

Faculty of Health, Science and Technology

Hugo Andersson

Simon Johansson

Chicago

A multiplayer card game based on Client – Server architecture

Computer science
C-level thesis

Date/Term: 13-06-05

Supervisor: Thijs Jan Holleboom

Examiner: Donald F Ross

Serial Number: C2013:12

Karlstads universitet 651 88 Karlstad

Tfn 054-700 10 00 Fax 054-700 14 60

Information@kau.se www.kau.se

© 2013 Hugo Andersson, Simon Johansson, Karlstad University

Chicago

A multiplayer card game based on Client –

Server architecture

Hugo Andersson

Simon Johansson

 iii

This report is submitted in partial fulfillment of the requirements for the

Bachelor’s degree in Computer Science. All material in this report which is

not my own work has been identified and no material is included for which

a degree has previously been conferred.

Hugo Andersson

Simon Johansson

Approved, 2013-06-05

Advisor: Thijs Jan Holleboom

Examiner: Donald F Ross

 v

Abstract

Chicago is a game based on a combination of poker and trick card games. We wanted to

implement this game as a network based multi user system based on client – server

architecture. To do this we had to create a client that would handle the interaction with the

user, and a server that would handle all the clients. Users should be able to create, join, leave

and play a game of Chicago. For the clients we had to create a GUI, handle user interaction

and communicate with the server. The server had to be able to manage all the clients and

games currently in the system. For every game there had to be a game procedure with specific

game logic. To have the clients and server be able to communicate we had to decide how to

structure the data sent. Both the client and server needed to use threads to be able to have

multiple actions running at the same time. When the server and client had been created we

tested the system with help of other users which gave us a different degree of feedback that

was used to improve the system or gave us ideas for future upgrades.

 vi

Contents

1 Introduction ... 1

1.1 Multiplayer games online .. 1

1.2 Client –Server model ... 1

1.3 Disposition .. 3

2 Background .. 5

2.1 Chicago game .. 5

2.2 System Design ... 9
2.2.1 Client design
2.2.2 Server design
2.2.3 Game
2.2.4 Lobby

2.3 GUI Design ... 11

3 Client implementation... 15

3.1 Lobby class .. 15
3.1.1 Lobby Constructor
3.1.2 New Game
3.1.3 Join game
3.1.4 Leave game
3.1.5 Update game
3.1.6 Game start

3.2 Lobby session class ... 19
3.2.1 Connect
3.2.2 Read message from server
3.2.3 Sending a message to server

3.3 Chicago class ... 22
3.3.1 Printing cards
3.3.2 User input
3.3.3 Print score
3.3.4 Opponent locations

3.4 Game session class .. 27
3.4.1 Init game
3.4.2 Changing cards
3.4.3 Trick game

3.5 Threads .. 29

3.6 Sockets .. 31

 vii

4 Server implementation .. 33

4.1 Deck .. 33

4.2 Hand .. 35
4.2.1 Sort hand
4.2.2 Find position in hand
4.2.3 Calculate hand strength
4.2.4 Compare hands

4.3 Other useful data structures ... 37

4.4 Chicago game procedure (CGP) ... 37

4.5 Lobby .. 41
4.5.1 Select
4.5.2 Client requests
4.5.2 Update game
4.5.3 Start game
4.5.4 Disconnect

4.6 Threads .. 44

4.7 Sockets .. 44

5 Client – Server communication .. 47

5.1 Lobby mode .. 47
5.1.1 Client lobby messages
5.1.2 Server lobby messages

5.2 Game mode ... 48
5.2.1 Game initiation
5.2.2 Changing phase
5.2.3 Trick phase

6 Feedback and future implementations .. 51

6.1 Chat ... 51

6.2 Settings .. 52

6.3 Timer ... 52

6.4 Feedback ... 53

7 Languages & Tools .. 55

7.1 C# and Visual Studio .. 55

7.2 C language ... 55

7.3 Putty and WinSCP ... 55

8 Result and evaluation .. 57

9 Conclusion .. 59

References ... 60

 ix

List of Figures

Figure 1: Client – Server model .. 2

Figure 2: Score system .. 5

Figure 3: Login screen .. 6

Figure 4: Creating a new game ... 7

Figure 5: Changing cards .. 8

Figure 6: Playing a trick card .. 9

Figure 7: Lobby window ... 12

Figure 8: Game window .. 13

Figure 9: Game string representation .. 15

Figure 10: Game list add or update ... 18

Figure 11: Starting the Chicago game window ... 18

Figure 12: Read message from server ... 20

Figure 13: Reading a list of names from server .. 21

Figure 14: Drawing a card ... 22

Figure 15: Calculate player location ... 23

Figure 16: Print score message ... 25

Figure 17: Print hand string ... 25

Figure 18: Opponents location .. 27

Figure 19: Run game thread .. 27

Figure 20: Next turn condition .. 29

Figure 21: Creating a thread (C#) ... 29

Figure 22: Changing controller thread safe ... 30

Figure 23: Creating socket (C#) .. 31

Figure 24: Connecting to a socket (C#) .. 31

Figure 25: Create network stream ... 31

Figure 26: Writing to network stream ... 31

Figure 27: Read all bytes ... 32

 x

Figure 28: Calculate card .. 33

Figure 29: Calculate suit and value ... 33

Figure 30: Shuffle deck algorithm .. 34

Figure 31: Flow chart .. 39

Figure 32: Select function ... 41

Figure 33: Game start .. 43

Figure 34: Thread declaration ... 44

Figure 35: Creating a thread (C) ... 44

Figure 36: Creating a server socket ... 45

Figure 37: Listen on socket ... 45

Figure 38: Accepting a client .. 45

Figure 39: Chat model ... 52

 1

1 Introduction

Chicago is a popular card game [11] that is a combination of a poker game and a trick

game. In poker the goal is to get a hand with as high value as possible such as pairs, straights,

flushes etc. A trick game is when one of the players plays a card and the others play a card in

the same suit if possible. The player that played the highest card in the same suit as the first

player will win the trick and start the next one. The Chicago game, as opposed to other card

games, has been chosen for this project because we have not found a single distributed

implementation of this game.

1.1 Multiplayer games online

As internet use has become more widespread, new possibilities have arrived. Today people

are connected via their computers and phones. As internet usage has increased, online

multiplayer games [13] have emerged. There are different kinds of games such as MMORPG

(massively multiplayer online role-playing game) [2], FPS (first person shooter) [9], and RTS

(real time strategy) [18], but we will discuss another genre of games, card games. People have

been able to play card games online since the 1990s with games as spades and hearts, and at

the beginning of the 21th century there was an explosion of poker clients. We wanted to add

the Chicago card game to the list of online games. A big difference with Chicago as opposed

to other poker games is that no money is involved. Chicago is played with the objective of

socializing with other players and to have fun.

1.2 Client –Server model

When creating a network based computer system there are several models to choose from.

The two most common are the Client – Server model [1] and the Peer to Peer (P2P) [19]

model. In the Client – Server model, see Figure 1, there is a central point, the server, through

which all clients communicate, while in the P2P model there is no central point and the clients

communicate directly with each other. When we designed our multiplayer card game we

chose to use the client server model. A reason for this is to remove the game logic from the

clients since we want the client role to be a user interaction and graphical representation. To

give an example of this we can think about the deck of cards used in a game. This deck is

 2

used for all the clients involved in the game and it is logical that this deck should be on a

central spot in the game system. We can think of the server as a dealer that will give the

players their cards, replace the cards and decide what player has the best hand and also keep

track of the score.

Figure 1: Client – Server model

Since we decided to use the client server model and we are two team members it became

natural to distribute the work so that one person was responsible for the client and the other

person for the server.

 3

1.3 Disposition

We have structured this report as follows.

Chapter 2 – Background

In this chapter we want to familiarize the reader with the Chicago game by first going

through the rules, and then demonstrating the game with an example game session. We also

discuss how the system is designed.

Chapter 3 – Client implementation

This chapter is about how the client works. We will discuss the classes that make up the

client and the main methods used. We will also discuss the usage of threads and sockets in the

C# language.

Chapter 4 – Server implementation

This chapter describes how the server works. It is also about different data structures and

algorithms we created, the main game function, and the Lobby system that handles multiple

clients and manipulations of games. We also discuss the usage of threads and sockets in the C

language.

Chapter 5 – Client –Server communication

This is a chapter about how the data that is sent between clients and the server is

structured.

Chapter 6 – Feedback and future implementations

This chapter discuss some of the feedback we have received from users that have tested

our system and also aspects we have found out ourselves by playing the game. We also

discuss features that we have planned to add to the system in the future.

Chapter 7 – Languages & tools

This chapter presents some of the software that has helped us during the project and the

programming languages that have been used for the client and server.

Chapter 8 – Result and evaluation

 4

In chapter 8 we discuss how we have met the projects goal, problems that we have had and

what we have learned.

