
A PRET Microarchitecture Implementation with
Repeatable Timing and Competitive Performance

Isaac Liu1 Jan Reineke2 David Broman1,3 Michael Zimmer1 Edward A. Lee1

liuisaac@eecs.berkeley.edu, reineke@cs.uni-saarland.de, {broman,mzimmer,eal}@eecs.berkeley.edu
1University of California, Berkeley, CA, USA 2Saarland University, Germany 3Linköping University, Sweden

Abstract—We contend that repeatability of execution times is
crucial to the validity of testing of real-time systems. However,
computer architecture designs fail to deliver repeatable timing,
a consequence of aggressive techniques that improve average-
case performance. This paper introduces the Precision-Timed
ARM (PTARM), a precision-timed (PRET) microarchitecture
implementation that exhibits repeatable execution times without
sacrificing performance. The PTARM employs a repeatable
thread-interleaved pipeline with an exposed memory hierarchy,
including a repeatable DRAM controller. Our benchmarks show
an improved throughput compared to a single-threaded in-order
five-stage pipeline, given sufficient parallelism in the software.

I. INTRODUCTION

Can we trust that a processor repeatedly performs correct
computations? The answer to this question depends on what
we mean by correct computations. In the core abstraction of
computation, rooted in von Neumann, Turing, and Church,
correctness refers only to correct transformation of data.
Execution time is irrelevant to correctness; it is instead a
performance factor, a quality metric where faster is better, not
more correct. However, in cyber-physical systems, which com-
bine computation (embedded systems), networks, and physical
processes, execution time is often a correctness criterion [1].

Although extensive research has been invested in techniques
for formal verification, testing is in practice the dominating
method to gain confidence that a system is working correctly
according to some specification. However, without repeatabil-
ity, testing proves little. Although vital in embedded and real-
time systems, repeatable timing is also valuable in general-
purpose systems. For concurrent programs, in particular, non-
repeatability is an obstacle to reliability [2].

Repeatable timing is easy to achieve if you are prepared
to sacrifice performance. The engineering challenge is to en-
able both timing repeatability and performance. Conventional

ACCEPTED VERSION. To appear in Proceedings of the 30th IEEE
International Conference on Computer Design (ICCD 2012).

c© 2012 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET),
#0931843 (ActionWebs), and #1035672 (CSR-CPS Ptides)), the U. S. Army
Research Laboratory (ARL #W911NF-11-2-0038), the Air Force Research
Lab (AFRL), the Multiscale Systems Center (MuSyC), one of six research
centers funded under the Focus Center Research Program, a Semiconductor
Research Corporation program, and the following companies: Bosch, National
Instruments, Thales, and Toyota. The third author was funded by the Swedish
Research Council (VR).

architectures with caches and pipelines improve average-
case performance, but make execution time inherently non-
repeatable.

In previous work [3], [4] we outline ideas for achieving
repeatable timing by using a thread-interleaved pipeline, re-
placing caches with programmable scratchpad memories, and
designing a DRAM controller with predictable timing. In this
paper we present and evaluate a concrete implementation of
this approach for achieving repeatable timing with competitive
performance.

Repeatability of timing can be viewed at different levels
of granularity. At a coarse-grained level, repeatability means
that for a given input, a program always yields the same
execution time. At the most fine-grained level, each processor
instruction always takes the same amount of time. Excessively
fine-grained constraints on the execution time lead to design
decisions that sacrifice performance. On the other hand, an
excessively coarse-grained solution may make program frag-
ments non-repeatable due to context dependencies. In this
work we confront this tradeoff, and show that a microarchi-
tecture with repeatable timing and competitive performance
is feasible. This enables designs that are assured of the same
temporal behavior in the field as exhibited on the test bench. To
be specific, in this paper we make the following contributions:

• To enable repeatability and avoid pipeline hazards, we
design and implement a thread-interleaved pipeline for a
subset of the ARMv4 ISA. The architecture is realized as
a soft core on a Xilinx Virtex 5 FPGA (Section III-A).

• We extend previous work on predictable DRAM con-
trollers [5] to make DRAM memory accesses repeatable.
We discuss the tradeoff between fine-grained timing re-
peatability and average-case performance (Section III-C).

• We evaluate the performance of the architecture by com-
paring with both a conventional ARMv2a and an ARMv4
architecture. With the assumption of parallelizable tasks
or independent tasks, we show that the thread-interleaved
pipeline achieves significant performance gains (Sec-
tion IV).

