorized as shown below. 

 Speedup - The speedup of an application is defined as the ratio of serial execution 

time to the parallel execution time of the algorithm [36] and can be explained in 
detail in Section 5.4.  

 Development time - It is simply the total time taken to implement and execute a 

parallel solution for the given sequential application and can be explained in detail in 

Section 5.5. 

5.3 Instrumentation  

The instrumentation as guided by Wohlin et al [11] classified depending on the two factors; 

they are the objects and the measurement instruments. The Objects used in this study are 

parallel application code document and person time diaries. The measurement instruments 
are compilers and data recorded from human subject used in this experiment. The values 

collected from the instruments are the direct and objective measures which include from the 

performance perspective are the execution times which are calculated by the compiler 
instrument and from the development perspective are the manual data collected from the 

subjects.  

The factors collected from the code document specification are the SLOC, the 
number of model specific routines, the types of defects and are identified to be as internal 

attributes collected from the product object which is maintained using the code document. 

And the attributed collected from the person time diaries object are identified to be as 

internal attributes collected from the process workflow as part of the development process. 
From the personal time diaries the data collected are the time taken to establish a model 

specific activity, time taken for writing the SLOC and the time taken to rectify those defects. 

All these measures are also direct and objective measures extracted from the code 
specification document.  Apart from these parameters another independent and indirect 

parameter that has to be calculated is the Speedup parameter which is calculated using the 

execution times. 

5.4  Speedup 

Speedup deals with the execution time or time complexity of the parallel application and is 

an important metric used in parallel computing for measuring the performance. Speedup tells 

us how fast is the implemented parallel solution implemented for the sequential application 
compared to the original sequential version of the application. Parallel execution time of an 

application must always be the fraction of the serial application‘s execution time and 

speedup is the ratio of the execution times of the serial program to the parallel program.  A 
plethora of literature can be figured out for the speedup metric and can be found in [1], [3],  

[13], [17], [18], [28], [29], [31]- [33]. A general notation for the speedup is presented below. 

                                                              [3] 

Some common definitions for speedup defined by different authors are described below. The 

definitions presented below are based on the variants employed for the serial and parallel 

execution times to calculate the speedup. The different types are shown below [28]. 

 Relative speedup – it is ratio of the time required to solve a parallel application on 

one processor to the execution time of the parallel program on P processors. This 

relative speedup of an application depends on many factors like the input size, the 

type of the problem and number of processors. In general it is not a fixed number. 
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 Real speedup – it is the  ratio of the time required to run the best sequential 

application on a 1processor of the parallel processor to the execution time obtained 

by solving the parallel problem on P processors. 

 If the parallel execution is defined in the form of a fraction of the best serial 

algorithm in a best serial computer then it is termed as absolute speedup. 

 The asymptotic speedup is the ratio of the asymptotic time complexities of the best 

sequential algorithm to the parallel time complexity of the same algorithm. This can 

be in turn divided into types [28] Relative and real asymptotic speedup. 

A speedup limit is defined by Gene Amdahl also popularly known as Amdahl‘s law or fixed 
size speedup [18], [32]; which means that the speedup achieved by the parallel application 

depends on the serial fraction of the parallelized application. [1] Presents a metric to estimate 

the serial fraction in the parallel application. All the speedup types presented above are based 
on fixed work load instances. There is another form of speedup defined by Gustafson [17] 

and later generalized by Sun Xian [32]. This type of speedup is for varying work load 

instances. This speedup is known as scaled speedup and is explained below. 

 Scaled speedup is the performance model that is used to study the performance of 

the system under varying workloads and is calculated by making observations on the 

speedup obtained by scaling the size of the workload instance with respect to the 

number of the processor nodes used. Scaling the problem instance or the work load 

instance can be done in two ways which defines two variants in this model. One 

method is to vary the problem size with respect to the number of the processor 

nodes, keeping the execution time constant this is called the fixed time speedup. And 

in other model the memory size is scaled by using the problem size with respect to 

the processing elements; this method is called the scaled size or memory bounded 

speedup [3], [28], [32], [17]. These factors are used to study how the speedup varies 

when either or all of the following factors are changed;  like the problem size, the 

number of processors, the memory size e.t.c. This method of study is used to analyze 

the scalability of the system. 

other types of speedup are also defined they are; super linear speedup [13], [32] –  also 

termed as anomalous speedup where the speedup bounds greater than the processors number 

used and cost normalized speedup[28] – used to define the speedup in terms of the 

accomplishments in the performance of the system with respect to the cost expended. 
Among all the speedups mentioned above the asymptotic speedups doesn‘t require any 

empirical measures where as all the rest need empirical measurements to calculate the 

speedup. The former method of calculating the speedup is known as analytical speedup and 
the latter is known as measured speedup. 

5.4.1  Calculating the speedup of the parallel applications 

The base for the performance results is the execution time measurements of the applications 

that are developed under a parallel programming model. The measurements of the execution 

times are taken for increasing number of nodes by powers of 2 on the selected platform. The 
results that obtained are used to calculate the speedup of an application for all the 

programming models. The type of the speedup used in this study is self relative speedup 

which is the speedup of the application achieved under increasing number of nodes; which is 
developed under parallel programming model. This is used to calculate the growth of the 

speedup of the same application with increasing number of nodes. The speedup of parallel 

programming models is affected by the overhead encountered by that programming model 
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while parallelizing the serial application. This study uses the Relative Speedup parameter for 

the comparison because of the advantages associated with this parameter described below.  

 It considers only the algorithms which are easy to implement, rather than the best 

known algorithms that are considered for real and absolute speedups which is a 
disadvantage for them.  

 It is trivially possible to select a bad and easy to parallelize algorithm and achieve 

good speedups as we scale through the processors and data sizes [28], rather than 

expending time on parallelizing the best algorithms known. 

 It is also possible to estimate the overhead associated with the problem when it 

scales to increasing number of the processors. 

 The speedup measures are calculated for the parallel application on 2-nodes, 4-nodes and 8 

– nodes using the execution times of the application obtained for 1-node, 2-nodes, 4-nodes 

and 8- nodes. The speedup thus obtained is used to compare it with the development time of 
the application. 

5.5 Development time  

It is the effort expended for the parallelizing the application and to make it run successful on 
the parallel computer. The literature related to the development is found in [30], [23], [15], 

[4], [36], [24], [12], [2]. This includes the time expended to develop the parallel application 

from the serial version. It is the time spent on the programming model related issues while 
parallelizing the application. Development time of a programming model is influenced by 

the following factors. 

 The total number of source lines of code for a parallel application in a parallel 

programming model (development time by code volume).  

 The number of defects of the application under a specific parallel programming 

model (explained in detail in section 5.6). 

 The number of model specific functions used in the parallelizing of the application 

and the frequency of those routines encountered during the development. 

The first issue is used to study the impact of the development time on achieving a model 
specific activity. This kind of studying the development time with respect to the effort spent 

in writing the code also known as development time by code volume. Whereas factor 2 is 

used to study the impact of the model in producing defects and the time spent debugging 
those defects and factor 3 is used to study the overall development activity of a parallel 

programming model. Studying all the above three factors requires the usage of the 

directional study based on the data collected from the past which is noted due to achievement 

of a model specific activity. 

5.5.1 Methods for Calculating the Development time  

Analyzing and estimating the development time of a parallel programming model can be 

done in three ways [12]. The first way is to employ an archeological study, second is to use 

the Daily Activity Dairy and the last method is to conduct an observational study for 
calculating the development time.  

 In the archeological study the development activities are concerned and the time 

taken by the developer for each activity is calculated. The archeological study 

focuses on the time elapsed between different phases of the development process and 
it was a sort of directional study of developer‘s time expended in implementing one 

feature; by using the data collected from the past [12].  
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 The main intention of Daily Activity dairy approach is to support the marking of the 

time elapsed for an activity accurately by using the object called personal time 

dairies. These are maintained by the programmer during the development of the 

applications to improve recording efficiency while at the same time minimizing the 
overhead to the subject. This approach has the advantages of measuring the 

development time in an accurate manner than the archeological study and more over 

it can be used to conduct a wide range of studies by varying the parameters like the 
number of developers and the features of the application and or the development 

environments e.t.c.  

 The third method is the direct observational study which stems from the notion of 

observing the results collected for a set of developers based on the self reporting. 

This can be achieved by periodically conducting conversations among a group of 
developers who take part in the study. The times taken by the programmers at each 

phase of the development are recorded and are later subjected to observation and 

conclusions are drawn from the observation. This type of approach is mostly seen in 
pilot studies [30]. 

5.5.2 Manual Data Reporting vs. Deductive Analysis 

In general two types of data reporting techniques are proposed by classifying them based on 

either purely manual or purely automated techniques [2]. 

5.5.2.1 Manual Data reporting 

The is the first method of capturing the data related to the development time during the 

development process and relies on the data reported by the programmer that is recorded by 

considering an accomplishment of a set of activities or enactments. The manual data is 
recorded after the completion of the activity. This type of notion has few advantages 

mentioned below. 

 This type of data capturing method assists in the study of the behavior of the process 

under study. 

 This type of data capturing method can be used to make cross referential studies and 

can be easily extended to complex systems. 

 This study can be used to comprehend their behavior of egregious problems and to 

avoid their forth comings in the near future.  

 Also this study is helpful for the proposal of more convenient analysis techniques. 

5.5.2.2 Deductive Analysis 

This is the second type of data capturing techniques for the software process [2]. This 
method relies on using the notion of a logical specification for the capture of the process data 

rather than relying on the manual data. So far a number of formal notations had been 

proposed and the method used for the study depends on the notation used to study the 
process. The advantages associated with this method are presented below. 

 They can be easily adapted into other methods for process specification and 

analysis. 

 These models provide flexibility by clubbing them with other models. 