Chapter 9 - Conclusion

This chapter summarizes the project and discuss our thoughts on what we have done.

 5

2 Background

When we started to work on the Chicago project we knew it would give us a set of challenges

such as designing game logic, relevant data structures and algorithms, designing a graphical

user interface, process communication over the internet and threading.

2.1 Chicago game

The game of Chicago [12] is played by 2-4 players. The goal of the game is to collect 52

points and in order to do that, every player tries to get the best poker hand by switching cards

three times, and after every switch the best hand earns the player with that hand points. In the

end of each round the players play a trick game where the aim is to get the last trick for 5

points. The trick game will be explained in more detail later in this chapter. A player can say

the word Chicago before this trick game and then he needs to win all the 5 tricks for 15

points. If he does not take all 5 tricks, then he will lose 15 points. All possible hands with

their respective score can be found in Figure 2.

Figure 2: Score system

We will now follow two fictional players, Alice and Bob when they play a game of

Chicago online. First of all, Alice and Bob start their Chicago client programs. They are met

 6

with a dialog box (Figure 3) with a single text box and a button, and they both enter their

username in their respective text box.

Figure 3: Login screen

Luckily their favourite usernames are available, so the server accepts the new clients and

Alice and Bob gets a new window representing the game lobby. The game lobby is the place

where a user can create a game of Chicago, or join a game that another client has created.

Alice press the new game button and is met with a dialog box (see Figure 4) were she has the

option to choose the number of players that should play the game. She can only choose two,

three or four players, but today she wants to play a two player game so she chooses this

option and press the begin game button and the client program return to the lobby.

 7

Figure 4: Creating a new game

In the chat window is a message that a new game was created and the game is found in the

list of games, to the left of the screen. At the same time Bob sees the newly created game in

his game list. He clicks on the game in the list and see that it is a two player game and he also

notice that his best friend Alice is in this game. Therefore he clicks the join game button with

the game marked in the list and since it is a two player game and two players have entered,

the lobby window disappears and is replaced with a new window with the playing area.

Both Alice and Bob have received five cards each. Alice has got the ace of hearts, eight of

hearts, seven of diamonds, six of clubs and the king of clubs. She decides to keep the two

highest cards by clicking on the three other cards (see Figure 5). After clicking the cards there

are red border surrounding the cards to mark out that they should be changed. To finally

change the cards she presses the change cards button and after a short wait she receives three

new cards, the three of spades, nine of spades and nine of clubs. She also reads in the chat

 8

window and noticed that Bob has the best hand with a pair and he has been rewarded with one

point for the hand. Alice once again tries to improve her hand by switching the three newly

acquired cards and she receives the five of hearts, ace of diamonds and the jack of clubs.

Figure 5: Changing cards

Alice now has a pair of aces and this hand is better than Bobs hand so this time Alice is the

one to receive one point. This time Alice changes only one card, the five of hearts. It is

replaced with the six of spades. At this time Alice and Bob need to choose if they want to

have a normal trick round or if one of them should try to go for Chicago. A player going for

Chicago will start the trick round and that player then needs to win all the five tricks. To play

a trick the first player to act chooses one of the cards to play. The next player needs to play a

card with the same suit as the first player and only if he cannot match the suit, another suit can

be played. When all the players have played one card the player that played the highest card

in the same suit as the first card wins the trick and will play the first card in the next trick.

Alice knows that with a six as the highest card in spades there is not a good chance to be able

to win all five tricks so she chooses no Chicago. Apparently Bob does not like to try his luck

either, because in the chat window Alice can read that no player has gone for Chicago.

 9

Figure 6: Playing a trick card

Bob is the first player to act and he plays the five of spades. Alice has to play the only legal

card, the six of spades since she has to follow suit. Since she had the highest card in that suit

she plays the next card the ace of hearts (see Figure 6). Bob does not have a heart so he

instead plays his lowest card the ten of spades. Alice plays her other ace and Bob once again

cannot follow suit but instead he plays the queen of spades. Alice plays the jack of clubs and

this time Bob can follow suit with the better card, ace of clubs. Bob plays his last card which

is the ace of spades and Alice has to play her last card knowing she has lost the trick game. In

the end Bob gets five points for winning the last trick and Alice receives another point for her

pair of aces. The score after the first round is three points for Alice and six points for Bob.

Some seconds later they are dealt new cards and the second round starts. The game continues

on for several rounds until finally Alice has got 52 points in the end of the round and this is

the requirement to win the game. After the match she closes the game window and returns to

the lobby.

2.2 System Design

The system is built on a client server architecture where multiple clients can connect with a

central server. We have tried to put as much of the game logic as possible on the server side

 10

while the client is a state machine that interacts with the user. The implementation languages

we chose for the client was C# and for the server we chose C. The reason for these choices

was because C# is a good environment for creating windows application and the client has

low requirements on performance and C is a fast language and perfect for a server that will

handle multiple clients. The clients will run on windows and the server will run in a Linux

environment.

2.2.1 Client design

The client is a Windows Forms based application [20] with a graphical view of the

Chicago game. It is composed of two parts, the lobby and the game. The lobby is a window

form where the player can create a game of Chicago or join a game already created by another

player. The lobby uses a lobby session class that handles the communication with the server

and a window form that processes the input from the user. When a game starts, the lobby

window closes and the Chicago window form is created. In this window the user will be able

to make all the actions that are needed to play the game. This window will show the players

own cards, the current score, the time left to act and all cards that are played during the last

trick session. There are two main classes at work in the game view and they are the Chicago

class and the game session class. The Chicago class is the window form that is used and the

game session class is interacting with the server.

In both views there are chat windows which are used to print messages to the player. There

is also a dialog box that will show at the start-up of the program and this is used to set a

username for the session.

2.2.2 Server design

The server is divided into two parts. The first part is the card game. There will be multiple

threads, one for each game in session, running on the server. The other part is the interface to

create and join games. This part is more about handling users and start game threads. We first

created the game part and only when it was completely finished and tested did we implement

the second part. The server is implemented in C because it is a fast language suitable for a

server that should handle this kind of computations. The server runs on Linux since it is a

suitable environment for a server and the best reason is that it is easy to operate the system

remotely.

 11

2.2.3 Game

The game part is a procedure called the CGP (Chicago game procedure) and this is a

function that is created as a thread for every single game that is run on the server. This

procedure consists of several rounds played until one of the players wins the game. For this

procedure to function there are some specific data structures and algorithms used. These are

the deck and the hand structures. The deck is a set of cards that is in a random order and there

is a function that picks a card from the deck and another function that returns a card to the

deck. If the first 52 cards have been dealt the returned cards will be reshuffled and used again.

The hand is a structure that holds five cards. There are also algorithms such as sorting the

hand, calculating hand strength and comparing hands.

2.2.4 Lobby

The other part is the lobby, which is the interface for creating games. This is a single

thread that will process a message from a client and act upon that message. If for example a

client sends a “create game” message a new game will be created. The lobby will also wait for

new clients to connect and make sure that they have a valid username that is not already used.

There are some data structures that are used in both parts of the program. These are the player

and game data structure. There is also a module that is used for the client communication.

2.3 GUI Design

The lobby is where clients can create or join a game of Chicago. We will now explain the

lobby window using the numbers in Figure 7. First of all there is a button (1) with the text

new game on it. When a user presses this button he will create a new game and this game will

show up in the list (2) to the left of the screen. If the client is already in a game the new game

button will be disabled. If a user presses on a game in the game list (2) then there will be

some information of the selected game under the buttons (3). The information includes the

game id, a unique number to identify a game, and player names.

To join a game a user needs to first select a game in the game list (2) and then press the

join game button (4). To leave a game the user has to press the leave game button (5). When

the lobby is changing some messages to the user will be output in the chat window (6).

 12

Figure 7: Lobby window

We will now go through the graphical parts of the game using Figure 8. First a list of the

players and their score is shown (1) at the upper left corner. This will update after the first and

second switch of cards and also after the trick game. In the left bottom (2) is the chat window.

Here the user can read messages from other players or from the system. This is where the user

will be able to follow the events throughout the game such as who had the last scoring hand or

who won the last trick. At the bottom (3), the user’s cards are shown. These can be marked or

unmarked by clicking on them. If the trick game is on, then only one card can be selected and

when it is time to change cards, all cards can be selected. To change the marked cards, or play

the single card selected in a trick game, the change card button (4) should be pressed. It is in

the middle of the screen (5) that the cards will appear when they are played in the trick game.

Here the user will see its own cards as well as the opponent’s cards. At the upper right corner

(6) is a timer that will count down when it is the user’s time to act. If this reaches zero the

 13

current marked card will be changed or played. If no cards are marked then no cards are

changed and if there is no marked card to play in the trick game, the game will pick a card to

play. In the middle right (7) is a hidden button that will appear between the card switching

phase and the trick game. If this button is pressed the user is requesting to go for Chicago, and

he will start the trick game and have to win all the five tricks. To not select Chicago at this

time the change button (4) should be pressed.