II. RELATED WORK

There is a considerable body of recent work [6], [7], [8] on
the related problem of building timing predictable computer
architectures. Timing predictability is concerned with the
ability to statically compute safe and precise upper bounds on
execution times of programs. In contrast, timing repeatability
is concerned with the ability to repeat timing. A system may

be predictable, yet non-repeatable, e.g., due to pipelining or
caching. Similarly, a system’s timing may be repeatable, yet
hard to predict statically. The PTARM architecture presented
in this paper is both timing repeatable as well as timing
predictable.

Several architectures have been proposed that exhibit re-
peatable timing. Whitham [9] and Schoeberl [10] both use
microcode implementations of architectures to achieve re-
peatable timing. Whitham introduces the Microprogrammed
Coarse Grained Reconfigurable Processor (MCGREP) [9],
which is a reconfigurable predictable architecture. MCGREP
uses microcode to implement pipeline operations on a simple
two stage pipeline with multiple execution units. The pipeline
stores no internal state and no caches are used, so each
microcode operation takes a fixed number of cycles, unaffected
by execution history.

Schoeberl presents the Java Optimized Processor (JOP) [10].
JOP uses a two-level stack cache architecture to implement the
stack based architecture of JavaVM. It implements a three-
stage pipeline and uses two registers to store the top two
entries of the stack; the remaining stack is stored in the
SRAM. No branch predictor is used, as only a small branch
delay penalty is incurred. All bytecode on JOP is translated
into fixed-length microcode, and each microcode executes
in a fixed number of cycles, independent of its surrounding
instruction.

Andalam et al. [11] propose the Auckland Reactive PRET
(ARPRET), designed to execute compiled PRET-C programs.
PRET-C is a C extension (via macros), with certain restric-
tions, supporting synchronous concurrency and high-level con-
structs for expressing logical time. ARPRET consists of a cus-
tomized three-stage Microblaze [12] soft processor core and
a Predictable Functional Unit (PFU) for hardware scheduling.
ARPRET uses only on-chip memory, so read/write memory
instructions take one clock cycle. ARPRET has currently no
support for memory hierarchies or multiple cores.

Our proposed architecture uses thread-interleaved pipelines,
which have been proposed and employed in various archi-
tectures by research and industry. The CDC6600 [13], Lee
and Messerschmitt [14], the Denelcore HEP [15], the XMOS
XS1 architecture [16], the Parallax Propeller Chip [17] and the
Sandbridge Sandblaster [18] all use fine-grained thread inter-
leaving for different applications. Lee and Messerschmitt [14]
use a round-robin thread scheduling policy while the Sand-
blaster [18] uses a token-triggered threading policy. The
XMOS XS1 architecture [16] allows hardware threads to be
dynamically added and removed from the thread scheduling,
however, this causes each thread’s execution frequency to vary
depending on the number of threads executing at one time. Un-
like previous approaches, our thread-interleaved pipeline uses
a static round-robin thread scheduling policy with memory
hierarchy support to achieve repeatable performance.

III. PRECISION-TIMED ARM

PTARM is a concrete implementation of a precision-timed
(PRET) machine [4], a computer architecture designed for
predictable and repeatable performance. PTARM implements

a subset of the ARMv4 ISA [19] and does not support
thumb mode, an extension that compacts the instructions to 16
bits, instead of the typical 32 bits. Conventional architectures
use complex pipelines and speculation techniques to improve
performance. This leads to non-repeatable behaviors because
the instruction execution is affected by the implicit state of the
hardware. PTARM improves performance through predictable
and repeatable hardware techniques. These include a refined
thread-interleaved pipeline, an exposed memory hierarchy, and
a repeatable DRAM memory controller. In this section we
give an overview of the PTARM architecture, and discuss how
repeatability is achieved.

A. A Thread-Interleaved Pipeline

Thread-interleaved pipelines fully exploit thread-level par-
allelism (TLP) by using a fine-grained thread switching policy;
every cycle a different hardware thread is fetched for execu-
tion. PTARM implements an in-order, single-issue five-stage
pipeline, similar to a conventional five-stage RISC pipeline.
State is maintained for each thread in the pipeline to implement
multithreading. A round-robin thread scheduling policy is used
to reduce the context-switch overhead to zero and to maintain
repeatable timing for all hardware threads.

