Performance analysis of IPv4 / IPv6 protocols over the third generation mobile network

DANIEL ABAD CAMARERO

Master’s Degree Project
Stockholm, Sweden

XR-EE-LCN 2014:004
Performance analysis of IPv4 / IPv6 protocols over the third generation mobile network.

Daniel Abad Camarero
Examiner and academic advisor: Viktoria Fodor

August, 2014
Stockholm, Sweden
“Success is stumbling from failure to failure with no loss of enthusiasm.”

-Winston Churchill-
Currently, the IPv4 protocol is heavily used by institutions, companies and individuals, but every day there is a higher number of devices connected to the network such as home appliances, mobile phones or tablets. Each machine or device needs to have its own IP address to communicate with other machines connected to Internet. This implies the need for multiple IP addresses for a single user and the current protocol begins to show some deficiencies due to IPv4 address space exhaustion.

Therefore, for several years experts have been working on an IP protocol update: the IPv6 128-bit version can address up to about 340 quadrillion system devices concurrently. With IPv6, today, every person on the planet could have millions of devices simultaneously connected to the Internet.

The choice of the IP protocol version affects the performance of the UMTS mobile network since the experts are still optimizing the network architecture and the devices to support the IPv6 protocol. The aim of the project is to measure how the IPv6 protocol performs compared to the previous IPv4 protocol. It is expected that the IPv6 protocol generates a smaller amount of signalling and less time is required to fully load a web page. We have analysed some KPIs (IP data, signalling, web load time and battery) in lab environment using smartphones, to observe the behaviour of both, the network and the device.

The main conclusion of the thesis is that IPv6 really behaves as expected and generates savings in signalling, although the IP data generated is larger due to the size of the headers. However, there is still much work as only the most important webpages and the applications with a high level of market penetration operate well over the IPv6 protocol.

Keywords:
UMTS, signalling, network protocols, IPv4, IPv6, performance, analysis, IP data, radio access network, core network, comparison.
Acknowledgments

I would like to thank to all those who have made this work possible. First of all, I want to extend my sincere thanks and appreciation to my family for their unconditional belief. Their continued help and support, even in the distance, have helped me to reveal all the capacities that I had and to be myself.

I would also like name to the teachers and researchers who have contributed to my education and express my gratitude to all people involved in this Master Thesis, namely:

✔ To my supervisor and examiner Viktoria for her help during the preparation of the project, her guidelines during the master thesis work and for the thesis review.
✔ To Esther, Ignacio, Santiago, Sandra, Servio and Fernando for their extensive feedback and guidance throughout the entire thesis.
✔ To all other people who have worked with me in Madrid for their concerns, advices and the amount of knowledge which they have taught me.

Finally my thanks go to my friends and colleagues in Madrid, Stockholm and around the world, both at university and home, for the funny and relaxed moments. These seven years could never have been completed without them.
Table of Contents

Abstract ... 1

Acknowledgments ... 3

Table of Contents ... 5

List of figures .. 7

List of tables .. 9

List of acronyms ... 11

Introduction .. 13

 1.1 Overview ... 13

 1.2 Motivation and goals .. 14

 1.3 Structure of the Thesis .. 15

 1.4 Related work ... 16

Background .. 19

 2.1 The mobile communication system ... 19

 2.1.1 The third generation mobile network ... 19

 2.1.2 UMTS Architecture .. 20

 The Mobile Station (Device) ... 20

 The radio access network (RAN) .. 21

 The core network (CN) .. 21

 2.2 The signalling protocols .. 22

 2.3 The TCP/IP protocol stack ... 24

 2.3.1 The network layer protocols ... 25

 IPv4 Protocol .. 25

 IPv6 Protocol .. 28

 IPv6 compared to IPv4 .. 30

 2.3.2 The transport layer protocols .. 31

 2.3.3 The application layer protocols .. 33

 2.4 UMTS performance on the internet network ... 33

 2.4.1 Protocol operation in UMTS architecture ... 34

 IP tunnelling call setup .. 34

 TCP/IP stack operation .. 36
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1</td>
<td>IPv4 / IPv6 Packet Loss Rate</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2-1</td>
<td>UMTS architecture model</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2-2</td>
<td>PDP Creation over RANAP protocol</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2-3</td>
<td>PDP Creation over GTP protocol</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2-4</td>
<td>Signalling protocols scheme</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2-5</td>
<td>IPv4 Address Structure</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2-6</td>
<td>IP address settings for the five IP address classes</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2-7</td>
<td>IPv4 header</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2-8</td>
<td>IPv6 Address Structure</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2-9</td>
<td>IPv6 header</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2-10</td>
<td>Comparative between IPv4 and IPv6 headers</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2-11</td>
<td>The transport level protocols</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2-12</td>
<td>HTTP and DNS protocols in Wireshark</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2-13</td>
<td>Attach on the network</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2-14</td>
<td>PDP Context Activation</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2-15</td>
<td>DNS query and response</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2-16</td>
<td>Detach request</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2-17</td>
<td>PDP context activation</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>Laboratory layout</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>Context PDP Reject (Insufficient resources)</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>No response from DNS</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3-4</td>
<td>Standard query response from DNS</td>
<td>43</td>
</tr>
</tbody>
</table>
Figure 3-5: Service no subscribed .. 43
Figure 3-6: IP Address assignation ... 44
Figure 3-7: Delete PDP context and new activation 44
Figure 3-8: Wireshark Interface for End-Points 47
Figure 3-9: IP data measurement .. 47
Figure 3-10: RNC signalling measurement 48
Figure 4-1: IP Data Volume for Google 54
Figure 4-2: IP Data Volume for Kame .. 54
Figure 4-3: RNC signalling for Google 55
Figure 4-4: RNC signalling for Kame .. 56
Figure 4-5: Load time for Google ... 57
Figure 4-6: Load time for Kame .. 57
Figure 4-7: IP data for Facebook Messenger 58
Figure 4-8: IP data for Facebook .. 58
Figure 4-9: IP data for Google Maps .. 59
Figure 4-10: IP data for Youtube .. 59
Figure 4-11: RNC Signalling for Facebook Messenger 60
Figure 4-12: RNC Signalling for Facebook 60
Figure 4-13: RNC Signalling for Google Maps 61
Figure 4-14: RNC Signalling for Youtube 61
Figure 4-15: Battery consumed by Facebook Messenger 62
Figure 4-16: Battery consumed by Facebook 62
Figure 4-17: Battery consumed by Google Maps 63
Figure 4-18: Battery consumed by Youtube 63
List of tables

Table 3-1: App testing ... 46
Table 4-1: IP packets for browsing (number of fragments) 54
Table 4-2: IP data for browsing (kilobytes) 54
Table 4-3: RNC Signalling for browsing (number of messages) 55
Table 4-4: Load time (seconds) .. 56
Table 4-5: IP Data for apps (Kilobytes) 58
Table 4-6: RNC Signalling for apps (number of messages) 60
Table 4-7: Battery for apps (percentage consumption) 62
Table 4-8: Applications operation over IP 64
List of acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G</td>
<td>Second Generation</td>
</tr>
<tr>
<td>3G</td>
<td>Third Generation</td>
</tr>
<tr>
<td>4G</td>
<td>Fourth Generation</td>
</tr>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
</tr>
<tr>
<td>APN</td>
<td>Access Point Network</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access</td>
</tr>
<tr>
<td>Cell_DCH</td>
<td>Cell Dedicated Channel</td>
</tr>
<tr>
<td>Cell_FACH</td>
<td>Cell Forward Access channel</td>
</tr>
<tr>
<td>Cell_PCH</td>
<td>Cell Paging Channel</td>
</tr>
<tr>
<td>CN</td>
<td>Core Network</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System</td>
</tr>
<tr>
<td>EDGE</td>
<td>Enhanced Data Rates for GSM Evolution</td>
</tr>
<tr>
<td>EGP</td>
<td>Exterior Gateway Protocol</td>
</tr>
<tr>
<td>ESP</td>
<td>Encapsulating Security Payload</td>
</tr>
<tr>
<td>GGSN</td>
<td>Gateway GPRS support node</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile communications</td>
</tr>
<tr>
<td>GTP</td>
<td>GPRS Tunnelling Protocol</td>
</tr>
<tr>
<td>HSPA</td>
<td>High-Speed Packet Access</td>
</tr>
<tr>
<td>HSDPA</td>
<td>High-Speed Downlink Packet Access</td>
</tr>
<tr>
<td>HSUPA</td>
<td>High-Speed Uplink Packet Access</td>
</tr>
<tr>
<td>HTTP</td>
<td>HyperText Transfer Protocol</td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPIP</td>
<td>IP-within-IP Encapsulation Protocol</td>
</tr>
<tr>
<td>IPSec</td>
<td>Internet Protocol Security</td>
</tr>
<tr>
<td>IPv4</td>
<td>Internet Protocol version 4</td>
</tr>
<tr>
<td>IPv6</td>
<td>Internet Protocol version 6</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution (4G)</td>
</tr>
<tr>
<td>ME</td>
<td>Mobile Equipment</td>
</tr>
<tr>
<td>MPLS-in-IP</td>
<td>Multiprotocol Label Switching in IP</td>
</tr>
<tr>
<td>MS</td>
<td>Mobil Station</td>
</tr>
<tr>
<td>NAS</td>
<td>Non-access stratum</td>
</tr>
<tr>
<td>NBAP</td>
<td>NodeB Application Part</td>
</tr>
<tr>
<td>OSPF</td>
<td>Open Shortest Path First</td>
</tr>
<tr>
<td>PDP</td>
<td>Packet Data Protocol</td>
</tr>
<tr>
<td>PSTN</td>
<td>Public Switched Telephone Network</td>
</tr>
<tr>
<td>RAB</td>
<td>Radio Access Bearer</td>
</tr>
<tr>
<td>RAN</td>
<td>Radio Access Network</td>
</tr>
<tr>
<td>RANAP</td>
<td>Radio Access Network Application Part</td>
</tr>
<tr>
<td>RFC</td>
<td>Request for comments</td>
</tr>
<tr>
<td>RLC</td>
<td>Radio Link Control</td>
</tr>
<tr>
<td>RNC</td>
<td>Radio Network Controller</td>
</tr>
<tr>
<td>RRC</td>
<td>Radio Resource Control</td>
</tr>
<tr>
<td>SGSN</td>
<td>Serving GPRS Support Node</td>
</tr>
<tr>
<td>SIM</td>
<td>Subscriber Identity Module</td>
</tr>
<tr>
<td>SMTP</td>
<td>Stream Control Transmission Protocol</td>
</tr>
<tr>
<td>STCP</td>
<td>Stream Control Transmission Protocol</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>UE</td>
<td>User Equipment</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunication System</td>
</tr>
<tr>
<td>URA</td>
<td>UTRAN Routing Area</td>
</tr>
<tr>
<td>URA_PCH</td>
<td>URA Paging channel</td>
</tr>
<tr>
<td>USIM</td>
<td>UMTS Subscriber Identity Module</td>
</tr>
<tr>
<td>UTRAN</td>
<td>UMTS Radio Access Network</td>
</tr>
<tr>
<td>W-CDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