Figure 8: Game window

 14

 15

3 Client implementation

The client is built up of several classes. The Lobby, LobbySession, Chicago,

GameSession, GUICom and some dialog boxes. When the program is in lobby mode the

Lobby is used for user input and graphical output and the LobbySession is used to

communicate with the server. When the client is in game mode, the Chicago class is used

for user input and graphical output and GameSession is used for communication with the

server. The session classes communicate with the Lobby and Chicago classes through the

GUICom class. The GUICom class’s only purpose is to organize the calls to the Lobby and

Chicago for increased readability and we will therefore not describe this class in detail. We

also have a Game class to contain some variables used to keep track of created games. The

variables are, a unique game id to identify the game, the number of players that the game

should have, the number of players that currently have entered the game and a list of the

player names that are in the game. There is also a method that is used to create a string

representation (see Figure 9) of the game. This method is also used to override the Game class

default ToString method because the game list will use this when it display the game.

Figure 9: Game string representation

3.1 Lobby class

The lobby class is the class that handles user interaction and graphical output when the

game is in lobby mode. It will take care of input such as creating a new game, joining an

existing game, leaving a game and selecting a game. It will also handle server responses from

the LobbySession class such as new game, join game, leave game, update game and start

game.

 16

3.1.1 Lobby Constructor

When starting the Chicago client the user will be presented with a dialog box for name

input. After hitting return or pressing the send button the client will connect to the server and

send the username that was requested. This is done in the Lobby constructor by creating a

UserID dialog box. This dialog needs a reference to the LobbySession in order to call

the method that connects to the server.

When the user either clicks the ok button or enter, a method will check if there is text in the

text box. The method will just return if there is no text entered but in case there is, it will call

the connect method with the text as input. If the text was accepted as a username by the server

a true value will be returned and the dialog will be closed. If not, the method will just return

and the user has to try a different name.

When the UserID dialog box has closed we read the username and store it in the Lobby

class. Lastly we create a network thread with the method readMsgFromServer, which is

part of the LobbySession class.

3.1.2 New Game

Most of the methods in the Lobby class are called by the LobbySession class through

the GUICom class or from the event methods that is called when a user press on a controller.

When the user press the new game button the newGameButton_Click method is called.

At first this method checks if the program is in a valid state to create a game. There are two

variables that are used and these are the Boolean variable inGame, and the gameID variable

that is an unsigned integer. The inGame variable is true if the user is already in a game or is

waiting for a request to create a game. The gameID is nonzero if the user is in a game or

waiting for a request to join a game. If the player is not in a game and the gameID is zero it is

ok to start a game and a NewGameSettings dialog box is created. This dialog has got a

combo box with three alternative numbers of players to choose from, and a button to accept.

When the dialog box is closed, the value in the combo box is read and parsed to an integer

value. At last this value is passed on to the createGame method in the LobbySession

class.

 17

The newGame method is called when a new game has been created by the server. It will

first check if the game id is a valid number, (not zero), and stores the id in the gameID

variable. If the id is zero it means that the new game request was refused by the server and

therefore the inGame variable will be set to false.

3.1.3 Join game

If the user clicks on the join game button the joinGameButton_Click method runs.

This method will also control the state the program is in. If the inGame variable is set to false

and the gameID is set to zero it is ok to join a game. Next the method must control if the user

has selected a game in the gameList list box. If a game is not selected, a message is printed

out in the chat window and the method returns. In the other case the selected games id is used

with the joinGame method in the LobbySession class.

After the server has responded to the request to join a game the joinGame method will be

called with an answer as in parameter. This answer is either a one, if it was ok to join the

game, or zero if it was not ok.

3.1.4 Leave game

When the user clicks the leave game button the leaveButton_Click method is called

and this method checks if the user is in a game by making sure that the inGame variable is

set to true and the gameID is not zero and if this is the case it calls the leaveGame method

in the LobbySession class. At a later point when the server has handled the request the

LobbySession class will call the leaveGame method that will set the inGame variable

to false and gameID to zero.

3.1.5 Update game

Every time there is a change in the game, or a new game has been created or removed, the

LobbySession will call the updateGame method with the game to update as in

parameter. This method will call two methods, addListBox and gameListUpdated.

The first method will first try to match the game to the gameList list box [7] by using the

list box FindStringExact method with the games sting representation as in parameter

(see Figure 10).

 18

Figure 10: Game list add or update

This will return an index that can be used to address the game item where it is in the list

box or the index will show that the game did not exist in the list box. Depending on which we

will either add the game or just replace the game that already exist.

After the game list is updated we need to call the gameListUpdated since we have to

print out the game details if it has changed. The game details should always show the details

for the game that is selected in the game list or it should not show anything if no game is

selected. Therefore the first thing we do is to find out if there is a selected game. If there is not

a selected game we just print out some empty strings. In case a game is selected we create a

string to print out as a title containing the games string representation and the number players

entered and the total number players that can enter. Next we create a multiline string with all

the usernames that is in the games list of names.

There is also a method listOfGames that is used to prepare for updating the list from

scratch. What this method does is to remove all items in the gameList.

3.1.6 Game start

When the last player required in a game has entered, the LobbySession will call the

gameStart method. There the program will stop the readMsgFromServer thread by

calling the disconnect method in the LobbySession. After doing so the lobby windows

visible and enabled variables is set to false and a Chicago object is created as in

Figure 11.

Figure 11: Starting the Chicago game window

 19

By calling the ShowDialog method on the Chicago object the lobby will stop running

until the Chicago window has closed. Following this code is a check if the lobby should close

or not after the game has ended by checking a Boolean value. If the value is true the lobby is

closed and if the value is false the lobby will again enabled and visible. Lastly the network

thread is created as in the constructor and a call to update the list of games is made to the

LobbySession.

3.2 Lobby session class

In order to handle the communication with the server while in lobby mode we use the

LobbySession class. This class has methods that send messages to the server and it has a

method that will read messages received from the server and do the proper action depending

on the message.

3.2.1 Connect

To connect to the server we use the connect method with a username as in parameter.

This method will first look at a connected variable to make sure that there is not already a

connection with the server, then it will try to connect to the server, and when connected it will

send the username and wait for the server response. If the response is a zero then the

username could not be used and the connect method will return false. If we read the value one

from the server we set the connected variable to true and return true.

3.2.2 Read message from server

To be able to receive messages from the server the Lobby will start a network thread [17]

using the method readMsgFromServer. This method reads one byte (see Figure 12) when

available on the network stream and depending on the value in the byte it runs the correct

method.

 20

Figure 12: Read message from server

NEW_GAME is received after the server has handled a new game request and if this is

received the LobbySesson class will read 4 more bytes from the network stream and parse

them to an integer value that is used as the game id. This id is then passed to the lobby

through the Lobby newGame method.

JOIN_GAME will be the server response after it has handled a request for joining a game.

The LobbySession will read a second byte that it passes on to the Lobby with the

newGame method.

LEAVE_GAME is received if the server has allowed the client to leave the game it is

currently in. No additional data is required to read from the network stream. The

LobbySession class will pass the message to the Lobby with the leaveGame method. A

note here is that a leave game request does not always have to end up in a leave game

response since the server will deny the client the possibility of leaving the game if the game

happens to start before the leave game request has reached the server.

 21

LIST_OF_GAMES will also not require more data to be read. This message is passed on to

the Lobby with the listOfGames method that is used to prepare for a new list of games.

GAME_START will not require more data to be read. The message is passed on to the

Lobby with the gameStart method.

GAME_UPDATE is a message from the server with all the game data of a single game. First

the LobbySession will read 6 additional bytes from the network stream. 4 of these bytes

are the game id and the other two are the number of players the game holds and the number of

players that have currently entered the game. Now when the number of players entered is

known, the LobbySession can read in a username for every player in the game (see Figure

13). This is done by first reading a single byte with the length of the name, and then read the

name and put it in a name list. All the data that has been read is packed into a game object and

sent to the Lobby through the method addGameList.

Figure 13: Reading a list of names from server

REMOVE_GAME is a message from the server that tells the client that the game has been

removed from the system. The LobbySession class have to read four additional bytes and

store them as the id of the game to be removed. The id is passed to the Lobby with the

removeGameList method.

3.2.3 Sending a message to server

The LobbySession class has four methods for sending a message to the server. The first

is createGame and it will send two bytes. The first byte is the NEW_GAME value and the

second byte is the number of players that the game should hold. Next is the joinGame

method that will send five bytes of data. The first byte is the JOIN_GAME value and the other

 22

four is the id of the game to join. The third is the leaveGame method, and this will send one

byte with the LEAVE_GAME value. The last method is listOfGames. This will send one

byte of data with the LIST_OF_GAMES value.

