
Relaxing the Synchronous Approach for
Mixed-Criticality Systems

Eugene Yip, Matthew M Y Kuo, Partha S Roop
Department of ECE, University of Auckland, New Zealand

{eyip002, mkuo005}@aucklanduni.ac.nz, p.roop@auckland.ac.nz

David Broman
UC Berkeley, USA and Linköping University, Sweden

davbr@berkeley.edu

Abstract—Synchronous languages are widely used to design
safety-critical embedded systems. These languages are based on
the synchrony hypothesis, asserting that all tasks must complete
instantaneously at each logical time step. This assertion is, how-
ever, unsuitable for the design of mixed-criticality systems, where
some tasks can tolerate missed deadlines. This paper proposes
a novel extension to the synchronous approach for supporting
three levels of task criticality: life, mission, and non-critical.
We achieve this by relaxing the synchrony hypothesis to allow
tasks that can tolerate bounded or unbounded deadline misses.
We address the issue of task communication between multi-
rate, mixed-criticality tasks, and propose a deterministic lossless
communication model. To maximize system utilization, we present
a hybrid static and dynamic scheduling approach that executes
schedulable tasks during slack time. Extensive benchmarking
shows that our approach can schedule up to 15% more task
sets and achieve an average of 5.38% better system utilization
than the Early-Release EDF (ER-EDF) approach. Tasks are
scheduled fairer under our approach and achieve consistently
higher execution frequencies, but require more preemptions.

I. INTRODUCTION

Safety-critical embedded systems [1] are continuously su-
perseded by more complex designs that must be certified
against stringent safety-standards [2], [3]. Moreover, safety-
measures must be incorporated to isolate and mitigate errors
or faults that can develop at runtime [1]. Mixed-criticality
systems emerge when tasks with diverse levels of importance
or criticality [1], [4] are integrated together [5]. With respect
to timing, high criticality tasks are hard real-time because
they cannot miss any deadlines, whereas lower criticality
tasks are soft real-time because they can tolerate missed
deadlines. Determining efficient schedules for mixed-criticality
tasks has recently become an important research topic. Since
the introduction and formalization of the problem [4], there
have been several studies on uni-processor [6]–[9] and multi-
processor [10]–[12] systems.

Safety-critical systems are typically periodic hard real-
time systems and can be modeled directly with synchronous
languages [13], [14]. Synchronous languages are based on

This work was supported in part by the RIPPES INRIA International Lab,
the University of Auckland PReSS account, the iCyPhy Research Center
(Industrial Cyber-Physical Systems, supported by IBM and United Technolo-
gies), the Swedish Research Council (#623-2011-955), and the Center for
Hybrid and Embedded Software Systems (CHESS) at UC Berkeley (supported
by the National Science Foundation, NSF awards #0720882 (CSR-EHS:
PRET), #1035672 (CPS: Medium: Timing Centric Software), and #0931843
(ActionWebs), the Naval Research Laboratory (NRL #N0013-12-1-G015), and
the following companies: Bosch, National Instruments, and Toyota).

sound mathematical semantics, which facilitates system ver-
ification by formal methods [13] and generation of correct-
by-construction implementations [15], [16]. The core of any
synchronous language is the synchrony hypothesis [13], as-
serting that a system reacts instantaneously to all its en-
vironmental inputs. A reaction consists of reading inputs
from the environment, computing the system’s next state, and
emitting outputs to the environment. All concurrent tasks (or
threads, in the parlance of synchronous languages) in the
system react in lock-step with respect to a logical clock. An
implementation satisfies the synchrony hypothesis if the Worst-
Case Execution Time (WCET) [17] of all reactions do not
exceed the system’s specified period [18]. Unfortunately, this
requirement precludes the use of tasks with soft real-time
deadlines in a synchronous program. Thus, several significant
limitations arise in the modeling of mixed-criticality systems
with synchronous languages:

• Only tasks with statically computable WCETs, nec-
essary to validate the synchrony hypothesis, can be
included in the system. Tasks with unknown WCETs
(e.g., too complex to analyze) are excluded.

• The synchrony hypothesis requires all tasks to be hard
real-time. Thus, there is no advantage in prioritizing
the execution of high criticality tasks over lower
criticality tasks.

• To satisfy the synchrony hypothesis, the implementa-
tion must provide enough resources to ensure that the
system’s estimated WCET does not exceed the spec-
ified period. If the assumptions used for the WCET
estimation are unlikely to occur, then the provisioned
resources will be under-utilized at runtime.

The work of Baruah [8] is the first attempt at generating
efficient (static) schedules for multi-rate, mixed-criticality, syn-
chronous programs on uni-processor systems. Baruah applies
the result from [19] to the synchronous setting. The assumption
is made that the WCET estimate of a task becomes more
pessimistic as its level of timing assurance increases. Tasks
are statically scheduled to execute for up to their WCET as
estimated at the lowest level of timing assurance. When any
high criticality task exceeds its scheduled time, all the low
criticality tasks are immediately discarded. This frees up the
system to meet the deadlines of just the high criticality tasks,
but causes low criticality tasks to execute sporadically. This
is undesirable for control-related tasks as sporadic delays are
introduced and can cause system instability [14]. To mitigate
this problem, Su et al. [9] propose an Elastic Mixed-Criticality

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is the author prepared accepted version. © 2014 IEEE. The published version is:
Eugene Yip, Matthew Kuo, Partha S Roop, and David Broman. Relaxing the Synchronous Approach for Mixed-Criticality Systems.
Proceedings of the 20th IEEE Real-Time and Embedded Technology and Application Symposium (RTAS), Berlin, Germany, April 15-17, 2014.

David Broman
http://dx.doi.org/10.1109/RTAS.2014.6925993

task model and an Early-Release EDF scheduling algorithm
for uni-processors to guarantee minimum service levels for
low criticality tasks. Every low criticality task has a maximum
period and a set of shorter desired periods. At runtime, the
low criticality tasks are released according to their maximum
period. If there is enough slack in the system, then the tasks are
released at one of their earliest desired periods. This approach
was later extended to multi-processors [11].

Contributions. We propose a novel extension to multi-rate
synchronous languages that allows the modeling of mixed-
criticality systems. The synchrony hypothesis is relaxed to
allow the specification of tasks with soft real-time deadlines.
Instead of requiring tasks to execute at constant frequencies,
low criticality tasks can execute within a specified range
of frequencies. We also propose a multi-processor schedul-
ing method for the proposed multi-rate, mixed criticality,
synchronous task model. Tasks are statically scheduled on
processors such that their minimum execution frequencies are
met. Slack in the static schedule is consumed by increasing the
scheduled time of the low criticality tasks, thereby increasing
their execution frequency. Additional slack can develop at
runtime when tasks execute for less than their WCET. The
additional slack is used to reschedule low criticality tasks
to further increase their execution frequency. We claim that
this is the first multi-rate, mixed criticality framework for
synchronous languages on multi-processors. In summary, our
main contributions are:

• Relaxing the synchrony hypothesis to capture the tim-
ing requirements of mixed-criticality tasks. We offer
frequency-based parameters for specifying different
levels of criticality. The parameters are tightly coupled
to embedded multi-rate applications by relating task
frequency bounds to task criticality. (Section II).

• The relaxation of the synchrony hypothesis to support
mixed-criticality violates the synchronous model of
communication. To address this, we use a simple
lossless buffering approach with bounded queue sizes.
In contrast to closely related formalisms, such as
Synchronous Data Flow [20], tasks in our approach
can produce dynamically varying number data items,
but only within statically known bounds. (Section III).

• We devise a multi-processor (static and dynamic)
scheduling method that tries to maximize system
utilization by distributing slack time proportionally
across all tasks. (Section IV).

• We evaluate our proposed scheduling approach ex-
tensively against the ER-EDF approach [11]. Bench-
marking results show that our proposed approach can
schedule up to 15% more task sets and achieve con-
sistently higher system utilization (up to 98.5%) than
ER-EDF. Moreover, tasks achieve higher execution
frequencies and share the slack more fairly than ER-
EDF. (Section V).

II. MULTI-RATE, MIXED-CRITICALITY, SYNCHRONOUS
TASK MODEL

We contend that the proposed task model is applicable to
a wide range of cyber-physical systems, such as Unmanned

Nav
(Life-critical)

4Hz

Stability
(Life-critical)

20Hz

Logging
(Non-critical)

10Hz

Sharing
(Non-critical)

10Hz

Avoid
(Mission-critical)

10Hz – 20Hz

Video
(Mission-critical)

10Hz – 25Hz

Input from
camera

Input from
proximity

sensor

Input from
position &
orientation

sensors

Output to
comms

Output
to flight
surfacesInput from

comms

Fig. 1. Functional block diagram of a UAV with criticality levels and
frequency bounds.