This chapter provides an introduction to the subject of this master’s thesis project in order to help readers understand the scope of this project. Next, the problems addressed in this thesis project are described, followed by a statement of the project’s aim and goals. The chapter concludes with an overview of the related work on this topic.

1.1 Overview

Due to the convergence of the mobile networks, which means the capacity of providing voice services through the packet switched domain, the number of users who demand a fast and reliable data connection is rapidly growing. It is quite important for phone companies to provide proper network architecture capable of delivering the multimedia information.

Besides, the number of active mobile subscriptions has increased from 268 million of mobile subscriptions in 2007 to 2315 million in 2014, according to the International Telecommunication Union (ITU) statistics [1], thus the current network definition must support all these subscribers.

The mobile communication networks have been adapted, from its inception to the present, gradually to match all the needs that have been brought. From the mobile communication network of first generation to current networks which are composed by a mixture of elements of 2G, 3G and 4G technologies [2].

Network protocols such as IP, TCP or HTTP have evolved in parallel to the evolution of the networks. In recent years, the more common is the IPv4 protocol [3]. But in the early 1990s, with the increasing number of IP addresses being requested, it was clear that they would eventually run out. In fact, during 1993, experts realized that the address space would not be enough as is described in RFC1519: “At this rate of growth, all class B’s will be exhausted” [4]. As of 31 January 2011, the pool of unallocated IPv4 addresses officially ran out [5].
That is when the new addressing system begins to be defined, it is known as IPv6. The aim is to replace the old version of IP protocol with this new one, improving most of the technical aspects of the fourth version. All changes are explained in Chapter 2 of this report.

1.2 Motivation and goals

We have been hearing a lot about IPv6 implementation and the diversity it can bring to our lives. It has a very large address space which has been designed by keeping in mind the future needs.

The IPv6 technology was designed to allow a bigger number of addresses; improving the service quality and reducing the processing time on the routers (IPv6 does not fragment datagrams and neither check the integrity of the header -this happens at TCP level-).

Due to these specifications and as explained in chapter two, the headers of both protocols are different, both in size and in terms of field’s definition. The addressing of all elements involved in the communication is made through the IP network protocol so the datagrams which are sending to the Internet are different depending on the IP version used. The IPv6 datagrams are larger (since the header is bigger and there is not intermediate fragmentation) and are processed faster, so the performance of the network is different.

In recent years, large companies have not only to ensure that both, the network and the devices support IPv6 technology, but using this protocol does not consume a lot of resources. The operators have to know whether the protocol is operating correctly or not. For this purpose, an analysis should be made about the IPv6 protocol improvements on the functionalities borrowed from IPv4. Large telecom companies are asking the manufacturers to support Dual Stack functionality, which will allow made the network connection through IPv4 or IPv6. The aim of this master thesis project is to see how the most common and popular webpages and applications available on the market work through the mobile device. Thus, we will make several tests in order to compare the performance using different protocol versions.

Undoubtedly, the main service which we are going to test is if the webpages supports IPv6. This is quite interesting because most people use the device and data connection to access to the Internet cloud. Furthermore, it is also interesting to know if the most famous applications perform well over the IPv6 protocol.
1.3 Structure of the Thesis

To carry out and accomplish the objectives of this project, qualitative and quantitative methods have been used. The first parts of this master thesis project are based on a qualitative research methodology and then, with the information collected from the test on the laboratory, initiate a quantitative study.

The master thesis begins with a theoretical background study. This part includes the third mobile network (UMTS) architecture and the elements involved on the communication, especially within radio and core parts. We have mainly focused on the signalling and network protocols that we expect to use, including a deep analysis about internet protocol (IP). This section also includes a description of the UMTS network operation, linking the network elements explained on the architecture definition with the protocols responsible for each one of the operations.

Then, we discuss the laboratory configuration phase in order to evaluate the proposed performance parameters for both, webpages and apps. From the three options available to perform the testing (mathematical simulation, testbed or test over real network), we have discarded the mathematical simulation from the very beginning because it does not provide real information and the results are theoretical. Of the two remaining options, we have chosen the option of testbed which consists of a real network, but with controlled access to prevent interferences from other equipment that may appear in the real network. We also discuss what performance indicators the project will look at, why they are important, what kind of interactions or effects of input parameters we expect and how they are going to be evaluated.

The report continues with the evaluation methodology of the thesis based on several measurements taken on the laboratory to ensure the feasibility of the results, thus each test is going to be repeated many times. The results of the measured KPIs are presented as well as the explanation of the results. To end this chapter, we make a comparison between the expected results (before carry out the tests) with the real results obtained in the laboratory.

The final part of the project analyses the results collected on the laboratory, obtaining conclusions about the behaviour of the network, the devices, the operating systems, the webpages and the applications tested.

To finish the master thesis, the report raises possible lines of research in the future, which would serve as support for master thesis or PhD students who are planning to work on the UMTS performance over the internet protocol.
1.4 Related work

In this section, several previous studies conducted in areas relevant to this master’s thesis are summarized, mainly related to the performance of the TCP/IP stack over mobile networks.

The most of the previous work which have been carried out is related to the optimization of the TCP transport protocol to improve the throughput (amount of information flowing through a network according to the time). Mun Choon Chan and Ramachandran Ramjee [6] proposed and evaluated a mechanism called Window Regulator to improve the performance of TCP. They also demonstrated the efficiency of an algorithm for sharing the transmission and reception buffer improving the latency.

There are also too many studies about the TCP performance according to the congestion method used. Luca De Cicco and Saverio Mascolo checked [7] that TCP behaves similarly regardless of the congestion mechanism used.

Furthermore, studies on the IPv6 protocol have been conducted with special attention to the transition from the testbed towards the real network. Yi Wang, Ye and Xing Li Shaozhi analysed in 2005 several dual stack servers (dual stack means that support both IPv4 and IPv6) [8]. Once evaluated the work, these problems are still present and the IPv6 protocol needs further optimization. The following table shows as main conclusion the high loss rate in IPv6, which can generate an increase in the number of signalling messages (having to resend lost packets again). These results are quite old (year 2005) and the problem of the high loss rate has been solved during last years since it has not been observed in any of the tests conducted in the laboratory.

![Figure 1-1: IPv4 / IPv6 Packet Loss Rate. [9]](image-url)
Researchers from the University of Delft have also carried out a comparative analysis among protocols IPv4 - IPv6 at [9] from which can be concluded that the loading time and the delay is less in native IPv4 tunnels than in IPv6 tunnels, because the version 6 of the protocol is less optimized than the version 4 and therefore there is less number of optimal paths (see information about the IP tunnelling on the chapter two). In addition, researchers from the University of Budapest [10] have studied the methods of transition from IPv4 to IPv6 in the UMTS networks, discovering some limitations on non-native IPv6 tunnels. The main conclusion of these investigations is that we must stress the need for further studies aiming to help and urge the process towards the global native IPv6 coverage.

A previous study about the browsing optimization has been conducted as well by Binoy Chemmagate in Nokia networks [11]. This research has analysed some HTTP and TCP issues on web browsing, testing alternative protocols as SPDY (that is a trademark of Google and is not an acronym) which provides header compression and multiplexing techniques. Using SPDY protocol we reduce the Page Load Time of a website, thus is highly recommended.

Another important published paper is about the performance improvement in the application and session layers [12]. In general, we can observe that application and session layer techniques have a dominating effect in improving the web performance and commercial web servers and browsers should implement the HTTP-pipelining scheme, which provides noticeable benefits end-to-end user performance (in spite of the deployment of these services can be expensive).
Chapter 2

Background

The aim of this chapter is to provide all the technical background to the reader in order to make easier the understanding of the project’s context. This chapter begins by introducing the third generation mobile networks (3G) and the signalling protocols involved on the communication.

To complete the theoretical framework, a general overview about the network protocols is presented. The IP protocol is defined, which is the most important in the research since the purpose of the master thesis is to evaluate it, as well as the evolution from IPv4 (used up to now) to IPv6. A brief introduction is also presented related the transport protocols and the application part.

2.1 The mobile communication system

The remarkable success of mobile communications systems of second generation (2G) defined on [13] [14] and the needed to develop faster and more secure telecommunications services are the beginning of 3G.

To satisfy these demands, getting a similar quality than services offered by fixed networks and with a global perspective, emerges the mobile communication systems called third generation (3G).

2.1.1 The third generation mobile network

The 3G technology emerges to match the demanding needs of the users. Such technology is specified in the IMT-200 standardization defined by the ITU [15] and includes plenty of standards.