By interleaving enough threads, explicit dependencies be-
tween instructions within the pipeline can be completely
removed in thread-interleaved pipelines. Explicit dependencies
are dependencies that arise from the flow of data at the
instruction level, such as data dependencies that depend on
the register values, or control dependencies that depend on a
branch address. In general, by interleaving the same number
of threads as pipeline stages in a round-robin fashion, the
explicit dependencies are removed because each instruction in
the pipeline belongs to a different hardware thread. PTARM
interleaves four threads in a five-stage pipeline, similar to Lee
and Messerschmitt [14], by writing back the next program
counter (PC) before the writeback stage; this ensures that the
next instruction fetch from the same thread always fetches the
correct address without needing to stall.

Control hazards are completely removed in the pipeline in
this way, as branch instructions are always completed before
the next instruction from the same hardware thread is fetched.
When an exception occurs, no instruction needs to be flushed
from the pipeline, because exceptions are thread specific; the
other instructions in the pipeline belong to other threads. No
instruction is speculatively executed in PTARM. The removal
of explicit dependencies within the pipeline also allows us to
have a simpler pipeline design and to strip out the branch
predictor and data forwarding logic. This can improve the
clock frequency of the pipeline [20].

Long latency operations, such as memory operations, can
still create data hazards within the pipeline. Conventional
multithreaded architectures disable the scheduling of hardware
threads that are waiting for memory. However, this leads to
non-repeatable timing, because the execution frequency of
the hardware threads can change depending on the execution
context of other hardware threads. Furthermore, the number
of active threads can drop below the minimum requirement to

remove hazards. Thus, PTARM does not dynamically deacti-
vate threads when waiting for memory, but simply replays the
instruction until it is complete. Although this slightly reduces
the throughput of the pipeline, the latency hiding benefits
of multithreading are still present, and repeatable timing is
achieved.

The static round-robin schedule provides a consistent la-
tency between instruction fetches from the same thread, since
a constant number of instructions will be fetched in between.
The term thread cycle is used to encapsulate this latency,
and simplify the numbers for timing analysis. Intuitively, a
thread cycle abstracts away the processor cycles in between
instruction fetches from the perspective of the hardware thread.
For PTARM, each thread cycle is equivalent to four processor
cycles, as four hardware threads are interleaved through the
pipeline.

The hardware threads on a multithreaded architecture, by
definition, share the underlying pipeline datapath and any
hardware unit implemented in it. The sharing of hardware units
can create implicit dependencies between different hardware
threads. One example of this is a shared branch predictor; the
execution time of branch instructions can implicitly depend
on previous branch instructions executed. This effect can also
be observed across hardware threads if the threads share the
same branch predictor, which leads to non-repeatable timing
on multithreaded pipelines. In PTARM, the branch predictor
is not needed, but more importantly, no shared hardware unit
contains state information that can affect the execution time
of other instructions. We will discuss how this is done for the
memory system in the next two sections.

B. Scratchpad Memory

Conventional memory hierarchies use caches to bridge the
latency gap between main memory and the pipeline. However,
caches hide the memory hierarchy from the programmer by
managing their contents in hardware. This leads to non-
repeatable timing, because the execution time of memory
operations depends on the state of the cache, which cannot
be explicitly controlled by the the programmer.

PTARM exposes the memory hierarchy to the programmer
by using scratchpads [21] that map to distinct regions of mem-
ory. Scratchpads use the same memory technology (SRAM)
as caches, but do not implement the hardware controller to
manage their memory contents. The programmer or compiler
explicitly manages the contents on the scratchpad in software
through static or dynamic scratchpad allocation schemes.
By exposing the memory hierarchy to the programmer, the
memory access latency for each memory request depends
only on the accessed address, and not on the state of a
hardware controller. Thus, repeatable memory access latencies
are achieved.

C. Dynamic RAM

Conventional memory controllers do not provide repeatable
latencies for DRAM accesses for two reasons:

1) The latency of a memory access depends on the access
history to the memory, which determines whether or

not a different row has to be activated. If several tasks
share the memory, this access history is the result of
the interleaving of the access histories of the different
tasks. From the perspective of an individual task, the
access history, and thus the access latencies depend on
the behavior of other tasks, and are thus non-repeatable.

2) DRAM cells have to be refreshed periodically. Conven-
tional memory controllers may issue refreshes and block
current requests at—from the perspective of a task—
unpredictable and unrepeatable times.

In previous work [5], we have introduced a PRET DRAM
controller, which provides predictable access latencies and
temporal isolation between different clients. The focus of this
section is on how to integrate the PRET DRAM controller
within PTARM to also provide repeatable access latencies.

