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Abstract—Peer-to-peer (P2P) mechanisms allow users with
limited resources to distribute content to a large audience,
without the need of intermediaries.

These P2P mechanisms, however, appear to be ill-suited for
mobile devices, given their limited resources: battery, bandwidth,
and connectivity. Even Spotify, a commercial straming service
where desktop clients stream about 80% of the data via P2P,
does not use P2P on mobile devices.

This paper describes Tribler Mobile, a mobile app that allows
users to broadcast their own videos to potentially large audiences
directly from their devices. Our system delegates most of the
distribution tasks to boosters running on desktop computers. Our
mechanisms are designed to be fully-decentralized and consider
mobile devices’ limitations.

Tribler Mobile is available as open-source software and have
been installed by almost 500 users on their Android devices.

I. INTRODUCTION

This paper presents a P2P video streaming platform where
mobile devices are well integrated. As a prove of concept,
we have modified an existing P2P system and deployed the
infrastructure to allow mobile devices not only stream from
the P2P network, but also publish new content to it.

We make the very conservative assumption that uploading
data from mobile devices is always expensive due to cost
related to increased energy consumption on battery-powered
devices and traffic (monthly data caps are common on mobile
networks). In practice, we expect a more favorable environ-
ment where uploading costs are much lower for some mobile
devices; for instance, when a device is connected to a power
supply and on a wired or Wifi connection. Furthermore, more
generous data caps and more energy-efficient devices may
lower uploading costs on mobile devices in the future.

In this environment, a mobile device publishing new content
should ideally upload a single copy of the content to the P2P
network, and then immediately stop all P2P traffic. This is
basically what cloud-based applications do, and they can do it
because cloud servers are reliable and they are always ready to
accept data. In P2P networks, however, each peer is assumed to
be unreliable and publishers have no easy-to-use mechanisms
to place peers on stand-by, waiting for new content.

We are the first to propose, implement, and deploy a
complete system where mobile devices can publish content
directly into the P2P network and let other peers distribute the
content to a potentially large audience (including other mobile
devices). In the process of building this system, we develop a
reverse peer discovery mechanism (described in Section IV-A)

that (1) traverses NAT gateways —these gateways are widely-
deployed on Wifi and mobile networks— and (2) limits energy
consumption by preventing other peers from establishing con-
nections to the mobile device (those connections would switch
the device’s radio interface to high-power state even after the
P2P app has terminated).

To distribute content to other mobile devices, our P2P
system organizes desktop peers (peers running on desktop
computers) to form a sort of content distribution network
(CDN). Some of these desktop peers would be run by users
who consume the content, and as a side-effect, contribute to
its distribution to both desktop and mobile peers. This paper,
however, is mainly focused on what we call boosters.

A booster is a peer whose main task is to augment (or boost)
the distribution capacity of a publisher or source. There could
be different reasons why a user chooses to cede resources
to a publisher by boosting its content: personal relationship,
political/activist support, in exchange for services or money,
et cetera.

Boosters are meant to provide the capacity demanded by
leechers. A leecher is a peer that downloads data from other
peers, without uploading data to others!. While the term
leecher is often used pejoratively to indicate that these leechers
are free-riders, we use it without any negative connotation.
On the contrary, our system is designed to address the extra
capacity demanded by leechers by creating extra capacity
provided by boosters.

This paper presents a system design that is generic and
flexible enough to be deployed in different contexts. From
an open-community best-effort system to a commercial P2P
streaming service where boosters are mainly (or exclusively)
run by the publisher to guarantee quality of experience. While
open-community services tend to demand fully-decentralized
solutions, commercial services may keep some subsystems
centralized for monitoring and control purposes and to ease
deployment.

As a proof of concept, we have implemented and deployed
a complete prototype which consists of these elements:

e A mobile app, called Tribler Mobile, offers P2P video
streaming playback, as well as publishing new content to
the P2P network. For instance, a video recorded with the
smartphone’s camera.