3.3 Chicago class

The Chicago class is a window form that is the graphical view to the user and also the

class that handles the user interaction. It is the Chicago class that creates an instance of the

GameSession class and also starts the GameSession thread. The GameSession class

can communicate with the Chicago class through the GUICom class that we created mainly

to organize all the communication in that direction. We will go through all the important tasks

that the Chicago class has.

3.3.1 Printing cards

First we needed to implement the ability to print cards. We tried to reuse the cards.dll that

Windows has used for its card games but we found out that this DLL-file has not been used

since windows XP. So we had to try a different plan and started to look for cards on the

internet. We found out that it is very easy to get a set of pictures for a deck of cards so we

randomly selected the images for a deck. To print these cards we first needed an object to

print it on. We also knew that the cards have to be clickable. With all these requirements in

mind we found out that what we needed was a picture box. The picture box’s main feature is

that it is clickable and it is possible to draw a picture on it [6]. How to do this is shown in

Figure 14.

Figure 14: Drawing a card

We create an image from a file and compose the filename from a file path, the card value

and the .gif extension. Then we set this image as the image of the picture box. To be able to

mark a card we use padding so that the picture box is slightly bigger than the image and the

image is centred in the box. Then if we want to mark the card we set the picture box

background to red and create the illusion of a red frame around the card.

Another important part of drawing the card is how to calculate the location of the card.

There are two different aspects here, where the easier one is to draw the cards that should be

 23

switched. We have an array of five picture boxes and we draw the cards in the same order as

they arrive from the server. The second aspect is about drawing the trick cards. We have an

array of the trick cards but the positions of players are different depending on which client is

drawing them. The server has arranged the player in one order but the client always set its

own user at the bottom. We created a short algorithm (see Figure 15) to calculate the position

that should be used to draw a trick card.

Figure 15: Calculate player location

At first pos is the position that is the server’s perspective. At the end of this calculation

the pos will be that position but in the perspective of the client.

3.3.2 User input

Next important feature is to handle the user input. This is when the user clicks on one of

the cards or on a button. First we will discuss about clicking on a card. We have indexes for

the five cards numbered 0-4 from left to right. When the user clicks on a card a method will

run. This method will then call a method called cardClickAt with the argument i, that is

the index of the card that was clicked. This method is where the clicks are processed

depending on the game’s state. There are three possible states that the game can be in at this

point. First of all, if we have disabled the send button we do not allow clicks at all so the

method just returns. If enabled we check if the trick game is on. If both of these are false then

we know that we are changing cards.

When we change cards or play the trick game we need to be able to mark the cards. The

only difference is that when we change cards we can mark multiple cards. To be able to tell if

a card is marked we use an integer for every card and increase it by one for every click on that

card. Then we can see if it is marked by investigating whether the integer is odd or even. It is

a little more complicated when the trick game is active because then we need to also check if

there is a chosen card or not. We did have a strange bug here where multiple cards could be

marked if we clicked fast enough and we solved this by resetting the background on all the

cards before printing the new situation. The Chicago class will notify the GameSession

class with the changeCardAt(Boolean, int) where a true value will change the card

 24

and a false value will not change the card. The integer is used to identify the position of the

card.

The next important input is the send button. This is used to change cards, play a card

during trick game or decline Chicago. The method that handles these clicks will find out

which of these states it is in and execute the correct task depending on that state. If the

Chicago button is enabled it will just start the trick game by changing a Boolean value. If that

same Boolean value is true it will further check if there is a chosen card and also the players

turn to act. If all of these are true, then there will be a control if the card chosen is a legal card

to play, and if it is so, then the game session class will be notified that that card should be

played.

If the game is in the state of changing cards all integer values of the cards will be checked and

the marked ones will be set to invisible.

A last note on the send button is that for every click made on this button the method will

always lock the button so the user cannot use it again until the game allows it to. It will also

notify the GameSession class that the button has been pressed with the method

pressSendButton.

3.3.3 Print score

In the game of Chicago players will receive points when they have the best hand and when

they win the last trick. These points have to be presented so that the users can see the current

score and also be able to see why a player received a particular score. We have three main

methods that are used to fulfil these tasks.

Every time a player receives points from the best hand we call two of the methods. The

first is the pointMsg method and this is used to print out a message that will tell the user the

amount of points a player has received and why he received it.

 25

Figure 16: Print score message

This is done with some string manipulation based on the scoring player and the value of

the point the player has received (see Figure 16). The printHandString method (see

Figure 17) is used to get a string representation of a hand depending on the hand value.

Figure 17: Print hand string

There are also some other possible outputs such as when there is no scoring hand, the

hands are drawn or when the player has got a royal flush. It is probably justified to explain

why the royal flush needs a special string. It is because a royal flush does not give points

since it just wins the game immediately.

After the program has printed out the message it will also have to update the score in the

top left corner of the screen. This is achieved in the points method that takes a char array as

input. This array has got the current score for every player and all we need to do is to print

this out.

 26

The third method we use when dealing with the score is to print out the result of the trick

game. We call the trickPoints method and use two integers as input. The first integer is

the failval variable used to indicate if a Chicago has succeeded or failed. If the value is

zero then Chicago has failed, if it is one it has succeeded and if it has another value then there

was not a Chicago attempt in that trick round and no message about Chicago will be printed

out. The other integer value is the index of the last trick winning player. If this value is set to

the number of players in the game then there was no player receiving points for last trick. This

is a special case that can occur when a player has selected Chicago, failed the attempt but still

wins last trick.

3.3.4 Opponent locations

There are four picture boxes that are used to draw the trick game cards (see nr 5 in Figure

8). The box in the bottom is the player’s cards and then there are the opponent’s cards to the

left, right and the top. We store these picture boxes in an array and order them from bottom,

left, top to right. We did not like the look of the game when we played a two player game

since the single opponent was sitting to the left so we created a method, which we run during

the initiation of the game, that change the position of the picture boxes in the array. This only

affects where a card will be drawn and not the indexes that are used when drawing the cards.

When we had implemented this change (see Figure 18) for a two player game we also became

aware of that the same problem existed for a three player game, so we changed that so that the

top player was drawn to the right in that kind of game. We also needed to do the same

adjustment to the labels with the opponent names.

 27

Figure 18: Opponents location

3.4 Game session class

When the game is in progress the client needs to communicate with the server in an

organized matter. That is what the GameSession class is created to do. This class has a

method called runGame (see Figure 19) that is executed as a thread as long as the game is in

session. This method follows the same structure as the CGP function in that it is running at

the server end of the system. There are three main parts of the runGame thread [17]. There is

the initiation, the changing cards phase and the trick game part. The last two parts is what

makes a round.

Figure 19: Run game thread

 28

3.4.1 Init game

At the start of the game the client needs some important data about the game in session.

The data received at start is the number of players in the game, the position the client has in

perspective of the server and the names of all the players in the current game. This data is then

passed on to the Chicago class. After the initiation the round will start with the

wait_for_cards method that will read the starting hand from the server.

3.4.2 Changing cards

The user can change cards three times and therefor the implementation for changing cards

involves a three round loop. Every round in the loop will follow the same pattern except a

small variation on the third round. The steps are as follows.

1.) Change cards. To do this the GameSession class sets the sendButtonPressed

variable to false and tells the Chicago class that cards should be changed. Then it polls this

variable every 200 ms until it is marked as true by the Chicago class. Then there is an array

with a Boolean for every card in the hand that is investigated and every true value indicates

that the card should be changed. We also have an array with the values of the cards and we

change the card values that should be changed to the EMPTY_CARD value and send it to the

server.

2) Wait for cards. To get new cards the client reads five bytes from the server and stores

them in the card array. At this point all the variables in the Boolean array associated with the

cards is set to false assuming no cards should be changed by default. Then the

GameSession class sends the new cards to the Chicago class.

3) Wait for score. To receive the score two bytes are read and these represent the player

that has scored and the value of the points that the player has got. Then there are additional

bytes read, one for every player in the game, and these are the current score values. All the

score data are sent to the Chicago class the first two rounds of the loop but not the third

since the scoring hand will be rewarded after the trick game.

4) Check for royal flush. Since a royal flush wins the game immediately we need to check

this at this point and if it would occur the game will end.

 29

3.4.3 Trick game

There are five tricks that should be played to make up the trick game. To play one of these

tricks the client first needs to wait for a card from server. At first one byte is read and if this

value is the EMPTY_CARD value then the client will not receive a card at that time. Instead

this is in fact a signal that this player is the one to start the trick by playing a card. If the value

is not the EMPTY_CARD it will represent the player that has played the card and another byte

has to be read with the card that was played.

If the player has received the start signal he will send a card. The send card method first set

a char variable to the HAND_SIZE value, which is the number five. Then the Chicago class

is informed that a card should be sent. The variable will be polled until it has changed value to

the card that should be played and a single byte is sent to the server. If the client did not

receive the start signal but instead a card, then this card is sent to the Chicago class to be

drawn. Then there is a control (see Figure 20) if the client is the next player in turn to play a

card and if so a card is sent to the server.

