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Abstract

Over the years electronic structure theory has proven to be a powerful method with
which one can probe the behaviour of materials, making it possible to predict proper-
ties that are difficult to measure experimentally. The numerical tools needed for these
methods are always in need of development, since the desire to calculate more complex
materials pushes this field forward. This thesis contains work on both this implementa-
tional and developmental aspects.

In the first part we investigate the structural properties of the 6d transition metals using
the exact muffin-tin orbitals method. It is found that these elements behave similarly to
their lighter counterparts, except for a few deviations. In these cases we argue that it is
relativistic effects that cause this anomalous behaviour.

In the second part we assess the Padé approximant, which is used in several methods
where one wants to include many-body effects into the electronic structure. We point
out difficulties that can occur when using this approximant, and propose and evaluate
methods for their solution.
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Chapter 1

Introduction

One of the most fascinating aspects of condensed matter physics is that quite complex
phenomena can arise from a seemingly simple starting point. Matter is, at a certain en-
ergy scale, built up of positively charged ions surrounded by negatively charged elec-
trons. Even though the physics of single ions and electrons on their own are quite well
understood, the physics that emerge when one brings together a macroscopic amount
of ions and electrons can become very complex. For example, metals and insulators
behave quite differently (metals conduct while insulators do not) even though they are
built up of the same kind of particles. Also, even more complex phenomena can be
found in nature, like magnetism and superconductivity. One of the fields in physics
which try to explain these phenomena is electronic structure theory, where the goal is to
calculate energies and wave functions of the constituent electrons in matter by solving
a many-particle Schrodinger equation. Using this information, much of the complex
behaviour of matter can be explained.

Since the 1960s, density functional theory (DFT) has been one of the cornerstones of elec-
tronic structure theory [1, 2, 3]. Using many kinds of different implementations, DFT
has been able to describe several properties of real materials. One of the main merits of
DFT is that one is able to calculate properties of materials that are difficult, or even im-
possible, to probe by experimental techniques. The first part of this thesis investigates a
situation where this is the case, namely the 6d-series of the transition metals, which have
not been found in nature. Even though these elements (nr. 103-111 in the periodic table)
have all been synthesized, no macroscopic sample has ever been produced. Hence, in-
vestigation of their electronic structure has been out of reach for experiment. There are
however classes of materials where DFT has been found wanting. One such class are
systems where strong correlations are important. Here the physics is mainly governed by
the interaction between electrons, an effect that is only handled approximately in DFT.

Parallel with DFT, many-body methods have shown great success in advancing our un-
derstanding of condensed matter. These methods have in common that they start with
a so-called model Hamiltonian, which is an approximation of the full electronic Hamil-
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tonian. In these Hamiltonians, only terms which are believed to be important for the
physical effects of interest are kept. The properties of interest are then computed from
these simplified models using analytical and numerical methods. Using this approach,
advances have been made in many difficult problems. One prominent example is in
the field of strongly correlated systems. However, these many-body methods have the
drawback that they have difficulties in producing quantitative data for real materials.

Since both DFT and many-body techniques seem to complement each other, one being
strong where the other is weak and vice versa, finding a way to merge these methods
would be promising. Recently one of the available many-body techniques, namely dy-
namical mean field theory (DMFT), together with DFT in the local density approximation
(LDA), has shown great promise in describing real systems with strong correlations
[4, 5]. These so-called LDA+DMFT methods have only existed for a few decades, and
no clear picture of optimal implementation has yet emerged. Since density functional
and many-body methods have evolved independently over the years, their merging is
by no means trivial. One issue which has surfaced in some of these methods is the
need for analytic continuation in the complex plane. This is because important functions
are calculated in one part of the complex plane, while they are needed in another part.
Hence precise extrapolation of these functions are needed. The second part of this thesis
scrutinizes this issue.

1.1 Overview

The key ideas behind first-principles methods are given in chapter 2. Density functional
theory is introduced in section 2.1 and its implementation in the exact muffin-tin orbitals
method is outlined in section 2.2. In the latter section the many-body implementation
for the exact muffin-tin orbitals method and the need for analytic continuation is also
discussed. This gives the motivation to the work in Paper II.