In Europe and Japan is standardized the UMTS system, which is based on the W-CDMA technology managed by the 3GPP [16] organization. The other mobile communications system which is regulated by the IMT-2000 specification is known with the name of CMDA2000. However, this technology will not be covered in this report since the whole Europe uses the UMTS standard.
The main novelty of this technology, compared to earlier mobile networks, is that network architecture is divided into two domains, the UTRAN access part and the core network which is responsible for the interconnection to Internet or the public switched telephone network (PSTN).

2.1.2 UMTS Architecture

The definition of the architecture is quite simple and intuitive, there are three distinct structures: the mobile station (MS), the radio network (UTRAN) and the core network (CN). Theoretical framework is widely explained in [17] [19] using the specifications defined by 3GPP organism [18].

Importantly, this project only covers the study and analysis of the UMTS technology. Real networks, as seen from the operator’s side, are the result of a set of technologies such as GSM (2G), UMTS (3G) and LTE (4G) in order to satisfy all users. Therefore, the reader must keep in mind that the scheme depicted corresponds to a purely UMTS network and not to a current and real network operator one.

![Figure 2-1: UMTS architecture model.](image)

The Mobile Station (Device)

The outer part of the network located on the side of the user and called the device later on in this report. The device is divided into two parts, the mobile equipment (ME) which is the physical device (it can be a smartphone, a cell phone or a tablet), and the USIM card. The USIM card is responsible for storing information about the user ID and the state of the network connection, including authentication algorithms as well.
The device is quite stable within the network since we are working with commercial devices ready to run on the real network (configured with well-tested operating systems), thus it is not necessary more detail to further understand the context of the project. The reader can get more details about the user part in the specification in [21].

The radio access network (RAN)

The UMTS Radio Access Network (UTRAN) technology is specified in the 3GPP TS 25.-series specifications [16] and more specifically in the standard TS 25.401 [22].

This part covers the structure between the device and the core network. The fundamental mission of the RAN is to provide the means of transmission for the control plane (signalling) and the user data.

The RAN is formed by the Node-B and the RNC. The Node-B communicates directly with the user device and provides radio frequency coverage to perform the communication. It is a transparent antenna, which means it does not generate any management issue in the data fragments, but the information is transmitted as it has been received. The RNC is the control unit which interconnects several Nodes-Bs managing the radio transceivers in the Node B equipment and selecting the signals received from the device, as well as management tasks like soft handoff or common and dedicated channels.

Transmission services offered by the access network to carry the information of the device (both signalling and data) to / from the core network are bearer services whose aim is the provision of a certain transmission capacity. The access network is responsible for managing the use of the radio resources available for the provision of carrier services efficiently.

The core network (CN)

The core network comprises the switching and routing equipments in charge of forwarding the information to other networks (i.e. IP Internet). This part of the network is divided into two domains, the packet (for data connections) and the circuit domain (for voice connections and calls). Since all actions and tests required to match the needs of this project are directly involved with the data part, this report will focus only on the packet domain. For more information about circuit domain, consult the specification [23] or the book [24].

The data core network consists of two essential components, the SGSN and the GGSN. The SGSN is a service node responsible for providing and ensuring access to the devices connected to the network and is also responsible for the authentication and assignation of the quality service to each participant in the communication. It is in
charge of managing the devices mobility, tracking the location of these phones, as well as the routing and transferring of data packets.

The GGSN is the gateway or access point to other networks and, in some cases, is the Access Point Network (APN). This equipment assigns the IP address to the device (through the PDP context activation), establishing and implementing the rules of navigation and the billing feature.

The HLR equipment is responsible for the user authentication and is also shared between CS and PS domains [25]. It is one of the most important parts of the mobile service provider containing all subscribers which are able to access to the service.

The core network performs traffic and signalling transport as well as intelligence functions. The routing is done through intelligence functions which comprise logic and control of certain services offered. The core domain is also in charge of the mobility management.

This part of the network acts also as gateway and connects the architecture with other communication networks, so that communication is possible not only between UMTS mobile users, but also with those which are connected to other networks (as for example the PSTN).

2.2 The signalling protocols

The signalling protocols are used to check if the phone is properly attached to the network or if there are some issues. All protocols are specified in the book [26].

The most important are the RRC (Radio Resource Control), NBAP (Node B Application Part), RANAP (Radio Access Network Application Part) and GTP (GPRS Tunnelling Protocol) and the basic description of each one is as follows:

RRC: It is the protocol that defines the control mode of connection of the device in the network, thus it manages the flow of signalling between the user device and the Node B. There are four possible modes of connection such as Cell_DCH, Cell_FACH, Cell_PCH and URA_PCH. These statements represent the degree of connection of the device to the network and depend on the configuration of the inactivity timer. If the phone is in a full connection state (Cell_DCH), the network requires many more resources than if the device is on Cell_FACH state (similarly to idle mode and using keep-alives in order to keep the device connected to the network). Switching from the Cell_DCH state to Cell_FACH saves approximately 80% battery and power consumption form the network side.
NBAP: This protocol is also responsible for the control and signalling part, managing the Node B by the RNC.

RANAP: As the previous protocols, the RANAP is also responsible for the signalling. In this case it handles the control in the routing between radio and core part. For our particular network, it handles the control plane between the RNC and the SGSN, using the RANAP protocol carried on SCTP (defined below).

Figure 2-2: PDP Creation over RANAP protocol.

GTP: The GTP protocol is a group of network based protocols that are used to carry the GPRS service in UMTS networks. This protocol provides confirmation that the PDP context has been successfully created by the SGSN (figure 2-3). Therefore the sender has been identified with a unique IP address in order to be able to carry out the transmission of the desired datagrams. The tunnel which is created during the PDP context remains open throughout the connection and is used to send data (see more information about IP tunnelling call setup in the section 2.4.1).

Figure 2-3: PDP Creation over GTP protocol.
These protocols are needed to understand the topology of the lab layout and to interpret how the network elements are interconnected on the radio and core interfaces. The signalling process on the UMTS network is described in detail on the coming protocol operation section.

Figure 2-4: Signalling protocols scheme.

The signalling protocols are very useful to check whether the device is properly attached to the network, but do not provide too much information in terms of data exchanged with Internet cloud. The information directed to the internet cloud travels encapsulated over the network layer protocols (i.e. IP, TCP, or HTTP).

2.3 The TCP/IP protocol stack

A network protocol is a set of rules that specify the data exchange policy and the orders for communication between network equipments. To classify them there are two models, the OSI and the TCP/IP. The OSI model was proposed by the ISO in the 1980s comprising seven layers and each protocol corresponds to one of them: physical layer, data link layer, network level (IP, etc.), transport layer (TCP, UDP, STCP, etc.), session layer, presentation layer and application layer (DNS, HTTP, etc.). The evolution of the OSI model is the TCP/IP stack classification which split the protocols in four layers and is used currently for internet connections.
The transport layer protocols are responsible for deciding how the information has to be encapsulated and transmitted dividing all information into packets. These protocols are also in charge of the end to end control of the transmission.

2.3.1 The network layer protocols

The network layer protocols are rules that define how communication between different computers or devices has to be established. The most common network layer protocol is the IP (the datagram can be sent between two devices without prior agreement) which specifies the technical format of packets and the addressing scheme for devices to communicate over the network.

With the growth of the Internet it is expected that the number of unused IPv4 addresses will eventually run out because every device – including computers, smartphones and game consoles- that connects to the Internet requires an IP address. IPv6 is an evolutionary upgrade to the IPv4, which will coexist with the older one for some time. With the objective of comparing IPv4 and IPv6 web browsing and smartphone’s applications perform over current mobile networks, this section presents a brief introduction of Internet Protocol in its two standard versions: IPv4 and IPv6.

IPv4 Protocol

The IPv4 protocol was defined in 1981 by the IETF (Internet Engineering Task Force) which is the organization responsible for defining the standards for Internet protocols. This protocol was defined in [3] and was the first Internet protocol implemented on a large scale. The initial specification of the protocol was used to connect a small group of organizations. When this protocol was defined, the number of machines connected to the Internet was much lower than at present. So some features (listed below) have been somewhat obsolete and experts have realized some deficiencies.

However, IPv4 is the most widely deployed Internet Protocol used to connect devices to the Internet. Today it is still used for most of the many connections that are carried out through the Internet.

IPv4 uses a 32-bit address scheme allowing a total of 2^{32} addresses (over 4 billion addresses). The 32 bits are separated into four groups of bits which are called octets, see figure 2-5 from [27] below. Depending of the format used for IP, there are bits represented as decimal numbers separated by dots in decimal-dot system. Generally, the first 16 bits are used to represent the network mask or subnet and the rest of them for indicate the host. Thus, two IP addresses with the same first part and different last bits correspond to a different host in the same subnet.
As is described in [3] and [28], there are different types of addressing, according to the number of bits used to define the mask network or host (see figure 2-6 from [28] below):

![IPv4 Address Structure](image)

Figure 2-5: IPv4 Address Structure.

Addressing type A allows a smaller number of networks (126 considering all available space for network type A), but a larger number of hosts on each subnet. If another routing division is selected, the number of networks increase but the number of hosts stored is reduced considerably. The broadcast addresses are used to send traffic to all nodes on a subnet.

An IPv4 packet consists of a header section and a data section. Packet size is 20 bytes of header and a maximum of 65,535 bytes of data. An example of IPv4 header is shown in figure 2-7, the graphic has been extracted from [29] based on the specifications defined in [3].
According to [3], the description of the IPv4 protocol header functionalities is explained below:

Version: Describes the version of the protocol, in this case the RFC791 [3] describes the version 4. This field occupies a length of 4 bits.

IHL: Describes the total length of the IP header, i.e. excluding the size of the data being transmitted. This length is represented in 32-bit words. The length necessary to store this field is 4 bits and the default size (unless otherwise will be noted) is 0101 (5x32bits = 20bytes).