Apart from the techniques mentioned above hybrid methods are also proposed for the 
capturing of the process data.  
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5.5.3 Distribution of effort for different programming models 

The effort expended for parallelizing an application under a parallel programming model is 

hard to quantify, because this usually depends on the skill of the programmer, the model 

specific routines used the type of the problems, the type of the model used and many more 
issues. For the distribution of effort a variation of the programming models is considered. 

One suggested method is to use the time expended in performing the activities which are 

common to all the programming models. The effort expended by the developer for 

developing an application under a programming model is distributed among the factors 
described as in the above section 5.5 is summarized as shown below.  

 The time taken for developing the model related code it is the total source code.  

 The time taken to develop the model specific functionalities.  

 The time taken for testing and debugging the developed code (this includes the time 

taken for rectifying the errors, enhancing new facilities if necessary also called 

performance tuning). 

5.5.4 Scope of the programming model for calculating the 

Development time 

The applications developed under the parallel programming models are used to estimate the 

impact of the programming models on development time. This reporting of the development 

time data mentioned above can be extracted from three main sources. One way is to collect 
the data regarding the development time using the source code analysis, second is through 

the collection of data from a version control repository and the third way is to analyze the 

results obtained after the regression testing of the system as a whole. This thesis uses the 
source code analysis as a major source for the data collection about the development times 

for effort distribution mentioned above in section 5.5.3. The remaining two reporting 

techniques will be used for large scale software projects. The impact of the programming 
models on development is calculated and confined to the source code of the application 

implemented under the parallel programming model. As part of source code analysis a code 

base is maintained for each application implemented under each parallel programming model 

which is used for estimating the development time based on the effort distribution mentioned 
in section 5.5.1. The source code analysis approach is selected as a source for calculating the 

development times because of the following reasons. 

 Studying the development time of the code can also helps to understand the 

performance of the code of the parallel application being developed.  

 Code Development time is an issue when we port applications from one system to 

another.  

5.5.5 Calculating the Development time 

In this thesis development time is calculated in three steps. First is to identify the type of the 

development time study and the second step is to identify the sources for calculating the 

development time. Third step is to distribute effort among the sources and to report the data 
about the effort expended in developing the parallel application. The approach followed in 

this thesis is to estimate the development time using the daily activity dairies where the data 

collected is from the developer by making a note of the time taken during the development 
and from the above qualitative analysis the source code analysis is identified as a source for 

calculating the development times. The effort distribution is done as mentioned in section 

5.5.3 and the reporting technique used is the manual data reporting. Using these methods in 
the study has some advantages shown below. 
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 This technique is used to best reveal the activities involved in the process like the 

wasted intervals the learning effects and so-on.  

 This technique is used to understand the behavior of the programmer and also to 

study the impact of the programming models on the development time. 

 This whole study is equally important where the development time of an application 

expended by one programmer can be compared with the development time taken by 
another programmer, typically a form of multi-developer study as described above. 

5.6 Defect Studies 

It is necessary to study the defects encountered during the development of the applications in 
different parallel programming models. This is so required because the defects encountered 

during the programming model depends on many factors like the type of the programming 

model used, the type of the model specific constructs used and the skill of the developer 
e.t.c. Defect studies are done in the debugging phase of the application development (as 

shown in the work flow model in Chapter - 6). Debugging the applications under a parallel 

programming model requires the detection of the errors and modifying those defects. Defects 

in an application may arise because of the following problems.  

 Error in the logic.  

 Errors in the syntax.  

 Errors that occur in runtime. 

Errors in the logic are due to the wrong logic while parallelizing the applications. These can 

be the defects in establishing inter-process communication between the processes and 

synchronizing the processes. In general in thread based programming models the level of 
abstraction for parallelizing the applications is less compared to a directive based parallel 

programming model. In a thread based programming model the issues like inter and intra 

process communications are exposed and it is up to programmer to achieve these 

functionalities in parallelizing the applications. Where as in the directive based programming 
model these issues are governed by the underlying compiler. The user is relieved from 

establishing the complex communication and synchronization routines between processes.  

Errors in the syntax are due to the errors that occurred in expressing the semantics 
of the language in parallelizing the applications. In a thread based programming model, since 

all the functionalities are exposed to the programmer i.e. the programmer is responsible for 

establishing the complex routines in parallelizing the applications, this leads to a complex 
way of expressing the parallel application and is quite common to encounter more errors 

than a directive based model. Runtime errors have some common properties for all kinds of 

parallel programming models, and need to be examined carefully. This can be done by 

examining the output of the application executed under a parallel programming environment. 
This requires examining the intermediate values and final output values for the functionality 

to be achieved by an application provided by the parallel programming models. The rate at 

which the defects occur varies between parallel programming models and is different to that 
for a sequential application. No model based prediction can be done for detecting and 

rectifying the defects as for a sequential application. And this depends on many factors the 

skill of the programmer, the abstraction provided to the programmer by the underlying 
programming model.  
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5.7 Comparing Development time and Speedup 

The development time calculated from the above procedure is used to compare with the 

relative speedup of the applications. This can be done as follows. Initially a parallel version 
of the algorithm is developed from the sequential version. The total development time for 

that algorithm is noted using the daily activity dairies. These development times are noted 

for the implementation of the same algorithm under all the parallel programming models. On 
contrast the execution times are collected for measuring the performance and the speedup is 

calculated from execution times. The relative speedup is calculated for 2, 4, and 8-nodes 

respectively. By the end of the thesis with the results obtained a qualitative comparison is 
build-up by showing the % of the overall time taken for the implementation of a dwarf under 

a programming model ‘X‘ to the overall development time under programming model ‗Y‘, 

with the development of the dwarf in model ‗X‘ consumes a % of time for rectifying the 

defects to the time taken for the rectification of the defects in programming model ‗Y‘. On 
the other hand we quantitatively compare the performance of the application by showing that 

the relative speedup achieved by an application implemented under one parallel 

programming model ‗X‘ is approximately  --% of the relative speedup achieved by the same 
application in programming model ‗Y‘. This result gives the development time consumed 

and the relative speedup of an application in all parallel programming models and this guides 

the developers about when to switch for an alternate parallel programming model with 

respect to the development time and / or relative speedup [22].  

5.8 Summary 

This chapter presents the type of the research methodology required for comparing the 

parallel programming models. This chapter also describes the qualitative study about the 
speedup and development time parameters, methodology for calculating those parameters 

and the instrumentation used for the comparison by using the results obtained from the 

empirical study. 
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CHAPTER 6: EXPERIMENTAL CASE STUDY 

6.1  Experiment Design  

A frame work is designed that describes a procedure to test the models empirically to 

validate the models against the research questions. Table 6.1 presents the frame work 

designed for this chapter. This frame work is used for the family of studies and in this case is 
used for a shared memory based parallel programming models. The models used in this 

study are Pthreads, OpenMP, TBB and Cilk++. The experimental methodology involves 

implementing the parallel computing dwarfs on these models and a data collection is done on 
these models for calculating the speedup and development time. The collected data is then 

analyzed and validated against the research questions. The results thus obtained are used to 

compare the parallel programming models. The types of algorithms examined in this 

study are based on the dwarfs that are used extensively in the field of parallel 

computing research as explained in Chapter - 4.  And the type of parallel applications 

is selected based on the data parallelism concept. This is because data parallel 

applications are more widely used, flexible and more performance oriented. Also 

they tend to follow a regular structure and computationally intensive. The subject 

selection for the experiments is shown in section 6.2. 

Table 6.1: Design Frame work. 
Serial implementation of 

Matrix-Matrix 

multiplication 

Pthreads implementation of Matrix-Matrix multiplication. 

OpenMP implementation of Matrix–Matrix multiplication. 

TBB implementation of Matrix–Matrix multiplication. 
Cilk++ implementation of Matrix-Matrix multiplication. 

Serial implementation of 

Jacobi Iteration. 

Pthreads implementation of Jacobi Iteration. 

OpenMP implementation of Jacobi Iteration. 
TBB implementation of Jacobi Iteration. 

Cilk++ implementation of Jacobi Iteration. 

 

Serial implementation of 

Laplace Heat 
Distribution. 

Pthreads implementation of Laplace Heat Distribution. 

OpenMP implementation of Laplace Heat Distribution. 
TBB implementation of Laplace Heat Distribution. 

Cilk++ implementation of Laplace Heat Distribution. 

 

The model set required for executing the experiments is shown below in table 6.2. The 

serial implementations mentioned in the above framework are only used to take the 

execution times and output values which are used to verify the parallel 

implementations for correctness and accuracy purposes. All the parallel codes are 

written and tested for 8-cpu based shared memory machine architecture with 16 GB 

ram each processor sharing 2 GB. The platform employed for the study is an open 

source Linux version. All codes are written in C, the size of the code lies in between 

70 to 350 lines. While all the codes are written to run on this architecture, none of 

them are optimized to take advantage of the architecture, it is assumed that the 

vendor specific implementations of the library and architecture are already optimized 

and further effort on improving leads to poor performance, excess use of resources 

and is not considered. The attributes and considerations for the system under study 

are shown below.  
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Table 6.2:  The empirical study model set. 