Aerial Vehicles (UAVs) [21], biomedical devices [22], and au-
tomotive systems [23]. As a motivating example, we describe
the design of a UAV inspired by the Paparazzi project [24]. A
UAV is a remotely controlled aerial vehicle commonly used
in surveillance operations. Figure 1 illustrates the functionality
of a UAV as a block diagram of tasks. The Nav task localizes
the UAV using onboard sensors, updates the flight path, and
sends the desired position to the Stability task. The Stability
task controls the flight surfaces to ensure stable flight to the
desired position. Extremely low jitter is required for stable
flight. The UAV has the following useful but less critical
features. The Video task streams a video of the UAV’s flight
from an onboard camera to allow users to fly the UAV from
the UAV’s point of view. The higher the frame rate, the better
the flying experience. The Avoid task uses onboard sensors to
detect obstacles around the UAV and sends collision avoidance
data to the Nav task. Thus, the more frequent obstacles are
checked for, the faster the UAV can safely travel at. Less
critical features that a UAV can have include a data logging
facility to log important flight events (Logging) and to share
obstacle and localization data with nearby UAVs (Sharing).
Because the UAV combines tasks of different criticalities, it is
an excellent example of a mixed-criticality system.

In our task model, a synchronous program is a set of
tasks ⌧ 2 � that are released together when the program
starts executing. Without loss of generality, we assume tasks
that do not create new tasks at runtime. The programmer
assigns a criticality ⇣

⌧

to each task as either life , mission ,
or non-critical . That is, ⇣

⌧

2 {life, mission, non-critical}.
Life critical tasks are released periodically and adhere to the
synchrony hypothesis. Thus, life critical tasks must complete
their computation before their next release time (a hard real-
time deadline). For example, if a life critical task with period
p
⌧

is released at time r
⌧

, then its deadline (and next release) is
at time r

⌧

+p
⌧

. We relax the synchrony hypothesis for mission
critical tasks in that bounded deadline misses are tolerated. For
example, if a mission critical task misses its deadline of time
r
⌧

+ pmin

⌧

, then it cannot miss a relaxed deadline of time
r
⌧

+ pmax

⌧

, where pmin

⌧

< pmax

⌧

. We relax the synchrony
hypothesis completely for non-critical tasks by removing the
notion of deadlines. For example, if a non-critical task with
period p is released at time r

⌧

and completes its computation

2

at time r
⌧

+ q, then its next release is Max{r
⌧

+ p
⌧

, r
⌧

+ q}.

To better understand the execution rates of the tasks, their
periods can be converted into frequencies using the equation
f = 1/p . The minimum and maximum release frequencies
(f min

⌧

and f max

⌧

) depend on the assigned criticality ⇣

⌧

. For life
critical tasks, f min

⌧

= f max

⌧

. For mission critical tasks, f min

⌧

<

f max

⌧

. For non-critical tasks, only f max

⌧

is specified and is
treated as a goal frequency. All specified frequencies must be
greater than 0. Any implementation must ensure that all life
critical tasks execute at their f max

⌧

and that mission critical
tasks execute within their f min

⌧

and f max

⌧

. For non-critical
tasks, while the implementation tries to meet their f max

⌧

(goal
frequency), no guarantees are provided, i.e., these tasks may
execute at a lower frequency compared to their goal frequency.
WCET analysis [17] can be used to estimate an upper bound on
a task’s maximal computation time, c

⌧

. For non-critical tasks,
c
⌧

is left unspecified. In Appendix A-A, we discuss how more
levels of criticality can be supported by the task model.

We now motivate the criticality levels assigned to the tasks
in Figure 1. When assigning a criticality, we assume that
life critical tasks must meet specific hard deadlines, whereas
mission critical tasks can improve their quality of service
by executing more frequently. The Nav and Stability tasks
are life critical because they are required for safe operation.
The Video and Avoid tasks are mission critical because high
frequencies are desirable for the video frame rate and checking
of obstacles, but their lowest tolerable frequency is 10Hz . The
Logging and Sharing tasks are non-critical because they are
not necessary for the correct operation of the UAV.

III. COMMUNICATION

In this section, we define the communication model for the
proposed multi-rate, mixed-criticality, synchronous task model.

A. Synchronous Communication

The synchrony hypothesis requires all communication to
complete in the same period they were started in, i.e., before
the tasks are released again. This is shown in Figure 2a for a
single-rate synchronous program with two tasks A and B that
communicate using the variables a and b. The tasks must be
scheduled such that data is always sent before it is received.
This data-dependency limits task schedulability and the ability
to execute tasks in parallel. A way to relax data-dependencies
is to delay the receiving of data by one period. When tasks
are released, they receive the data sent from the previous
period. This delayed semantics is illustrated in Figure 2b
and is supported by some synchronous languages (e.g., the
pre operator of Esterel [25] and Lustre [26], Prelude’s fby
operator [27], ForeC’s shared variable semantics [28], and
SL’s delayed semantics [29]). In Figure 2b, variables a and b

are assumed to be declared with an initial value. At time r,
both tasks receive the initial values a0 and b0. At time r + p ,
both tasks receive the values a1 and b1 sent from the previous
period. For the remainder of the paper, we assume that all task
communications are delayed.

B. Multi-Rate Communication

For multi-rate synchronous programs, tasks may need to
communicate with others at different frequencies. A common

Task B

Task A

r r+p

b a

Time

(a) Instantaneous communication be-
tween tasks A and B.

Time

Task B

Task A

r r+p

b1
a1a0

b0

(b) Delayed communication between
tasks A and B.

Time

Task B

Task A

r r+p

b1

r+2p

b2b0

r+3p r+4p

(c) Oversampling: A lower frequency task (task B) communicating to a
higher frequency task (task A).

Time

Task B

Task A

r r+p

a1

r+2p

a2a0

r+3p r+4p

a4a3

(d) Undersampling: A higher frequency task (task A) communicating to
a lower frequency task (task B).

Time

Task B

Task A

r r+p

a1

r+2p

a2a0

r+3p r+4p

a4a3

(e) Lossless buffering: A higher frequency task (task A) communicating
to a lower frequency task (task B).

Fig. 2. Task communication models.

approach is to oversample data sent from lower frequency
tasks and to undersample data sent from higher frequency
tasks [27], [30], [31]. Figure 2c shows oversampling, where
task A receives the last value sent from task B multiple
times, {b0, b0, b1, b1, b2, . . . }. Figure 2d shows undersampling,
where task B only receives the last value sent from task A,
{a0, a2, a4, . . . }. The main disadvantage with undersampling
is the loss of data (e.g., {a1, a3, . . . }) which may be unaccept-
able when, e.g., commands are sent between tasks.

To overcome the problem with undersampling, we propose
a simple approach of lossless buffering. The idea of lossless
buffers for multi-rate systems is not new. For instance, in
Synchronous Data Flow (SDF) [20], bounded lossless buffers
can be achieved by restricting tasks (typically called nodes or
actors) to consume and produce fixed, statically known, num-
ber of data items. By contrast, in our methodology, mission-
critical tasks can produce dynamically varying number data
items; only the upper and lower bounds of rates are statically
known.

The suggested approach of lossless buffers is simple: all
data sent from a higher frequency task to a lower frequency
task is buffered in a First In, First Out (FIFO) buffer. When the
lower frequency task is released, it consumes all the data in the
buffer and then clears the buffer. This is shown in Figure 2e,
where the buffer begins with the initial value a0 for variable

3

a. At time r, the buffer is consumed and cleared. Between the
time interval [r, r+2p], the data sent from task A is buffered.
At time r + 2p , task B is released so it consumes and clears
the buffer. When task B executes, it has the values a1 and a2

for variable a. The programmer is free to use the values in any
way they like. For example, if data loss is undesirable, then the
task can process the “backlog” of values. As another example,
a task may only use the latest value for its computation. In
this case, the communication behaves like the undersampled
method shown in Figure 2d. We observe two key properties of
the proposed lossless buffering approach:

Observation 1. The maximum buffer size needed for lossless
communication between two life or mission critical tasks
is bounded: Let ⌧ be a life or mission critical task that
communicates to another life or mission critical task ⌧

0. Let ⌧
be the higher frequency task. The maximum buffer size needed
for lossless communication is equal to the maximum number
of times that ⌧ can send data between each release of ⌧ 0. This
occurs when ⌧ is released at its maximum frequency (f max

⌧

)
and when ⌧

0 is released at its minimum frequency (f min

⌧

0). Thus,
the maximum buffer size can be calculated as the ratio of both
frequencies:

Maximum buffer size =

⇠
f max

⌧

f min

⌧

0

⇡
(1)

Observation 2. By using FIFO buffers, the (untimed) sequence
of data sent from the higher frequency task is always received
in the same sequence by the lower frequency task.