IThroughout the paper, content is always streamed, though we use down-
load and upload to indicate data flow’s direction.



e A desktop application, called Tribler, which can be
configured to automatically boost certain content (e.g.,
published by a friend) as soon as it is published.?

o A subscription and publisher authentication mechanism
(Section IV-B). We use Twitter in our prototype in a way
when a booster subscribes to Quser, it will boost all
content posted by that user. That is, when @user records
a video and publishes it, a tweet is automatically posted
on @user’s timeline and that video will then be boosted
by all boosters subscribed to Quser.

o A DHT-based reverse peer discovery (Section IV-A that
addresses two issues at once. When the mobile device
(MD) is behind a NAT gateway, it allows the MD to
upload the content by establishing direct connections to
boosters. When the MD is not behind a NAT gateway,
it prevents connection attempts from other peers, which
would increase energy consumption even after the mobile
app had been terminated.

The rest of this paper is organized as follows. Background is
presented in Section II. Section III introduces the roles in the
system and how they interact with each other. In Section IV,
we describe each of the infrastructure services supporting our
system, both in abstract terms and our prototype’s concrete
implementation details along with a short discussion about
trade-offs and alternative implementations. Finally, Section V
concludes.

II. BACKGROUND

Internet content streaming services are very popular and
growing fast. Not only on large-screen wire-connected desk-
tops but also battery-powered wireless-connected mobile de-
vices. In fact, all trends indicate that mobile devices already
account for a large part of streaming, and it is growing far
faster than on desktop platforms. For instance, mobile devices
consumed 41% of YouTube’s total traffic in the third quarter
of 2013, up from 25% in 2012 and just 6% in 2011.3

Streaming content to a large audience is far from trivial. In
general, it is impractical for an individual or a small company
to deploy its own content distribution system. While there
are platforms that will distribute your content for a fee (e.g.,
content distribution networks) or placing ads (e.g., YouTube),
there is an alternative: P2P content distribution.

A. Peer-to-Peer Content Distribution

On the desktop environment, where desktop computers
and laptops are commonly connected to a power source and
connected to the Internet though Wifi or a wired network, P2P
offers the possibility of augment the publisher’s distribution
capacity with resources from its viewers. That is, the viewers
not only consume resources but also contribute their own,
increasing scalability and reducing costs to the publisher.

File-sharing communities use P2P to distribute content by
each peer contributing its own resources (mainly storage and

2Tribler [1] is an existing P2P application. We just modified it to support
boosting.
3http://www.computerworld.com/s/article/9243331/ (Nov. 2013)

bandwidth). P2P systems have evolved to be fully-distributed
and self-organized, gradually removing centralized services
(e.g., tracking and torrent files acquisition in BitTorrent, which
initially relied on centralized services, have now been fully
decentralized).

Yet, mobile devices have not been well integrated on P2P
networks. Conventional wisdom suggests that these devices
are ill-suited for P2P for several reasons: (1) uploading would
drain batteries and deplete 3G monthly traffic allowances too
fast for most users, (2) connectivity issues caused by widely-
deployed network address translator (NAT) gateways, and (3)
for some publishers, client-server (e.g., content distribution
networks (CDNs)) distribution costs are low enough to dis-
regard investments in P2P-based optimizations.

Spotify, a commercial music streaming service, is a good
example to illustrate this point. On desktop platforms, Spotify
uses P2P mechanisms to increase scalability and reduce costs.
According to their own measurements, 80% of the music
is delivered by its P2P network [2]. On mobile platforms,
however, all music is currently delivered by Spotify’s servers.

B. Mobile P2P

The introduction of Internet-enabled mobile devices led
some researchers to investigate the feasibility of mobile de-
vices participating in P2P systems.

Bakos et al. [3], [4] simulated Gnutella on a variety of
wireless topologies. Then, Nurminen and Noyranen [5] studied
BitTorrent’s impact on energy consumption on Symbian-based
smartphones on both 3G and Wifi networks, considering it
feasible to run full peers on mobile devices (download and
upload) since BitTorrent’s tit-for-tat mechanism [6] rewards
uploaders with faster downloads, thus decreasing energy con-
sumption through a shorter total downloading time. Notice that
tit-for-tat is less relevant in seeding-rich environments, like the
one we propose in this paper.