Figure 20: Next turn condition

At the end of the trick game the trick score is read from the server and there is also a

message indication if the game is won or if a new round should start.

3.5 Threads

The lobby and the game view use threads [17]. In Figure 21 is an example how we create

the game session thread.

Figure 21: Creating a thread (C#)

As can be seen the Thread needs a ThreadStart class and this class needs a method that

will run as the thread. After the creation of the thread we need to call the threads start method

to start the threads execution.

 30

When we first started to use threads we found some strange errors at run time. At first we

did not understand what created these errors since the code seemed to be correct but after

some research we found out that there is a problem with writing to a windows control if it is

created in another thread because it is not thread safe [5]. This is built into the C# language

and an exception is thrown when the wrong thread is trying to write to for example a text

label. Luckily there is a solution to this problem. We had to write set methods for all the

controllers that should be able to be set from another thread and these methods all had to

follow the pattern seen in Figure 22.

Figure 22: Changing controller thread safe

First of all we can look at the setSomeController method. This is a general method

only used here as an example and not actually used in the Chicago program. There is

however a number of methods with this pattern implemented, one for every controller that we

write to. The method has got two in parameters. There could also have been any other number

of in parameters with any data types. A call back function declaration is also needed and it is

important that this has received the exact number of parameters as the method.

In the method we check to see if the controller needs to be invoked, that is, if we are trying

to write to this controller from a different thread. If not, then we can just write to the

controller. But what if we are? Then instead of writing to the controller we create a delegate

function that we invoke. What happens is that the method will be executed in the thread that is

created in where it is allowed to write to the controller.

 31

3.6 Sockets

The client uses a socket [8] to communicate with the server. This is created with the

Socket constructor as in Figure 23.

Figure 23: Creating socket (C#)

We set the socket to function over the internet and to be a stream socket using the TCP

protocol. We use TCP because it is important that all the data we send will be correct when it

arrive at the other end. To connect to the server we use the connect method on the socket

(see Figure 24).

Figure 24: Connecting to a socket (C#)

We connect to the IP-address that the string serverAddr contains and the port that is in

the integer serverPort. We then use the socket to create a NetworkStream (see Figure

25).

Figure 25: Create network stream

This stream can then be used to write to the server or to read from it. When we write we

just fill up a byte buffer and call the write method as in Figure 26.

Figure 26: Writing to network stream

But when we read it is possible that all the data is not ready to be read. To solve this

problem we created a method (see Figure 27) that reads from the network stream over and

over again until all the bytes specified is read.

 32

Figure 27: Read all bytes

We let the thread sleep for 200 milliseconds before attempting to read again if we could

not read all the bytes, so we do not have to get to many failed attempts. This time is short

compared to how long time users have to commit to their actions.

 33

4 Server implementation

When the server starts it will first set up a socket to listen for clients and then it will start a

lobby thread that will accept clients and communicate with them. Then the main thread will

accept input from the administrator that can be used to terminate the server or print out server

status. The lobby thread will create additional threads for each game that is created by the

clients. To achieve this there are several data structures such as Deck, Hand, Player,

Client, Game, Serverdata and Gamedata.

4.1 Deck

An important item in a card game is the deck. A deck is a set of 52 unique cards in four

different suits, hearts, clubs, diamonds and spades. The cards have 14 different ranks from 1

to 14 and in the game of Chicago, the lowest card, the ace, can be used as rank 1 or rank 14.

The suits have got their own values from 0 to 3 and the ranks are represented with the values

0 to 12 (0 is representing rank 1 and 14). With this system we can calculate what card a value

represents. As an example given that diamonds have the value 2 and we want to know the

card 10 of diamonds. A rank 10 card has the value 9 so using the formula in Figure 28 we get

the card 35.

Figure 28: Calculate card

Even more important is to calculate the reverse (see Figure 29). If we have the number 35

how will we find that it is the 10 of diamonds.

Figure 29: Calculate suit and value

In addition we have defined the EMPTY_CARD as the value 52 since it is the next value

after the highest value in the deck. Our goal when creating a deck was that the deck should be

reusable in other programs and that it should be simple to use. We identified some actions that

 34

are important when using a deck where the most important is to deal a card. You can deal

cards as long as there are cards left in the deck but if all 52 cards are dealt, the deck will deal

you a -1 to indicate that the deck is empty.

Another important action is to return a card to the deck. In most games when cards are

returned they are put in a separate pile next to the deck and if the deck is empty, the cards in

the pile can be reshuffled and reused. With this in mind we created the deck data structure

with two arrays of 52 chars. The reason for using chars is that we only need 52 values for the

cards and one extra for the empty card. The structure has two variables that contain the size of

the arrays, one variable that tells us which of the arrays is active and lastly a variable that

gives us the position in the active array.

To use a deck you first have to declare it and pass it to the init_deck function. This

function will set all the variables, it will fill the active array with the values from 0 to 51 and

at the end it will shuffle this array. The shuffle algorithm in Figure 30 will randomly select a

card and swap it with the card at the first position. Then it will select another card randomly

among the cards that are left and swap it with the card on the second position and so on.

Figure 30: Shuffle deck algorithm

The shuffle function will shuffle the array that is active and it will take into consideration

the size of the number of cards that is put into that array with its size variable. The getCard

function will return the next card in the active array. If the array is empty it will check if there

are cards in the other array and if there are, it will change active array, shuffle and return the

first card. If there are no cards left in the deck the EMPTY_CARD is returned.

The last function that will be mentioned is the returnCard function and this function

will take a card as input and try to put it in the array that is not active. The function will return

0 if it has succeeded or FULL_DECK if the deck is full. FULL_DECK is also defined as the

number 52.

 35

4.2 Hand

We found that a common structure needed for the Chicago game procedure is the hand. A

hand is made up of 5 cards. The combination of cards gives the hand a strength, such as two

cards of the same value will make a pair and all the cards in the same suit will make a flush,

where a flush > pair. The hand module has got a Hand data structure and four public

functions. The structure contains the 5 cards, the hands strength and two values that can be

used to compare hands with the same strength.

4.2.1 Sort hand

In many situations it will be useful to sort the hand and therefore we have made a

handSort function. This function uses the bubble sort algorithm and the reason for this

choice is that it is a really simple algorithm to implement and it does not matter that it is not

the fastest sorting algorithm since a hand only contains 5 items.

4.2.2 Find position in hand

Next is the handFindPos function. This function will loop through the five cards and try

to find a match. If there is a matching card, then its position will be returned and if not the

function returns NOT_IN_HAND. We have again chosen a linear algorithm that is not the

fastest but by far the simplest with the same motivation that the search is only through 5

items.

4.2.3 Calculate hand strength

The handCalcStrength function will calculate the strength of the hand and store the

result in the hand data structure. This function should be run before comparing hands with

handCmp and the hand should be sorted. To calculate the strength we first check if the hand

is a flush. In order to do this we compare the suits on the first card with the second one, the

second with the third and so on. If we find a pair with different suits, then we return 0, and

only if we can match all 5 cards do we return 1.

After the flush check we investigate if the hand is a straight. For this we exploit the fact

that the hand is sorted and we subtract the value of the first card from the second, the second

 36

from the third and so on. If the result is not 1 then it is not a straight and we return 0. If we

find it is a straight we return 1. There is a special case here that needs to be checked as well.

That is because an ace can represent both the value 1 in a low straight and 14 in a high

straight. We have solved this special case by looking at the first card and if it is an ace we

check the second card. If the second card is a 10 or a 2 then it can be a straight and the

algorithm continues as above with comparing second and third.

If the handCalcStrength function has found both a flush and a straight then it has also

found a straight flush and if it also finds an ace on the first position and a 10 on the second

position it is a royal flush. If any of these hand strengths are found the function returns since it

is impossible to have any other hand strength at the same time. If not the search goes on.

The function will create a temporary hand that contains only the values of the original hand’s

cards. It will then sort the temporary hand and after this it will start to go through it from the

beginning and compare the first and second and so on and if it finds two values are the same it

will count up an issame variable. If it in one try does not find a match or if it is matching

the last pair of cards the function will check this variable and depending on the value it will

see if a pair, three of a kind or a four of a kind is found. It will also set the value1 and/or

value2 variables to store the value of for instance a pair. It will also, by looking at the

current strength when finding a pair or three of a kind, find out if it is a two pair or a full

house. As for the latter if a pair is found and the strength is set to three of a kind then it must

be a full house. The values are set so that the value1 is the first tie breaker and value2 is

the second one.

4.2.4 Compare hands

The last function is the handCmp function. As the name implies it will compare hands and

return -1, 0 or 1 depending on which hand is the best or if it is a draw. It starts by comparing

the hand’s strength variables and if they are different the highest one wins. If they have equal

strength then depending on the strength the values are compared. For all strengths, except two

pair, only value1 is compares, and for two pair value2 is compared only if both hands

have the same value in value1. If this has not helped to find out which hand has the better

strength then the cards are compared one by one, first both hand’s highest card, then their

 37

second highest and so on. Here the function must check if a losing card is an ace since the ace

is in value the lowest card but in reality the highest card and in this case the winning card.