To do so, we need to briefly recapitulate the design of the
controller from [5].

1) PRET DRAM Controller: Conventional DRAM con-
trollers abstract the DRAM device they provide access to as
a single resource. In contrast, the PRET DRAM controller
views a DRAM device not as a single resource to be shared
entirely among a set of clients, but as several resources which
may be shared among one or more clients individually. In
particular, we partition the physical address space following
the internal structure of the DRAM device, i.e., its ranks and
banks. Similar to the thread-interleaved pipeline, the memory
controller pipelines accesses to the blocks of this partition in
a time-triggered fashion, thereby alternating between the two
ranks of the DRAM device. This eliminates contention for
shared resources within the device, making accesses tempo-
rally isolated. A closed-page policy eliminates the influence
of the access history on access latencies.

2) Integration within the PTARM Microarchitecture: The
four resources provided by the backend of the DRAM con-
troller are a perfect match for the four hardware threads
in PTARM’s thread-interleaved pipeline. We assign exclusive
access to one of the four resources to each hardware thread.
In contrast to conventional memory architectures, in which the
processor interacts with DRAM only by filling and writing
back cache lines, there are two ways the threads can interact
with the DRAM in our design. First, threads can initiate DMA
transfers to transfer bulk data to and from the scratchpad.
Second, since the scratchpad and DRAM are assigned distinct
memory regions, threads can also directly access the DRAM
through load and store instructions.

During the time of a DMA transfer, the initiating thread
can continue processing and accessing the instruction and data
scratchpads. Whenever a thread initiates a DMA transfer, it
passes access to the DRAM to its DMA unit, which returns
access once it has finished the transfer. If at any point the
thread tries to access the DRAM, it will be blocked until the
DMA transfer has been completed. Similarly, accesses to the
region of the scratchpad which are being transferred from or
to will stall the hardware thread1.

Without further adaptation, latencies of DMA transfers
and loads still exhibit slight variations, resulting in non-

1This does not affect the execution of any of the other hardware threads.

repeatability, for the following two reasons:
1) Both the thread-interleaved pipeline and the pipelined

access scheme to the DRAM operate periodically, how-
ever, on different periods. As a consequence the latency
for individual loads may vary between 3 and 4 thread
cycles, depending on the alignment of the two periodic
schemes.

2) Accesses may interfere with refreshes, which need to be
issued to every row of the DRAM at least every 64 ms.
The interference by refreshes can be partly eliminated,
as discussed in previous work [5].

We solve this problem, simply by slowing down every
load and every DMA transfer to its worst-case latency. As
a consequence, every load will take 4 thread cycles, and
every DMA transfer will experience the worst-case latency
determined in our previous work [5]. As the possible variation
in latencies is small, at most one thread cycle, the impact of
this measure is quite small as well.

Stores are fundamentally different from loads in that a
hardware thread would not have to wait until the store has
been performed in memory. In PTARM, we add a single-place
store buffer to the frontend. This store buffer can usually hide
the store latency from the pipeline: Specifically, using the store
buffer, stores which are not succeeded by other loads or stores
can be performed in a single thread cycle. Other stores take
two thread cycles to execute.

A bigger store buffer would be able to hide latencies of
successive stores at the expense of increased complexity in
timing analysis. Note that while a store buffer introduces
variable latency stores, it does not break repeatability at the
task level: on the same inputs, a task will generate the same
sequence of loads and stores, which will in turn experience
the same repeatable latency. The only requirement for this is
that the instruction immediately preceding the task’s execution
is not a store, which is usually the case, and, if not, can easily
be enforced. On the other hand, to achieve repeatability at
the level of individual memory instructions we would have to
slow down every store to two thread cycles. We believe that the
associated gain in fine-grained repeatability (instruction level)
does not justify the significant loss in performance.

D. Repeatable Timing

With the refined thread-interleaved pipeline, exposed mem-
ory hierarchy, and adjusted DRAM controller—PTARM
achieves fine-grained repeatable timing. That is, given the
same inputs to a specific program fragment (for example a
task in a real-time system), the same timing behavior will be
observed for each run, thus giving a deterministic execution
time of the task. Predictability, by contrast, concerns the
ability to compute (statically) a safe and tight upper bound of
the worst case execution time. For example, a code fragment
that executes in 200 to 300 cycles for the same data input may
be predictable (if we can compute an upper bound of WCET),
but is not repeatable (execution time varies).