Kelényi and Nurminen studied the energy aspects of a
mobile devices on BitTorrent’s Mainline DHT [7]. They
concluded that running a full peer on a mobile device is
unfeasible due to continuous incoming queries that keep the
radio interface on a high-energy state. On the other hand,
their client-only implementation allowed mobile devices to use
DHT-based services with minimum energy cost.

In a paper currently under review [8], we explored the
participation of mobile devices in Spotify’s P2P network, in a
way that these devices can stream data not only from Spotify’s
servers (as it currently happens) but also from other users
running desktop Spotify clients. When we enabled P2P on
the Spotify’s Android app, we found that Spotify’s gossip-
like peer discovery mechanism increases energy consumption
(moderately on Wifi and dramatically on 3G). After applying
backwards-compatible modifications, energy consumption de-
creased to a level just slightly higher than the P2P-disabled
official app on both Wifi and 3G.

A survey by Hoque et al. [9] showed numerous approaches
at optimizing energy consumption of multimedia streaming on
Wifi, 3G and LTE networks found in the literature, categorized



by layer: physical, link, application, and cross layer. Hoque
and his colleagues went on to propose their own approach
using crowd-sourced viewing statistics and evaluated it on
3G and LTE networks [10]. On these networks, there is a
trade-off between (1) pre-fetching large chunks at the risk of
downloading useless data if the user stops watching, (2) and
fetching small chunks, at the risk of increasing total energy
consumption because wireless interfaces stay powered for
several seconds after each data transfer. Although these studies
focused on client-server streaming, they provide insights that
are also applicable to P2P streaming on mobile devices.

C. NAT Gateways

Network address translator (NAT) gateways are used to
allow multiple devices to access the Internet using a single
IP address. Practically, every Wifi-enabled router (includ-
ing ADSL, and cable modems provided by Internet service
providers) features NAT functionality with few exceptions
(e.g., KTH’s Wifi network provides public IP addresses). That
is, most Wifi connections go through a NAT gateway.

Hiétonen et al [11] studied 34 different home gateway
models and observed noticeable differences among NAT im-
plementations, reporting that no gateway used the parameter
values recommended by the IETF standard for NAT gate-
ways [12].

Mobile networks also use NAT mechanisms, mainly to
multiplex an ever-scarcer number of IP addresses. Mékinene
and Nurminen [13] characterized the NAT policies of six major
mobile operators, observing that existing TCP NAT traversal
techniques work in the majority of these networks. Wang et
al. [14] developed a mobile app which allowed them to collect
data regarding NAT and firewall policies deployed in over 100
mobile ISPs. Less than a quarter of the these mobile ISPs
provided public IP addresses.

NAT gateways supports relatively well client-server appli-
cations where clients initiate connections and the server has
a public IP address. When a connection is established by a
host behind a NAT gateway (client), the gateway will forward
packets between client and server, for the most part.

On P2P networks, peers should ideally be able to establish
connections to each other because each peer is able to both
consume and offer services. On the Internet, however, NAT
gateways severely restrict connectivity, making it hard to
establish a connection to a peer behind a NAT gateway.

In general, NAT gateways hinder P2P performance [15].
When the only peer with a copy of the content is behind
a NAT gateway, content distribution might never start. This
paper addresses the particular problem of a piece of content’s
original source being behind a NAT gateway.

There are many NAT traversal mechanisms to allow hosts
behind NAT gateways to establish direct connections to each
other. For instance, NatCraker [16], Usurp [17]. Halkes and
Pouwelse’s UDP NAT puncturing [18] provide an overview
of UDP NAT traversal techniques used on the Internet. While
our current prototype does not use any of these mechanisms,

we are considering integrating some of these mechanisms in
future versions.