Type of service: Indicates the quality of service requested by the IP datagram providing an indication of the abstract parameters of the quality of service desired. These parameters are used to guide the selection of the actual service parameters when transmitting a datagram through a particular network. It consists of network priority and 8 bits are needed to store this field.

Total length: Contains the number of bits composing the total datagram header and the number of data. It occupies 16 bits.

Identification: It is a unique value assigned to the fragment being transmitted by the sender of the datagram which allows to the receiver the identification of the received datagram fragment. 16 bits are required to store this field.

Flags: Contains the values O (reserved), DF (indicating whether fragmentation is allowed or not) and MF (if there are more fragments on transmission or it is the last one). Each value occupies 1 bit, so that a total length of 3 bits are necessary.

Fragment Offset: Indicates the displacement of the fragment as part of the complete datagram in units of 8 bytes. It is required to reassemble the datagram on the receiver side. Contains a value from 0 (if there is just one fragment) to 65536 and the field length is 13 bits.

Time to live (TTL): Sets the lifetime (in seconds) which the datagram or the fragment may remain in the network without being dropped. The aim is to prevent a datagram for travelling all the time without being intercepted by any end user. The length of this field is 8 bits.

Protocol: Describes the high-level protocol to which IP should deliver the datagram (see next sections about transport and application protocols). This field occupies a length of 8 bits.

Figure 2-7: IPv4 header.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHL</td>
<td>Describes the total length of the IP header, i.e. excluding the size of the data being transmitted.</td>
</tr>
<tr>
<td>Type of service</td>
<td>Indicates the quality of service requested by the IP datagram providing an indication of the abstract parameters of the quality of service desired.</td>
</tr>
<tr>
<td>Total length</td>
<td>Contains the number of bits composing the total datagram header and the number of data.</td>
</tr>
<tr>
<td>Identification</td>
<td>It is a unique value assigned to the fragment being transmitted by the sender of the datagram which allows to the receiver the identification of the received datagram fragment.</td>
</tr>
<tr>
<td>Flags</td>
<td>Contains the values O (reserved), DF (indicating whether fragmentation is allowed or not) and MF (if there are more fragments on transmission or it is the last one).</td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>Indicates the displacement of the fragment as part of the complete datagram in units of 8 bytes.</td>
</tr>
<tr>
<td>Time to live (TTL)</td>
<td>Sets the lifetime (in seconds) which the datagram or the fragment may remain in the network without being dropped.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Describes the high-level protocol to which IP should deliver the datagram (see next sections about transport and application protocols).</td>
</tr>
</tbody>
</table>
Checksum: This field is used to verify and check the information contained in the header. The total length is 16 bits.

Source IP Address: Source address (host sender) represented with 32 bits.

Destination IP Address: Destination address (host receiver) represented with 32 bits.

Options: Field with a maximum length of 40 additional bytes (10x32 bits) to introduce additional actions, if necessary.

Padding: Padding field. Complete with 0s until the next group of 32 bits begins.

Related the packet fragmentation in the routers, both transmission and reception routers support it and the default packet size is 576 bytes.

The IPv4 protocol uses some specific protocols, the ARP (Address Resolution Protocol) to resolve an IP address to a link-layer address, and the ICMP Router Discovery is optional to determinate the IPv4 address of the best default gateway.

IPv6 Protocol

As already explained in the first chapter of this report, when the IPv4 protocol was defined, nobody realized about of the high expansion of Internet usage that may take place in the future. The version 4 of the protocol was designed to address 32 bits, but in the future could be not enough since there are plenty of devices that make use of Internet.

Furthermore of the address space problem, other features have been considered to improve, such as safety issues in IPv4, traffic prioritization, mobility within nodes, etc. Besides, in IPv6 there is a flow label field which allows using communication flows and quality of service.

During early 90s, the version 6 of the IP protocol (called IPv6), which specifications are given in RFC2460 [30] of the December 1998, was defined. IPv6 is the successor of IPv4 and it was designed as an evolution of the Internet Protocol, although nowadays both IPv6 and IPv4 addresses are still used. IPv6 uses a 128-bit IP address scheme allowing a total of 2^{128} addresses. This new addressing format is shown in [31] and broadly defined in [33].

![IPv6 Address Structure](image.png)

Figure 2-8: IPv6 Address Structure.
Also in [33], [34], and the updated version of this Request for Comments [35], different types of IP addresses are described that supports the IPv6 protocol, which are unicast, anycast or multicast.

Unicast: A unicast address represents a single interface, and therefore the package is delivered to that single address.

Anycast: The identifier of an anycast address is defined for a set of interfaces (typically belonging to different nodes). A packet sent to an anycast address is delivered to one (any) of the interfaces identified by that address.

Multicast: Like the previous case, the identifier is defined for a set of interfaces (typically belonging to different nodes). However, a packet sent to a multicast address is delivered to all interfaces identified by that address.

An IPv6 packet also comprises a header section and a data section (data section maximum is the same as in IPv4). In this case, IPv6 header size increases up to 40 bytes (20 more bytes than IPv4 header) and it is possible to add optional extension headers (see the coming comparison section for more detail). The figure 2-9 shows the IPv6 header based on the specifications described in [30] [32].

![IPv6 header](image)

Figure 2-9: IPv6 header.

In the papers [30], [31], [34] -which is the updated version of [32] and [33]-, [35] and [36] it is explained in detail all of the fields included in the IPv6 version header, which are summarized below:

Version: Describes the version of the protocol, in this case the RFC2460 [30] describes the version 6. This field occupies a length of 4 bits.

Traffic class: Specifies the class of the traffic travelling in the datagram. Values 0-7 are defined for data traffic congestion control and 8-15 for audio and video traffic without congestion control. 8 bits are needed to store this field.

Flow Label: Flow identifier which consists solely of the combination of a source address and a label of 20 bits. Thus, the source assigns the same label to all packets which are part of the same flow. Using this tag (which identifies a path) the network enables to route instead of routing switch [37].

Payload Length: Contains the number of bits composing the total datagram header and the number of data. It occupies 16 bits.
Next Header: Indicates the type of header which follows the fixed IPv6 header. It can be TCP / UDP, ICMPv6 or an optional IPv6 header type. This field occupies 8 bits.

Hop Limit: Sets the lifetime which the datagram or the fragment may remain in the network without being dropped. The aim is to prevent a datagram for travelling all the time without being intercepted by any end user. The length of this field is 8 bits.

Source IP Address: Source address (host sender) represented with 128 bits.

Destination IP Address: Destination address (host receiver) represented with 128 bits.

Related the packet fragmentation only transmission routers support it (avoiding the intermediate fragmentation) and the default packet size is 1280 bytes.

The IPv6 uses Multicast Neighbour Solicitation to resolve an IP address to a link-layer address, and the ICMP Router Discovery is mandatory to determinate the IPv6 address of the best default gateway.

IPv6 compared to IPv4

Once both versions of the protocol have been presented, the features of both protocol versions can be compared. The most recent version of the protocol (IPv6) introduces new specifications in order to improve the user experience. It is a difficult process, since the most of machines that connect everyday around the world to the Internet are using the version defined more than 30 years ago (IPv4 one). Both headers are presented again in figure 2-10 extracted from [32], in order to compare all the fields defined above.

![IPv4 Header Diagram](image)

![IPv6 Header Diagram](image)

Figure 2-10: Comparative between IPv4 and IPv6 headers [41].

According to the documents and books [37], [38] and [39], the main functionalities and features of both versions which are different or have been changed in terms of operation or safety are described below.
The most striking difference is the increase in the capability of routing and addressing. IPv6 increases the IP address size from 32 bits (which use IPv4) to 128 bits to support more levels of addressing hierarchy and a much higher number of addressable and simpler auto-configuration of addresses nodes.

Therefore, the number of addresses is between \(2^{32}\) addresses which can be handled at the same time using the IPv4 protocol, to \(2^{128}\) which allows IPv6 addressing. Obviously, this feature solves the problem that may appear on the IPv4 address pool system, avoiding the IPv4 address depletion and allotting the unallocated IPv4 addresses through IP version 6.

Another significant difference is regarding the routing scalability as IPv6 specification does not defined broadcast addresses, this function is replaced by multicast addresses. All IPv6 interfaces must have at least one unicast address, but a single interface can also have multiple IPv6 addresses.

The IPv6 header format is much simpler since some IPv4 header fields have been removed reducing the cost of processing and routing protocol. Even though IPv6 addresses are four times longer than IPv4 addresses, the IPv6 header is only twice larger than the size of the IPv4 header.

IPv6 introduces the options field which can be used optionally; the extension header which removes several secondary aspects from the main header and adding them in this space. Extension headers allow multiple services such as Hop-By-Hop Options, Routing, Fragment, Authentication Header (AH), Encapsulating Security Payload (ESP), Destination Options and No Next Header. IPv6 also defines new extensions and options that provide additional support for authentication, data integrity and confidentiality as a basic element of IPv6 as described in [40] since IPSec is mandatory.

A new feature is added to enable the packet labelling when the packet belongs to a particular traffic flow for which the sender requests special handling, such as non-default quality of service or real time service, similar to a MPLS tunnel.

As main conclusion, changes are made in terms of addresses assignation as well as IPv6 header options are encoding allows more efficient forwarding and higher flexibility to introduce new options in the future.

2.3.2 The transport layer protocols

The transport protocols are rules that define how the information has to be encapsulated and transmitted. The transport layer provides to the application layer three services: a connection-oriented protocol TCP service "Transmission Control
Protocol", a service and connectionless UDP protocol "User Datagram Protocol" and a prior agreement STCP protocol "Stream Control Transmission Protocol".