The meaning of the word input is vital for the definition of
repeatable timing. We define inputs as the values (for example
in memory or registers) that can be explicitly controlled by

software in the program. Architecture states, such as the
memory controller or pipeline state, are typically not explicitly
controllable in software, and thus do not fit in our definition
of inputs2.

PTARM is repeatable at a fine-grained level because each
of its instructions exhibit timing behaviors independent of
architecture state. Table I shows the instruction execution times
in thread cycles, assuming the DRAM controller operates at
double the frequency of the pipeline.

TABLE I
LATENCIES OF SELECTED PTARM INSTRUCTIONS (IN THREAD CYCLES).

Instructions Latency (thread cycles)
Data Processing 1
Branch 1
DMA operations 1

SPM DRAM
Load Register (offset) 1 4
Load Register (pre/post-indexed) 2 5
Store Register (all) 1 1-2δ

Load Multiple (offset) Nreg Nreg ×4
Load Multiple (pre/post-indexed) Nreg +1 (Nreg ×4)+1
Store Multiple (all) Nreg Nreg ×2
Nreg: This is number of registers in the register list.
δ : The store buffer can hide the store latency to DRAM, reducing it to a single thread
cycle. In case of stores succeeded by other loads or stores, however, the store latency
increases to two thread cycles.

All data processing and branch instructions take only a
single thread cycle. The execution time of instructions after
a branch are not affected by the control flow change, because
the branch will already have been committed. With an exposed
memory hierarchy, the memory instruction latencies depend
only on the region of the access, and not the state of a cache
or hardware controller. This is reflected in Table I, as memory
instruction access to DRAM or SPM will exhibit different
timing properties. For a specific program input, the memory
addresses accessed will be the same for a program, preserving
the repeatable timing property. Load/store multiple instructions
in ARM issue multiple memory operations on registers in a
single instruction. Although load/store multiple instructions
have variable latencies, the latency of each instruction depends
only on the number of registers operated on and the memory
region accessed. Because the list of registers operated on is
statically encoded as part of the instruction, repeatable timing
is also preserved for such programs.

IV. EXPERIMENT AND RESULTS

To compare resource utilization and performance of the
PTARM architecture to other architectures, we synthesize a
preliminary implementation of PTARM as a soft core onto a
Xilinx Virtex-5 XC5VLX110T FPGA [22]. The benchmarks
chosen for the performance comparison fit entirely within the
scratchpad of PTARM. This is intentional, as a full-system
evaluation would be affected by several factors beyond the
scope of this paper, such as optimized scratchpad allocation
schemes.

2If architecture states are, however, controllable in software, a processor
with a cache can become repeatable at a coarse-grained level. For example, if
the cache is always explicitly flushed before executing a task, the execution
time for the task may be repeatable.

0.99$ 0.99$ 1.00$ 1.00$ 0.99$ 0.99$ 1.00$ 1.00$ 1.00$ 0.99$

0.80$
0.69$ 0.73$

0.58$
0.72$ 0.67$

0.75$ 0.70$
0.82$

0.67$
0.55$

0.66$ 0.69$

0.47$
0.62$ 0.62$ 0.69$ 0.67$ 0.64$

0.00$

0.20$

0.40$

0.60$

0.80$

1.00$

1.20$

adpcm$
(a)3115200/3161384$
(b)3225081/4053957$
(c)4617644/8449940$

bs$$$$$$$$$$$$$$$$$$
(a)572/580$$
(b)592/864$$
(c)516/776$

bsort100$
(a)1004844/1004860$
(b)1084436/1488111$
(c)1004868/1462500$

cover$$$$$$$$$$
(a)9612/9636$

(b)10303/17728$
(c)8640/18424$

compress$
(a)40536/40960$
(b)29751/41557$
(c)not$available$

crc$$$$$$$$$$$$$$$$$$$$$$$$
(a)315820/317884$
(b)234345/347818$
(c)315836/511764$

expint$
(a)27852/27868$
(b)28216/37533$
(c)43104/69484$

fibcall$$$$$$$
(a)2196/2204$
(b)2295/3291$
(c)2220/3228$

insertsort$
(a)5848/5848$
(b)7824/9589$
(c)5880/8828$

janne_complex$$$$$$
(a)1436/1444$
(b)1535/2300$
(c)1460/2284$

(a)PTARM$FPGA$ExecuLon$ (b)$StrongARM1100$SimulaLon$ (c)$Amber$A25$VHDL$SimulaLon$

Fig. 1. Instruction throughput (instructions/thread cycles) of Mälardalen WCET benchmarks.