D. PPSP and Libswift

The Peer-to-Peer Streaming Protocol (PPSP) suite [19] is
currently in the process of being standardized at the Internet
Engineering Task Force (IETF)*. Libswift’ is the reference im-
plementation of PPSP’s transport protocol (previously known
as Swift [20], [21]) and it is available under an open-source
license.

PPSP inherits many of its properties from BitTorrent [6],
while introducing several improvements. Unlike BitTorrent,
PPSP was explicitly designed for multimedia streaming, both
on-demand and live; although it can also be used as generic
multi-party transfer protocol.

Since PPSP is based on UDP, it is easier to traverse NAT
gateways and achieve lower delays. PPSP uses a hashing
scheme (Merkle hashes) that greatly improves the dissem-
ination of integrity metadata, reducing user-perceived start-
up delay compared to BitTorrent, specially when considering
large amounts of data such as a high-definition feature film.
While the few hashes needed by a PPSP peer to start checking
integrity are likely to fit in a single UDP, a BitTorrent peer
must obtain every single hash (several kilobytes packed in a
.torrent file) before being able to perform any integrity check.

PPSP has been deployed on desktop computers, mainly
through its integration on Tribler [1] and a browser plug-
in project in collaboration with Wikipedia [22]. Preliminary
experiments of libswift on Android showed that it was feasible
for a modern smartphone to run libswift [23].

PPSP has also been proposed as a P2P-based implemen-
tation of information-centric networks (ICN). PPSP’s Merkle
hashes provide naming properties very similar to those pro-
posed in other ICN systems, making PPSP a good candidate
for piece-meal adoption on the current IP-based network
infrastructure, unlike other ICN proposals that require a clean-
slate redesign of the networking infrastructure [20], [21].

III. ROLES AND INTERACTIONS

Before we describe the different parts of the system, we
define the different roles in the system and an example to
illustrate how the system works and how the different roles
interact with each other.

A. Roles

We define roles broadly because our goal is to design a
flexible system that is able to support different applications:
from best-effort community services to commercial services
with strict quality of experience requirements.

e source

User has a piece of content that does not exist in the
P2P network yet. Sources can upload content to peers,
leechers, and boosters. A source running on a mobile
device is referred as mobile source.

4PPSP Working Group: https:/datatracker.ietf.org/wg/ppsp/ (Nov. 2013)
Shttp://libswift.org/ (Nov 2013)



o peer
User downloads and watches video, uploading it to others
as a side-effect (as it happens in P2P-based file-sharing
systems). Although some mobile devices would be able
to function as peers, we conservatively assume that all
mobile devices are leechers. Thus, we will use the term
desktop peer in this paper.

o leecher
Typical operation of mobile devices (mobile leecher).
Leechers can download and playback the content, but
unlike peers, leechers do not upload. We do not consider
leechers as free-riders and the system should provide
them whenever possible.

o booster
Peer that is configured to automatically redistribute (seed)
content according to some user-controlled policy (e.g.,
subscription).

« meta-booster
User who posts content metadata to a subscription ser-
vice. Boosters subscribed to this meta-booster will au-
tomatically start boosting the content, according to their
policies.

o sharer
User who helps spreading the content in the same way
it is done in social media platforms. That is, sharing
pointers (e.g., links) to the data instead of distributing
the data themselves.

B. Community-Supported Video Streaming: an Example

The NGO “Bits International” encourages its members to
record videos with their smartphones to document their actions
and raise awareness. BI members have published their videos
on web-based video sharing platforms before but a recent
video upload was too controversial and was taken down
alleging it was “inappropriate”, despite the fact it was a clear
exercise of freedom of speech and nobody questioned its
legality.

Our example is fictional but takedowns do happen in actual
platforms, mainly related to controversial topics® and dubious
copyright takedowns’. In the absence of a court order, the
platform owner must decide whether to allow a particular
video to be distributed or not.

BI has now decided to use Tribler Mobile to distribute their
videos and asks its members to collaborate by sharing and
boosting these videos. Now, as long as users donate enough
resources in the form of bandwidth and storage (via boosters),
content can be distributed to a large audience.