C. Mixed-Criticality Communication Model

We now define the communication model for mixed-
criticality tasks. All communication between tasks of the same
frequency are simply delayed (Figure 2b). All communication
from lower to higher frequency tasks are oversampled (Fig-
ure 2c). All communication from higher frequency tasks to
lower frequency life and mission critical tasks use lossless
buffering (Figure 2e). All communication from higher fre-
quency tasks to lower frequency non-critical tasks are under-
sampled (Figure 2d). Lossless buffering is not used because
the maximum time between each release of a non-critical task
is unbounded. Hence, an infinite number of data may have to
be buffered. This communication model can be implemented
as high-level library functions or as a new data type in an
existing synchronous language.

IV. TASK SCHEDULING

In this section, we describe a scheduling algorithm for
the proposed multi-rate, mixed-criticality, synchronous task
model. Each task ⌧ 2 � is scheduled on a processor n 2 N .
A processor can execute instructions from multiple tasks by
preemptively context-switching between the tasks at scheduled
times. Note that the scheduling algorithm is applicable to other
types of parallel architectures, such as multi-core and multi-
threaded processors [32], [33].

A. Schedulability

For a given set of tasks and available processors, we need
to determine if the tasks are schedulable. First, similar to the

Time (ms)

Task D on
process 2

Task C on
process 1

0 100

0 250 500 750 1000

200
300
400
500
600
700
800

1000

900

(a) Hyper period approach.

Time (ms)

Task D on
process 2

Task C on
process 1

0 50 100

0 10050

(b) Base period approach.

Fig. 3. Static schedules for two life critical tasks on their processor.

definitions presented by the ER-EDF approach [11], we use
the following notations:

umin

⌧

= c
⌧

· f min

⌧

(2)
umax

⌧

= c
⌧

· f max

⌧

(3)

U�(life) =
X

⌧2�, ⇣

⌧

=life

(umin

⌧

) (4)

Umin

� (mission) =
X

⌧2�, ⇣

⌧

=mission

(umin

⌧

) (5)

where, umin

⌧

and umax

⌧

is task ⌧ ’s minimum and maximum
utilization, respectively. A task’s utilization is the ratio of its
computation time c

⌧

compared to its period. Note that umin

⌧

=
umax

⌧

for life critical tasks only. U�(life) is the total umin

⌧

of
all life critical tasks in �. Umin

� (mission) is the total umin

⌧

of all mission critical tasks in �. Let � = �1 [�2 [· · · [�
x

,
where �n is the set of tasks allocated to processor n .

Definition 1. (Schedulability) A task set � is schedulable over
a set of (homogeneous) processors N if:

8n 2 N : U�n
(life) + Umin

�n
(mission) 1 (6)

The schedulability condition represented by equation (6)
only considers life and mission critical tasks. No guarantees
are made for the execution of non-critical tasks.

B. Scheduling Approaches

Traditional multi-rate, synchronous tasks can be scheduled
dynamically [14], [16], [27] or statically [8], [14]. To guarantee
schedulability, the tasks are scheduled for their maximum
computation time c

⌧

. In dynamic scheduling, the multi-rate
tasks are scheduled using the Rate-Monotonic or Earliest
Deadline First (EDF) algorithms. In static scheduling, each
task is statically assigned to a processor and allocated a
fixed amount of time to execute. A static schedule is created
such that it can be repeated indefinitely to meet the timing
constraints of all tasks. The length of the schedule (makespan)
is usually the hyper period or base period of all the task
periods. The hyper and base periods are computed as the
Least Common Multiple (LCM) and Greatest Common Divisor
(GCD) of all task periods, respectively. A limitation is that the
task periods must be rational numbers in order to compute
the LCM or GCD. Figure 3 compares the hyper and base
period approaches for scheduling the same multi-rate tasks,
C and D, on separate processors. Tasks C and D have a release
frequency of 2Hz and 5Hz , and a maximum computation time
of 250 milliseconds (ms) and 100ms , respectively. The hyper
period is LCM{500ms, 200ms} = 1, 000ms and the base
period is GCD{500ms, 200ms} = 100ms .

4

C. Hyper and Base Period Approaches

The hyper period approach [8], [14] constructs a schedule
for the shortest time interval in which all tasks can meet their
timing constraints. In Figure 3a, it can be verified that tasks C
and D can continue to execute at 2Hz and 5Hz , respectively,
when the schedule is repeated indefinitely. However, very long
schedules are generated when the hyper period is much larger
than the task periods. Longer schedules typically require more
memory to store. The base period approach [14] creates shorter
schedules by allocating a portion of the task’s computation
time over each base period. Thus, the execution of a task is
split over an integral number of base periods. The release of
a task is decided at runtime at the start of each base period.
A task is released if it has completed its computation and its
minimum period pmin

⌧

has elapsed since its last release. Note
that all tasks get released in the program’s first base period. In
Figure 3b, it can be verified that tasks C and D can complete
their computations in 5 and 2 base periods, respectively, which
equates to 2Hz and 5Hz . However, preemptive scheduling is
required to split the execution of each task and the number of
preemptions increases with the number of tasks.

Although tasks are scheduled for their maximum computa-
tion time c

⌧

, their actual computation time may be shorter.
Thus, slack can develop at runtime and lead to an under-
utilized system. However, the slack can be used to help mission
and non-critical tasks execute at a faster frequency and improve
system utilization. This insight was used in the Early-Release
EDF approach [9], [11] where each (low criticality) task has a
set of recurring times specifying when it can be released earlier
than usual. The elastic approach could be applied to the hyper
period approach but determining the early release times is non-
trivial. This is because slack can develop at anytime between
the statically scheduled task release times.

We take a simpler approach to reclaiming slack. Specifi-
cally, we use the base period approach to statically schedule
all the life and mission critical tasks. During runtime, if a
task completes before its allocated time expires, then the next
task in the static schedule is executed. Thus, slack will always
accumulate at the end of each base period and the slack can
be used to execute the non-critical tasks. In the following, we
describe the proposed scheduling and some heuristics to further
improve system utilization.

D. Static Scheduling Algorithm

The algorithm for obtaining a static schedule is given
in Figure 4. Lines 1-3 computes the base period p

b

of the
tasks. For the UAV example, p

b

= GCD{ 1
4 ,

1
10 ,

1
20 ,

1
25} =

1
100 = 10ms. For each life and mission critical task, we
need to determine what portion of their computation time
can be allocated in each base period (lines 5-9). The min-
imum and maximum portion, tmin

⌧

and tmax

⌧

respectively,
depends on the task’s minimum and maximum utilization.
Table I exemplifies the calculation of tmin

⌧

and tmax

⌧

for
the life and mission critical tasks of the UAV example. The
function GENSCHEDULE (described in Section IV-E) is then
used to find a feasible task-to-processor allocation (line 10).
GENSCHEDULE returns a static schedule sn 2 S for each
processor n . Each static schedule sn is a queue of allocated
tasks and their execution times. The static scheduling algorithm

Input: �, N . Set of tasks, and set of processors.
Output: S . Set of static schedules for all processors.

1: P

min := {1/fmax

⌧

| ⌧ 2 �, ⇣
⌧

6= non-critical} . Min periods.
2: P

max := {1/fmin

⌧

| ⌧ 2 �} . Max periods.
3: p

b

:= GCD(Pmin [P

max) . Base period.
4: T := ; . Set of min and max allocation times for each task.
5: for all ⌧ 2 �, ⇣

⌧

6= non-critical do . Life & mission critical tasks.
6: t

min

⌧

:= p

b

· umin

⌧

. Min time needed during each base period.
7: t

max

⌧

:= p

b

· umax

⌧

. Max time needed during each base period.
8: T := T [{tmin

⌧

, t

max

⌧

}
9: end for

10: S := GENSCHEDULE(p
b

, N , T) . Generate static schedules.
11: return S

Fig. 4. Obtaining a static schedule for the base period approach.

can be extended to heterogeneous processors by considering
each task’s computation time on each heterogeneous processor.
This would require n 2 N to be an additional parameter to c

⌧

and its derived values, such as umin

⌧

, umax

⌧

, tmin

⌧

, and tmax

⌧

.