UDP: The UDP protocol is a transport layer protocol for use with the IP protocol which provides a service for exchanging datagrams across the network mode best-effort (the reception of datagrams or packets is not guaranteed since it is not a connection oriented protocol). The service provided by the UDP protocol is not reliable because it does not guarantee delivery or some protection to avoid duplication of packets. The simplicity of UDP packets reduces the amount of information needed to be used, which makes the UDP protocol the best choice for some applications.

A computer can send UDP packets without establishing a connection to the device that will receive them. The computer completes the information fields in the UDP packet headers and sends the data along with the header through the network layer by the IP protocol.

TCP: The TCP protocol is in charge of fragmenting the information and sending it safely to end to end extreme, since it is a connection oriented protocol (providing confirmation of frames received on the receiver side). It is much more secure than UDP but also requires more processing time to reassemble packets and check if any intermediate fragment is missing.

SCTP: It is an oriented message protocol (the message may be sent between two devices without prior arrangement) and much safer than TCP or UDP. It provides reliability, flow control and sequencing as TCP, but also allows sending messages out of order as UDP.

![Figure 2-11: The transport level protocols.](image)

In the figure 2-11 can be seen the transmission initialization performed safely using the SCTP protocol, while UDP sends synchronization and keep-alive datagrams between RNC (172.18.138.93) and the Node-B (172.18.138.92) or vice versa. The TCP protocol over IP is responsible for transmitting the packets towards internet.

In general, TCP is used when there cannot be loss of data, and UDP is used when a low amount of information is sent but the packages require high-speed transfer. Most networks combine the internet protocol (IP) with the higher-transport level protocol called TCP, which establishes a virtual connection between a destination and a source.
2.3.3 The application layer protocols

The protocols of the application part which are necessary to carry out the traces analysis are HTTP and DNS.

HTTP: The 1.1 version of this protocol is used in each transaction to or from Internet. The purpose is to allow HTTP file transfer between a browser (client) and a web server. It is also used to load images, videos or other content available on the webpages.

DNS: The Domain Name Server is a distributed database, a system which contains information that is used to translate domain names (easy to remember by people as for example www.domain.com) to an internet protocol (IP) numbers which is the easiest way that machines can be found in internet each other.

![Figure 2-12: HTTP and DNS protocols in Whireshark.](image)

2.4 UMTS performance on the internet network

After explaining the protocols involved both in establishing connection (signalling protocols) and in the data exchange (TCP / IP protocol stack), this section introduces the protocol operation over the UMTS network.

Firstly, the process of establishing the connection and the IP tunnelling for data transmission are explained. After, a brief description of IPv6 protocol optimization on mobile devices is presented.
2.4.1 Protocol operation in UMTS architecture

IP tunnelling call setup

To fully understand the signalling protocols explained in the section 2.2 of this report, it is necessary to understand how the authentication process is performed on the device and how the network creates an IP tunnel ensuring the navigation.

When the device is turned on, it sends a request to attach to the network. In the figure 2-13 is shown the sequence over the RANAP protocol (datagrams between the RNC and the SGSN) where can be seen an initial attach request message. The core part receives the message and after some authentication operations, solve the attach request accepting and completing it.

![Figure 2-13: Attach to the network.](image)

Once the device is attached on the network, it sends a service request to apply for web service and the network activates the PDP context assigning the IP address to the user.

![Figure 2-14: PDP Context Activation.](image)
When the device applies the webpage, the request is sent to the DNS which responds with the domain in IP address format. To forward the query and response messages correctly, the routing table must be configured on the gateway router. The phone is able to navigate and load a webpage.

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
<th>Header</th>
<th>Period</th>
<th>Type</th>
<th>IP Address</th>
</tr>
</thead>
</table>

Figure 2-15: DNS query and response.

The device is turned off, thus the RNC requests the detach from the network and the PDP context is deleted. The GTP tunnel is closed as well.

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
<th>Header</th>
<th>Period</th>
<th>Type</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>18234</td>
<td>2016.7.21.16.12.66</td>
<td>GTP</td>
<td>18</td>
<td>Delete PDP context request</td>
<td>18235</td>
</tr>
<tr>
<td>18238</td>
<td>2016.7.22.11.12.66</td>
<td>GTP</td>
<td>18</td>
<td>Delete PDP context response</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-16: Detach request.

To perform these operations, the device and some parts of the network have to be prepared for both versions of the protocol. The request to open the PDP context is performed by the device in IPv4, IPv6 or Dual Stack (the connection has to be established either in IPv4 or IPv6). Therefore, the device and the SIM card must be configured to work with the appropriate version of the protocol. In the network, the equipment responsible for processing the Activate PDP context request is the SGSN (as can be seen in the figure 2-17), thus it must also be correctly configured [42].

Figure 2-17: PDP context activation.
The control operations discussed above opens the PDP context creating an IP tunnel transport over the GTP protocol between the device and the GGSN to transmit data.

The IP tunnelling provides numerous advantages to the communication such as more secure transmission, easier traffic encapsulation over another protocol or multiprotocol interconnection of local networks. In addition, the IP tunnel provides a means to transport data packets between elements which operate over the same protocol, but the intermediary network does not support it. The IP tunnel creates a virtual link between two nodes that can be accessed by IP, thus the link can be used to carry IPv6 packets between two IPv6 sites but through the IPv4 network.

The IP-based network offers an architecture suited for supporting the rapidly growing mobile data and multimedia services providing the successful Internet service and mobile paradigm to users integrating seamlessly with the Internet.

TCP/IP stack operation

The network equipments must know the same language (in terms of protocol operation) to establish a connection which is the TCP/IP protocol stack in the case of the UMTS network. All machines connected to the network have their own IP address (which is the unique number that identifies a specific machine) and the information has to be divided into packets. As explained before in this chapter, the protocol responsible for conducting the fragmentation is the transport protocol. Once the information is separated into packets that the network is capable of processing are sent using the network protocols.

The operation of the TCP/IP stack over the UMTS network is quite simple. The transport protocol (TCP) separates the information into packets and gives each one the identification and the internet protocol (IP) assigns the IP address and the instructions to reach the destination. Once the IP address is assigned, the IP protocol determines the route which the packets should follow within the nodes of the network and manages the transmission of information from the source to the destination computer. The user does not know the IP address of the destination machine (which is long and difficult to remember), but the subscriber applies the webpage address and the DNS returns the IP address of the requested webpage.

The packets are sent through the network over the IP protocol and processed by the router and the Internet service provider infrastructure. The TCP protocol checks that the received data is correct and assemble the packages in an orderly manner when the packets arrives to the destination computer (if TCP detects an error in the transmission proceeds to apply for remand).
2.4.2 Web optimization for IP protocol in UMTS

As discussed in the introduction, a few years ago experts were thought that the IP address space is going to end very soon due to the progressive increase of internet devices. Therefore, the major telecom operators and regulators began to push manufacturers and network providers to fully support the IPv6 protocol.

Developers and network’s manufacturers had to start optimizing their services such as applications, websites and digital services, etc., and not only to support the IPv6 protocol, but optimizing the number of packets needed to ensure the operation or service (i.e. number of ack / get messages involved in the datagram’s flow), as well as the number of signalling messages through the network or the web load time.

Google has developed several improvements in the implementation of the IPv6 protocol such as optimizing of transport efficiency between a mobile node and a correspondent node in a mobile IP network [43] or optimizing the authentication enabling mechanism [44], among many others.

During the most recent years, experts have realized that the problem with IPv4 is not so serious (currently the number of IPv4 addresses has not ended), and the optimization process is taking place more slowly than originally planned. This is the reason that today, there are a large number of pages that are not able to load when the request travels encapsulated via TCP over IPv6 protocol, while others are just able to navigate more slowly than when the request and DNSs are used under IPv4 technology premises. The developers of the most commercial webpages or services as Google or Facebook are those who have made a greater effort to optimizing, thus the service should work better that webpages or applications with less number of network resources (i.e. Signalling, IP Data, etc.).
Chapter 3

Testbed implementation

In this chapter the testbed architecture and configuration are described. In addition, both scenarios are introduced, the first one consists of testing phone features related to web browsing and the second one, which focuses on the most common applications. To end the chapter, the KPIs that have been measured are detailed.

3.1 Testbed environment

Once a study has been made about the necessary theory and state of the art, the first step in the lab is to analyse the elements of the testbed network and configure all of them properly. The laboratory is modelling as the UMTS network, formed as the RAN (Node B, RNC) and the Core (SGSN, GGSN). In addition, the network has the HLR element which is responsible for managing user permissions and authentication thereof (as is described in 2.1.2 section). The scheme of the network layout can be seen in the next figure.

![Network Layout Diagram]

Figure 3-1: Laboratory layout.
As described in the introduction chapter, the aim of the measurements made in the testbed is to know how the devices behave in a network configured in the same manner as the real network. The goal is to measure the impact generated by the interactions made on the device, but using a specific network for this project in order to avoid possible interference (which may appear on the real network due to the big number of users who connect simultaneously to the network).

Actually, the core part of the network belongs to the real network (since the addressing space is enough to cover real and testing devices), but the radio network (Node-B and RNC) only provides coverage to our testbed, thus the testing is made over this specific network avoiding the interference from other networks or other devices that may change the value of the results.

We are going to test web browsing and application services to measure representative KPIs such as the IP data volume and the radio signalling. We are going to measure web load time (for browsing tests) and battery consumption (for apps tests) as well, but the most interesting KPIs in the context of the project are related to the consumption of network resources. These KPIs have chosen because they give us information about the message signalling load through the network depending on the IP protocol used, and the amount of data exchanged getting access to the same service.

To measure and analyse these two KPIs, we are going to use two computers configured with the necessary tools to collect the trace. The first equipment has a tool called Wireshark installed and is connected directly between the GGSN and the Internet (view previous image) to measure the IP data generated by the website or application using Wireshark. The second computer contains an application of wireless technology (proprietary from the network vendor) and is directly connected to the RNC for measuring all messages traversing the radio part (figure 3-1).