4.3 Other useful data structures

We have created some data structures that are needed only to pack data that belongs

together. Here we will discuss each of them briefly.

The Player structure represents a player and this structure contains a socket used to read

and write to the player, a location used to save some searching when we need to find the

player in the Serverdata structure.

The Client structure contains a pointer to a Player and a Game if the player is in a

game. Also the structures used to create the client sockets are stored in the Client structure.

The game data structure contains a game thread variable, a location for finding the game in

the Serverdata structure, an ok variable to indicate if all players are connected to the

server, the running variable to indicate if the game is started or not. It also has a unique

game id, the number of players the game can hold, the number of players currently in the

game and the players in the game.

We have mentioned the Serverdata structure and this is used to share some variables

used throughout the server. It contains a done variable that is used to tell if the program is

about to stop executing, server socket and port number, a set of file descriptors for all clients

and the clients in the lobby, an array with all the clients and an array with all the games.

In the Chicago game procedure the Gamedata structure is used to store all the variables

used throughout the game.

4.4 Chicago game procedure (CGP)

The CGP module contains only one public function and that is the

chicago_game_process. This function is used as a thread [4] for every game that is

currently running on the server. It will receive game data as input. The game data includes the

 38

name and number of players that is involved in the game. To be able to create this function

we first created a flow chart (see Figure 31) with server, client and the traffic between them.

The function starts with some initialization and after that, the game starts. Since the game is

made up by rounds the function is used in a constant loop that evaluates whether the round

ended the game or if a new round should start.

 39

Figure 31: Flow chart

 40

The round starts with the initialization of a deck. Then it picks 5 cards for every player in

the game and sends the cards to respective client. The cards are always sent as a stream of 5

bytes. After sending all the cards the game waits for the clients to send back the cards they

want to change. The returning cards are also sent as a 5 byte stream, were the values are set to

the card values that should change or EMPTY_CARD for the bytes that are left over. Then the

cards are changed and new hands are sent to the clients and then the function will calculate

what hand is the best one, update the score and send it to the clients. The last steps are then

repeated 2 more times. Now the round enters the next phase but first it will wait for all the

clients to signal if they want to go for Chicago or not. If they send 1 they will go for it,

otherwise they send 0. If two clients will send a 1 then the first client in turn will be the one

going for Chicago.

The server will then calculate which client is the one to start and send a start signal,

EMPTY_CARD, to that client. All the clients are in that moment waiting for cards but the one

starting will read the card and find that it is a start signal and instead send back a card that it

wants to play. This card, and the number of the client that played the card, is then sent to all

the clients and the clients will calculate if they are the next in turn. The server will receive

another card and send it etc. When all clients have played one card each the server will

calculate who is next to play and a new start signal is sent and so on. All this is done 5 times.

After this the game will calculate the new score and update the clients. Finally it will calculate

if there is a winner and if it is then the round function will return 1. If there is no winner it

will return 0.

The score that is sent to the client is made of an unsigned char for each player. We have

chosen this data type for two reasons. First we do not need a bigger data type because the goal

is to get up to 52 points and the unsigned char has a maximum value of 127. The second

reason is that a player can lose points if he fails a Chicago attempt and therefore end up in a

negative score. It is theoretically possible to reach the maximum or minimum values and

therefore the program do check for overflow and underflow of these variables and just do not

allow it to happen. If for example an addition 126 + 3 is made, then the result will end up as

127.

 41

4.5 Lobby

The server will have to handle requests from multiple clients such as joining, creating and

removing games. To do this we created the lobby. The lobby is a thread [4] that loops through

the same sequence over and over until the server shuts down. The sequence is as follows.

1) If server is running, run the select function using a timeout of ten seconds.

2) If select [3] returned a value greater than zero there is data to be read from at least

one socket.

3) Check if the server socket can be read and if it can accept a new client connection.

4) Loop through all the client sockets and if a socket can be read, read one byte and store it

as the request variable. If the byte could not be read, the client is disconnected.

5) If the client was not disconnected handle the request.

4.5.1 Select

When handling multiple sockets there is the problem that some clients send data while

others are idle and the read function call will block until data is read or the client is

disconnected. It would be good to have a method to check which sockets have data to read in

order to only apply the read function on those sockets. To handle this situation we use the

select function [3] (see Figure 32).

Figure 32: Select function

This function has five arguments. The first argument needs the maximum size of the set

that is used. We use the FD_SETSIZE here, which is the maximum size of the set. The

second argument is a pointer to a set of file descriptors that should be checked for reading. In

our program we have all the client sockets that are currently in the lobby and the server socket

in this set. The third argument is a set of file descriptor that should be checked for writing and

the fourth argument is a set of file descriptors that should be checked for errors. We only need

to control whether the sockets can be read and therefore set the third and fourth argument to

NULL. The last argument needs a time value structure and this is used to set the time the

select function should wait for sockets to be ready for reading. If the select function

should not timeout, but instead block until one of the sockets can be read, this argument can

 42

be set to NULL. As soon as at least one socket can be read the select function returns the

number of file descriptors in the set that is ready. The file descriptor sets can be manipulated

with the macros FD_SET to add a file descriptor, FD_CLR to remove a file descriptor,

FD_ISSET to check if a file descriptor is ready, FD_ZERO to make the set empty.

4.5.2 Client requests

The server will read a byte from the lobby and depending in this bytes value it will do one

of four actions.

NEW_GAME: If the request was a new game then the server will read another byte from the

client representing the number of players that should be in the game. Then it will try to find

an open spot in the game array and if there is room for more games it will create a new game

and store it at that free location. The creation of a new game is made by first finding a unique

game id. This is done by using an unsigned static integer variable that will increase its value

by one every time a new game is created. We need to check all other games so that there is no

game already using that id. This is because the integer will overflow when it has reached its

maximum value and start over from zero, and in theory a game could still be in progress even

if many thousands of games have ended. In the worst case scenario the server needs to try as

many ids as there are games, so if there are n games it will have to perform n times n

operations. When a game has been created a new game message is sent to the client or if an

error arises an error message is sent. In the end the game will be updated to all clients in the

lobby.

JOIN_GAME: When the server has received a join game request it must read 4 more bytes

that represent the game id to join. Then the server must find the game in the game list and add

the player to the game if it exists. After this it will compare the number of players entered in

the game to the number of players that the game holds and if these values are the same the

games running variable will be set to true. Next the server will send a join game message to

indicate that the client joined the game successfully. After this reply the server will check the

running variable and if it is true it will start the game. If the game could not be created an

error message is sent to the client instead of the join game message. Also after the game has

changed it will be updated to all the clients in the lobby.

 43

LEAVE_GAME: After the server has received a leave game request it will first check

which game the client is in. If the game’s running variable is set to true or if for any reason

the game does not exist, the leave game request is just ignored. Otherwise the client is

removed from the game and a leave game reply is sent to the client. After this the server

checks the number of players still in the game and if it has become zero the game is removed.

If the game is removed all the clients are informed of the removal of the game and if it is not

all clients will receive an update of the game.

LIST_OF_GAMES: If the client has sent a list of game request the server will first send a

list of games reply followed by a game update for every game currently in the lobby.

4.5.2 Update game

When a game has been created or changed, the server needs to update the clients. The

server contains a function that will send all the game data of a game to all the clients that are

in the lobby. This function uses a function that will update only one client with the relevant

game data. This function is also used when the client request a list of all the games currently

in the lobby. There is also a remove game message that can be sent to all clients if the game

has been removed.

4.5.3 Start game

When a game has enough players entered it is time to start the game. To do this the server

first removes all the clients from the lobby by clearing the client sockets from the lobby file

descriptor set. Then a GAME_START message is sent to all the clients involved in the game

and when all clients have been notified the game thread [4] is created with the

pthread_create function as in Figure 33.

Figure 33: Game start

The last argument to the pthread_create function is the input to the

chicago_game_process and this structure has got a pointer to the game data and the

server data. After the game thread has been created a remove game message is sent to all

clients that are still in the lobby.

 44

4.5.4 Disconnect

If the server reads from a client and the expected amount of data could not be read, the

client has disconnected. When the server finds a disconnected client in the lobby it has to

remove all data connected with that client. The first action the server takes is to remove the

clients socket from the lobby file descriptor set. Then it has to control whether the client was

currently in a game. If the client was in a game then the client is removed from that game and

all lobby clients will be updated. The last action the server takes is to close the disconnected

clients socket and free all data connected to the client.

4.6 Threads

The server uses threads [4] to be able to run several functions simultaneously. To create a

thread in c we first need to declare a thread variable (see Figure 34).