Programming language  
 

C 

Types of models Shred memory based models 

Dwarfs Dense matrix applications 

No of algorithms 3 

Types of algorithms Data parallel applications 

Code Size 70-350  SLOC 

Processor Intel 

Platform Ubuntu Linux 

No of cpus 8 

Ram  16gb 

Staff 1  

6.2 Experiment Workflow  

The subject selected for the study is the student conducting a thesis in the concerned field of 

study and is observed to be categorized under the novice programmer category. This 
categorization is based on the skill of the developer where a novice programmer and the 

eligibility of the subject are based on the interest of the subject in the field of study. The 

implementation of the dwarfs is carried out this programmer. First an in-depth study of the 
models and the algorithms being implemented and later designs and implements the 

algorithms for all the models. The algorithms are tackled by dividing the problem definition 

into individual or cooperative tasks and each are individually coded and at later point of time 

are used to include interactions between the tasks. A standard procedure is followed for 
designing the parallel formulations of the dwarfs that are selected for this study. This 

involves four phases like partitioning the work load among the workers, establishing 

communication between them, synchronizing multiple workers and mapping tasks on to the 

workers. Since this research involves only the use of small parallel algorithms all the 

studies that are conducted doesn‘t contain any high level project management or 

configuration management. Only the implementation and execution of the 

applications are concentrated by the developer. The generalized development work 

flow is given below by the Markov process models from the point of view of lonely 

developer that is being followed for all the algorithms considered for the study. The 

usage of work flow models is first described in [8]. Figure 6.1 outlines the 

development work flow for the empirical study. The workflow of the experiments 

employed in this study involve designing, developing, running, testing and tuning the 

algorithms on the selected target parallel architecture by a single individual no 

cooperation is made with any other members during the experiments, and coordinate 

the efforts. 
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Figure 6.1: Lone Programmer Work flow [8].  

6.3 Experiment Execution  

The execution of the experiment consists of mainly two-steps. In the first step the dwarfs are 

implemented under each parallel programming model and development time of the working 

dwarfs are noted. In this phase all the information related to the development time and 
performance and speedup is collected. In the second step the speedup is calculated from the 

information collected in the first step and then the programming models are compared for the 

development time in contrast to the speedup achieved under the specific parallel 
programming model.  

6.4  Data Analysis and Validation 

The study involves few data items to be collected from the experiments conducted above. 

This data that has to be analyzed and validated can be categorized into two types Qualitative 
factors and quantitative factors. Table 6.3 and 6.4 shows the data that has to be collected 

from the measurement objects mentioned in Section 5.3. All the data collected from the 

empirical study are identified as objective measures and direct measures as pointed by [11]. 
Apart from the data mentioned in the table the parallel programming models are compared 

by taking only the final development time which is the overall development time of the 

application and the indirect measure speedup. The rest of the data mentioned in section 5.3 is 
used to study the inter code development activities and to classify the programming models 

as mentioned in the chapter 5. 

Table 6.3: Collection of data from the experiments for a single programming model.  

Parameter D1 D2 D3 

Parallel run time on 1 node    

Parallel run time & speedup on 

2-nodes 

   

Parallel runtime & speedup on 

4-nodes 

   

Parallel runtime & speedup on 
8-nodes 
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Table 6.4 Data collection by Person time diaries. 

Parameter Dwarf 1 Dwarf 2 Dwarf 3 

Time for model specific activity.    

Time taken for total SLOC 

(overall development time) 

   

Time for rectifying total 

Defects. 

   

Total SLOC.    

Total Number of Defects.    

Total no of Library routines.    

Frequency of Library Routines.    

All the data that is collected from the experiments is used to calculate the parameters used 
for the study.  

6.4.1 Validity 

During the collection of data, there may be a chance that the data for the experiment does not 

meet the requirements of the experiment (i.e. Applications with poor quality which caused 
by the occasional bad coding of the dwarfs using less efficient routines etc.). As a result, a 

validity check must be done on the data collected. This includes the data collected from the 

speedup and development time perspective. For validating of the development time data the 

ratio scale is used to guide in selection/rejection of the development time data. Similarly for 
the speedup the scale used is absolute scale where the speedup value is selected or rejected 

based on whether the value is meaningful or not. The speedup calculated and collected is 

compared against a notable value for all the dwarfs. If any of the algorithms fail to satisfy the 
desired performance again a tuning for performance is done as mentioned in section. Also in 

this case the development times are altered. The inclusion of the data related to development 

times are taken after the enactments in establishing a parallel activity. If in any case the 

tuning of performance is done the modified development times are replaced on to the old 
development times. 

6.5  Execution times  

Calculating the speedup requires the collection of the execution times during the operation of 
the experiments as mentioned above. The user is allowed to run the benchmarks and make a 

note of the execution times. The user specifies varying types and amounts of the input and is 

responsible for executing the benchmark initially. Finally, since the speedup studied is fixed 
size relative speedup, the execution times thus obtained by the user are noted for fixed and 

notable size of the input data and studied for the features required. The execution times are 

calculated for the serial implementation of the dwarf, the parallel implementation of the 

dwarf on one node and the execution times for 8-nodes. The execution time is manually 
calculated by using the built in functions provided by the parallel programming library or the 

functions provided by the underlying language compiler. The execution time is typically 

measured in seconds, and is calculated from the moment the parallel threads are created and 
after the moment all the threads are finished. For the serial implementation the unit of 

measurement is the same and the execution time is calculated from the moment the 

computational task begins and the moment the task ends.  
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6.6 Examining the output  

Testing the algorithm is a challenging issue [23]. Examining the output include the result 

collected after the execution of each application. For verifying the overall correctness of the 
algorithm, the collected data is used to verify with the output obtained for the sequential 

version of the application. Verifying the output doesn‘t makes ensures that the implemented 

algorithm will work correctly. The values computed by individual workers need to be 
verified. This can be done using the selection of small test cases to ensure that the algorithm 

works for small data sizes. Later the algorithm is adapted for large data sizes. The algorithms 

need to be tested for the performance this involves a qualitative analysis on the execution 
times of the algorithm and depending on the nature of the problem. The algorithm is 

executed for fixed input size to get notable performance measurements; after ensuring the 

correct execution of the application. The execution times noted are used to calculate the 

parameters required for the comparison like speedup. Performance tuning is done if 
necessary. Defect studies are done on the models. During the testing process the defects 

raised are modified and the effort for this is calculated and noted.  

6.7  Debugging  

Debugging involves the defects that arise in the codes developed. Defects however are 

important for the studies are capable of imparting the model specific drawbacks on the 

parallel algorithms employed. This effect in turn has the drawback of consuming more 
development times during the process. Therefore defects are equally important as do the 

code performance and have to be extensively studied because of their impact in deciding the 

performance of the parallel software applications. The rate at which the defects arises and the 

effort required for rectifying the defects are two major issues of concern. In this study the 
programming models are monitored for defects and thus identified can be rectified in this 

case by debugging the algorithm. This involves the detection of bugs like data races, 

deadlocks and model specific factors. In each case a data collection is maintained about the 
number of defects identified for each programming model for an algorithm and the effort 

required to rectify the defects and validation of the data against the model developed is also 

studied. This is studied as part of the development process, the resources required for this are 

calculated.  

6.8  Tuning  

Performance tuning is required for the algorithm to work efficiently, it is the effort spent in 

enhancing the performance and alleviating the defects that occur for a specific algorithm.  

6.9 Threats to Validity  

6.9.1  Internal Threats  

The following internal threats are identified during the study [19].  

When to stop the work flow? This is regarded as the threats related to the workflow 
procedures employed as part of the experimental study. It is not exactly sure how many 

iterations of the workflow have to be performed for a given dwarf. This is because the 

factors like performance tuning are done for the dwarfs only if necessary. But however this 

threat will not affect the study because the outcome is assumed to be perfect only if the 
dwarf is considered to be efficient.  
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The characteristics of the developer are a threat. The developers of the software are novice 

and didn‘t have any experience before regarding this particular field. The skill of the 

developer, implementation of the dwarfs takes more time typically than from the expert 
programmer‘s perspective. Also the performance of the applications achieved is less when 

compared to an expert programmer. This threat is relaxed by establishing strict constraints 

during the development and at the same time trying to achieve better performance as best as 
possible. 

6.9.2  External Threats  

The following external threats are identified according to the classification specified by [19]. 

 The experimentation procedure and generalization of the research questions are 
studied only for small dwarfs and from a novice perspective. Therefore this study 

doesn‘t involve any high level metrics, only the metrics related to the 

implementation and performance are considered.  

 The use of the diverse programming models is an external threat. This is so because, 
since the study is done from the perspective of a novice programmer, learning of the 

programming models may lead to the threat known as learning effect, that the 

programmer be familiar with the parallel models during the study.  

6.9.3  Statistical Conclusion Validity  

The data collection related to development time and speedup is not accurate. This is because 

inadequate procedures available related to development time and also calculating the parallel 

execution time for one specific data size is not sufficient. The threat related to development 
time can be avoided by making accurate measurements as efficient as possible and related to 

parallel execution time the threat can be avoided by taking execution times till specific 

number of intervals. 

6.10 Summary 

This chapter presents the experimental methodology that is followed for this thesis. 
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CHAPTER 7:  RESULTS - DEVELOPMENT PHASE 

7.1 Development time from Source Code Analysis 

7.1.1 Matrix-Matrix Multiplication 

The development times for the Matrix – Matrix multiplication application are shown in the 

table 7.1. 

  Table 7.1: Development times for Matrix - Matrix multiplication Algorithm. 

 Programming model  Development time in man- hours 

Pthreads 30 hours 

OpenMP 16 hours 

TBB 10 hours 

Cilk++  6 hours 

 

7.1.1.1 Pthreads 

For the implementation of the matrix - matrix multiplication as mentioned in chapter - 4 is 
partitioned row wise among the threads and each thread is responsible for making the 

computations local to its rows. The time taken for the Worker creation and management is 

approximately 47% of the total development time for the matrix multiplication algorithm and 

the time taken to develop the partition activity for allotting equal workload among the 
threads is approximately 53% of the total amount of time spent in developing the application. 

This version of the algorithm with equal partitions among the threads occupies 96 SLOC in 

volume. The total time taken for the development of the matrix-matrix multiplication 
algorithm is 30 man-hours. 