The configuration used in the laboratory corresponds to the UMTS network described in chapter two, and the output towards internet is performed using either IPv4 or IPv6. The parameters of the testbed network and the radio timers are set with the same value as the real network. The HLR (containing all subscribers who can access the service) and DNS servers belong to the real network and provide the web service in the same way that the real network in order to obtain the most reliable results. The IP configuration also corresponds with the real network in order to check if the real network really supports all services under IPv6 operation.

This configuration is good for achieving the objectives of the project since the UMTS network is much optimized to support the internet services, and also to provide updated information since this technology is the most used currently (the LTE technology is still under deployment in Spain).
3.1.1 Steps of the testbed deployment

To verify that the network is performing properly, the testing phase has used devices that support both versions of IP protocol. These devices are pre-installed with different operating systems to ascertain the impact which is generated according to both, the network protocol and the operating system development on the network. Besides, all devices have also been configured with web browsers and applications to meet the needs of different scenarios. The configuration of IPv4 and IPv6 scenarios has required considerable effort in terms of setting up the environment.

The first step consists of checking the connectivity between different elements, especially between radio and core parts. All equipments must have their own unique address (both MAC and IP) to create the PDP context and attach phones to the network correctly. Since the lab had been closed for many months, it has been necessary to check the expiration of licenses and parameters configuration. Some connectivity problems have appeared which are mainly caused by the expiration of the operating license of any equipment or by collisions related to IP configuration when new elements are installed and configured on the network.

Once connectivity is working properly, the phone is able to attach to the network and create the PDP context; the GGSN assigns an IP address to the device which is mandatory for getting access to internet services and navigation (see chapter two for more details). The next phase is to verify that the network can provide service as well (since the fact that a device has IP address assigned is not enough), but the DNS should work and the transmission to and from internet must be configured correctly. The IPv4 and IPv6 DNSs available have been reviewed and configured for the testing, and the routing tables of the routers.

When all configuration steps have been made, the test plan previously scheduled can be performed. The final step is consists of evaluating the results which are going to be measured analysing the traces of all tests using Wireshark. This application allows monitoring each one of the packets traversing over the network. As described above, the protocols which are used during the laboratory work are split in parts according to: signalling protocols (RRC, NBAP, RANAP) and network protocols (HTTP, DNS, TCP and IP).

3.1.2 Problems and Issues solved

Once presented the network environment which we will use, in this part of the report are described the most important issues which have appeared during the testbed setup. In spite of several setbacks have appeared, the setup phase has been finished successfully solving all the problems which have arisen.
The first problem appears when the radio bearer has been lifted (the device should create the PDP context and navigate), but the device is not able to open the context and the network does not assign IP address (see figure 3-2). The cause returned by the network is 'Insufficient resources' due to a connectivity problem (since the core part does not answer to the context opening request).

The problem is because the operation of the SGSN license has expired, and therefore the RNC cannot deliver the request to the core network. The solution has been to seek renewal of the operating license.

Once the connectivity problem is solved and the device is able to get IP address, in the figure 3-3 you can see that the device makes several requests to DNS (trying to load the www.google.es webpage) but there is not response.

Figure 3-2: Context PDP Reject (Insufficient resources).

Figure 3-3: No response from DNS.
It looks like a configuration problem with the router tables since the query is properly received and processed by the DNS, but once the domain name server has performed the translation of the address, it cannot send the response to the network because the gateway router does not know the route back to the Node-B.

We had to review the back routes (using the command show ipv4/ipv6 route) to check that everything is correctly configured. Indeed, the router has not set the path back to the testbed, it is able to route packets to outside the network but not return (from outside to the radio part). Once fixed the problem there is DNS response as can be seen in the figure 3-4 (standard query response).

![Figure 3-4: Standard query response from DNS.](image)

After solving the problem of connectivity and DNS configuration, the phone is attached to the network and with the DNS server properly configured. However, in some cases the network is not able to provide any service. To solve this problem, we have had to contact the manufacturer of the devices and the operating systems developers to upgrade the smartphone to the latest firmware version available.

![Figure 3-5: Service no subscribed.](image)

Some devices have been configured with previous versions of the operating system that did not support IPv6 laboratory scenario. The manufacturer has been the responsible for solving this problem.
To end this section, we should mention another problem, the observation of anomalous and unprecedented situation. The normal procedure should be that the RNC asks periodically to the device for a packet (called 'cell update') indicating whether the device is still connected and under what conditions when the device is in idle mode. The RNC receives this packet and keeps the connection open, otherwise it sends an IU-release datagram to release the radio resources and interrupt the communication.

However, it has been observed in some tests that the device sends the cell update but it never comes to be received by the RNC, so this one sends the IU-release and the phone is disconnected. This problem has requested an analysis in depth, since each time the mobile is disconnected, it requests a new attach and a new creation of the PDP context, generating an increase in both the radio signalling and the number of IP packets that are exchanged with Internet cloud. As mentioned, this issue is complex and it does not have a trivial solution because the device and the RNC work perfectly (the device sends the message and the RNC and if the RNC does not receive it, send the radio link release). After several weeks taking traces on all interfaces, we have discovered the source of the problem, disconnect are produced by interferences coming from equipments placed at other contiguous laboratory, in particular the cause is some small-cells that were recently installed and working in the same uplink band that the UMTS connection.

The GGSN activates the PDP context and assigns the IP address to the user.

The device sends a service request indicating that there is not active context. As a result, the SGSN deletes the old PDP context and the GGSN activates a new one.

The solution has been to use a RF box to prevent other interfering signals that may be in the lab.
3.2 Scenario 1: Web Browsing

The first of these scenarios consists of analysing the behaviour of devices and operating systems when different versions of webpages are loaded. It is important to measure the performance of webpages which can be loaded on a phone to see if they are really optimized for both protocols. For this purpose, the plan is to open two different websites and compare the IP data consumption, signalling and web load time between IPv4 and IPv6. The detailed KPIs which are interesting to measure are described in the point 3.4 of this chapter.

To make the web browsing test we have chosen two different webpages to compare the values of the selected KPIs: www.google.com and www.kame.net.

Google webpage has been chosen because it is the most used search engine in the world and the servers pursuing large amounts of traffic. Besides, it is also a page that most users know and can use later. It is expected that the company continuously optimizes and improves security and functionalities supported. According to Google's website (http://IPV6test.google.com), the webpage is prepared to work with the IPv6 protocol.

The webpage of **kame** is operated by a project supported by six companies in Japan to provide a free stack of IPv6 and Mobile IPv6. This webpage has been chosen since it shows the dancing kame when IPv6 HTTP is used. The user should be able to see the turtle moving if the page loads correctly over IPv6 protocol.

The methodology of this test consists of selecting the web browser which is pre-installed by default in the operating system (just in case of have more than one stored in the device) and remove cookies, formularies and history of web browser. Once the browser is ready, write the page address in the URL bar and wait until the page is completely loaded to measure the KPIs.

3.3 Scenario 2: Apps

The purpose of this scenario consists of analysing the behaviour of applications on the device when different interactions with the application are made. It is important to measure the performance and behaviour of the applications which can be installed on a phone to see if they are really working through both version of the protocol. For this goal, the plan is test some applications and to compare some KPIs which are interesting to measure (described in the point 3.4 of this chapter).
The applications which have been selected are the most used by users according to several studies conducted during 2013 [45] [46]: Facebook Messenger, Facebook, Google Maps and Youtube.

To set the scenario the phone is switched on and the IPv4/IPv6 APN (Access Point Network) is selected. Then, the desired application to measure is installed and the phone is turned off. Once carried out the set-up process, the test consists of interact with the application (sending streams, audio or video) according the table 3-1.

<table>
<thead>
<tr>
<th>Applications</th>
<th>Test Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB Messenger</td>
<td>- Send string "hello", wait 2 minutes</td>
</tr>
<tr>
<td></td>
<td>- Receive string "hi, how are you?", wait 2 minutes</td>
</tr>
<tr>
<td></td>
<td>- Answer again “I am fine thanks", wait 2 minutes</td>
</tr>
<tr>
<td></td>
<td>- Repeat these steps 3 times.</td>
</tr>
<tr>
<td>Facebook</td>
<td>- Share the message “hello, we are testing this app”, wait 2 minutes.</td>
</tr>
<tr>
<td></td>
<td>- Upload a picture, wait 2 minutes.</td>
</tr>
<tr>
<td></td>
<td>- Upload a video, wait 2 minutes.</td>
</tr>
<tr>
<td></td>
<td>- Repeat these steps 2 times.</td>
</tr>
<tr>
<td>Google Maps</td>
<td>- Update the current location</td>
</tr>
<tr>
<td></td>
<td>- Look for Madrid (Spain) city in Maps.</td>
</tr>
<tr>
<td></td>
<td>- Get indications to go to Stockholm (Sweden).</td>
</tr>
<tr>
<td>Youtube</td>
<td>- Look for ‘Movistar’ in the browser.</td>
</tr>
<tr>
<td></td>
<td>- Load and watching the first video</td>
</tr>
<tr>
<td></td>
<td>(advertising on Movistar and Spanish team of football)</td>
</tr>
</tbody>
</table>

Table 3-1: App testing.

3.4 KPIs measured

At this point, the KPIs (Key Performance Indicators) measured are described paying particular attention on the fact that why they are important, what kind of interactions or effects of input parameters are expected and how they are going to be evaluated.

We are going to measure IP Data (Number of IP packets and total length) and RNC Signalling of each one of the selected applications and web browsing tests, the load time of webpages for browser tests and the battery consumption for apps. The most important KPIs form the network side, IP data and signalling, have chosen according to the different domains of the network. On the radio side, we are going to analyse the impact on the base station RNC in terms of signalling and the total size of the data transmitted encapsulated over the IP protocol in the core part.