E. GENSCHEDULE

We use Integer Linear Programming (ILP) to find a
feasible task-to-processor allocation and static schedule for
each processor. The ILP formulation requires the following
inputs: p

b

, the base period of the tasks; n 2 N , the set of
available processors; and tmin

⌧

, tmax

⌧

2 T , the set of minimum
and maximum execution times to allocate. ILP requires all
constraints to use integral coefficients. Thus, p

b

and all times
in T need to be integers. The objective function for the ILP
problem is to maximize the utilization U of all the processors:

Maximize : U =
X

n2N

un (7)

where, un is the utilization of processor n for one base period.
Here, we define utilization as the time processor n spends
executing its tasks:

un = � +
X

⌧2�

�
an
⌧

·
�
tmin

⌧

+ ↵

��
(8)

un p
b

(9)

where, ↵ is the cost of preempting a task and � is the cost of
resolving delayed communication in each base period. We can
estimate ↵ by analyzing the WCET needed to preempt a task
and to schedule the next task. Similarly, � can be estimated
conservatively by analyzing the WCET needed to resolve the
delayed communication of all tasks1. The an

⌧

is a Boolean
indicating whether or not task ⌧ is allocated to processor n:

an
⌧

=

⇢
1 if task ⌧ is allocated to process n
0 otherwise (10)

We constrain the allocation of a task to exactly one processor:

8⌧ 2 � :
X

n2N

an
⌧

= 1 (11)

1Note that a task’s delayed communication only occurs when it finishes its
computation and that tasks can finish in different base periods. Thus, the time
spent in each base period to resolve delayed communication can vary. Since
all base periods will use the same static schedule, � needs to be a safe upper
bound on the time spent resolving delayed communication.

5

TABLE I. CALCULATED PARAMETERS FOR THE LIFE AND MISSION CRITICAL TASKS OF THE UAV EXAMPLE. p
b

= 10ms.

Given parameters Calculated parameters
⌧ ⇣

⌧

c
⌧

f min

⌧

f max

⌧

umin

⌧

umax

⌧

tmin

⌧

tmax

⌧

Nav life 75ms 4Hz 4Hz 0.3 0.3 3ms 3ms

Stability life 32.5ms 20Hz 20Hz 0.65 0.65 6.5ms 6.5ms

Video mission 20ms 10Hz 25Hz 0.2 0.5 2ms 5ms

Avoid mission 25ms 10Hz 20Hz 0.25 0.5 2.5ms 5ms

Processor 2

Processor 1 Nav

3ms0ms 10ms

10ms

Stability

Video

2ms

Avoid

4.5ms

9.5ms

0ms

(a) Minimum execution times that can be allocated to the tasks. The
overall system utilization is 70%.

Processor 2

Processor 1 Nav

3ms0ms 10ms

10ms

Stability

Video

5ms

Avoid

9.5ms

0ms

(b) Maximum execution times that can be allocated to the tasks. The
overall system utilization is 97.5%.

Fig. 5. Static schedules for the UAV example.

If equation (9) is satisfied for all processors, then the tasks
are schedulable (Definition 1). Once a solution is found for the
objective function, a static schedule sn can be constructed for
each processor n as a queue of allocated tasks and execution
times. Let sn be represented as a partial function defined only
for tasks ⌧ with an

⌧

= 1:

8⌧ 2 �, an
⌧

= 1 : sn(⌧) = tmin

⌧

Since tasks communicate using delayed semantics (Sec-
tion III-C), the task ordering in each sn can be arbitrary. Let
S contain all the static schedules such that 8n 2 N , sn 2 S .
Possible static schedules for the UAV example over two
processors are depicted in Figure 5a. The scheduling of non-
critical tasks (e.g., Logging and Sharing) is considered later in
Section IV-F.

Note that only the minimum task execution times (tmin

⌧

)
were used in equation (8) to compute processor utilization. If
slack exists on a processor, i.e., un < p

b

, then extra execution
time can be allocated to the mission critical tasks. This would
allow the mission critical tasks to complete their computations
earlier and be released more frequently (towards their f max

⌧

).
The maximum extra execution time that a mission critical task
can make use of is bounded by xmax

⌧

= (tmax

⌧

� tmin

⌧

). In the
following, we extend the ILP formulation to utilize the slack
on each processor. Let xn

⌧

denote the extra execution time that
can be allocated to task ⌧ on processor n:

0 xn
⌧

 (an
⌧

· xmax

⌧

) (12)

The an
⌧

variable ensures that task ⌧ only receives extra exe-
cution time on its allocated processor. We update equation (8)
with the following equation to include the extra execution time:

un = � +
X

⌧2�

�
an
⌧

·
�
tmin

⌧

+ ↵

�
+ xn

⌧

�
(13)

We now add the extra execution times into the static schedules:

8⌧ 2 �, an
⌧

= 1 : sn(⌧) = tmin

⌧

+ xn
⌧

Step 1: Life and mission critical tasks. Step 2: Non-critical tasks.

Static scheduling phase Dynamic scheduling phase

(a) Base period for scenario 1.

Step 1 Step 2 Step 3: Mission critical tasks.

Static scheduling phase Dynamic scheduling phase

(b) Base period for scenario 2.

Step 1 Step 3

Dynamic scheduling phaseStatic scheduling phase

(c) Base period for scenario 3.

Fig. 6. Runtime traces of three different base periods to show the scheduling
decisions that a processor can make.

Based on equations (12) and (13), the slack is allocated
arbitrarily. This can be unfair if slack is only allocated to a
few mission critical tasks. Fairness [34] has many definitions
and can be measured by various metrics, depending on the
application at hand. Thus, fairness can be decided manually
by the programmer or automatically by a chosen metric. As
an example, we describe a simple fairness constraint based
on proportionate fairness [35] for homogeneous processors.
The constraint will need to be reformulated for heterogeneous
processors. Using xmax

⌧

as the metric, tasks with larger xmax

⌧

are allocated more slack than tasks with smaller xmax

⌧

. We
capture this for any two tasks, ⌧ and ⌧

0, with the inequality
(xmax

⌧

/xmax

⌧

0) (xn
⌧

/xn0

⌧

0), where xmax

⌧

� xmax

⌧

0 , and n and
n 0 are the processors that tasks ⌧ and ⌧

0, respectively, are
allocated to (i.e., an

⌧

= 1 and an0

⌧

0 = 1). Rearranging to remove
the divisions, we have the following constraint:

8n,n 0 2 N , 8⌧, ⌧ 0 2 �, xmax

⌧

� xmax

⌧

0 , an
⌧

= 1, an0

⌧

0 = 1 :

xn0

⌧

0 · xmax

⌧

 xn
⌧

· xmax

⌧

0 (14)

Since equation (14) is generated for pairs of tasks, it will not
scale for large task sets. Thus, fairness (equation (14)) can be
omitted for shorter ILP solving time. For the UAV example,
new static schedules with extra execution times are depicted
in Figure 5b.

F. Runtime Scheduling

Figure 6a is a runtime trace of the steps (decisions) that a
processor takes to schedule tasks in each base period. Each step
is drawn as a block and labeled in chronological order. The
first step is the static scheduling phase where life and mission
critical tasks are executed for up to their statically allocated
times (computed in Section IV-E). Note that a processor can

6

finish its static scheduling phase earlier in some base periods
if its tasks complete their computation without using all of
their allocated time. After the processor finishes the static
scheduling phase, it will use the rest of the available time in the
base period (called slack) for the dynamic scheduling phase.
Mission critical tasks are statically scheduled to meet their
minimum execution frequencies, but these frequencies can be
improved by executing the tasks in the dynamic scheduling
phase. Non-critical tasks, however, are not statically scheduled
so their only opportunity to execute is in the dynamic schedul-
ing phase. Thus, the processor’s second step is to execute
non-critical tasks until they complete their computation or
until the base period expires. We allow non-critical tasks to
be executed on any processor. In some base periods, only a
fraction of the slack may be needed to complete the execution
of all non-critical tasks. In this case, shown in Figure 6b, the
processor’s third step is to execute mission critical tasks in the
remaining slack. For the dynamic scheduling phase only, we
allow mission critical tasks to be executed on any processor.
Observe that the duration of each step in static and dynamic
scheduling phases depends on the actual execution time of
the tasks. As an example, Figure 6c shows the trace of a
processor’s base period where only mission critical tasks can
be executed because all the life and non-critical tasks have
already completed their computations in a prior base period.