Adam, one BI activist, records a new video on his smart-
phone and uses Tribler Mobile to upload it. The smartphone
(mobile source) is ready to send the data to others. The app
also generates metadata that Adam posts (meta-booster) on
a subscription service (red dashed arrow from Adam’s mobile

Ohttp://news.cnet.com/8301-1023_3-57513354-93/
no-easy-outs-for-youtube-in-islam-video-controversy/ (Nov. 2013)

Thttps://www.eff.org/press/releases/lawrence-lessig-strikes-back-against-
bogus-copyright-takedown (Nov. 2013)

Adam

Maria's boosters

Fig. 1. Interaction among a mobile source (MS), boosters (B), a mobile
leecher (ML), and a desktop peer (DP). Dashed red arrows represent the flow
of meta-data from publisher to subscribers. Solid black arrows represent data
flows.

source in Figure 1). As soon as the metadata is posted, all
boosters subscribed to Adam’s content will download the data
from the mobile source and each other (solid black arrows
among Adam’s mobile source and Adam’s boosters). Once a
complete copy of the data has been uploaded, Adam can stop
uploading and exit the app, thus saving battery. Notice that we
have not specified how subscription works nor how mobile
source and boosters find each other; we will cover those
mechanisms in detail in Sections IV-A and IV-B, respectively.

Adam also shares a link (sharer) on social networks to
notify followers and friends that there is a new video available
for streaming. Maria, one of Adam’s followers, opens the link
on her smartphone (mobile leecher), streaming the video from
boosters (notice that, in this case, the mobile source is already
off-line). Maria likes the video and posts the link on the
subscription service (meta-booster). This action adds much
distribution capacity since hundreds of boosters (including her
own computer at home) are subscribed to Maria. Maria is
happy to contribute in ways that do not involve draining her
battery and mobile data traffic.

Peter opens the link Adam shared on his computer and
streams the video from boosters, his computer not only down-
loads data but it also uploads it to others (desktop peer).

In this example, as in our prototype, boosters boost all
content they are subscribed to. This is not a limitation of
the system in itself but just a simplification to accelerate
prototype implementation and deployment. More advanced
boosters would decide whether to boost a piece of content
depending on different factors.

We define the term booster broadly to allow for a broad
spectrum of boosters that may be combined with incentive
mechanisms, both centralized (e.g., private BitTorrent track-
ers [24], [25], [26]) and distributed (e.g., BarterCast [27], [28]



and Dispersy [29]). In this paper, however, we will mainly
focus on altruistic boosters.

IV. INFRASTRUCTURE SERVICES

We use PPSP (introduced in Section II-D) as transport
protocol for peers to transfer data to each other but other
infrastructure services are needed to coordinate peers.

This section describes each of the main infrastructure
services supporting the system. For each one, we first ex-
pose general requirements and challenges, proposing generic
mechanisms which are open to different implementations,
according to the specific needs and resources. Then, we
provide a description of our prototype’s implementation details
and discuss their properties and limitations. In some cases,
we discuss alternative implementations that may be used in
different contexts.

A. Peer Discovery

In the example in Section III-B (Figure 1), peers connect
and transfer data to each other. How does a peer find one or
more peers where the requested data is stored and ready to be
transferred? A peer discovery mechanism keeps track of peers
sharing a piece of content and peers can request a list of peers,
given a content identifier (identifiers are a hash string derived
from the data itself and can be used for integrity protection).

Popular P2P networks use two complementary kinds of peer
discovery mechanisms: tracker and gossip-like. Some systems
(e.g., Spotify) use both of them [2]. In this paper, we focus
on tracker-like peer discovery.

A tracker is a centralized registry where all peers sharing a
piece of content are registered. For each request, the tracker
returns a short list of peers (if there is any). Trackers started
as centralized services running on a single machine and have
evolved to become decentralized services. For instance, nowa-
days BitTorrent can use both centralized trackers, where the
service is run on a single (or few) server(s), and decentralized
DHT-based trackers, where the service is run by millions of
DHT-enabled BitTorrent peers.