The load time does not make sense for applications, since the applications are pre-installed in the phone and the booting process takes a few seconds. The battery
has been only measured in tests related to applications, since the browsing tests are much shorter (just during the time which the device takes to carry the load of the web), and it is difficult to appreciate significantly the battery power consumed.

3.4.1 KPIS for browsers and apps

IP data and number of IP packets

This KPI is probably the most interesting to measure as it provides information on both the number of packets and the length thereof exchanged with Internet. This KPI is measured using the Wireshark tool connected to the output of the GGSN, as you can see in the diagram of the figure 3.1.

[Figure 3-8: Wireshark Interface for End-Points](image)

Figure 3-9: IP data measurement.
This KPI counts all packets that are transmitted over IP protocol having as source an IP address assigned to the device and as destination an IP address of the Internet or vice versa.

Surely, this KPI should vary significantly according to the version of the protocol used which is the reason to consider it also interesting in the vicinity of this master thesis as it provides an insight into the efficiency of both the device and the network.

RNC signalling

It consist of measuring the signalling (information exchange within the control plane) required by the device to connect and to keep it active (using keep-alives messages). By measuring this field on the RNC, it ensures that the total number of signalling messages is measured, since all the flow of communication between the device and the Internet necessarily goes across the RNC.

The test measurement process is going to use a software connected to the RNC output to measure the number of signalling messages such as RRC messages, NBAP messages, RLC messages, RANAP messages, Rab established, rrc-state indicator cell_FACH, rrc-stateindicatorCELL_PCH, rrc-stateindicatorURA_PCH, Transition-to-cell_fach and signalling connection release (see the protocols which have been discussed in the section 2.2).

![Figure 3-10: RNC signalling measurement.](image-url)
It is important to note that the number of signalling messages may vary significantly depending on the duration of the test due to a higher number of messages are sent to keep the connection open (keep-alives) if the test lasts a longer time.

This field is important since it provides information about the total number of messages required to maintain a data connection open, either using the IP protocol version 4 or version 6.

3.4.2 Browser KPIs

Web Load time

The time needed to load completely the website is represented by this KPI. This measurement is delivered in seconds and is obtained from the timekeeper.

This value comprises the time since the device generates the webpage request until the device loads the complete webpage. During this interval the request is sent to the DNS, which translates the name of the webpage into the IP address, and responses to the device with this requested IP address. Once the name is known, the response is sent to the appropriate server which loads the requested webpage.

It is good to know if the IPv6 really reduces the loading time of a website or not (theoretically there is not intermediate fragmentation in IPv6 thus there is not reassembly time).

3.4.3 Applications KPIs

Battery power

Measuring the level of battery is important for the user and the device. We want to know if any application consumes more battery according to the IP version used, or if the IP protocol helps to improve the battery life.

To measure the battery, it has been used an equipment called power management consisting of positive and negative poles to connect to the device battery gap (where the battery should be introduced). This element is responsible for supplying the necessary power consumption as well as to monitor the percentage of required energy. There are some devices where the battery is fully integrated with the phone and it is not able to use this machine; in these cases it has been used an application available on the market called Battery that provides the same value.

This KPI show if the protocol is involved in the battery consumption or if the battery level consumed is independent of the IP protocol version.
3.5 Expected results

This section describes briefly the expected behaviour in each of the KPIs measured. The aim is to know the expected behaviour of both versions of the protocol and compare them with test results although the results may be different depending on the webpage loaded, the applications or the operating system.

Due to the size of IPv6 headers (as discussed above is 20 bytes higher), it is expected that the data exchanged using IPv6 is higher. Although the consumption of IP data depends on the optimization that has made by the manufacturer on the device, make a request to the DNS and load the same website or interact with one application on IPv4 and IPv6 should generate more traffic when the IPv6 protocol is used (depending on the number of packets since each fragment carries its own header).

In the case of RNC signalling, the expected result is that signalling should be lower on IPv6 tests, since the newer version of the protocol is more optimized. This is caused since experts have been working too many years in the protocol design and implementation, using acquired experience to eliminate unnecessary signalling messages (to consume less resources) despite of the establishment messages are the same to open connection at radio level.

In terms of web load time (for browser tests), which means the time required to fully load a webpage, the time in seconds should be less in IPv6 since there is not fragmentation at intermediate routers and therefore no packet reassembly time, reducing the overall load time of the page.

The battery power consumed during applications testing should be similar because the device performs the same number of operations regardless of the network protocol used.

According to the expected behaviour, the signalling in IPv6 should be less (using less battery), but more data are generated in IPv6 (increasing the battery power consumption) thus the power consumed should be the same.

Therefore, although the IP generated data are slightly higher in IPv6 than in IPv4, the expected behaviour of the IPv6 protocol is better since the signalling in the network is less and therefore the radio part is less overloaded. In addition, the time required to perform the same operation (such as loading a web page) is lower improving the user experience.
However the obtained results may be different to the expected ones during the previous analysis in this section. One device may behave in a different way with as expected with a single webpage or application, and otherwise behaves normally in all other cases (see the coming comparison section 4.3).
Performance Evaluation

In this chapter all results are presented, both in format table and in graphical one. Several tests were performed for each one of the operating systems ensuring the viability of the results since the behaviour of the system is stochastic, thus the tests with the same configuration have been repeated several times.

Specifically, we have repeated 25 times each test with the same configuration, that is, 25 identical tests for all devices in which ones the KPIs are measured as described in the previous section (IP data volume, RNC signalling, load time for browsing and battery for apps). To be able to establish a comparative we have used several devices with different operating system such as operating system 1, operating system 2 and operating system 3 (the name cannot be revealed due to the confidentiality agreement).

After obtaining the results, we have calculated the average to graph it and draw proper conclusions. That is, the results given below represent the average of the values obtained during the 25 tests performed.

To ensure that the results are reliable, we have calculated the confidence interval for the average according to the Microsoft specification [47] using Microsoft Excel. The syntax of the function in Excel is \texttt{CONFIDENCE(alpha, standard_dev, size)} where the alpha value means the confidence level which is equals to $100\times(1 - \alpha)\%$. We have checked the results and they match the interval of confidence using an alpha of 0.05, which indicates a 95 percent of confidence level.

4.1 Browser Results

In this section are detailed the browser test results.

4.1.1 Data Volume

This section presents the results of data volume (both, number of IP packets and total length) measured through Wireshark. Two different graphics are shown, one for the webpage of Google and other one related to the webpage of Kame.
Table 4-1: IP packets for browsing (number of fragments).

<table>
<thead>
<tr>
<th>Operative System</th>
<th>IPv4</th>
<th>IPv6</th>
<th>IPv4</th>
<th>IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>147</td>
<td>156</td>
<td>145</td>
<td>171</td>
</tr>
<tr>
<td>2</td>
<td>89</td>
<td>96</td>
<td>161</td>
<td>266</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>14</td>
<td>30</td>
<td>115</td>
</tr>
</tbody>
</table>

Table 4-2: IP data for browsing (kilobytes).

<table>
<thead>
<tr>
<th>Operative System</th>
<th>IPv4</th>
<th>IPv6</th>
<th>IPv4</th>
<th>IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40,62</td>
<td>60,44</td>
<td>23,55</td>
<td>41,74</td>
</tr>
<tr>
<td>2</td>
<td>27,74</td>
<td>34,42</td>
<td>56,17</td>
<td>171,71</td>
</tr>
<tr>
<td>3</td>
<td>6,56</td>
<td>7,38</td>
<td>8,77</td>
<td>76,28</td>
</tr>
</tbody>
</table>

Figure 4-1: IP Data Volume for Google.

Figure 4-2: IP Data Volume for Kame.
As expected, the IP data generated to access the same website are more over the IPv6 protocol than IPv4 one (between 5% and 30%). This is mainly due to the size of the headers, which occupies more bits in IPv6 than in IPv4 header (20 bytes more for each packet as described on page 29 of this report).

Moreover, from the www.google.es results we can conclude that the operating systems two and three generate less traffic when loading the webpage. However, when loading the website www.kame.net, IPv6 traffic increases significantly, because it is a very small website and the owners probably have fewer resources than Google enterprise.

As we can seen, the operating system one generates more or less the same amount of IP data in both webpages, and operating systems two and three work worse in kame webpage than google one.

4.1.2 RNC Signalling

This section presents the results of signalling measured on the base station (RNC). Two different graphics are shown, one for the webpage of Google and other one related to the webpage of Kame.

<table>
<thead>
<tr>
<th>Operative System</th>
<th>IPv4</th>
<th>IPv6</th>
<th>IPv4</th>
<th>IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>19</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>19</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>18</td>
<td>20</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 4-3: RNC Signalling for browsing (number of messages).

![RNC Signalling for Google](image-url)
In terms of signalling the results are quite stable. As expected, the number of messages involved in the access radio part is similar regardless of protocol.

As can be seen, the signalling in IPv4 is slightly larger than IPv6 because IPv6 protocol design is more recent and requires less number of RNC messages to load a webpage (it is important to consider that the browsing is done in a short time, so that there are not keep-alive messages).

4.1.3 Web load time

This section presents the results of browsing load time (the total time required to fully load webpage). As in the previous sections, there are two different graphics: the webpage of Google and the webpage of Kame.

<table>
<thead>
<tr>
<th>Operative System 1</th>
<th>IPv4</th>
<th>IPv6</th>
<th>IPv4</th>
<th>IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.google.es</td>
<td>5,58</td>
<td>3,85</td>
<td>24,56</td>
<td>21,92</td>
</tr>
<tr>
<td>www.kame.net</td>
<td>2,87</td>
<td>1,65</td>
<td>19,27</td>
<td>13,00</td>
</tr>
<tr>
<td>Operative System 2</td>
<td>1,52</td>
<td>1,14</td>
<td>13,98</td>
<td>9,50</td>
</tr>
</tbody>
</table>

Table 4-4: Load time (seconds).
As expected, the time required to fully charge a webpage is higher in IPv4 than in IPv6.