Chapter 3 discusses the theory of transition metals, which is related to Paper I. We dis-
cuss the general behaviour and trends of the transition metal series, and connect these
with the transactinide transition metals.

In chapter 4 the numerical methods involved in the analytic continuation is outlined
and discussed. New methods are then proposed and evaluated.

A summary with concluding remarks is found in chapter 5.



Chapter 2

First principles theory

The goal of electronic structure theory is to solve the N-particle Schrodinger equation
HU = B, 2.1)

where ¥ = U(ry, ..., rn, Ry, ..., Ry) is the N-particle wave function for N electrons with
positions r; and M ions with positions R;. ¥ is an eigenfunction of the electronic Hamil-
tonian H

h2 N h2 M v2
H - _ 2 2
2me ; ;]231 |r1 J’
2.2
Ve % = )

consisting of electrons with mass m. and ions with mass M;. The first two terms ac-
count for the kinetic energy of the electrons and the ions, respectively. The third term
represents the Coulomb interaction between the electrons and the ions, while the last
two terms corresponds to the electron-electron and ion-ion interaction, respectively.

For more than a few electrons and ions the solution of Eq. (2.1) becomes intractable and
approximations are usually made. One such approximation is the Born-Oppenheimer
approximation, which makes use of the fact that the weight of an ion is larger than the
electron mass by several orders of magnitude (M; 2 1000m.). This implies that the
electrons move faster than the ions and that they can quickly readjust if the ion configu-
ration changes. The kinetic energy term from the ions drops out and the ions are viewed
as a static background.

Hence Eq. (2.1) is reduced to

(_ n %V 2%% 2Z|rl—rj|)

i=1 i=1j=1 ‘rl ]| i#j

= (T + Vi + V)¥ = BV, (2.3)
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where T is the kinetic energy, V., is the external potential from the static background
and V is the electron-electron (Hartree) interaction. From now on, we will use atomic
Rydberg units (h = 2m, = ¢*/2 = 1) throughout the thesis. Notice that in Eq. (2.3), T
and V are universal, i.e. they are the same for all interacting N-electron systems. Itis V..,
that makes the Hamiltonian unique. Hence, giving the ionic charges Z; and positions R;
as input, one should in principle be able to solve Eq. (2.3) for any system without further
approximations. This is the main idea of so-called first principles (or ab initio) methods.
However, more approximations can, and must often, be made. One of the most popular
ways to solve Eq. (2.3) in an approximate fashion is by using density functional theory,
which is introduced in the next section.

2.1 Density functional theory

Since its introduction in the 1960s, density functional theory has become one of the most
powerful methods in electronic structure theory. There exist several ways to derive the
DFT formalism, and we closely follow the treatment given in Ref. [6]. The foundation of
DEFT rests on the seminal work of Hohenberg and Kohn [1]. In that work the Hohenberg-
Kohn theorem is introduced and proved, which states that the expectation value O =
(¥|O|¥) of any operator O is a unigue functional of the ground-state density n(r), O =
Oln(r)]. Hence, if we know the ground-state density of a certain N-particle system,
we could calculate any physical observable without having to calculate the many-body
wave functions. This theorem implies that no two Hamiltonians and hence no two
external potentials (since the external potential uniquely defines the Hamiltonian) can
give the same ground-state density of a system. It should also be mentioned that the
Hohenberg-Kohn theorem can be extended to include spin-polarized densities, as well
as degenerate ground-states.

One implication of the Hohenberg-Kohn theorem is that the ground-state energy of a
system can be written as functional, since it is the expectation value of the Hamiltonian:

Eln] = (V[n]|T + Vet + V[¥[n]) . (2.4)

This will be of use later on.