1) Challenges: One of the side-effects of IPv4’s address
exhaustion is the massive deployment of NAT gateways. NAT
gateways are commonly used where several devices need
Internet connection but only one public IP address is available.
Nowadays, most Wifi access points are also NAT gateways
and much of the mobile operators do not provide a public IP
address, but a private one behind a large NAT gateway [13],
[14]. Therefore, mobile devices connected through Wifi or
mobile networks are very likely to be NATed.

NAT gateways are a great challenge for P2P networks
because NATS restrict connectivity. In general, it is difficult
to establish a connection to a NATed peer and even harder if
both are NATed. Several techniques have been proposed and
deployed but NATs remain a main challenge for P2P-based
systems.

This paper focuses on the particular challenge of uploading
new content from a mobile source. Since it is the only
source available, we must guarantee that a connection can be
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Fig. 2. Reverse peer discovery. (1) Mobile source (MS) periodically requests
peers from the tracker (T) but it does not announce itself, T returns an empty
list. (2) a booster (B) requests peers from T and it announces itself, T returns
an empty list. (3) MS requests peers, T returns a list containing B. (4) MS
establishes a connection to B, data transfer begins.

established between the mobile source and, at least, a peer (a
booster in our case).

Popular P2P systems like BitTorrent are pull-based systems.
In BitTorrent, a peer offering new content (a smartphone with
the original copy, in this case) would register themselves in
the peer discovery service (tracker) and wait for other peers to
establish connections. Unfortunately, that smartphone is likely
to be NATed, making it very hard to establish connections
from other peers to the smartphone.

Mobile devices with an open connection (i.e., not NATed)
are challenging in a different way. Normally, once a peer
is registered in a tracker, this peer cannot unregister itself.
Instead, the tracking mechanism only unregisters peers if they
have not renewed their registration within a period of time of
(commonly several minutes). Thus, if a mobile peer registers
itself and it happens to be reachable, it runs the risk of
receiving connections attempts over a long time period, which
brings the radio to a high-power state, thus consuming extra
energy. These connection attempts will reach the device even
after the P2P app no longer runs on the device.

Thus, we need to make sure that he mobile peer does not
register itself in the tracker to limit energy consumption.

2) Booster Discovery: We have reversed peer discovery so
that the mobile source establishes connections to other peers,
to increase the success rate of mobile sources uploading new
content to the P2P network and reduce energy consumption.

We present now a general description of the mechanism.
Then, we provide implementation details regarding our proto-
type implementation.

A mobile source uploading new content to the P2P net-
work posts the content’s identifier on the subscription service
(Section IV-B) and requests a list of peers from the tracker in
few-seconds intervals, as shown in Figure 2.

As soon as a booster is notified of a new piece of content,
the booster requests peers and registers itself in the tracker.
In the next periodic tracker request, the mobile source will
receive the booster’s address (IP address and UDP port) and
establish a connection to the booster. If the booster were not
reachable, the mobile source keeps querying the tracker for
more peers until it establishes connections and transfers a full
copy of the content. At that point, the mobile app can be



stopped. Boosters will continue distribution to other boosters,
peers, and mobile leechers.

Ensuring successful data upload from a mobile source is
relatively simple and cheap. The user himself (or a trusted
party) can set up a non-NATed booster at home or on a rented
server and configure it to boost his own content.

It is worth emphasizing that this simple reverse mechanism
allows us to build a fully decentralized streaming service
where mobile devices can upload content even in the presence
of NAT gateways. We plan to include other NAT traversal
mechanisms in the future.

3) Prototype Implementation: In our prototype, we aim
for a fully-decentralized system and thus do not rely on a
centralized tracker. Instead, we use a DHT-based mechanism:
BitTorrent’s Mainline DHT (MDHT).

In particular, we use Pymdht, a MDHT implementation in
Python designed to collect experimental data and to be easy
to modify. We have used this implementation before [30],
[31], and it is publicly available as open-source software. In
this case, we modify Pymdht to support the reverse lookup
mechanism described above.