G. Heuristics

This section describes some heuristics for improving the
use of slack in the dynamic scheduling phase. For the second
scheduling step, to ensure all non-critical tasks get equal
opportunities to execute, non-critical tasks that have received
the least amount of cumulative slack are executed first. For
the third step, to maintain proportionate progress [35] among
the mission critical tasks, the mission critical tasks with the
least improvement in execution frequency (compared to their
maximum possible improvement) are executed first. A task’s
improvement in execution frequency is measured by:

f improve

⌧

=
f avg
⌧

� f min

⌧

f max

⌧

� f min

⌧

(15)

where, f avg
⌧

is task ⌧ ’s average execution frequency at runtime.
Thus, tasks with lower f improve

⌧

values are executed first. If
there are no more non-critical or mission critical tasks for a
processor to execute in the dynamic scheduling phase, then
any slack that still exists will be forfeited. Rather than forfeit
the slack, it can be shifted to a future base period by using the
slack to execute life critical tasks.

V. PERFORMANCE EVALUATION

We evaluate the performance characteristics of the pro-
posed scheduling approach (Section IV) against the Early-
Release Earliest Deadline First (ER-EDF) approach [11]. ER-
EDF only supports high and low critical tasks, but can be
mapped to our life and mission critical tasks. ER-EDF does
not support our notion of non-critical tasks. Thus, we refer
to ER-EDF’s high and low critical tasks as simply life and
mission critical tasks. In ER-EDF, all tasks are released on their
statically allocated processor. A mission critical task can be
released earlier at user-defined times if there is enough slack on
a processor. For early releases only, mission critical tasks can

migrate to other processors to use their slack. In [11], ER-EDF
showed best performance when tasks were (statically) allocated
to processors using the First-Fit Decreasing-Criticality heuris-
tic. We refer to this as the ER-EDF-FF approach. The tasks are
first sorted by minimum task utilization (umin

⌧

, equation (2))
in descending order. Then, using First-Fit, all the life critical
tasks are allocated before the mission critical tasks. We also
compare against the traditional EDF approach.

We follow the simulation-based evaluation approach of
ER-EDF by Su et al. [11] and describe how we generate
our task parameters. A task’s maximum utilization umax

⌧

is
generated uniformly between 0.05 and 0.5, or 5% and 50%.
The system’s base frequency f

b

, equal to 1/p
b

, is generated
uniformly between 100Hz and 1000Hz . A task’s f min

⌧

and
f max

⌧

values are random divisors of f
b

. The generated umax

⌧

,
f min

⌧

, and f max

⌧

values are inputs to our static scheduling
algorithm (Section IV-D). For ER-EDF, the early release points
of a mission critical task are generated, starting at its minimum
period (1/f max

⌧

), in increments of one base period until its
maximum period (1/f min

⌧

) is reached. Only life and mission
critical tasks are generated for each task set and the proportion
of generated life critical tasks is denoted by prop(life). Each
task set � is generated according to a normalized system
utilization [11], defined as Umax

N , where

Umax = Max{U�(life), Umin

� (life) + Umin

� (mission)}
(16)

and N is the total number of processors in the system.
U�(life) and Umin

� (mission) are defined by equations (4) and
(5) respectively. Umin

� (life) is the total utilization of all life
critical tasks if they had shorter computation times and, thus,
smaller utilization umin

⌧

:

Umin

� (life) =
X

⌧2�,⇣
⌧

=life

umin

⌧

(17)

where, umin

⌧

is generated uniformly between u
⌧

/8 and u
⌧

.
We do not consider the effects of scheduling overheads in
our comparisons. The proposed scheduling approach uses the
heuristics detailed in Section IV-G.

A. Schedulability

We evaluate task schedulability for the proposed and ER-
EDF-FF approaches. The performance metric we use is the
acceptance ratio [11], defined as the proportion of generated
task sets that are schedulable. We use Gurobi2 (version 5.6)
to solve the ILP constraints of the proposed static scheduling
approach. On average, 118.9 constraints are generated per
task set and Gurobi could take more than a day to find
a solution for a large task set. If the fairness constraint
(equation (14)) is omitted, then only an average of 66.5
constraints are generated per task set, requiring on average
less than a minute to solve. As a compromise, we generate ILP
constraints with fairness and allow Gurobi one minute to find
a (possibly suboptimal) solution before declaring the task set
unschedulable. Figures 7a-7c show the acceptance ratio under
varying normalized system utilization and prop(life). 10, 000
task sets were generated for each data point and attempted to
be scheduled on a system with four (homogenous) processors.
The acceptance ratio decreases with increasing normalized

2http://www.gurobi.com

7

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

A
cc

ep
ta

nc
e

R
at

io

Normalized System Utilization

Proposed
ER-EDF-FF

(a) prop(life) = 20%, N = 4.

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

A
cc

ep
ta

nc
e

R
at

io

Normalized System Utilization

Proposed
ER-EDF-FF

(b) prop(life) = 50%, N = 4.

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

A
cc

ep
ta

nc
e

R
at

io

Normalized System Utilization

Proposed
ER-EDF-FF

(c) prop(life) = 80%, N = 4.

0%

3%

6%

9%

12%

15%

20% 40% 60% 80% 100%

D
iff

er
en

ce
 in

 A
cc

ep
ta

nc
e

R
at

io

Normalized System Utilization

prop(life)=20%
prop(life)=50%
prop(life)=80%

(d) Difference in acceptance ratio (Pro-
posed minus ER-EDF-FF).

Fig. 7. The acceptance ratio as the normalized system utilization and prop(life) are varied.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Sy
st

em
 R

un
tim

e
U

til
iz

at
io

n

prop(life)

Proposed
ER-EDF-ILP
ER-EDF-FF
EDF

(a) System runtime utilization, N = 4.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

O
ve

ra
ll

Fr
eq

ue
nc

y
Im

pr
ov

em
en

t

prop(life)

Proposed
ER-EDF-ILP
ER-EDF-FF

(b) Overall frequency improvement, N = 4.

0%

5%

10%

15%

20%

25%

30%

0% 20% 40% 60% 80% 100%

Fa
ir

ne
ss

prop(life)

Proposed
ER-EDF-ILP
ER-EDF-FF

(c) Fairness, N = 4.

Fig. 8. The system runtime utilization, overall frequency improvement, and fairness as prop(life) is varied. Normalized system utilization = 50%.

system utilization because equation (16), used to generate task
sets, is more optimistic than the test for task schedulability
(Definition 1). Hence, as the normalized system utilization
increases, more unschedulable task sets are generated. When
prop(life) = 50%, the greatest proportion of unschedulable
task sets is generated, causing both approaches to reject the
most task sets. As expected, the First-Fit heuristic used by ER-
EDF-FF rejects more task sets than the proposed approach.
This is because the proposed approach uses ILP to find
better task-to-processor allocations. Figure 7d highlights this
by showing the result of subtracting the acceptance ratio of ER-
EDF-FF from the proposed approach. The proposed approach
can accept up to 15% more task sets than ER-EDF-FF.

B. Effects of Varying prop(life)

We evaluate the effects of varying prop(life) on the system
runtime utilization and the execution frequency of mission
critical tasks. We execute each task set for a minimum of
1, 000 base periods. Each time a task is released, its actual
computation time is chosen uniformly between 0.8 · c

⌧

and
c
⌧

. The normalized system utilization is set to 50% because
schedulable task sets are harder to generate at higher utiliza-
tions. For a fairer comparison, we allow ER-EDF to use the
task-to-processor allocations found by the proposed approach
(Section IV-E) and call this the ER-EDF-ILP approach.

Figure 8a shows the system runtime utilization under
varying prop(life) for 4 (homogeneous) processors. 100 task
sets were generated for each data point. Figure 9a in Ap-
pendix A gives similar results for 8 processors. System runtime
utilization is the average proportion of time that the system
spends executing tasks. The EDF result shows the system

runtime utilization without releasing tasks early and peaks at
around prop(life) = 50%. The system runtime utilization of
all approaches converge to the normalized system utilization of
50% with increasing prop(life). This is because fewer mission
critical tasks are generated to use the slack. The average
(geometric mean) system runtime utilization of the proposed
approach is 5.38% better than ER-EDF-ILP. For the proposed
approach, slack always accumulates at the end of each base
period and is easier for tasks to access than in ER-EDF.