Even though the Hohenberg-Kohn theorem is powerful, it does not give a computa-
tional method to find the ground-state density. This is however given by the Kohn-
Sham formalism [2]. The main idea of this formalism is to use a noninteracting system
that has an external (effective) potential V. ;; which gives the same ground-state den-
sity as for the interacting system with potential V.,;. If the effective Hamiltonian of the
noninteracting system is given by

Hepp = Tepr + Vegy, (2.5)
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then its energy functional becomes

Eepsln) = Togsln) + [ drVeps(mn(r). (26)

Since the effective system is noninteracting, we can in this case obtain the ground-state
density by first solving the Schrodinger-like single-particle Kohn-Sham equations

(= V2 Vegs) Wi = B, (2.7)

where the ¥, are the single-electron orbitals, and then perform the sum

Neysy(T Z | Wi(r (2.8)

The orbitals ¥; will correspond to the NV lowest eigenvalues E;, by virtue of the Pauli
exclusion principle.

Now, by construction we want that the noninteracting density should equal the inter-
acting density, n(r) = n.ss(r). Rewriting the interacting energy functional in Eq. (2.4) in
the following way,

e <+ (101 Vi = o [0

+1/dr/dr’W —|—/drl/;xt(r)n(r)
erfln 2/d /d ’ |r_r,| +/der r) + E,.[n], (2.9)

will prove convenient. All information about the electron interactions (except for the
Hartree term) has been moved to the exchange-correlation energy functional E,.[n]. Ac-
cording to the Hohenberg-Kohn theorem, the ground-state density should minimize the
energy functional in Eq. (2.9). Hence, by taking the variation with respect to n(r) we get
that

dE[n] 5Teff , -
on(r) / dr [+ Vea(r) + Ven(r)] = 0, (2.10)
where V,.[n(r)] := Sf;(‘ ’;] The same should hold for the noninteracting system, i.e.,
0Tessln] B
on(r) + Very(r) = 0. (2.17)

Inserting Eq. (2.11) in Eq. (2.10), we finally get that

Vers(r) = Veu(r) + / dr' ) + Vie(r). (2.12)

v — 1|
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The scheme is now as follows: First a guess is made for a starting density n(r) which is
used as input in Eq. (2.12). The potential V.¢(r) is then used to solve the Kohn-Sham
equations (Eq. (2.7)). The single-particle orbitals ¥; thus obtained are used to construct
anew density from Eq. (2.8). This density is then used as input in Eq. (2.12) to get a new
potential, and this cycle is repeated until self-consistency is reached. The final density
will then not only be the correct ground-state density for the noninteracting system, but
also for the interacting system by construction.

This procedure is formally exact. However, no explicit form for the exchange-correlation
potential V. is known, and one has to resort to using approximations for this quantity.
One of the most common approximations is the local density approximation (LDA), where
the exchange-correlation functional E,. is assumed local,

E.c[n] = /drem[n]n(r). (2.13)

Here the exchange-correlation energy per electron ¢,, is that for a uniform electron gas,
which can be parametrized in various ways. The parametrization used in this thesis
is due to Perdew and Wang [7]. For other approximations to the exchange-correlation
potential the reader is referred to the literature [3, 6].

2.2 Exact muffin-tin orbitals method

At the present time there exist many different formalisms which enables the solution of
the Kohn-Sham equations (2.7). One popular family of methods are the muf fin — tin
methods. The idea behind these methods is to approximate the effective potential V, ;¢
by dividing space into two parts. The first part consists of spheres of a fixed radius sp
centered around the lattice sites R;. Inside these spheres the potential is assumed to
be spherically symmetric. The second part is the space outside the spheres, called the
interstitial, where the potential is assumed to be a constant 1},. These conditions can be
expressed as

Vers(r) = Vine(r) := Vo + D _(Va(rr)) — Vo), (2.14)

where we introduce rr := rgfr = r — R and omit the vector notation for R. Vz(rg)
equals V; for rp > sg by definition. The Kohn-Sham equations are solved in each region
separately. Inside the spheres, Eq. (2.7) simplifies to a radial Schrodinger equation
and in the interstitial to a Helmholtz equation. After solving these equations using
certain expanded basis functions, the problem of solving the differential equation (2.7)
is reduced to the algebraic problem of matching the expansion coefficients.

In the following we present this scheme for the exact muffin-tin orbitals (EMTO) method
[8, 9,10, 11, 12]. This method allows the muffin-tin spheres to overlap, which has been
shown to produce a better approximation to the full potential [8, 13, 14]. In the EMTO
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method the Kohn-Sham orbitals ¥, are expanded in exact muffin-tin orbitals 1%, , viz.