7.1.1.2 OpenMP 

For the implementation of the matrix multiplication under OpenMP the same type of the 
partitioning method is employed but the difference is that work is allocated among the 

threads done by the compiler. The developer only has to specify the size of the partition. The 

time taken for the Worker creation and management is approximately 37% of the total 

development time for the matrix multiplication algorithm and the time taken to develop the 
partition activity for allotting equal workload among the threads is approximately 63% of the 

total amount of time spent in developing the application. This version of the algorithm 

occupies 79 SLOC in volume. The more development time for the work allocation of the 
algorithm is more because it is not sure as a novice programmer which variables to be 

declared as shared or private while partitioning. The time taken for the development of the 

matrix-matrix multiplication algorithm in OpenMP is about 16 man-hours. 

7.1.1.3 TBB 

The Matrix-Matrix multiplication developed for this model consists of the specification of 

only one task and the number of SLOC is 91 lines. The time taken for the development of a 

single task is around 85% of the total time taken for the development of the algorithm. And 
the time taken for the initialization and termination of the threads is around 15% of the total 

time taken for the development. This parallel version consists of only one task which is the 

task developed to specify the parallel for iterations which is shared among the threads. And 
hence the percentage of the development of this single task is high. All the data partition 

models provided by the TBB were used during the development of applications in TBB and 

time taken for the development is included in the parallel _for () which consumes the time as 
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mentioned above. The total time taken for the development of the matrix-matrix 

multiplication algorithm in TBB is about 10 hours. 

7.1.1.4 Cilk++ 

The matrix multiplication developed for this model consists of the specification of only one 

task as in TBB and the number of SLOC is 66 lines. The time taken for the development of a 

single task is around 90% of the total time taken for the development of the algorithm and 
the remaining time is spent for the other model independent functionality. Cilk++ avoids the 

possibility of creating and terminating the external threads as done by using the initialization 

object in TBB. Rather Workers in Cilk++ can be specified in command line which almost 

takes negligible amount of time for managing the workers. The task developed in this 
application consists of only one cilk_for () loop which is shared among the threads. Two 

kinds of partitioning methods are considered one is the dynamic partitioning done by the 

underlying system and the other is by using the #pragma cilk_grainsize directive to specify 
the chunks externally by the user. The total time taken for the development of the matrix-

matrix multiplication algorithm in TBB is about 6 hours. 

7.1.2 Jacobi iteration 

The development times for the Jacobi iteration algorithm in all the programming models are 

depicted in table 7.2. 

  Table 7.2: Development times for Jacobi iteration algorithm. 

Programming model  Development time in man- hours 

Pthreads 75 hours 

OpenMP 46 hours 

TBB 22 hours 

Cilk++  18 hours 

 

7.1.2.1 Pthreads 

The development activity of the Jacobi iteration encompasses two phases; the first phase is 

to simply develop the algorithm using the mutual exclusion locks for shared writes and by 

using barriers for synchronization. This development for establishing the basic thread 
synchronization activity takes approximately 26% of the total development activity of the 

total development time for the Jacobi iteration algorithm. While the other implementation 

phase uses conditional variables along with the mutual exclusion locks for guarding the 

shared writes takes 43%. The implementation of the last phase consumed most of the 
development activity this is because embedding condition variables when ever doing shared 

writes are hard to identify and more over difficult to achieve. The first phase of the algorithm 

occupies 189 SLOC, where as the second phase takes around 217 lines of code respectively. 
The total time taken for the development of the Jacobi iteration algorithm in Pthreads is 

about 75 man-hours. 

7.1.2.2 OpenMP 

The development activity of the Jacobi iteration encompasses only a single version. In this 
version the shared variables are ensured for correctness by guarding them by using critical 

directives and using barrier directives for synchronization where ever necessary. The 

synchronization barrier only occupies one line of code whereas that in Pthreads the barrier 
occupies at least 8 lines of code. These two activities consumed 64% of the total time for the 

development of the algorithm with the implementation of shared writes using the critical 

section and atomic directives takes 28% of the development time. And the time taken for the 
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development of the barriers at the pre-analyzed synchronization points takes approximately 

36% of the total time taken for the development. This version of the algorithm occupies 118 

SLOC. The total time taken for the Jacobi iteration algorithm in OpenMP is about 46 man-
hours. 

7.1.2.3 TBB 

The Jacobi iteration consists of three tasks one for each parallel_for () with each having three 
different functionalities. This development is done in phases where in the first phase the 

development of the first task is considered which is the parallelization of the computation of 

new values for the Jacobi iteration. This consumes 30% of the total time for the development 

of the algorithm. The second task is to develop the parallel tolerance function which takes 
the approximately 45% time for the development. This is because of the use of the shared 

writes in the task development, which is done using the mutual exclusion locks and scoped 

locks provided by the TBB library. The third task is to map the new values to the old array 
which takes the approximately 25% time for the development. The partitioning details are 

similar to that of the matrix multiplication. What is new in this application is the use of 

mutual exclusion locks the task of establishing and using locks for guarding the data items 
where the threads share among them. This subtask alone incurs extra development time and 

hence the development time of task 2 is more than the other tasks. The total source code is 

about 155 lines. The total time taken for the Jacobi iteration algorithm in TBB is about 22 

man-hours.  

7.1.2.4 Cilk++ 

The Jacobi iteration consists of three tasks one for each cilk_for () same as in TBB with each 

having three different functionalities and also the development of the algorithm proceeds in 
phases where in the first phase the development of the first task is considered which are the 

parallelizing of the computation of new values for the Jacobi iteration. This consumes 30% 

of the total time for the development of the algorithm. The second task is to develop the 

parallel tolerance function which takes approximately 40% of the total development time. 
The third task is to map the new values to the old array which also takes the same time as for 

the task1. The partitioning details considered for the development are similar to that of the 

matrix multiplication. This application uses mutual exclusion locks the task of establishing 
and using locks for guarding the data items is easy in Cilk++. This subtask incurs the extra 

development time which is the reason for the high development time of task 2 than others. 

The total source code is about 118 lines. The total time taken for the Jacobi iteration 
algorithm in Cilk++ is about 18 man-hours. 

7.1.3 Laplace Heat Distribution 

The development times for the Laplace heat distribution algorithm are depicted in table 7.3. 

  Table 7.3: Development times for the Laplace heat distribution. 

Programming model  Development time in man- hours 

Pthreads 90 hours 

OpenMP 58 hours 

TBB 29 hours 

Cilk++  24 hours 

 
7.1.3.1 Pthreads 

The development activity of the algorithm follows the same procedure as the Jacobi 

algorithm and has two phases, but the only difference is that the previous algorithm is based 
on synchronizing and communicating the threads using global variables and this algorithm is 
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based on synchronizing and communicating the threads using local variables. This phase of 

the algorithm consumes 30% of the development activity with 287 lines of code. Whereas 

the second phase among all consumed more time than others with 346 lines of code volume 
and consuming 48% of the development activity. The total time spent for the development of 

the Laplace heat distribution algorithm is about 90 man-hours. 

7.1.3.2 OpenMP 

The development activity of the algorithm follows the same procedure as the Jacobi 

algorithm in OpenMP. This version of this algorithm contains the communications of local 

variables also there are situations where only one thread is ensured to execute that particular 

region. The latter activity uses barrier directives along with single directive for establishing 
this sort of structured communication. These two activities consume a total of 63% of the 

total development time with establishing the first activity consumed 24% of the total 

development time and is coded using the single directive. These writes are also coded using 
the atomic, critical directives as a supplement to the single directive as in Jacobi iteration. 

And the second activity consumes 39% of the total development activity. The more 

development time for this is because of the second activity. The total time taken for the 
development for this algorithm in OpenMP is about 58 man-hours. This version of the code 

occupies 219 lines of code. 

7.1.3.3 TBB 

The development of the application begins in the same way as that of the above matrix 
multiplication and Jacobi iteration. As this resembles a modular approach, the development 

of the application starts with identification of the tasks which have a scope of parallelizing 

the operations using parallel_for and parallelizing each task separately. The parallelization of 
the algorithm consists of three tasks one for the computation of the even points, odd points 

and a common maximum value computation task. Each of the above two tasks consumes 

30% of the total time taken for the development and the rest of the time is consumed by the 

tolerance activity. The total source code of the algorithm is about 212 lines. The total time 
spent for the development of the Laplace heat distribution algorithm in TBB is about 29 

man-hours. 

7.1.3.4 Cilk++ 

The development of the application proceeds the same way as that of the above two 

applications that is a modular approach, to identify the tasks of data parallel applications 

which have a scope of parallelizing the operations using cilk_for and parallelizing each task 
separately. The parallelization of the algorithm consists of three tasks one for the 

computation of the even points, odd points and a common maximum value computation task. 

Each of the above two tasks consumes 32% of the total time taken for the development and 

the tolerance function takes 36% of the total development time. The total source code of the 
algorithm is about 201 lines. The total time taken for the development time of this algorithm 

in Cilk++ is about 22 man-hours. 

The following observations are noted by analyzing the source code. 

 Code development in Pthreads consists of more activities like the work load 

partitioning, worker creation and management, task mapping, communications and 

synchronizations. The number of lines of code that is linked with these parallel 

activities is considerably higher than any other model. Further the development time 

for writing the code is higher. For the Pthreads Communications activity which 

includes the establishment of shared writes is hard and consumes more time, the next 
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thing that consumes more development time is the synchronization activity and then 

follows the worker creation and management and partitioning activity e.t.c. This is 

the reason for Pthreads having large variations in the development time between 

different activities. 

 For OpenMP the activities that had to be developed while parallelizing the 

applications include the specification of the work sharing directives, parallel loop 

iterations, communications and synchronizations among the threads. This less 

number of LOC in OpenMP is because of the advantage of the directives in reducing 

the code length. The longer development time than tasking models is because of the 

obscurity due to using the directives for structured communications among the 

threads where the threads need to be synchronized while on the other hand only one 

thread is allowed to write into a shared variable and also since the structure of the 

applications in OpenMP is different.  