Figure 34: Thread declaration

To create the thread we run the pthread_create function call (see Figure 35). This

function takes 4 arguments as input. The first argument is a pointer to the thread variable that

should be associated with the thread. The second argument is used to set specific attributes for

the thread but it is also possible to use the default attribute by setting this argument to NULL.

The third argument is the function that should run as the thread and the last argument is a

pointer to the data structure sent as argument to the thread function.

Figure 35: Creating a thread (C)

All the threads we use will run to the end of the functions used, or they will stop if the

exit function is called.

4.7 Sockets

To be able to communicate over the internet we need some way to abstract the network.

We also need the data to arrive at its destination without getting lost or corrupted. The answer

is to use sockets [3]. We use two kinds of sockets, a server socket and several client sockets.

The server socket is used to listen for new clients in order to receive client sockets. To create

 45

a server socket (see Figure 36) we call the socket function. We use TCP sockets since they

will guarantee that the data sent will be correct and that no data will be lost as long as there is

a connection. It is important since all the data must have the correct values or the system

would fail. After the creation of the server socket we need to bind it to a port so that the

packets sent to the server will find the correct process.

Figure 36: Creating a server socket

With this socket we can now listen for clients as in Figure 37.

Figure 37: Listen on socket

After we have called the listen function we can accept a client (see Figure 38) and this will

return a client socket that we can use to send and receive data on with the read and write

system calls. These functions need a socket, a buffer and the size to be read or written as

arguments.

Figure 38: Accepting a client

We wrapped these functions into a receiveFromClient and a sendToClient

function that has the same arguments, but they also print out the data sent, so it is easier to

monitor the traffic for debugging, and it also returns true or false depending of if it read or

wrote as many bytes as the size argument. We can then use this to find disconnected clients in

the system and then remove them. It is rather easy as long as the clients are in the lobby but it

is a little harder if they are involved in a game. We solved this by adding an ok byte that we

 46

sent before every message during a game. If the server finds a disconnected client in a game

then the games ok variable will be flagged to false and the other clients will be informed of

this the next time data is sent to them. Then the server will add those clients to the lobby,

remove the game and end the game thread.

 47

5 Client – Server communication

To be able to coordinate the server and the multiple clients we had to decide which data to

send and how to structure the data. When a client is in the lobby it needs to be able to execute

requests like creating a game or joining a game, and while a client is in a game then the data

must follow the game’s flow such as sending cards to change and receiving new cards.

5.1 Lobby mode

When a client is in the lobby it will communicate with the server by sending and receiving

messages. We call them client lobby messages and server lobby messages.

5.1.1 Client lobby messages

The client can send four messages.

1) The Create game message is two bytes where the first byte is the NEW_GAME value and

the second is the number of players that the game should hold.

2) The Join game message is five bytes long, where the first is the JOIN_GAME value and

the other four represent an integer value which is the game id.

3) The Leave game message is one byte with the LEAVE_GAME value.

4) The List of game message is on byte with the LIST_OF_GAME value.

5.1.2 Server lobby messages

The server can send six messages.

1) The New game message is five bytes where the first byte is the NEW_GAME value and

the other four represent an integer value which is the game id.

2) The Leave game message is one byte with the LEAVE_GAME value.

3) The List of game message is one byte with the LIST_OF_GAME value.

4) The Game start message is one byte with the GAME_START value.

5) The Game update contains a variable amount on bytes depending on how many players

that are currently in the game and how many letters there are in the player names. The

message is created starting with seven bytes where the first byte is the GAME_UPDATE value.

The next four bytes represent an integer value which is the game id. The sixth byte is the

number of players the game holds and the seventh byte is the number of players entered. Then

 48

for every player currently in the game, one byte with the players name and then that amount

of bytes holding the characters of the name is sent.

6) The Remove game message is five bytes where the first is the REMOVE_GAME value

and the other four represent an integer value which is the game id.

5.2 Game mode

We will here explain which data is sent between the server and one of the clients during the

initiation of a game and the first round of the game. All the other clients will communicate in

exactly the same way with the only difference being that some of the values, such as card

values, are different. Added to all the messages from the server to the clients we have one

byte informing the clients if the status of the game is ok, that is that no client is disconnected.

If the server finds a disconnected client it will set this byte to false and after sending it to the

remaining clients it will put them back in the lobby, remove the game and end the game

thread.

5.2.1 Game initiation

The first message that is sent from the server during the initiation of the game is one byte

with the number of players in the game. Next is a byte telling the client what position the

client is on in the perspective of the server. At the end the server will send one byte with the

length of the name of a player followed by that player name for every player in the game.

5.2.2 Changing phase

The cards are sent to the client as five bytes representing the five cards. The client sends

five bytes back to change the cards and the values of the cards should be the cards that should

be changed or the EMPTY_CARD value if it should not be changed. When cards have been

changed the score is sent to the client by sending two bytes with the player that received the

last score and the number of points acquired. These two bytes are followed with one byte for

every player in the game where every single byte is a player’s total score. After the changing

phase is completed the client send one byte with a decision of going for Chicago or not and

the server responds with a byte that either represents the player going for Chicago, or a value

that tells the client that no one has gone for Chicago.

 49

5.2.3 Trick phase

Every trick in the trick phase starts with the server sending a start signal to the starting

client. This start signal is one byte with the EMPTY_CARD value. When a client plays a card it

will send one byte with the value of the card and the server will send the value of a played

card as one byte to the client. When the trick game is done the server will send one byte that

can have three different values depending on if Chicago has succeeded or not or if no player

went for Chicago in that trick game. Then one byte with the trick winner is sent followed by

one byte for every player with the players total score. At the end of the round two additional

bytes are sent to the client where the first tells if there is a winner of the game or not and the

second tells who the winner is if the game is over.

 50

 51

6 Feedback and future implementations

The Chicago program can always be improved in the future and we will here discuss some

of the features that we think should be implemented in the future such as chat, settings and

timer. We will also discuss some of the feedback we have received from users who have

tested the Chicago client.

6.1 Chat

Since the user always plays the Chicago game with other users it would be good for the

users to be able to communicate with each other. This would improve the experience for the

users and it would also help the users to organize themselves while creating and joining

games. It would also be good if there were different chats depending on which game the user

is in, or if the user is in the lobby. In order to implement a chat for the Chicago system we

have discussed two ways of implementing it. One way would be to send chat messages on the

current TCP connections in between the lobby traffic or game traffic currently going on

during execution. To make this idea work we would have to change the implementation in a

number of places on the server and we would have to add an extra byte to mark whether the

data is a chat message or not. We think that this is an impractical idea since we would have to

do a number of changes throughout the code in both the client and server. The second way of

doing this is to create a new chat process on the server that will accept new TCP connections.

We also create a chat class on the client that will connect to the chat process. Then we have

all the chat traffic on its own connection. A model of this solution is shown in Figure 39.

Depending on how we choose to send the chat messages we think that the chat needs a system

involving chat channels so that there can be one private chat for every game. The chat class

will have methods for joining and leaving a chat channel. The client will either be in the lobby

channel or a channel with the id corresponding to the id of the game the user is currently in.

The chat class will also have methods for sending chat messages and the server will send this

message to all the clients that are in the same chat channel.

 52

Figure 39: Chat model

6.2 Settings

It would be good to let the user have some control over the client in order to change the

client’s appearance. Aspects that could be changed are the background colour, card images,

sounds and fonts. To implement these we would first create a menu with these kinds of

options. To change the background colour or fonts we only need to change the variables that

control this. As for the other options we need to change the path string, to the folder were

images or sounds are located.

6.3 Timer

A problem we thought about from the start was the event of a user taking too long to make

his moves. It will not be a pleasant game session if every change of cards takes several

minutes or if a user will leave his computer to let the other users wait. To address this

problem we want to implement a timer that will tick down every time a player has to make a

decision and if the timer runs out the program will make the decision for the user. Aspects to

take in mind here are how long the timer should tick and what decisions should be made. Our

thoughts on this are that the time should be around 20 seconds to interact, but that time could

be changed if a majority of users experience this to be too long or short. When the client

changes cards the default decision should be to change the currently marked cards. If the

choice is to go for Chicago or not, the default behaviour should be to not go for Chicago since

this is the most common choice. If the choice is to play a card in the trick game the card

chosen could be the lowest card, the highest card or a random card. We think the lowest card

 53

should be the default option since the user might want to have the high cards left to have a

chance to win last trick. In any case the card has to be in the correct suit if such a card exists

and if the user is the first to act then the suit could be selected randomly or by the suit value.

6.4 Feedback

We have been playing the Chicago game and we have also had other people play the game

and this has given us a certain amount of feedback from ourselves and the other persons. Here

we will discuss the feedback and our reflections.

The first aspect we found out was that the game needed some way to tell the user when it is

time to act. We and others often found ourselves in a situation when we did not know that it

was our turn to act and therefore the game stalled. To solve this problem we have

implemented a sound that will be heard when it is time to act. We have also thought about

adding a flashing colour that could attract the attention of the player, but we decided that the

sound is enough.