A. Resource Utilization

We compare resource utilization of PTARM to a five-
stage Xilinx MicroBlaze [12] soft core and a five-stage
ARMv2a-compatible Amber 25 [23] soft core. To only com-
pare pipelines, DRAM controllers and other peripherals are
excluded and memory sizes are all set to 8 kB. The PTARM
and MicroBlaze pipelines are both targeted for 75 MHz on a
Xilinx Virtex-5 and Amber 25 pipeline for 40 MHz on a Xilinx
Spartan-6. The resource utilization for the pipelines (with and
without DSP multiplier units) and DRAM controllers after
place and route is shown in Table II. The PTARM DRAM
VHDL implementation does not include a DMA unit or refresh
mechanism and is not used in the evaluation.

Because of different instruction set architectures, the re-
source comparisons are just general reference points. They do,
however, confirm our conjecture that our repeatable thread-
interleaved pipeline, scratchpad and memory controller can
lead to similar or fewer resources compared to conventional ar-
chitectures that use hardware techniques to optimize average-
case performance.

B. Performance Evaluation Setup

A performance evaluation of the DRAM controller has been
done in Reineke et al. [5]. Here we evaluate the performance
of the PTARM thread-interleaved pipeline synthesized on
FPGA. Additional hardware on the PTARM soft core monitors
instruction and cycle counts. We compare the execution of
several Mälardalen WCET benchmarks [24] on a PTARM soft
core against the SimIT-ARM [25], a cycle-accurate simulator
of the StrongARM1100 [26], and an HDL cycle-accurate
functional simulation of the Amber 25. The StrongARM1100
contains a five-stage pipeline, branch delay slots without
branch prediction, a 16 kB instruction cache and an 8 kB
data cache. The StrongARM1100 is implemented with 0.35um
process technology, and can be clocked from 133 MHz to
up to 220 MHz. Amber 25 is similar but targeted as a soft

TABLE II
RESOURCE UTILIZATION OF PTARM, MICROBLAZE AND AMBER 25

LUTs FFs DSP BRAM
Slices (in Kb)

PTARM pipeline 1414 1001 3 72
Microblaze pipeline 1496 1130 3 72
PTARM pipeline (no mul) 1380 967 0 72
Microblaze pipeline (no mul) 1503 1090 0 72
Amber 25 pipeline (no mul) 7608 2847 3 448
PTARM DRAM controller 1551 2181 0 2
Microblaze DRAM controller 2175 3049 0 13

core on FPGA, running at 40 MHz on a Xilinx Spartan-
6 or 80 MHz on a Xilinx Virtex-6. The current soft core
implementation of PTARM clocks at 75 MHz. Because of
achievable clock rates differences between different FPGA
and silicon technologies, we use clock cycles as our unit of
measurement in our experiments.

ARM cross-compilers are used to compile the benchmarks
for all architectures. Due to lack of support for different
versions of GCC on the simulators and the architectures
supporting different versions of the ARM ISA, ARM GCC
version 4.6.1 is used to compile for PTARM, ARM GCC
version 3.2 for SimIT-ARM, and ARM GCC version 4.5 for
Amber 25. To minimize differences between compilers, no
optimization flags are used.

Because the Mälardalen benchmarks are single threaded, we
set up our experiments as if the same benchmark was running
on all four threads of the PTARM architecture3, and four times
in a row on the SimIT and Amber 25 simulators. This way,
the total number of instructions executed on both architectures
are roughly the same, and the setup mimics independent tasks
or an embarrassingly parallel application.

To remove the impact of scratchpads or caches, the bench-
marks fit entirely within the scratchpad of PTARM. To give
the appearance of single-cycle memory accesses, we modify
the SimIT and Amber 25 simulators to not count cycles during
a cache miss. When cache misses are counted, execution of
the same program may exhibit significantly different execution
times depending on the state of the cache when the program
starts.

We compare the instruction throughput, shown in Figure 1,
for several benchmarks.