Ui(r) = > ¥k (B tr) VL, (2.15)

RL
where v}, ; are the expansion coefficients, chosen such that Eq. (2.15) solves the Kohn-
Sham equations in all space. We use the formalism that L := (¢, m), where ¢ and m are
the orbital and magnetic quantum numbers, respectively. For the interstitial region we
use screened spherical waves 1%, as basis functions, which solves the Helmholtz equation

(V2 + 5%) ¢ (5%, 1R) = 0, (2.16)

where x? ;= F — V;, and F is the energy. The boundary conditions for this equation are
given in combination with non-overlapping spheres with radius ay centered around R.
Inside the spheres the basis functions are chosen to be partial waves, which are products
of the solutions to the radial Schrodinger equation,

az(rRngg(QE,rR)) _ (ﬁ(e-; D 4 Vi) E) rrbm(E. ), (2.17)
r TR

and real spherical harmonics, viz.

(B rR) ~ dre(E,1r)YL(TR). (2.18)

They are defined for general complex energies and for rp > sz. The matching condition
should now be set up between ¢%, (E,rr) and ¢%, (k% rg) at ar. However, since we
want the possibility of overlapping potential spheres, usually sp > ar. Hence a free-
electron solution ¢%,(E,rg) is introduced, which joins continuously and differentable
to the partial waves at sz and continuously to the screened spherical wave at ap.
Matching of all coefficients will lead to the kink cancellation equation,

ZaR (S%LR/L'(’{?) - 5RR’5LL’D%.L(E1‘)) Vrri = 0, (2.19)
RL

where D%, denotes the EMTO logarithmic derivative function [11, 12], and S%; /. is
the slope matrix [10]. This defines the kink matrix for a general complex energy z, viz.

Kgppp(2) = 6rroL Dy (2) — Shprip (2)- (2.20)

A solution of Eq. (2.19) will give the single-electron eigenvalues £; and wave functions
;. The EMTO method solves Eq. (2.19) by the Green’s function method, which uses
the path operator ¢%,;,;, defined as the inverse of the kink matrix (2.20),

Z K%’L/(Z)g%/’L//RL<Z> = 5RR/(SLLI. (221)

R//LII

The eigenvalues will be the poles of g%z, (2). This is a Green’s function, since it is the
inverse (neglecting normalization) of the operator (2 — H.ss), hence the name "Green’s
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function method". If we have translational symmetry, the sum over site index in Egs.
(2.19) and (2.21) is over the atoms in the primitive cell. The kink matrix, path operator
and slope matrix will then depend on the Bloch k-vector in the first Brillouin zone (BZ).

Since the energy derivative of the kink matrix, K%, 5, (2), gives the overlap matrix
for the EMTO basis set [10], the matrix elements of the properly normalized Green’s
function become [11, 12]

Grrri (2 Z Jrorrr (2 K%”L”R’L’(Z> — Orr 0L TR (2), (2.22)

RIILII

where I%, (2) accounts for the unphysical poles of K%, ;. (2). The total number of states
at the Fermi level Er is obtained by using the Cauchy residue theorem, viz.

N(E > Crerw(z)d (2.23)

~ omi RLR'L/

where the energy integral is carried out along a complex contour that cuts the real axis
below the bottom of the valence band and at Er. The charge density is computed on the
same complex contour [8]. We also mention that the above formalism can be generalized
to include spin. The reader is referred to Refs. [8, 9] for a more in-depth derivation and
description of the EMTO method.