 TBB is the second model that has great impact on the Source code length. The 

development of the applications in TBB consists of only the activities like 

specification of the tasks that consists of parallel loop iterations and communications 

e.t.c. Individual activities in TBB doesn‘t need any synchronization. The activity that 

consumes most of the development time for data parallel applications is the 

parallelization of the loop iterations. The next activity that consumes much 

development time is the communications routines for guarding the shared writes. 

But since the advantage with task models is that to parallelize the data parallel 

applications the developer only has to partition the loop iterations and therefore the 

effort can be more or less equally distributed among the tasks of the application.  

And there is not much variation in the development times of the individual activities. 

 Cilk++ is the best model amongst all the models that is capable of decreasing the 

code length during the development of parallel applications. As in TBB the 

development of the parallel applications consists of the activities like specifying the 

tasks with parallel loop iterations, communications and synchronizations. The last 

two activities are easy to develop and consume less time than any other model. It is 

easy to distribute the development effort among the activities in Cilk++ during the 

development. Most of the development time of the applications is consumed for the 

development of parallel tasks and then for communication routines and at last for the 

synchronizations among the tasks. As in TBB the effort can be equally distributed 

among the tasks and due to this there are no large variations in the development 

times between the different tasks in Cilk++.  

  

From the above analysis the development times for the source code by considering all the 

activities constitutes 100% of the development time. This includes other tasks like the thread 

routines(thread id, ), the time calculation routines, the time taken for establishing the 

function calls for these activities and the time taken for testing and debugging, time for 

taking the measurements and so-on. This is because the time is distributed for model 

dependent/independent functions routines. It can be seen from the above as one progresses 

from the development of the applications in threading models to the development of the 

applications in task based models; the number of model specific parallel activities that the 

developer has to implement decreases on the other hand the time spent in developing the 

function or activity increases gradually even though the total development time is less.  As a 

result the actual development time of an activity in a particular programming model is also 

small; as one progresses from thread based models to task based models. 
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7.2 Overall Development Activity 

The total number of model specific routines used and the frequency of those routines for 

each model are discussed in this section. The development times taken for the development 
of the different algorithms in different parallel programming models are shown below in 

figure 7.1. 

 
Figure 7.1: Development times of dwarfs in different Programming models. 

7.2.1 Pthreads 

The number of model specific routines and their frequency of occurrence encountered during 

the development of the dwarfs are depicted in the table 7.4. Pthreads has more flexibility and 

the number of library routines provided to the developer is considerably high than any other 
models. The library routines exposed by Pthreads are at very low level on the other hand 

uniting several of them in a proper way achieve a parallel feature. For example for sequential 

consistency synchronizing the threads at some predefined points is done and this is achieved 

using the mutual exclusion locks and global data variables and conditional variables. Writing 
parallel applications in this way lead to lengthy source code and also the frequency of calls 

to those routines is also considerably high. This type of development of the parallel 

applications has its effect on increasing the defects and also the readability is very low. 
Novice programmers who had knowledge with using threads can easily migrate to Pthreads. 

Table 7.4: Pthreads library routines and their frequency during development. 
Library routine Frequency 

Pthread_t 1 

 Pthread_attr_t                                                1 

 Pthread_mutex_t  1 

Pthread_cond_t  1 

Pthread_attr_init()                 1 

Pthread_cond_init() 9 

Pthread_mutex_init() 9 

Pthread_create() 1 

Pthread_join() 1 

Pthread_mutex_lock() 9 

Pthread_mutex_unlock() 9 

Pthread_mutex_trylock() 0 

Pthread_cond_wait() 9 

Pthread_cond_broadcast() 9 

Pthread_cond_destroy() 9 

Pthread_mutex_destroy() 9 



  46 

7.2.2 OpenMP 

OpenMP is a directive model with almost the flexibility compatible with Pthreads, on 

contrast decreasing the amount of the source code associated with using the directives. The 

frequency of the calls in OpenMP is also considerably high as in Pthreads. Therefore the 
structure of the applications developed in OpenMP have a slightly different structure, but 

also facilitates the use of low level routines as in Pthreads under such cases the possibility of  

defects slightly increases also they are difficult to identify but easy to rectify. The directives 

and library routines used in the development of the applications in OpenMP are shown 
below in table 7.5. 

Table 7.5: OpenMP library routines and their frequency during development. 
Library routine Frequency 

#pragma omp parallel 1 

 #pragma omp for                                          8 

 #pragma omp atomic                                        1 

#pragma omp critical 2 

 #pragma omp barrier 17 

#pragma omp single 9 

Private  3 

Shared 8 

Static 8 

Dynamic 8 

Guided 3 

Omp_get_thread_num() 3 

Omp_set_num_threads() 3 

Omp_get_wtime() 6 

7.2.3 TBB 

The structure of the parallel applications developed in TBB is completely different. TBB 

projects the specification of parallel features from the perspective of tasks rather than from 
the perspective of threads. This had a great effect on decreasing the flexibility of the 

developer on the other hand hiding several of those low level features also facilitates easy 

development and also the number of library routines use for the development is low, but the 

frequency of the function calls are high. This has the effect of producing always the same 
kinds of errors. As a consequence they are easy to identify and debug.  The number of model 

specific routines used in TBB is shown and also their frequency is shown in table 7.6. TBB 

stands at high level of abstraction of all the programming models and because of the 
complex structure of TBB in specifying the tasks, sometimes the scope of the errors even 

though limited are little hard to rectify from  a novice programmers perspective. 

Table 7.6: TBB library routines and their frequency during development. 
Library routine Frequency 

Task_scheduler_init() 3 

Init.initialize() 3 

Terminate() 3 

 Parallel_for()                        7 

 Void operator() 7 

typedef mutex mut_ex :: lock 2 

 mut_ex::scoped_lock mylock() 3 

tick_count :: now 6 

task_scheduler_init:: deferred 3 

Simple_partitioner 7 

Auto_partitioner 7 

Affinity_partitioner 7 
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7.2.4 Cilk++ 

Cilk++ follows the simplest structure for parallelizing the applications. As compared to all 

the other models the number of library routines required is very low i.e., about 3 functions. 

This will improve the ease of development of the applications by the user as compared to the 
other models, also at the same time defines the boundaries of the application. On the other 

hand Cilk++ decreases the flexibility associated with user. Also those parallel routines are 

easy to use and less number of source lines of code is involved in writing these routines. On 

the other hand the frequency of the calls however is more because Cilk++ is a tasking model 
like TBB and follows the same parallelization points as TBB. The model specific routines 

used in TBB are shown and also their frequency is shown in table 7.7. 

Table 7.7:  Cilk++ library routines and their frequency during development. 
Library routine Frequency 

Cilk_spawn 7 

Cilk_sync 8 

Cilk_for() 7 

 Cilkview                        3 

Cilkview::start() 3 

Cilkview:: stop() 3 

#pragma cilk_grainsize 7 

7.3 Overall Defect Studies 

This section presents the defects that are encountered during the development of the dwarfs 

in each programming model. Table 7.8 summarizes the basic types of errors and the 
possibility of those errors in a programming model is shown.  

7.3.1 Pthreads defects study 

Pthreads is a programming model leaving more flexibility to the developer by allowing the 

developer to achieve the parallel features by using the very low level functional routines as a 

consequence the possibility for the occurrence of errors in Pthreads is high also their severity 
and frequency is observed to be high in Pthreads.  It is observed during the study that the 

testing and debugging takes almost more than half of the time spent in writing the code. 

Figure 7.2 depicts the time taken for rectifying the defects in Pthreads for different 
applications in man - hours. 

7.3.1.1 Data Errors  

These are the errors that arise due to the incorrect decisions in making the data as either 

private or global. Pthreads development uses pointers as a method to parallelize the 
application. Therefore the developer must know about what are the variables that are used as 

shared or local variables. Incorrect decisions about the usage of the variables as shared or 

global has a great impact in committing the errors in the code when modified by the threads 
the following are the data errors identified during the development activity. The pointer 

problems can be casting the data value to a different type, Improper Justification of the 

private and shared data, false sharing. 

7.3.1.2 Pointer Errors  

Pthreads development uses pointers as a method to parallelize the application. Therefore the 

developer must be conscious about the usage of the pointers in the parallel applications. 

Failure to do so leads to hard to find errors during the development of the applications. 
Incorrect decisions about the usage of the pointer variables as shared or global leads to 
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confusion and therefore lead to wrong computations when code is modified by all the 

threads. The following are the pointer errors identified during the development activity. They 

can be casting the data value to a different type, passing the parameters to the function of 
different data type e.t.c. 

7.3.1.3 Partitioning Bugs 

These are errors due to improper work allocation amount the threads. A parallel program is 
said to be parallelized 100% then the work shared among them must be equal in any case. 

Incorrect work allocation leads to more execution times and consequently less speedup 

achieved. This is due to more work done /undone or work done wrong. The developer must 

ensure the correct work allocation among the threads; in general the work allocated must be 
equal for whatever is the number of threads used in the program. 

7.3.1.4 Worker management  

Worker creation and management in Pthreads are difficult in Pthreads, this is because the 
creation and termination of the threads includes the calling the library routines with pointers 

as parameters. Also Pthreads only passes the parameters to the thread function as of type 

(void*). As in the case of a novice programmer the developer must be sure in passing the 
correct parameters. The following are the defects identified during the development. 