C. Results and Analysis

Several observations can be made from these measurements.
Most importantly, we observe from Figure 1 that PTARM
almost achieves one instruction per cycle throughput for all
benchmarks. The few multi-cycle instructions, such as load
and store multiple, are the only reason it does not achieve a
one instruction per cycle throughput. The thread-interleaved
pipeline removes the control and data hazards in the pipeline.
On the contrary, with the single-threaded StrongARM 1100
and Amber 25, the effects of pipeline hazards reduce the

3To enable a simpler measurement of clock cycles on the FPGA, instruc-
tions and thread cycles are counted in hardware on only one specific thread.
This thread cycle count is then multiplied by four to get the total count for
all threads.

throughput of instructions, as the pipeline needs to stall for
control and data hazards that can arise. The higher instruction
throughput achieved by interleaving hardware threads in the
pipeline comes from trading off single-thread latency. The
thread-interleaved pipeline time-shares the pipeline resources
between the hardware threads, so the latency of a single thread
is higher compared to a single-threaded pipeline. However,
the simplified hardware design of thread-interleaved pipelines
allows us to clock the pipeline at higher frequencies [20],
which can mitigate the single-thread performance loss. Fur-
thermore, for applications with enough parallelism to fully
utilize the pipeline, the higher instruction throughput gives
better overall performance. The main reason Amber 25 has
a lower throughput than StrongARM 1100 is that Amber 25
has an area-efficient but slower multiplier. This, and compiler
differences, result in the variations in the instruction counts.

Communication between threads can occur through the
scratchpad or by reallocating the DRAM banks from one
thread to another. If semaphores or mutexes are used in such
communication, then obviously the timing of one thread will
affect the timing of the other. But more interestingly, because
of our precise control over timing, deterministic communica-
tion can occur without semaphores or locks, as done in [27].
This leads to extremely low overhead multithreading.

D. Applications
Our experimental setup assumes perfect parallelism and

full utilization of scratchpads. Such assumptions are not un-
realistic: Liu et al. [27] present a real-time engine fuel rail
simulator that contains this setup and directly benefits from
the improved throughput previously shown. The simulator
implements a one-dimensional computational fluid dynamics
(1D-CFD) solver that improves the precision of fuel injection,
leading to more efficient engine designs. The system pro-
gresses in time steps, and the fuel rail is split up into hundreds
of pipe segments. Every time step, the pipe segments solve for
their pressure and flow rate according to their pipe configura-
tion, and communicate the values to their neighboring nodes.
Each pipe segment is mapped to a hardware thread on the
PTARM. The code for each pipe segment fits entirely in the
scratchpads of PTARM, and communication across PTARMs
occurs through single-cycle shared local memory. A time-
triggered execution model enforces that this communication
only occurs at the end of every time step. Thus, during each
time step, the computations for each node are completely
independent, similar to our experimental setup in Section IV-B.

Integrated architectures [28], [29] may also benefit from
the improved throughput presented in PTARM [4]. Contrary
to the conventional federated architectures, in which features
are implemented on physically separated platforms, integrated
architectures aim to implement multiple features on a sin-
gle platform to save resources. As more and more features
are packed onto a single platform, the throughput of the
architecture is becoming increasingly important. The temporal
isolation of the hardware threads in PTARM can ensure that
features will not disrupt the temporal properties of each other,
and the improved throughput from PTARM can allow for
better system performance.

Whether it is intra-application parallelism, as in the fuel
rail simulator, or inter-application parallelism, as in inte-
grated architectures, when the application presents sufficient
parallelism, PTARM can improve system performance while
maintaining repeatable execution times.

V. CONCLUSION

In this paper we introduce the Precision-Timed ARM
(PTARM) microarchitecture that includes a thread-interleaved
pipeline, a scratchpad memory, and a DRAM controller with
repeatable access latencies. We evaluate a VHDL implementa-
tion of the processor on a Xilinx Virtex 5 FPGA. The bench-
marks show that the proposed architecture has competitive
throughput for programs that fit the scratchpad and consist
of independent tasks or are embarrassingly parallel.

The proposed architecture also introduces new research
challenges. By removing the cache, the task of moving
data between the scratchpad and the DRAM is shifted from
hardware to software. We consider efficient, predictable, and
repeatable scratchpad allocation as an interesting direction for
future work. Furthermore, programming models for PRET
machines—with temporally isolated threads—is another im-
portant area worth exploring.

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in Inter-
national Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC). IEEE, 2008, pp. 363 – 369.

[2] E. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp. 33–42,
May 2006.

[3] S. A. Edwards, S. Kim, E. A. Lee, I. Liu, H. D. Patel, and M. Schoe-
berl, “A disruptive computer design idea: Architectures with repeatable
timing,” in ICCD. IEEE, October 2009, pp. 54–59.