Figure 8b shows the overall improvement in execution fre-
quency for all mission critical tasks under varying prop(life)
for 4 processors. Figure 9b in Appendix A gives similar results
for 8 processors. The overall improvement is defined as:

f improve

mission =

P
⌧2�,⇣

⌧

=mission(f
avg

⌧

� f min

⌧

)
P

⌧2�,⇣
⌧

=mission(f
max

⌧

� f min

⌧

)
(18)

where, f avg
⌧

is the average execution frequency recorded for
task ⌧ . A higher value of f improve

mission means a better overall
improvement. The results show that f improve

mission increases un-
til prop(life) = 100%, when no mission critical tasks are
generated. The value of f improve

mission decreases slightly at around
prop(life) = 50% because the system runtime utilization,
without releasing tasks early, is already near its peak. This
was illustrated by the EDF result in Figure 8a. The average
(geometric mean) improvement in execution frequency for the
proposed approach is 5.91% better than ER-EDF-ILP.

Figure 8c shows how fairly the execution frequencies of the
mission critical tasks are improved by as prop(life) is varied
for 4 processors. Figure 9c in Appendix A gives similar results
for 8 processors. We define fairness as how well all mission

8

critical tasks can improve their execution frequency by the
same proportion:

fairness =

P
⌧2�,⇣

⌧

=mission

��f avg improve � f improve

⌧

��

Number of mission critical tasks
(19)

where, f improve

⌧

was already defined by equation (15) in
Section IV-G, and

f avg improve =

P
⌧2�,⇣

⌧

=mission(f
improve

⌧

)

Number of mission critical tasks
(20)

is the average overall frequency improvement of all mission
critical tasks. A completely fair improvement in execution
frequencies results in fairness = 0%, while a completely
unfair improvement results in fairness = 50%. As expected
the proposed approach is fairer than the other approaches
when prop(life) is between 0% to 60%. Fairness can be
improved by selecting better fairness constraints and heuristics.
All approaches become unfair when prop(life) is between
60% and 90%. This is because some task sets have fewer
mission critical tasks than available processors and the fairness
heuristics (Section IV-G) are less effective on such task sets.
All approaches are very fair when prop(life) is around 100%
because less than two mission critical tasks are generated in
each task set.

C. Summary and Discussions

The benchmarking showed that our proposed static
scheduling algorithm accepts a greater range of task sets than
ER-EDF-FF. This is because ILP is used to find better task-
to-processor allocations than the first-fit heuristic used by ER-
EDF-FF. Our proposed scheduling approach was shown to be
much fairer than ER-EDF while achieving much higher system
utilization and execution frequencies. We also investigated
the impact that non-critical tasks have on the performance
of mission critical tasks and give results in Appendix A-B.
Although Gurobi did not scale well in finding globally
optimal solutions, in Appendix A-C we show that Gurobi can
find locally optimal solutions quickly, much like a heuristic.
Results concerning the response time of tasks and the number
of task preemptions can be found in Appendix A-D.

VI. RELATED WORK

Mixed-critical systems can be modeled by periodic task
sets scheduled by a Real-Time Operating System (RTOS) [36].
In one of the first works on mixed-criticality scheduling [4],
Vestal assumes that WCET estimates for tasks become more
pessimistic as its criticality (level of timing assurance) in-
creases. Static [8], [19] and dynamic [4], [6], [7], [10], [12],
[37], [38] scheduling strategies have been proposed to ensure
that the highest criticality tasks always meet their deadlines.
Many of the scheduling strategies are based on EDF because
it provides optimal scheduling on preemptive uni-processors.
Tasks are scheduled to execute for up to their low criticality
WCET, estimated at a low level of timing assurance. When a
high criticality task executes beyond its low criticality WCET,
all the low criticality tasks are immediately discarded. This
frees up the system to meet the deadlines of just the high
criticality tasks, but causes lower criticality tasks to execute
sporadically. Thus, a single higher criticality task can prevent
all the lower criticality tasks from executing.

To alleviate the sporadic execution of low criticality tasks,
Su et al. [9], [11] propose an Early-Release EDF (ER-EDF)
scheduling algorithm that guarantees a minimum execution
time for all low criticality tasks. The scheduling modifies
the task period of low criticality tasks according to the
processor’s runtime utilization. Each low critical task has a
set of (recurring) early-release times specifying when they
can be released earlier than usual when enough slack can
be reclaimed. The results show improved task schedulability
and processor utilization, but no method for automatically
generating early-release times that make more efficient use of
slack was proposed. In comparison, our proposed scheduling
approach does not need early release times to be specified,
but achieves superior runtime utilization, task frequency im-
provements, and fairness. Moreover, our task model supports
more levels of task criticalities than ER-EDF: Life, mission
and non-critical.

Closely related is the Zero-Slack QoS-based Resource
Allocation Model (ZS-QRAM [37]) that aims to maximize
system utilization under all operating conditions. ZS-QRAM
subsumes earlier work on Zero-Slack (ZS [6], [38], [39]) by
supporting the scheduling of criticality and utility-based tasks.
The scheduling of criticality-based tasks takes precedence over
utility-based tasks to ensure critical tasks always meet their
deadlines. Utility-based tasks use marginal utility to quantify
the benefits of allocating extra resources to each task. The ini-
tial allocation of resources to each task is performed iteratively,
guided by marginal utility, until all resources are exhausted.
At runtime, if a utility-based task executes for longer than
its nominal execution time, then tasks of lower utility are
degraded (by selecting a longer task period). Our proposed
approach maximizes system utilization in a complementary
manner by increasing a task’s resource usage beyond its
static allocation when resources become available, rather than
reducing a task’s resources usage from its initial allocation
when resources become scarce. Marginal utility can also be
used in our approach as a scheduling heuristic.

Tasks with different criticality levels may also be scheduled
at the hardware level, instead of only by software. Recently,
Zimmer et al. [33] proposed a processor platform called
FlexPRET, where tasks with different criticality levels are
scheduled in hardware using a thread-interleaved pipeline. Our
approach can be useful even for such a processor, when the
number of tasks are more than the number of hardware threads.
Moreover, we also believe that the approach described in this
paper may be a useful component in a Precision Timed (PRET)
infrastructure [40].

Synchronous languages are also used to model safety-
critical systems [13] and multi-rate synchronous languages
(e.g., multiclock Esterel [25], SCADE [41], and Prelude [27])
can model tasks with different execution frequencies. Related
languages include Giotto [42] and Simulink The synchrony
hypothesis provides a convenient abstraction that separates the
physical time of the execution platform from the logical time
of the program. However, synchronous languages cannot faith-
fully model mixed-criticality tasks. In Giotto, only the timeli-
ness of task synchronization (called jitter) can be specified. The
scheduling of multi-rate, mixed-criticality, synchronous task
sets has been attempted [8] for uni-processors. However, the
execution of low criticality tasks is not guaranteed. Baruah [43]

9

presents a multi-processor scheduling approach for mixed-
criticality synchronous tasks, but only for single-rate tasks.

The multi-rate work by Goddard and Jeffay [44] demon-
strates the management of buffer sizes in programs defined as
Processing Graphs mapped to the Rate-Based Execution [45]
task model. Processing Graphs are similar to SDF [20] and
task execution rates depend on the (statically defined) task
communication rates. Buffer sizes are bounded by the amount
of data that can be produced before it can be consumed. Since
data is made available as soon as it is produced, the bound also
depends on the task scheduling order. In contrast, our proposed
lossless buffering decouples the task execution frequencies
from their communication frequencies, allowing (mission crit-
ical) tasks to vary their execution frequency depending on
the processor utilization. By using delayed semantics, the
bounding of each buffer is unaffected by task scheduling order.

The TDMA work by Pop et al. [46] integrates the schedul-
ing of mixed Time Triggered (TT) and Event Triggered (ET)
task sets with separate dynamic and static slots for commu-
nication. Steiner [47] integrates time-triggered network traffic
with non-time triggered traffic. Although the work by both Pop
et al. and Steiner address a different problem (scheduling over
communication networks), there are similarities in that they
statically allocate time-triggered traffic. A major difference
is that all our tasks are implicitly time triggered (none are
event triggered) and that the periods of the time triggered
tasks can be assigned bounds. Our current approach does
not yet consider distributed embedded systems with a shared
communication network; we consider it as future work to
integrate our approach with reliable network protocols.

VII. CONCLUSION

In this paper, we introduced two new levels of task criti-
cality (mission and non-critical) to the synchronous model of
computation. This was achieved by relaxing the synchronous
task model to support tasks with bounded (mission critical)
or unbounded (non-critical) tolerances to deadline misses. A
lossless communication model was proposed to allow life
and mission critical tasks to communicate deterministically
at variable frequencies. We developed a static scheduling
approach for life and mission critical tasks that maximizes
system utilization. To further improve runtime utilization, tasks
are dynamically scheduled during the slack whenever possible.
Extensive empirical benchmarking showed that our proposed
scheduling approach accepted more task sets and scheduled
tasks more fairly than the ER-EDF approach [11] without
sacrificing system runtime utilization. Our approach requires,
however, more preemptions than ER-EDF. For future work,
we plan to implement and study the effect of preemption and
scheduling overhead in more detail. We also plan to extend
the definition of task criticality to consider energy use and to
develop improved fairness heuristics.