On our modified Tribler desktop application, boosters that
lookup a content identifier and find no peers, announce them-
selves to the DHT-based tracker even though they have no
content to offer. This is done by sending an announce_peer
request to the appropriate nodes in the DHT overlay.

On the Tribler Mobile app, there are two different configu-
rations: mobile source and mobile leecher.

The mobile source sends get_peers requests to the DHT
periodically (20 seconds in the current implementation) but
it does not announce itself. As soon as the DHT returns a
lists of boosters, the mobile source establishes connections to
a subset of them and uploads data. The app user is shown a
status screen and he should wait until a full copy of the content
has been transferred before closing the app. Once the app is
closed, the app will not send/receive traffic, limiting energy
consumption.

The mobile leecher performs a single DHT lookup, sending
get_peers requests to DHT nodes, and as the mobile
source, it does not announce itself. As soon as the DHT returns
peers’ addresses, the mobile leecher establishes connections
and downloads data from them, starting playing back as soon
as the playback buffer is sufficiently populated.

There are two other major differences between the mobile
and the desktop implementations. First, while the desktop
implementation is basically vanilla Pymdht, the mobile imple-
mentation does not perform any DHT routing and maintenance
tasks, ignoring all requests from other nodes. There are two
reasons for this: (1) NATed DHT nodes cannot properly route
DHT lookups, harming lookup performance for other nodes
if they try [30], and (2) to avoid future requests from other
peers that would power up the radio interface even after the
app has been closed.

The second difference is that we translated Pymdht from
Python to Java due to the current poor support for Python
libraries on Android. Nevertheless, the translation was done

with great care to make both Java and Python implementations
equivalent.

B. Subscription Service

Boosters require a subscription service to receive notifica-
tions of newly published content metadata. Once a booster
receives a notification, it will decide whether to boost (i.e.,
fetch and redistribute the data), according to its configuration.
The functionality needed from the subscription service will
depend on the boosting incentive mechanisms deployed in the
system.

Our goal is to design a flexible system that supports a wide
range of boosting incentives. On the other hand, our prototype
provides a concrete implementation of a simple mechanism as
a proof of concept.

Existing P2P-based file-sharing systems have different in-
centive mechanisms. BitTorrent, for instance, only has incen-
tives for peers currently downloading data from other peers
(tit-for-tat [32] and super-seeding [33]). There are only indirect
incentives for seeding (uploading data to others after the peer
has completely downloaded a piece of content). If there are
enough users seeding, it is likely that the peer that seeded
one piece of content at some point in time will download a
different piece of content from another altruistic peer in the
future. This may be viewed as a kind of indirect reciprocity.

Private BitTorrent trackers introduce a direct incentive
mechanism for seeding. A private tracker keeps track of
each peer’s share ratio (bytes uploaded divided by bytes
downloaded). Typically, the tracker enforces a minimum ratio
by refusing to return a list of peers to those peers whose ratio
is lower than the minimum [25], [26], [24].

BarterCast [27] allows peers to trade bandwidth among
each other in a decentralized manner, converting bandwidth
into currency. Our long-term goal is to integrate a similar
mechanism to support fully-decentralized boosting incentives.

1) Prototype Implementation: Our prototype uses Twitter
as subscription service. We first describe how it is used with
an example, and then discuss its advantages and limitations.

When Bob wishes to contribute to the distribution of content
published by Alice, Bob simply adds Alice’s Twitter handle
(Ralice) to his booster’s configuration. Then, Bob’s booster
will periodically monitor @alice for new tweets containing
content metadata in the form of a PPSP URI schema (i.e.,
ppsp://f37...f1). Shortly after Alice tweets the PPSP URI,
Bob’s booster is notified of the new content and it starts
downloading and redistributing the content whose identifier
is f37..f1. It is worth mentioning here that the identifier is
derived through cryptographic hash derived from the data,
providing data integrity protection.

As a side-effect, Alice is also sharing a PPSP URI. That
means that Alice’s followers can click on the URI and start
streaming video to their devices (either desktop or mobile)
from boosters. If any of these followers re-posts (retweet) the
URI, the boosters subscribed to that follower will also start
boosting, adding distribution capacity.
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Fig. 3. Posting of a PPSP.me link on Twitter.