[4] I. Liu, J. Reineke, and E. A. Lee, “A PRET architecture supporting con-
current programs with composable timing properties,” in 44th Asilomar
Conference on Signals, Systems, and Computers, November 2010.

[5] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “PRET DRAM
controller: Bank privatization for predictability and temporal isolation,”
in CODES+ISSS. ACM, October 2011, pp. 99–108.

[6] R. Wilhelm et al., “Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems,” IEEE TCAD, vol. 28,
no. 7, pp. 966–978, 2009.

[7] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “CoMPSoC:
A template for composable and predictable multi-processor system on
chips,” ACM TODAES, vol. 14, no. 1, pp. 1–24, 2009.

[8] T. Ungerer et al., “MERASA: Multi-core execution of hard real-time
applications supporting analysability,” IEEE Micro, vol. 99, 2010.

[9] J. Whitham and N. Audsley, “MCGREP - A Predictable Architecture
for Embedded Real-time Systems,” in Proc. RTSS, 2006, pp. 13–24.

[10] M. Schoeberl, “A Java processor architecture for embedded real-time
systems,” Journal of Systems Architecture, vol. 54, no. 1, pp. 265–286,
2008.

[11] S. Andalam, P. Roop, and A. Girault, “Predictable multithreading of
embedded applications using PRET-C,” in MEMOCODE. IEEE, 2010,
pp. 159–168.

[12] Xilinx, “MicroBlaze Processor Reference Guide - Embedded Develop-
ment Kit EDK 13.4,” 2012, available from: http://www.xilinx.com. [Last
accessed: May 14, 2012].

[13] J. E. Thornton, “Parallel Operation in the CDC 6600,” in AFIPS Proc.
FJCC, 1964, pp. 33–40.

[14] E. Lee and D. Messerschmitt, “Pipeline interleaved programmable
DSP’s: Architecture,” Acoustics, Speech, and Signal Processing [see
also IEEE Transactions on Signal Processing], IEEE Transactions on,
vol. 35, no. 9, pp. 1320–1333, 1987.

[15] B. Smith, “The architecture of HEP,” in on Parallel MIMD computation:
HEP supercomputer and its applications. Cambridge, MA, USA:
Massachusetts Institute of Technology, 1985, pp. 41–55.

[16] D. May, The XMOS XS1 Architecture, XMOS, October 2009.

[17] Parallax propeller chip. Available from: http://www.parallax.com/. [Last
accessed: August 16, 2012].

[18] J. Glossner, E. Hokenek, and M. Moudgill, “Multi-threaded processor for
software defined radio,” in Software Defined Radio Technical Conference
and Product Exposition, 2002, pp. 195–199.

[19] ARM, ARM Architecture Reference Manual, ARM, July 2005.
[20] T. Ungerer, B. Robič, and J. Šilc, “A survey of processors with explicit

multithreading,” ACM Comput. Surv., vol. 35, pp. 29–63, March 2003.
[21] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,

“Scratchpad memory: design alternative for cache on-chip memory in
embedded systems,” in CODES. ACM, 2002, pp. 73–78.

[22] Xilinx. (2009, February) Virtex-5 family overview.
[23] OpenCores. Amber arm-compatible core. Available from:

http://opencores.org/project,amber. [Last accessed: August 16, 2012].
[24] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen

WCET benchmarks – past, present and future,” in WCET, B. Lisper, Ed.
Brussels, Belgium: OCG, July 2010, pp. 137–147.

[25] W. Qin and S. Malik, “Flexible and formal modeling of microprocessors
with application to retargetable simulation,” in DATE. Washington,
DC, USA: IEEE, 2003, pp. 556–561.

[26] Intel StrongARM SA-1100 Microprocessor - Developer’s Manual, Intel,
April 1999.

[27] I. Liu, E. A. Lee, M. Viele, G. G. Wang, and H. Andrade, “A
heterogeneous architecture for evaluating real-time one-dimensional
computational fluid dynamics on FPGAs,” in IEEE International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), Toronto, Canada, April 2012.

[28] C. Watkins and R. Walter, “Transitioning from federated avionics
architectures to integrated modular avionics,” 26th Digital Avionic
Conference, October 2007.

[29] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz, “From a
federated to an integrated automotive architecture,” Trans. Comp.-Aided
Des. Integ. Cir. Sys., vol. 28, no. 7, pp. 956–965, 2009.