APPENDIX A

A. Extension to Additional Levels of Criticality

Certification standards typically define more than three
levels of criticality. For example, the DO-178B standard [3]
defines 5 levels, labeled A to E. Although our mixed-criticality
task model has only dealt with three levels of criticality, it

can be extended to 5 levels in the following manner. Life
critical tasks correspond to the highest level A, while non-
critical tasks correspond to the lowest level E. Mission critical
tasks correspond to the intermediate levels B, C, and D. We can
use the variability in execution frequency of a mission critical
task to decide whether it is level B, C, or D. E.g., defining
variability as v = f min

⌧

/f max

⌧

, a mission critical task is level
B if 0.66 < v < 1, level C if 0.33 < v 0.66, or level
D if 0 < v 0.33. Alternatively, task criticality can also be
defined in terms of functional correctness and fault tolerance,
e.g., as for Pellizzoni et al. [22] in their pacemaker design.
By combining our timing-centric task model with a function-
centric task model, more criticality levels can be supported.

B. Effects of Non-Critical Tasks

We repeat the evaluation described in Section V-B except
we introduce non-critical tasks into the generated task sets. Let
prop(mission) and prop(non-critical) denote the proportion
of mission and non-critical tasks generated in each task set.
For the evaluation, we vary prop(non-critical) from 10% to
90%. Equal proportions of life and mission critical tasks form
the remaining tasks, i.e., prop(life) = prop(mission). The
normalized system utilization is left at 50% and we do not
change how the system utilization (equation (16)) is calculated.
Thus, as prop(non-critical) increases from 10% to 90%,
we generate a relatively constant number of life and mission
critical tasks but an increasing number of non-critical tasks.

Figure 10a shows that the system runtime utilization
reaches 100% quickly with increasing prop(non-critical).
This is because more non-critical tasks are generated to use the
slack. Figures 10b and 10c show the values of f improve

mission and
fairness for the mission critical tasks. Both f improve

mission and fair-
ness are relatively constant as prop(non-critical) increases.
This is because of two factors. First, mission critical tasks
are rarely scheduled in the dynamic scheduling phase because
non-critical tasks have higher priority (Section IV-G). Second,
the static scheduling algorithm (Section IV-E) allocates slack
to the mission critical tasks in a proportionately fair manner.
Hence, the f improve

mission and fairness values shown in Figures 10b
and 10c are mostly due to the static schedule. Note that when
prop(non-critical) is 10%, the system runtime utilization
is less than 100%. This means all the mission and non-
critical tasks get scheduled during the dynamic scheduling
phase. As a result, f improve

mission is at the highest (19.8%) when
prop(non-critical) is 10%.

C. ILP Scalability

Gurobi solves ILP problems iteratively by finding better
locally optimal solutions until the globally optimal solution
is found. It is possible to run Gurobi until it finds the first
locally optimal solution for a substantially shorter solving time.
Running Gurobi in this mode is similar to using a heuristic
because the first locally optimal solution can be treated as
an approximation to the final globally optimal solution. To
demonstrate this approach, we used Gurobi to solve the
ILP constraints of Section IV-E (including fairness) on 250
randomly generated task sets, each containing 2 to 50 tasks.
Figure 11 shows that Gurobi finds locally optimal solutions
for all task sets in under 1 second, but increasingly more time
is required to find the globally optimal solutions.

10

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Sy
st

em
 R

un
tim

e
U

til
iz

at
io

n

prop(life)

Proposed
ER-EDF-ILP
ER-EDF-FF
EDF

(a) System runtime utilization, N = 8.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

O
ve

ra
ll

Fr
eq

ue
nc

y
Im

pr
ov

em
en

t

prop(life)

Proposed
ER-EDF-ILP
ER-EDF-FF

(b) Overall frequency improvement, N = 8.

0%

5%

10%

15%

20%

25%

30%

0% 20% 40% 60% 80% 100%

Fa
ir

ne
ss

prop(life)

Proposed
ER-EDF-ILP
ER-EDF-FF

(c) Fairness, N = 8.

Fig. 9. The system runtime utilization, overall frequency improvement, and fairness as prop(life) is varied. Normalized system utilization = 50%.

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

10% 30% 50% 70% 90%

Sy
st

em
 R

un
tim

e
U

til
iz

at
io

n

prop(non-critical)

(a) System runtime utilization, N = 4.

0%

10%

20%

30%

40%

10% 30% 50% 70% 90%

O
ve

ra
ll

Fr
eq

ue
nc

y
Im

pr
ov

em
en

t

prop(non-critical)

(b) Overall frequency improvement, N = 4.

0%

10%

20%

30%

40%

10% 30% 50% 70% 90%

Fa
ir

ne
ss

prop(non-critical)

(c) Fairness, N = 4

Fig. 10. The system runtime utilization, overall frequency improvement, and fairness as prop(non-critical) is varied. Normalized system utilization = 50%.

0.01

0.1

1

10

100

2 10 18 26 34 42 50

So
lv

in
g

Ti
m

e
(S

ec
on

ds
)

Number of Tasks

First locally
optimal
Globally
optimal

 > 600

Fig. 11. Times for Gurobi to find the
first locally optimal and the globally
optimal solution. Note that the time
scale is logarithmic.

0

2000

4000

6000

8000

10% 30% 50%

N
um

be
r

of
 P

re
em

pt
io

ns

Normalized System Utilization

Proposed
ER-EDF-ILP
ER-EDF-FF
EDF

Fig. 12. Number of preemptions as
normalized system utilization is var-
ied. prop(life) = 50% and N = 4.

D. Response Times and Preemptions

The use of delayed communication in our approach means
that the outputs computed by a task are only made available
at the end of the task’s period. Thus, with respect to the
timing of outputs, a task’s response time correlates to its
execution frequency. For a life critical task, its response time
is constant because its minimum and maximum frequencies,
f min

⌧

and f max

⌧

, are equal. For a mission critical task, its
execution frequency is statically guaranteed to meet f min

⌧

but
can improve towards f max

⌧

at runtime. Hence, the response
time is bounded by f min

⌧

and f max

⌧

. Figures 8b and 9b
demonstrate the ability of mission critical tasks to improve
their execution frequency. For a non-critical task, it only tries
to meet its response time because it only has a goal frequency.

The cost of preempting tasks cannot be ignored when im-

plementing a system. Thus, to gauge these costs, we repeat the
evaluation described in Section V-B, but vary the normalized
system utilization with prop(life) = 50%, and record the
average number of preemptions that occur on each processor.
A preemption is recorded whenever a task is interrupted to
allow other tasks or the scheduler to execute. Figure 12 shows
that the proposed approach requires nearly twice the number
preemptions than ER-EDF. Thus, in return for achieving higher
system utilization and frequency improvements, the proposed
approach may incur higher preemption penalties than ER-
EDF. However, the preemption cost in terms of execution time
depends on how efficiently both approaches are implemented.

REFERENCES

[1] W. R. Dunn, “Designing Safety-Critical Computer Systems,” Computer,
vol. 36, no. 11, pp. 40 – 46, 2003.

[2] International Electrotechnical Commission, “IEC 61508: Functional
Safety of Electrical/Electronic/Programmable Electronic Safety-Related
Systems,” Apr. 2010.

[3] Radio Technical Commission for Aeronautics, “Software Considera-
tions in Airborne Systems and Equipment Certification,” Apr. 1992.

[4] S. Vestal, “Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance,” in 28th Real-Time
Systems Symposium (RTSS), 2007, pp. 239 – 243.

[5] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. M. Burguiere,
J. Reineke, B. Triquet, and R. Wilhelm, “Predictability Considerations
in the Design of Multi-Core Embedded Systems,” Embedded Real Time
Software and Systems (ERTS), 2010.

[6] D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the Scheduling
of Mixed-Criticality Real-Time Task Sets,” in 30th Real-Time Systems
Symposium (RTSS), 2009, pp. 291 – 300.

[7] P. Ekberg and W. Yi, “Bounding and Shaping the Demand of Mixed-
Criticality Sporadic Tasks,” in Real-Time Systems (ECRTS), 24th Eu-
romicro Conference on, 2012, pp. 135–144.