7.3.1.5 Synchronization and Communication Bugs  

Communication bugs are mainly due to the incorrect usage of the conditional variables in the 

program, which leads to the condition failure. In such cases an abnormal halt of the program 
is encountered. Wrong invocation of conditional variables (or) Errors in the coding of 

condition variables has huge drawbacks on the performance of the algorithm like the threads 

reporting communication failures or reporting wrong conditions. In Some cases threads may 
hold on the conditions for infinite time, or a thread may never reach the condition. These are 

mainly due to specifying wrong conditions (or) the wrong boundary values. Global 

communications are very hard to establish in Pthreads. this is because the developer must 

keep track of the which threads to be communicated using which locks and conditions when 
there are more shared writes on the global variables in the program. Communication bugs 

can be improper conditional waits, improper conditions achieved, or conditions never 

achieved.  More threads waiting for one or more conditions at the same time. 
Synchronization bugs on the other hand also includes the errors due to specifying incorrect 

locking on the data items, threads holding one or more locks, threads trying to acquire lock 

held by others. Applying more locks on the same shared variable. 

7.3.2 OpenMP Defects Study 

OpenMP relieves the pain of rectifying the defects by the developer. OpenMP exposes the 
environment required for parallelizing the applications, the programmer only have to specify 

the directives and routines at the parallel points identified during the code design. An 

incorrect directive doesn‘t introduces new defects in OpenMP rather the directive is skipped 
and the region is executed sequentially. If the functional routine is specified incorrectly an 

error message is displayed about the error. Figure 7.2 depicts the time taken for rectifying the 

defects in OpenMP for different algorithms in man-hours. 

7.3.2.1 Work sharing defects 

These are similar to the partitioning defects in Pthreads, and occur due to the incorrect 

sharing of the workload among the threads. This can be due to the improper specification of 

the chunk size or improper looping variables for the omp for work sharing construct. 
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7.3.2.2 Nested directives 

These defects arise due to the improper use of the directives. Typically nested directives i.e., 

improper use of directives inside other directives leads to these kinds of errors are also easy 
to identify and rectify. 

7.3.2.3 Work scheduling Defects 

OpenMP provides three different kinds of scheduling approaches.  Improper specification of 
the chunk sizes for sharing the workload leads to data races also the work scheduling defects. 

This type of errors also increases the overhead in scheduling the tasks. 

7.3.2.4  Data races 

These defects usually occur due to the improper use of the critical directives or the use of the 
atomic directives for complex instructions. Data races are hard to identify and rectify this is 

because the behavior f the application with data races when executed is not reproducible or 

unpredictable. Also this depends on the work load and the relative timing of the threads 
involved. 

7.3.2.5 Data sharing defects 

These errors occur due to the improper decisions taken for the usage of the shared/private 
data variables by the developer while developing the application. Deciding which data values 

to be used as private and which are used as shared data is complex in OpenMP. These errors 

even though are easy to identify which is done by the underlying compiler, but are hard to 

rectify. 

7.3.2.6 Synchronization defects 

 Improper use of the barrier functions for synchronizing the threads leads to these kinds of 

errors. The result of these errors is the abnormal termination of the program. These types of 
defects are usually more common in local communication based problems. 

7.3.3 TBB Defect Study 

7.3.3.1 Task management Defects 

These defects occur due to the invalid usage of the task_scheduler () routines by specifying 

the wrong parameters for the initialization and/or termination of the threads and tasks. These 
effects are easy to detect and rectify. Figure 7.2 depicts the time taken for rectifying the 

defects in TBB in man - hours. 

7.3.3.2 Work sharing Defects 

These defects are similar to those in OpenMP and occur due to the invalid specification of 

the Parallel_for () call or the body of the parallel_for () construct. Improper specification of 

the partitioner function also leads to these kinds of errors. 

7.3.3.3 Data races 

These defects usually occur due to the improper use of the locks on shared data items. Data 

races are hard to identify and rectify.  However TBB simplifies the rectification of the data 

races by supporting the usage of tools like Intel‘s thread checker and VTune Performance 
analyzer. 
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7.3.4 Cilk++ Defects study 

Of all the programming models evaluated Cilk++ has the least possibility of causing errors. 

There is only possible kind of errors identified during the development they are Data races. 

Figure 7.2 depicts the time taken for rectifying the defects in Cilk++ in man - hours. 

7.3.4.1 Data races  

In Cilk++ are easy to identify the underlying runtime system which is ported with the Cilk++ 

compiler facilitates the identification of defects can be easily rectified by the Developer. 

Table 7.8: Types of defects Occurred in Programming models during 

development. 

Type of defects Pthreads OpenMP TBB Cilk++ 

Worker 

management 

defects 

Yes No No No 

 

Partitioning 

bugs 

Yes Yes No  No 

Dependency in 

directives 

No Yes No No 

Task mapping Yes No No No 

Task 

management 

Defects 

No No Yes No 

Loops with Data 

Dependencies 

No Yes Yes Yes 

Synchronization 

defects 

Yes  Yes No No 

 

Data races Yes Yes Yes Yes 

Data bugs Yes Yes Yes Yes 

Communication 

Defects 

Yes No No No 

Pointer defects Yes No No No 
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Figure 7.2:  Time taken for rectifying the Defects during Development. 

As can be seen from the figure 7.2 and table 7.8 the scope of defects as one progresses from 
thread based models to task based models decreases and as a consequence the total number 

of defects decreases. Further the overall time taken to rectify those defects also decreases. 

The extremely high times for rectifying the defects in thread based models is because of the 

frequency of  encountering those errors mentioned above and the time taken to rectify those 
errors during development is more as compared to directive models which are in turn more 

than that of the task based models. 

7.4 Summary 

This chapter the results collected from the empirical study. These results are used to analyze 

and discuss and therefore to compare the parallel programming models. 
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CHAPTER 9: RESULTS - PERFORMANCE 

8.1 Execution times 

The execution times obtained for the algorithms developed in all the models are explained 

below. The execution times are taken for 1 node, 2 nodes, 4 nodes and 8 nodes.  

8.1.1 Matrix Multiplication 

Table 8.1: Execution times of Matrix - Matrix multiplication. 
Programming 

model 

Type of 

partition 

 Execution times 

1 – node 2- nodes 4-nodes 5 – nodes 

Pthreads Normal 17.090 10.64898 6.65007 3.195 

 
OpenMP 

Static 17.613773 10.641508 6.009883 3.214531 

Dynamic 16.560187 10.644078 5.984909 3.315854 

Guided 17.312715 11.091114 5.642544 3.236784 

 

 
TBB 

Normal 18.497208 10.595537 6.280703 3.258302 

Simple 17.411227 9.096853 5.812421 3.076922 

Auto 17.880539 9.560571 6.033887 3.209946 

Affinity 17.174236 9.353453 5.576552 3.176292 

 

Cilk++ 

Normal 17.202000 9.686000 5.537000 3.362000 

Dynamic 17.575001 10.758000 5.917000 2.860000 

The execution times of the matrix multiplication are gathered by multiplying two matrices of 
size 1024 and are depicted in table 8.1. All the input values are initialized to the random 

values. Of all the models the Cilk++ model is observed to have better execution times and 

the Cilk++ which is 2.860000 on 8-nodes and the size of the chunk partition is chosen 
arbitrarily by the Cilk++ compiler. The next model with better execution times is the TBB 

with 3.076922 on 8-nodes which is observed to be obtained from the simple partitioning 

strategy of the application. The next model is Pthreads with 3.195 seconds on 8-nodes. The 

last one is the OpenMP with an execution time of 3.214531 on 8-nodes obtained for the 
static scheduling strategy. The outputs of all the algorithms are observed to be 100% 

accurate compared to the serial versions of the application. 

8.1.2 Jacobi iteration 

Table 8.2: Execution times of Jacobi Iteration. 

Programming 
model 

Type of 
partition 

 Execution times 

1 – node 2- nodes 4-nodes 5 – nodes 

 

 

 
Pthreads 

Without 

Conditional 

variables 

 

18.65160 

 

9.378 

 

6.445 

 

6.378 

With 

conditional 

variables 

 

18.65163 

 

10.537 

 

6.491 

 

6.420 

 

OpenMP 

Static 12.528361 8.441140 7.180260 6.925106 

Dynamic 12.527674 8.450400 7.181433 6.924912 

Guided 12.530998 10.268568 7.174528 6.947828 

 

 
TBB 

Normal 12.402403 7.287078 6.403194 6.346713 

Simple 12-603139 9.481981 6.413131 6.352903 

Auto 12.402198 7.296328 6.411719 6.358586 
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Affinity 12.404731 9.413560 6.388827 6.340177 

 

Cilk++ 

Normal 12.402000 7.279000 6.384000 6.337000 

Dynamic 12.403000 7.277000 6.387000 6.340000 

 
The execution times obtained for the Jacobi iteration are shown in the table 8. 2. 

The execution times of the Jacobi iteration are gathered by computing the Jacobi iteration on 

the matrices of size 8000. And of all the models the Cilk++ model is observed to have better 
execution times which is 6.337000 on 8-nodes and the size of the chunk partition is specified 

by the programmer. The next model with better execution times is the TBB with 6.346713 

on 8-nodes which is observed to be obtained from the simple partitioning strategy of the 

application. The next model is Pthreads with 6.378 seconds on 8-nodes. The last one is the 
OpenMP with an execution time of 6.924912 on 8-nodes obtained for the dynamic 

scheduling strategy. The outputs of all the algorithms are observed to be 100% accurate 

compared to the serial versions of the application. 