We could have used RSS subscription, which most BitTor-
rent clients already support. Twitter, however, has millions of
interconnected users [34] and offers additional user-friendly
features (retweet in particular) that produce powerful network
effects [35]. In our case, they enable fast and wide dissemi-
nation of content metadata.

Other advantages of using Twitter as boosting subscription
mechanism are: (1) it couples content to a person or organi-
zation, making it relatively simple to decide where to donate
resources (via boosting), and (2) a single system handles meta-
boosting and sharing.

The obvious limitation of using Twitter is having a single
point of failure and the risk that Twitter would not accept
PPSP URIs for commercial, legal, or any other reason. That
is why our long-term goal is to switch to a fully-distributed
pub-sub service.

C. PPSPme link translator

This part is technically not part of the system, but just
a convenient utility to bootstrap deployment. We include it
in this paper because we consider incremental deployment a
critical part of a successful system.

Tribler Mobile uses its own URI schema: ppsp://hash.
Unlike HTTP URLs (e.g., http://kth.se/en), PPSP URIs do
not contain any information regarding the content’s location.
In fact, PPSP could be considered information-centric, as

discussed in Section II-D. Instead, data’s location is discovered
via a peer discovery service, as we discussed in Section IV-A.

Unfortunately, browsers and mobile apps do not implement
any handle for PPSP URIs yet, showing an error to the user
who tries to open the PPSP link.

To bootstrap deployment, we have implemented a simple
link translator which leads users to useful information about
Tribler Mobile and how to playback content referred by a
PPSP link.

Thus, when Alice records a video on her smartphone and
chooses to publish it via Tribler Mobile, our software will
generate an HTTP URL in the form of http://ppsp.me/hash
for Alice to tweet it (see Figure 3 for an actual example).

Then, Alice’s followers who click on the ppsp.me link, they
will land on a simple web page with instructions to install
Tribler Mobile. Once Tribler Mobile is installed, the user is
asked whether he wants to always open ppsp.me links using
Tribler Mobile instead of a browser.

While the ppsp.me web service is a single point of failure,
it is not a critical service, just a convenient way of introducing
new users to Tribler Mobile. Users who already have Tribler
Mobile installed do not contact ppsp.me servers at all, and
directly proceed to find peers and stream content from them.
Even users who have not installed Tribler Mobile yet can find
information on the web about how to install the app, should
ppsp-me be temporally (or even permanently) unavailable.

Notice that ppsp.me links have no effect on boosters, since
boosters can parse both PPSP URIs and ppsp.me links, and
treat them equally.

V. CONCLUSION

We have presented a P2P video streaming platform where
mobile devices are well integrated, considering their limita-
tions: battery, mobile data caps, and limited connectivity due
to NAT gateways.

In particular, we are the first to propose, implement, and
deploy a complete system where mobile devices can publish
content directly into the P2P network and let other peers
(boosters) distribute the content to a potentially large audience
(including other mobile devices).

Our contributions include a reverse peer discovery mech-
anism that addresses two important issues. First, it allows
mobile devices to traverse NAT gateways —these gateways
are widely-deployed on Wifi and mobile networks. Second, it
saves battery because the mobile device is never registered on
the peer discovery service, thus other peers will never contact
the mobile device —the device’s radio must switch to high-
power state when receiving packets.

Our prototype has been built incrementally. Whenever
possible we have used existing proven-to-work components,
implementing backwards-compatible modifications to adapt
each component to our requirements. For instance, our reverse
peer discovery mechanism is backwards-compatible with Bit-
Torrent’s Mainline DHT, allowing us to leverage this multi-
million DHT overlay.



Our long-term goal is to evolve this prototype into a fully-
decentralized system without any single point of failure (our
current prototype relies on Twitter). Furthermore, we plan to
integrate more sophisticated NAT traversal mechanisms, and
incentive mechanisms to create a marketplace for publishers
and boosters.
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