11

[8] S. K. Baruah, “Semantics-Preserving Implementation of Multirate
Mixed-Criticality Synchronous Programs,” in 20th International Con-
ference on Real-Time and Network Systems RTNS, 2012, pp. 11 – 19.

[9] H. Su and D. Zhu, “An Elastic Mixed-Criticality Task Model and
its Scheduling Algorithm,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, pp. 147 – 152.

[10] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and
J. A. Scoredos, “Mixed-Criticality Real-Time Scheduling for Multicore
Systems,” in Computer and Information Technology (CIT), 2010 IEEE
10th International Conference on, 2010, pp. 1864 – 1871.

[11] H. Su, D. Zhu, and D. Mosse, “Scheduling Algorithms for Elastic
Mixed-Criticality Tasks in Multicore Systems,” in 19th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2013.

[12] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-Criticality
Scheduling on Multiprocessors,” Real-Time Systems, pp. 1 – 36, 2013.

[13] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,
and R. de Simone, “The Synchronous Languages 12 Years Later,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 64 – 83, Jan. 2003.

[14] P. Caspi and O. Maler, “From Control Loops to Real-Time Programs,”
in Handbook of Networked and Embedded Control Systems, ser. Control
Engineering, D. Hristu-Varsakelis and W. S. Levine, Eds. Birkhauser
Boston, 2005, pp. 395 – 418.

[15] S. A. Edwards and J. Zeng, “Code Generation in the Columbia Esterel
Compiler,” EURASIP Journal on Embedded Systems, vol. 2007, 2007.

[16] M. D. Natale and H. Zeng, “Task Implementation of Synchronous Finite
State Machines,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pp. 206 – 211.

[17] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The Worst-Case
Execution-Time Problem - Overview of Methods and Survey of Tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, pp. 1 – 53, 2008.

[18] M. Boldt, C. Traulsen, and R. von Hanxleden, “Worst Case Reaction
Time Analysis of Concurrent Reactive Programs,” Electronic Notes in
Theoretical Computer Science, vol. 203, no. 4, 2008.

[19] S. Baruah and G. Fohler, “Certification-Cognizant Time-Triggered
Scheduling of Mixed-Criticality Systems,” in 32nd Real-Time Systems
Symposium (RTSS), 2011, pp. 3 – 12.

[20] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” Pro-
ceedings of the IEEE, vol. 75, no. 9, pp. 1235 – 1245, 1987.

[21] G. S. C. Avellar, G. D. Thums, R. Lima, P. Iscold, L. A. B. Torres, and
G. A. S. Pereira, “On the Development of a Small Hand-Held Multi-
UAV Platform for Surveillance and Monitoring,” in Unmanned Aircraft
Systems (ICUAS), 2013 International Conference on, 2013, pp. 405 –
412.

[22] R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun, M. Caccamo, and
L. Sha, “Handling Mixed-Criticality in SoC-Based Real-Time Em-
bedded Systems,” in Proceedings of the seventh ACM International
Conference on Embedded Software, ser. EMSOFT ’09. ACM, 2009,
pp. 235 – 244.

[23] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty,
“Time-Triggered Implementations of Mixed-Criticality Automotive
Software,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2012, 2012, pp. 1227 – 1232.

[24] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. D. Michiel,
“PapaBench: A Free Real-Time Benchmark,” in 6th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis, 2006.

[25] Esterel Technologies, The Esterel V7 Reference Manual, 7th ed., 2005.
[26] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The Synchronous

Data Flow Programming Language LUSTRE,” Proceedings of the
IEEE, vol. 79, no. 9, pp. 1305 – 1320, 1991.

[27] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, “Multi-
task Implementation of Multi-periodic Synchronous Programs,” Dis-
crete Event Dynamic Systems, vol. 21, no. 3, pp. 307 – 338, 2011.

[28] E. Yip, P. S. Roop, M. Biglari-Abhari, and A. Girault, “Programming
and Timing Analysis of Parallel Programs on Multicores,” in 13th
International Conference on Application of Concurrency to System
Design (ACSD), Jul. 2013.

[29] F. Boussinot and R. D. Simone, “The SL Synchronous Language,”
Software Engineering, IEEE Transactions on, vol. 22, no. 4, pp. 256 –
266, 1996.

[30] P. Caspi, N. Scaife, C. Sofronis, and S. Tripakis, “Semantics-Preserving
Multitask Implementation of Synchronous Programs,” ACM Trans.
Embed. Comput. Syst., vol. 7, no. 2, pp. 1 – 40, Jan. 2008.

[31] G. Wang, M. D. Natale, and A. Sangiovanni-Vincentelli, “Improving
the Size of Communication Buffers in Synchronous Models With Time
Constraints,” Industrial Informatics, IEEE Transactions on, vol. 5, no. 3,
pp. 229 – 240, 2009.

[32] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee, “A PRET
Microarchitecture Implementation with Repeatable Timing and Com-
petitive Performance,” in Proceedings of the 30th IEEE International
Conference on Computer Design (ICCD 2012). IEEE, 2012, pp. 87–93.

[33] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “FlexPRET: A
Processor Platform for Mixed-Criticality Systems,” in Proceedings of
the 20th IEEE Real-Time and Embedded Technology and Application
Symposium (RTAS). IEEE, 2014.

[34] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, “An Axiomatic Theory
of Fairness in Network Resource Allocation,” in INFOCOM, 2010
Proceedings IEEE, 2010, pp. 1 – 9.

[35] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, “Proportionate
Progress: A Notion of Fairness in Resource Allocation,” Algorithmica,
vol. 15, no. 6, pp. 600 – 625, 1996.

[36] J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and D. M.
Johnson, “RTOS Support for Multicore Mixed-Criticality Systems,” in
18th Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2012, pp. 197 – 208.

[37] D. de Niz, L. Wrage, N. Storer, A. Rowe, , and R. Rajkumar, “On Re-
source Overbooking in an Unmanned Aerial Vehicle,” in Cyber-Physical
Systems (ICCPS), 2012 IEEE/ACM Third International Conference on,
2012, pp. 97 – 106.

[38] K. Lakshmanan, D. D. Niz, R. Rajkumar, and G. Moreno, “Overload
Provisioning in Mixed-criticality Cyber-physical Systems,” ACM Trans.
Embed. Comput. Syst., vol. 11, no. 4, pp. 1 – 24, Jan. 2013.

[39] H.-M. Huang, C. Gill, and C. Lu, “Implementation and Evaluation of
Mixed-Criticality Scheduling Approaches for Periodic Tasks,” in Real-
Time and Embedded Technology and Applications Symposium (RTAS),
IEEE 18th, 2012, pp. 23 – 32.

[40] D. Broman, M. Zimmer, Y. Kim, H. Kim, J. Cai, A. Shrivastava,
S. A. Edwards, and E. A. Lee, “Precision Timed Infrastructure: Design
Challenges,” in Proceedings of the Electronic System Level Synthesis
Conference (ESLsyn). IEEE, May 2013.

[41] Esterel Technologies. The SCADE Product Family. http://www.esterel-
technologies.com/. [Last accessed 12 Oct 2013].

[42] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A Time-
Triggered Language for Embedded Programming,” in Embedded Soft-
ware, ser. Lecture Notes in Computer Science, T. Henzinger and
C. Kirsch, Eds., 2001, vol. 2211, pp. 166 – 184.

[43] S. Baruah, “Implementing Mixed-Criticality Synchronous
Reactive Systems Upon Multiprocessor Platforms,” The
University of North Carolina at Chapel Hill, Tech. Rep., 2013,
http://www.cs.unc.edu/⇠baruah/Submitted/2013-SubmitECRTS.pdf.

[44] S. Goddard and K. Jeffay, “Managing Latency and Buffer Requirements
in Processing Graph Chains,” The Computer Journal, vol. 44, no. 6, pp.
486 – 503, 2001.

[45] K. Jeffay and S. Goddard, “Rate-Based Resource Allocation Models
for Embedded Systems,” in Embedded Software, ser. Lecture Notes in
Computer Science, T. A. Henzinger and C. M. Kirsch, Eds. Springer
Berlin Heidelberg, 2001, vol. 2211, pp. 204 – 222.

[46] T. Pop, P. Eles, and Z. Peng, “Holistic Scheduling and Analysis
of Mixed Time/Event-Triggered Distributed Embedded Systems,” in
Hardware/Software Codesign, 2002. CODES 2002. Proceedings of the
Tenth International Symposium on, 2002, pp. 187–192.

[47] W. Steiner, “Synthesis of Static Communication Schedules for Mixed-
Criticality Systems,” in Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW), 2011 14th IEEE Inter-
national Symposium on, 2011, pp. 11–18.

12