8.1.3 Laplace Heat Distribution 

Table 8.3: Execution times of Laplace Heat Distribution 

Programming 

model 

Type of 

partition 

 Execution times 

1 – node 2- nodes 4-nodes 5 – nodes 

 

 
Pthreads 

Without 

conditional 
variables 

 

 83.65202 

 

48.667 

 

26.368 

 

18.425 

With 

conditional 
variables 

 

 83.65200 

 

48.65169 

 

26.403 

 

18.371 

 

OpenMP 

Static 118.448790 67.438849 36.256885 26.653553 

Dynamic 118.433673 69.798527 39.435519 29.585771 

Guided 118.420378 62.853548 39.452928 29.596448 

 
TBB 

Normal 118.348188 67.546543 38.703501 28.574435 

Simple 118.610353 62.816612 39.088978 29.276902 

Auto 118.352908 62.855214 40.090532 29.446836 

Affinity 116.175936 61.778997 35.638079 27.617736 

Cilk++ Normal 118.292000 62.516998 38.962002 28.531000 

Dynamic 118.296997 62.546001 39.362000 29.04900 

The execution times for the Laplace heat distribution for all the models are shown in the 

table 8.3. The execution times of the Laplace heat distribution are gathered by computing the 

algorithm on the matrices of size 2048 with a tolerance value of 0.02 and a relaxation factor 
of 0.5. And of all the models the Pthreads model is observed to have better execution times 

which is 18.371 on 8-nodes and the size of the chunk partition is specified by the 

programmer. The next model with better execution times is the OpenMP with 26.585771 on 

8-nodes which is observed to be obtained from the dynamic scheduling strategy of the 
application. The next model is TBB with 27.617736 seconds on 8-nodes obtained for the 

affinity partitioning strategy. The last one is the Cilk++ with an execution time of 28.531000 

on 8-nodes obtained for the partitioning strategy specified by the programmer. The outputs 
of the algorithm for the Cilk++, TBB and OpenMP are observed to be 100% accurate 

compared to the serial versions of the application. Whereas for the Pthreads version a 

deviation of is observed for the algorithm and this is mainly due to the variation of the 
floating point computations between models. 
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8.2 Speedup 

8.2.1 Matrix-Matrix Multiplication 

Table 8.4 depicts the speedup achieved by all the programming models for the matrix 

multiplication. Of all the models Cilk++ achieved high speedup which is 6.145105 on 8-
nodes and that is for dynamic partitioning strategy done by the underlying runtime system. 

The second model to achieve high speedup is the TBB which is 5.676947. The next models 

that achieved speedup are OpenMP for the static partitioning strategy and Pthreads with 
5.479422 and 5.211978 on 8-nodes respectively. All models for Matrix-Matrix 

multiplication achieved almost linear speedup. 

Table 8.4: Speedup of matrix-Matrix Multiplication. 
Programming model Type of 

partition 

Speedup 

2-nodes 4-nodes 8-nodes 

Pthreads Normal 1.563743 2.504074 5.211978 

OpenMP Static 1.655195 2.930801 5.479422 

TBB Simple 1.745754 2.945085 5.676947 

Cilk++ Dynamic 1.633668 2.699692 6.145105 

The speedup for the Matrix-Matrix multiplication is depicted in the figure 8.1 

 
 Figure 8.1: Speedup of Matrix-Matrix Multiplication. 

8.2.2 Jacobi iteration 

Table 8.5 depicts the speedup achieved by all the programming models for the Jacobi 
iteration algorithm. In general it‘s hard to achieve speedup for problems based on the global 

communications and the speedup achieved and the growth of the speedup in most of the 

cases is less than linear this is due to the overheads involved due to communications between 
threads. As the number of threads increases the overhead associated with the 

communications also increases. The speedup for the Jacobi iteration is depicted in the figure 

8.2. Of all the models Pthreads achieved high speedup which is 2.924365 on 8-nodes for the 
version with conditional variables. The second model to achieve high speedup is the TBB for 

affinity partitioning strategy which is 1.983839.  The next models that achieved speedup are 

Cilk++ for normal partitioning strategy and OpenMP for static partitioning strategy with 

1.956768 and 1.809121 on 8-nodes respectively. 
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Table 8.5: Speedup of Jacobi Iteration. 
Programming model Type of 

partition 

Speedup 

2-nodes 4-nodes 8-nodes 

 

Pthreads 

Without 

conditional 
variables 

 

1.988867 

 

2.893964 

 

2.924365 

OpenMP Static 1.484202 1.744833 1.809121 

TBB Affinity 1.329167 1.965208 1.983839 

Cilk++ Normal 1.703805 1.942669 1.956768 

 

 
Figure 8.2: Speedup of Jacobi Iteration. 

8.2.3 Laplace Heat Distribution 

Table 8.6 depicts the speedup achieved by all the programming models for Laplace heat 

distribution. Problems based on local communications however incurs less overhead also the 
speedup achieved is greater than those with global communications.  The speedup achieved 

in most of the cases is slightly less than or equal to the linear because of the less overheads 

involved due to communications between threads. As the number of threads increases the 
overhead associated with the communications also increases by very less amount. The 

speedup for the Laplace heat distribution is depicted in the figure 8.3. Of all the models 

Pthreads achieved high speedup which is 4.547540 on 8-nodes for the version with no 

condition variables. The second model to achieve high speedup is the OpenMP which is 
4.444015 for static partitioning strategy.  The next models that achieved speedup are TBB 

for the affinity partitioner strategy and Cilk++ for the normal partitioning strategy with 

4.206569 and 4.146086 on 8-nodes respectively. 

Table 8.6: Speedup of Laplace Heat Distribution. 
Programming 

model 

Type of 

partition 

Speedup 

2-nodes 4-nodes 8-nodes 

 
Pthreads 

With 
conditional 

variables 

 
1.719405 

 
3.168276 

 
4.547540 

OpenMP Static 1.756388 3.266932 4.444015 

TBB Affinity 1.880508 3.259882 4.206569 

Cilk++ Normal 1.892157 3.0362 4.146086 
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For Pthreads an error in tolerance of 0.00014 is observed compared to the other 

programming models. 

 
Figure 8.3: Speedup of Laplace Heat Distribution. 

8.3 Summary 

This chapter presents the performance details gathered from the results obtained due to the 

experiments. The performance factors presented here are the execution times and speedup of 
the applications achieved under each parallel programming models. 
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CHAPTER 9: ANALYSIS AND DISCUSSIONS 

This section presents the results obtained from the empirical study. This section presents the 

answers to the research questions posed in the proposal of this study. This section presents 

the speedup results obtained during the empirical study and compares them with the results 

of the development time on the other scale. This type of comparison is useful to answer the 
challenges faced by the industries today. 

9.1 Matrix multiplication 

9.1.1 Performance 

The results for the speedup of the matrix multiplication algorithm are shown in the graph 
depicted in figure 8.1.  It is clear that Cilk++ parallel programming model ports high growth 

of the relative speedup for matrix multiplication on 2, 4 and 8 processors. The speedup is 

1.63 on 2-nodes, 2.69 on 4-nodes and 6.14 on 8-nodes. The next model with better speedups 

is TBB  with 1.74 on 2-nodes which is approximately 1.06X greater than the speedup of the 
cilk++ model on 2-nodes,  and the growth continues to 4-nodes with approximately 1.09X 

greater than that of the cilk++ speedup on 4-nodes. The speedup on 8-nodes drops for TBB 

and is approximately 0 .92X the speedup supported by Cilk++. The next model is Pthreads 
with approximately 0.95X the speedup supported by the Cilk++ model observed on 2-nodes 

and 0.92X the speedup of Cilk++ on 4-processors and 0.84X the speedup of Cilk++ model 

on 8-nodes. The last model is OpenMP with approximately 1.01X the speedup of Cilk++ 
model on 2-nodes. The speedup supported on 4-nodes is approximately 1.08X the speedup 

supported by the Cilk++ model and on 8 – nodes the speedup supported is approximately 

0.89X the speedup of the Cilk++ model.  

9.1.2 Development time 

On contrast the development times of the matrix multiplication is depicted in the figure 7.1. 
The development time of the matrix multiplication algorithm in Cilk++ takes only 6 hours to 

develop the full working application where as for the TBB the development time is 10 hours 

which is approximately 1.66X the development time of the algorithm in Cilk++. Whereas for 
Pthreads on the extreme has the highest development time which is 30 hours and is 

approximately 5X the development time relative to the development of the same algorithm in 

Cilk++. For the last programming model OpenMP the development time of the algorithm 

takes 16 hours which is approximately 2.6X the development time of the algorithm in Cilk++ 
model. 

9.1.3 Conclusion 

 For matrix multiplication the TBB programming model is best from both views of speedup 

and development time with the speedup of 6.14 on 8 – nodes and consumes a development 
time of 6 hours for the successful working of the algorithm. The next models are TBB, 

OpenMP and Pthreads respectively.  

9.2 Jacobi Iteration 

9.2.1 Performance 

From the graph depicted in figure 8.2 it is clear that Pthreads parallel programming model 
ports high growth of the relative speedup for Jacobi Iteration on 2, 4 and 8 processors. The 

speedup observed is 1.98 on 2 processors and 2.89 on 4-processors and 2.92 on 8-nodes.  



  58 

The second good speedup is supported by TBB model which is approximately 1.32 which is 

approximately 0.69X of the speedup relative to the speedup supported by the Pthreads on 2 – 

nodes. And the growth of the speedup continues up to 4 - nodes where the speedup supported 
by TBB is approximately 1.96 which is approximately 0.67X of the speedup supported by 

the Pthreads on 4-processors.  The speedup growth continues and on 8-processors for the 

TBB model the speedup observed is 0.67X the speedup supported by the Pthreads model. 
The next model that achieves good performance for the Jacobi iteration algorithm is Cilk++.  

The speedup achieved by Cilk++ on 2-processors is only 1.70 which is only 0.85X of the 

speedup supported by the Pthreads model on 2-processors. A fall in the growth of the 

relative speedup on 4 –processors for Cilk++ is observed where the speedup achieved is only 
1.94 which is only 0.67X of the speedup relative to the speedup supported by the Pthreads. 