The load time graphics confirm that the kame website is less optimized that Google, as the same request page takes to load between 10 and 15 seconds more depending on the device and the operating system. In addition, it is confirmed that operating systems two and three are optimized and take less time to fully load the page that operating system one (regardless of the protocol used).
In this section are detailed the applications test results. We have also tried other common applications such as WhatsApp, Skype or Twitter but none of them supports the IPv6 protocol (see table 4-8 in section 4.3).

4.2.1 Data Volume

This section presents the results of IP data volume measured through Wireshark. Four different graphics are shown, one for each of the tested applications.

<table>
<thead>
<tr>
<th>Operative System</th>
<th>Facebook Messenger</th>
<th>Facebook</th>
<th>Google Maps</th>
<th>Youtube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative System 1</td>
<td>393,41</td>
<td>485,47</td>
<td>5150,02</td>
<td>7817,03</td>
</tr>
<tr>
<td>Operative System 2</td>
<td>411,63</td>
<td>748,23</td>
<td>10384,97</td>
<td>18246,94</td>
</tr>
<tr>
<td>Operative System 3</td>
<td>-</td>
<td>-</td>
<td>876,69</td>
<td>9751,21</td>
</tr>
</tbody>
</table>

Table 4-5: IP Data for apps (Kilobytes).

Figure 4-7: IP data for Facebook Messenger.

Figure 4-8: IP data for Facebook.

It does not support Facebook Messenger over IPv6.
The applications, like the browsing, also generate more data because IPv6 header is larger than IPv4 one. There is a difference depending on the operating system being the OS two the worst in this case.

4.2.2 RNC Signalling

This section presents the results of signalling measured on the base station (RNC). Four different graphics are shown, one for each one of the tested applications.
Table 4-6: RNC Signalling for apps (number of messages).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook Messenger</td>
<td>802</td>
<td>550</td>
<td>1161</td>
<td>934</td>
<td>427</td>
<td>284</td>
<td>414</td>
<td>361</td>
</tr>
<tr>
<td>Facebook</td>
<td>799</td>
<td>550</td>
<td>1290</td>
<td>902</td>
<td>-</td>
<td>-</td>
<td>517</td>
<td>474</td>
</tr>
<tr>
<td>Google Maps</td>
<td>-</td>
<td>-</td>
<td>1053</td>
<td>677</td>
<td>-</td>
<td>-</td>
<td>512</td>
<td>429</td>
</tr>
<tr>
<td>Youtube</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

It does not support Facebook Messenger over IPv6.

Figure 4-11: RNC Signalling for Facebook Messenger.

Figure 4-12: RNC Signalling for Facebook.
As explained in the previous chapter, this KPI measures all messages passing through the RNC since the phone is turned on until it is turned off thus the value includes both, connection establishment messages and keep-alives.

Therefore, the variations observed in the signalling when comparing one application with another are not caused by the application itself, but it is because of the duration of the each test is different (Facebook test time is around twenty minutes and Google Maps or Youtube is around five minutes).

The signalling also behaves stably in applications and it is again slightly higher in IPv4 than in IPv6.
4.2.3 Battery consumption

This section presents the results of the battery consumption. Four different graphics are shown, one for each of the tested applications.

Table 4-7: Battery for apps (percentage consumption).

<table>
<thead>
<tr>
<th></th>
<th>Facebook Messenger</th>
<th>Facebook</th>
<th>Google Maps</th>
<th>Youtube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative System 1</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Operative System 2</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Operative System 3</td>
<td>-</td>
<td>-</td>
<td>2%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Figure 4-15: Battery consumed by Facebook Messenger.

It does not support Facebook Messenger over IPv6.

Figure 4-16: Battery consumed by Facebook.
All applications consume about the same battery regardless the protocol version used, thus we can conclude that the operations performed by the device are the same (thus the battery consumption is similar).

Facebook has a higher consumption (around 3%) because the interaction is made with images and videos; while Google Maps and YouTube consume less battery (1%) because the test has only been done once (actions with Facebook have been repeated several times).
4.3 Analysis of the results

All results which have been measured depend on the optimization of the IP protocol and the integration thereof with the browsers and the design of each one of the applications. As described at the end of the chapter two, developers of applications and websites, as well as mobile operating system manufacturers are still improving the implementation of IPv6 protocol, thus certain services may operate worse than expected or even not work.

<table>
<thead>
<tr>
<th>Applications</th>
<th>Work over IPv4</th>
<th>Work over IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>WhatsApp</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Twitter</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Skype</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Google Mail</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Yahoo! Mail</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Vimeo</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Messenger</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Facebook</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Google Maps</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>YouTube</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Table 4-8: Applications operation over IP.

Except for some applications which do not work over the IPv6 protocol such as Whatsapp, Twitter, Skype or Yahoo mail (see table 4-8), the results mostly agree with the expected ones (section 3.5).

The size of the generated IP data is always higher in IPv6 since the header of the IPv6 protocol is larger than IPv4 and it may depend on the application. However, the signalling is lower in IPv6 because some work has been done in the design and optimization of the protocol (eliminating unnecessary radio connection establishment messages).

Regarding the loading time of webpages, the obtained results can also be compared with the expected results; the loading time in seconds is lower over IPv6 mainly because there is not packet reassembly reducing the total time required to load
the page entirely. As for the battery, as expected, the power consumption is almost
the same using the same service, regardless of the protocol version used.

To end this section, the results depend on the optimization efforts that have
made by manufacturers and developers. The webpage of Google is more optimized
than Kame (see final section of chapter 2) because the amount of IP data generated
are lower when the request is made to Google's servers, as well as the time required
to load the website.
Conclusions and future work

This chapter describes a general conclusion based upon the work done during this thesis project and provides suggestions for next steps in order to continue the work. The intention of this chapter is to point out the most relevant ideas of the thesis and then consider how to build upon them in future researches.

5.1 Conclusions

This section includes findings and recommendations concerning the results obtained in the laboratory, and also about the IPv6 protocol and its implementation in the devices and web services.

The conclusions are mainly related to the services which have been tested (webpages and applications) and the performance on the network resources consumption. However, there are also important conclusions related IP optimization and operating system operation. Performing the same action in two different devices does not carry the same consequences over the network (see end of chapter 2 for more information).

The most important conclusion which can be drawn from this project is that the signalling generated on the network has been reduced as well as the time to fully load a webpage in Internet. This result is a good new because we start seeing optimization efforts in the operation of the IPv6 version.

To summarize the results, signalling and web loading time is less in IPv6 than in IPv4, but the battery consumption does not present a significant variation. The cause of this reduction is that some signalling messages have been removed (reducing the total number of messages) and IPv6 does not support fragmentation intermediate, thus there is not reassembly time. On the contrary, the results show that IPv6 web
browsing produces slightly higher generated traffic than IPv4 web browsing, but the difference is explained by the bigger size of IPv6 headers.

We can shown that the IPv6 protocol supports web browsing on all devices; however, much work is to be done in application develop as some of the most popular ones do not work over IPv6.

We can see large optimization efforts by the big companies such as Google (which have a large number of patents about IPv6) or operating systems with a high market penetration.

According to device model and operating system, operating systems two and three have the best performance in terms of data when the connection is towards Google. However, when moving to kame web, these two devices shows the worst performance thus we can conclude that the IP traffic depends on IPv4/IPv6 device implementation, operating system used and webpage requested.

5.2 Future work

Once we have achieved the goals set by this master thesis, we have a number of different suggestions about work that could follow and build upon the research. The proposed topics cover both, the features and improvements of the IPv6 protocol as well as the performance on the network.

It may be interesting to have a more detailed discussion about the features that have been added to IPv6 such as new security features, the simplest processing method in routers or IPv6 mobility to see if the IPv6 really introduces improvements in this respect.

Moreover, it is interesting to continue the work presented in this thesis measured again after a while the KPIs that have been analysed in this report and see if developers really continues improving the implementation of IPv6 protocol.

Looking ahead, it is interesting to measure other KPIs related to DNS requests or about the process of routing packets when performing a request for access to the web.

We were not able to make some interesting KPIs measurements such as delay in VoIP applications since Skype and Google Hangouts do not support IPv6 yet. However, it can be interesting to make this comparison in the near future. Measuring other KPIs about the radio network quality (such as the number of dropped calls or blocks) and about the end-to-end quality of the service (like accessibility, latency, delay, etc.) are interested for the future as well.
In the field of applications, there is still much work to do since we tested ten applications and only four work properly over IPv6 (see table 4-8 for more information).
References

Available here:

Available here: http://www.ietf.org/rfc/rfc791.txt

Available here: https://www.ietf.org/rfc/rfc2460.txt

Available here: http://www.nro.net/news/ipv4-free-pool-depleted

[22] 3GPP Specification, **UMTS Overall Description** (3GPP TS 25.401 v11.1.0), Release September 2012.
Available here: http://www.etsi.org/deliver/etsi_ts/125400_125499/125401/11.01.00_60/ts_125401v110100p.pdf

[23] 3GPP Specification, **Mobile radio interface Layer 3 specification; Core Network protocols; Stage 3** (3GPP TS 24.008 v11.10.0), Release March 2014.
Available here: http://www.etsi.org/deliver/etsi_ts/124000_124099/124008/11.10.00_60/ts_124008v111000p.pdf

[25] 3GPP Specification, **Network architecture (Release 9)**.

[27] R. White, **Working with IP Addresses** (Cisco), March 2006.
Available here: http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-1/

Available here: https://www.ietf.org/rfc/rfc2460.txt

Available here: meetings.ripe.net/ripe-53/presentations/gprs.pdf

Available here: http://mashable.com/2014/04/03/popular-apps-chart/

[46] Top global smartphone apps, who’s in the top 10, 2013
Available here: http://blog.globalwebindex.net/Top-global-smartphone-apps

[47] Confidence function in Excel, Microsoft