The next problem was that some users did not like the way the cards were played in the

trick game. As it is now, the user has to click on a card to mark it and then click the send

button to play it. Some users wanted to be able to drag the card to the middle of the window.

It is probably possible to implement this feature but we found that a compromise could be to

play the card just by double clicking on it. This is a really easy solution compared to be able

to drag the card.

At first it was very confusing to know how the opponents were seated compared to the

user. This was solved by adding labels that shows the user names and their location.

 54

 55

7 Languages & Tools

In this chapter we will briefly comment on some of the programs and programming languages

we have used during this project.

7.1 C# and Visual Studio

We used C# as our programming language for the client since it is an easy to use for making

windows application. To our help we had visual studios so that we could use the built-in

window designer. The designer is an easy way to create window forms by dragging

controllers to the form and changing their properties in a list of settings.

7.2 C language

For the server we used the C language because it is a fast language and a good choice for

making programs for Linux systems. Speed is an important part since there will be a lot of

pressure on the server if we increase the number of clients and games allowed.

7.3 Putty and WinSCP

To be able to run and test the server we used a Linux computer that has access to a 100 Mbit

network. In order to upload files to this computer we used WinSCP [16] that is a graphical file

manager application that use the SSH protocol [15]. We also used the Putty [10] application

to be able to compile and run the server. Putty is a console application that also uses the SSH

protocol.

 56

 57

8 Result and evaluation

Our main goals with this project were to create a server process and a client to be able to

play a game of Chicago, and to add a lobby system for managing multiple clients and games.

We have met these goals even though the Chicago system always has room for improvements

in the future. We also had secondary goals such as implementing a chat system and time

control in the game but these have not yet been implemented.

First we created a server process that could handle a single game and a Client to play the

game on. Then we tested the game so that the game logic would be correct and we also made

changes due to feedback we received. Next step was to use this process and client in a

multiplayer system that also could handle multiple games. To this end we created the lobby

system where users can create, join and leave a game of Chicago.

On the client side we created the Lobby class for user input and graphical output and the

LobbySession class for server communication while in the Lobby. We also created the

Chicago class for user input and graphical output and the GameSession class for server

communication and controlling the game flow during a game session.

On the server side we identified and implemented some important data structures that we used

such as Deck, Hand, Client and Game, and algorithms to calculate hand strength,

compare hands and shuffle a deck of cards. We created the Chicago game procedure to use for

every instance of a game running on the server and a lobby to communicate with the clients

so that games could be managed.

We used threading on both client and server to be able to have multiple actions made

simultaneously and sockets to send data over the internet.

During the project we have had some problems where most of them were easy solved with

common debugging, but there were two problems that gave us some unexpected setbacks.

The first was the problem with threads [5] in combination with windows controllers. This

problem was found during runtime when an exception was thrown and it was not obvious at

 58

first how to solve this issue. The second problem was that we did not add disconnection

detection to the system until late in the project. This gave us about 10 hours of extra work and

complication and this could have been much easier and had a better design if we would have

spent more time and planning on this matter from the start.

When we have tested the game ourselves and with others we have received feedback and

we have used this to improve the system especially on the client. We have found small bugs

just by playing the game and trying all kinds of scenarios. One of the bugs we found was

when one of the players had acquired a straight flush for the first time resulting in a system

crash. This was not a hard problem to solve since it was due to a typing error that still could

compile. Feedback has also made us aware of problems we missed at the planning stage such

as notifying the user that it is time to act and that users have different expectations on how to

interact with the client.

By working on the Chicago project we have learned how to design a server system that

handles multiple clients and what difficulties it can bring. We have learned how to handle

multiple clients with the use of the select function [3]. We have also learned how to set up a

server behind a router with the use of port forwarding [14], and using SSH [15] to upload

files, compile and start the server remotely.

 59

9 Conclusion

The project resulted in a multiplayer card game based on client – server architecture. The

server was developed in C and the client in C#. As a whole we are happy with what we have

achieved during the project. The next time we undertake a project like this one we would

probably organize the network parts better and have a plan for disconnections and other

problems that have to be addressed from the beginning. We will also know that we have to do

specific set and get methods for window controllers so that they will work from other threads

and this should probably be done as soon as the controller is added to the project. Also we

would have liked to test the system a little bit more than we have, but this will be done as the

project will continue.

 60

References

[1] Blair, G., Coulouris, G., Dollimore, J. & Kindberg, T. (eds.) (2007). Distributed Systems:
Concepts and Design.(5th edn.). Addison-Wesley.

[2] Wikipedia. MMORPG. [Online] Available from: http://en.wikipedia.org/wiki/MMORPG [2013-05-
20].

[3] Hall, B. Beej´s Guide to Network Programming. [Online] Available from:
http://beej.us/guide/bgnet/output/html/multipage/index.html [2013-05-20].

[4] Ippolito, G. POSIX thread (pthread) libraries. [Online] Available from:
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html [2013-05-20].

[5] Microsoft. How to: Make Thread-Safe Calls to Windows Forms Controls. [Online] Available from:
http://msdn.microsoft.com/en-us/library/ms171728.aspx [2013-05-20].

[6] Microsoft. Image.FromFile Method (String). [Online] Available from:
http://msdn.microsoft.com/en-us/library/stf701f5.aspx [2013-05-20].

[7] Microsoft. ListBox Class. [Online] Available from: http://msdn.microsoft.com/en-
us/library/system.windows.forms.listbox.aspx [2013-05-20].

[8] Microsoft. Socket Class. [Online] Available from: http://msdn.microsoft.com/en-
us/library/system.net.sockets.socket.aspx [2013-05-20].

[9] Wikipedia. FPS. [Online] Available from: http://en.wikipedia.org/wiki/First-
person_shooter[2013-05-20].

[10] Tatham, S. Putty. [Online] Available from: http://www.putty.org [2013-05-20].

[11] Wikipedia. Card game. [Online] Available from: http://en.wikipedia.org/wiki/Card_game

[2013-05-20].

[12] Wikipedia. Chicago (poker card game). [Online] Available from:
http://en.wikipedia.org/wiki/Chicago_(poker_card_game) [2013-05-20].

[13] Wikipedia. Online Game. [Online] Available from: https://en.wikipedia.org/wiki/Online_game
[2013-05-20].

[14] Wikipedia. Port Forwarding. [Online] Available from:
http://en.wikipedia.org/wiki/Port_forwarding [2013-05-20].

[15] Wikipedia. Secure Shell. [Online] Available from: http://en.wikipedia.org/wiki/Secure_Shell
[2013-05-20].

[16] WinSCP. WinSCP. [Online] Available from: http://www.winscp.net [2013-05-20].

[17] Microsoft. Threading Tutorial. [Online] Available from: http://msdn.microsoft.com/en-
us/library/aa645740(v=vs.71).aspx [2013-05-20].

[18] Wikipedia. RTS. [Online] Available from: http://en.wikipedia.org/wiki/Real-
time_strategy[2013-05-20].

[19] Wikipedia. Peer to Peer. [Online] Available from: http://en.wikipedia.org/wiki/Peer-to-peer
[2013-05-20].

[19] Wikipedia. Peer to Peer. [Online] Available from: http://en.wikipedia.org/wiki/Peer-to-peer
[2013-05-20].

http://en.wikipedia.org/wiki/MMORPG
http://beej.us/guide/bgnet/output/html/multipage/index.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
http://msdn.microsoft.com/en-us/library/ms171728.aspx
http://msdn.microsoft.com/en-us/library/stf701f5.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.listbox.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.listbox.aspx
http://msdn.microsoft.com/en-us/library/system.net.sockets.socket.aspx
http://msdn.microsoft.com/en-us/library/system.net.sockets.socket.aspx
http://en.wikipedia.org/wiki/First-person_shooter
http://en.wikipedia.org/wiki/First-person_shooter
http://www.putty.org/
http://en.wikipedia.org/wiki/Card_game
http://en.wikipedia.org/wiki/Chicago_(poker_card_game)
https://en.wikipedia.org/wiki/Online_game
http://en.wikipedia.org/wiki/Port_forwarding
http://en.wikipedia.org/wiki/Secure_Shell
http://www.winscp.net/
http://msdn.microsoft.com/en-us/library/aa645740(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/aa645740(v=vs.71).aspx
http://en.wikipedia.org/wiki/Real-time_strategy
http://en.wikipedia.org/wiki/Real-time_strategy
http://en.wikipedia.org/wiki/Peer-to-peer
http://en.wikipedia.org/wiki/Peer-to-peer

 61

[20] Microsoft. Windows Forms Application. [Online] Available from:

http://msdn.microsoft.com/en-us/library/system.windows.forms.application.aspx[2013-05-
20].

http://msdn.microsoft.com/en-us/library/system.windows.forms.application.aspx