At last on 8-processors the speedup achieved by Cilk++ is 1.95 which is approximately 

0.66X of the speedup relative to the speedup supported by the Pthreads on same number of 
nodes. For OpenMP finally the speedup up achieved on 2-nodes is 1.48 which is only 0.74X 

the speedup achieved by the Pthreads on 2-nodes. On 4-processors the speedup achieved is 

approximately 1.74 which is 0.59X of the speedup obtained by the Pthreads on 4-processors 
and on 8-processors the speedup achieved by the OpenMP model is 1.81 which is 

approximately 0.61X the speedup supported by the Pthreads model on the same number of 

nodes. 

9.2.2 Development Time 

On the other hand the development times of the Jacobi iteration is depicted in the figure 7.1. 
The development time of the Jacobi iteration algorithm in Pthreads as that of the 

development time of matrix multiplication in the same model takes the highest development 

time which is 75 hours to develop the full working application where as for the TBB the 
development time is 22 hours which is approximately 0.29Xthe development time relative to 

the development time of the algorithm in Pthreads. And for the Cilk++ on the extreme has 

the least development time which is 18 hours and is approximately 0.24Xthe development 

time relative to the development of the same algorithm in Pthreads. For the last programming 
model OpenMP the development time of the algorithm takes 46 hours which is 

approximately 0.61 times relative to the development time of the algorithm in Pthreads. 

9.2.3 Conclusion 

For Jacobi iteration which involves global communication between the threads the Pthreads 
programming model is best compared to others. But on the other hand Pthreads also 

consumes more development time and has the scope of introducing more errors leave most 

of the details to be ensured by the programmer. The speedup achieved by the Pthreads model 

is approximately 2.92 on 8-nodes and the development time is 75 hours. The next better 
models are mode TBB, Cilk++ and OpenMP respectively. 

9.3 Laplace Heat Distribution   

9.3.1 Performance 

Clearly from the graph depicted in figure 8.3, it is clear that Pthreads parallel programming 
model again ports high growth of the relative speedup for Laplace heat distribution on 2, 4 

and 8 processors. The speedup observed is 1.72 on 2 processors, 3.16 on 4-processors and 

4.55 on 8-nodes. The second good speedup is supported by OpenMP model which is 

approximately 1.75 which is approximately 1.01X the speedup supported by the Pthreads on 
2 – processors. And the growth of the speedup continues up to 4- processors and is better 

than Pthreads as well where the speedup supported by OpenMP is approximately 3.26 which 

is approximately 1.03X of the speedup supported by the Pthreads on 4-processors.  But the 
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speedup on 8-processors faces a drop off for the OpenMP model which is 4.44 and is only 

0.97X of the speedup relative to the speedup supported by the Pthreads model. The next 

model that achieves good performance for the Laplace heat distribution algorithm is TBB.  
The speedup achieved by TBB on 2-processors is only 1.88 which is only 1.09X of the 

speedup relative to the speedup supported by the Pthreads on 2-processors and is better in 

this case. A continuation in the growth of the relative speedup on 4 –processors for  TBB  is 
observed where the speedup achieved is only  3.25 which is only  1.02X of the speedup 

relative to the speedup supported by the Pthreads and in this case is more than Pthreads and 

also equally compatible with OpenMP. At last on 8-processors the speedup achieved by TBB 

is 4.20 which is approximately 0.92X of the speedup supported by the Pthreads on same 
number of nodes where a sudden fall of the speedup is observed for this model. For Cilk++ 

finally the speedup up achieved on 2-nodes is 1.89 which is only 1.09X of the speedup 

relative to the speedup achieved by the Pthreads on 2-nodes and also  simply best than other 
models in this case. on 4-processors a drop in the growth is observed where the speedup 

achieved is approximately 3.03 which is 0.95X of the speedup relative to the speedup 

obtained by the Pthreads on 4-processors and on 8-processors the speedup achieved by the 
Cilk++ model is 4.14 which is approximately 0.91X of the speedup relative to the speedup 

supported by the Pthreads model on the same number of nodes. 

9.3.2 Development Time 

The development times of the Laplace heat distribution is depicted in the figure 7.1.  The 

development time of the algorithm follows the same trend as in the development time of 
Jacobi iteration algorithm. Where the Pthreads model encounters the highest development 

time of about 90 man hours  and the model at the second place related to the development 

time is the OpenMP model which is about 58 hours to develop the full working application 
which is approximately 0.64X of the Pthreads development. Whereas for the TBB the 

development time is 29 hours which is approximately 0.32Xthe development time relative to 

the development time of the algorithm in Pthreads. Whereas for Cilk++  on the extreme has 

the least development time which is 24 hours and is approximately 0.26Xthe development 
time relative to the development of the same algorithm in Pthreads.  

9.3.3 Conclusion 

 For Laplace heat distribution which involves local communication between the threads the 

Pthreads programming model is best compared to others. The next good model for this is 
OpenMP. The tasking models stand after these models. For Laplace heat distribution 

algorithm also the Pthreads model consumes the more development time with encountering 

more errors during development. Also the type of errors is similar to that of the Jacobi 

iteration algorithm. The speedup achieved by the Pthreads model is 4.54 with a development 
time of 90 hours. 

9.4 Validity Discussion 

One important factor observed at the end of the study is the threat known as ―the learning 
effect‖ as mentioned in the section 6.9.2. In this study the development of the dwarfs in 

programming models proceed with Pthreads model, OpenMP model then TBB and Cilk++.  

If a change of preconditions is done during the development process then the development 
times may alter i.e., the development of the applications in the programming models proceed 

with Pthreads model, TBB then OpenMP model and Cilk++. Under such conditions TBB 

may have more development times than OpenMP; this effect of change in the orders of 

evaluation is due to the skill of the developer characteristics as mentioned before. This effect 
may occur also for other ordering of the models that are chosen for the development. 
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One development issue related to TBB that negotiates with this argument is that 

the development of data parallel applications in TBB incurs the same kind of structure or 

patterns for all kind of applications depicting the parallel iterations or computations done by 
the multiple threads. As a result, the whole application involves only the development of the 

parallel iterations to parallelize the application. Thus for the programmer the development of 

the application is the same for all kinds and incurs less and same library routines. Therefore, 
the development times of the dwarfs are less. This effect can be validated by using another 

similar study with the same conditions but with different orders of evaluation. Then the final 

results obtained can be used to verify the result. Therefore, it could be an extension to this 

work as a future work to compare this study with the results obtained by an expert 
programmer in his study for the validation of the results. 

9.5 Summary 

This chapter analyzes and discusses about the results obtained from the empirical study. The 
results are presented in detail in the chapters – 7 and 8 and the analysis is done for each and 

every dwarf separately in terms of the speedup and development time. 
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SUMMARY 

This report presents the empirical study about the comparison of shared memory based 

parallel programs. The study includes four parallel programming models tested for the 

independent parameters speedup and development using three dwarfs. The following 

answers are identified for the research questions posed in the Chapter – 2. 

 

RQ1. What is the speedup achieved by the application under the chosen programming 

models? 
 

The speedup achieved by a parallel application varies for different programming models. For 

the models chosen in this thesis only considering from the speedup perspective; for problems 
without communication the task based models out performs than the threading models which 

are rated on the other extreme and the directive models can be rated in between them. 

Sections 9.1.3, 9.2.3 and 9.3.3 assist this answer. 

 
RQ2. What is the development time of the application under each parallel programming 

model? 

Developing the parallel code and making it successful as mentioned before depends on the 
number of factors like the model specific library routines used, the number of defects and the 

time taken to rectify those defects. From the development time perspective by considering all 

the above factors obtained from the experimental results; the task based models facilitates 

easy development and consumes considerably less time than other models by sacrificing the 
flexibility like the one associated with the threading models which stand on the other 

extreme of the development time scale. Threading models have more development times 

because of the complexity associated with the models when parallelizing the applications 
and the hard times that developers face in rectifying the defects and so-on. On the other hand 

the directive models stand in between and also the time taken for rectifying the defects is 

also moderate. 

 

RQ3. Which model is best when compared to the relative speedup and the total development 

time of the application? 

From the experimental results to compare the parallel programming models based on the 
trade-off between development time and Speedup; the directive models are the best 

compared to other models by supporting a balance between these two factors. If 

development time is not a problem and the performance is important; then the threading 
models are preferred next on the other hand with a sacrifice of very less performance then 

comes the task based models. 

 
From this study it is clear that threading model Pthreads model is identified as a dominant 

programming model by supporting high speedups for two of the three different dwarfs but on 

the other hand the tasking models are dominant in the development time and reducing the 

number of errors by supporting high growth in speedup for the applications without any 
communication and less growth in self-relative speedup for the applications involving 

communications.  The degrade of the performance by the tasking models for the problems 

based on communications is because task based models are designed and bounded to execute 
the tasks in parallel without out any interruptions or preemptions during their computations. 

Introducing the communications violates the purpose and there by resulting in less 

performance. The directive model OpenMP is moderate in both aspects and stands in 

between these models. In general the directive models and tasking models offer better 
speedup than any other models for the task based problems which are based on the divide 

and conquer strategy. But for the data parallelism the speedup growth however achieved is 
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low (i.e. they are less scalable for data parallel applications) are equally compatible in 

execution times with threading models. Also the development times are considerably low for 

data parallel applications this is because of the ease of development supported by those 
models by introducing less number of functional routines required to parallelize the 

applications. 

This thesis is concerned about the comparison of the shared memory based 
parallel programming models in terms of the speedup. This type of work acts as a hand in 

guide that the programmers can consider during the development of the applications under 

the shared memory based parallel programming models. We suggest that this work can be 

extended in two different ways: one is from the developer‘s perspective and the other is a 
cross-referential study about the parallel programming models. The former can be done by 

using a similar study like this by a different programmer and comparing this study with the 

new study. The latter can be done by including multiple data points in the same 
programming model or by using a different set of parallel programming models for the 

study. 
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