2.2.1 Adding many-body effects

In the EMTO+DMFT method [15], the many-body effects are added to the DFT-level
Green’s function through a local self-energy X1 g/ (%) via the Dyson equation

_ -1
(Groru(k,z)] " = [G%Bé/y(k,Z)] — 0rr'YRLRL (%), (2.24)

where Grrr 1 (k, 2) is now the LDA+DMFT Green’s function matrix (suppressing spin
indices), computed on the complex contour. The k—integrated LDA+DMFT Green’s

function, Grrr/(2) = [, Grir s (k, 2)dk, is analytically continued by the Padé method

[15], G(z) 2% G(iw) to the Matsubara frequencies w; = (25 + 1)nT, where j = 0, %1, ...,

and 7 is the temperature. From this latter Green’s function the bath Green’s function is
computed according to

[QRLR'L'(Z'W)T1 = [GRLR/L/(Z'W)T1 + 5RR’ERLRL’(iW)~ (2.25)

The many-body problem is solved on the Matsubara axis using a spin-polarized T-
matrix fluctuation-exchange (SPTFLEX) solver [16], and the resulting self-energy is then

Padé

analytically continued to the complex contour X (iw) Pade, ¥(z). In Figure 2.1 we illus-
trate the contours used in the EMTO+DMFT calculations. See section 4.1 for details
concerning the Padé approximant.
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Im(z)
_‘Z&) EF Jr iwj
Gl

Re(z)

Ep

Figure 2.1. Schematic picture of the contours and the analytic continuation used
in the EMTO+DMFT method. The Matsubara frequencies are denoted
by dots along the imaginary axis relative to the Fermi level Er. The k-
integrated Green'’s function G(z) is calculated for points on the complex
contour, here a semi-circle. These are used as input for the analytic contin-
uation to the Matsubara frequencies, on which the many-body problem is
solved. The resulting self-energy ¥(iw) then has to be analytically contin-
ued to the points on the semi-circle.

2.3 Relativistic effects

Beginning from Eq. (2.1), the non-relativistic (NR) Schrodinger equation was taken as
a starting point for the electronic structure calculations. If relativistic effects are to be
taken into account, then one should instead start from the 4-vector Dirac equation [17],
describing both electrons and positrons. This is usually denoted as a fully relativistic (FR)
treatment of the electronic structure problem, and has been implemented into the EMTO
method [18]. However, relativistic effects can also be implemented in a perturbative
manner using a Foldy-Wouthuysen transformation [6, 17] to decompose the 4-vector wave
function into a two-component wave function for the electron. If we reintroduce the
original units, and use that the momentum can be written as p = 2V, then the new
Hamiltonian becomes

2 4 hQ

p P 2
V(r) — — %4
2me + Vi) 8m2c? * 8m§c?v (x) +

s-(VV(r) xp)

H—
2m2c?

: (2.26)

where s = ¢/2 is the spin of the electron. The first two terms constitute the nonrela-
tivistic Hamiltonian used before. The third term is the relativistic mass increase of the
electron. The fourth term is the Darwin term and is a correction to the Hamiltonian
from the finite extension of the electron, due to quantum fluctuations. The last term is
the spin-orbit interaction, which is due to the interaction of the electron spin with the
magnetic field stemming from its own orbital motion. The mass enhancement and Dar-
win terms are collectively called the scalar relativistic (SR) terms, since they are scalar
quantities. The spin-orbit term on the other hand couples to the spin, and is hence a
vector quantity. Keeping only the SR terms in the electronic structure calculations will



10 CHAPTER 2. FIRST PRINCIPLES THEORY

be referred to as using the scalar relativistic approximation.

Relativistic terms can become important when heavy elements are involved. This is
because the electrons can reach high velocities close to a heavy nucleus, enhancing
relativistic effects. In section 3.3 relativistic effects will be further discussed when we
investigate the heavy 6d transition metals.



Chapter 3

Transition metals

Transition metals are those elements in the periodic table which have incompletely filled
d-shells. The first element of this kind is scandium and the last naturally occurring
element is gold. Sometimes also the group 12 elements zinc, cadmium and mercury are
included in this definition. There are many industrial important elements among the
transition metals. One example is iron, which alloyed together with carbon and other
transition metals forms various kinds of steels. The 3d series also contains metals where
electron correlations play an important role, and give rise to magnetic behaviour. As
one moves along the different d-series in the periodic table various common trends can
be observed. A discussion of these trends is the subject of this chapter.

3.1 Volume and bulk modulus

The physics of the transition metals in the n + 1 period of the periodic table are mainly
governed by the (n+1)s- and nd-electrons, where n > 3. For example, in the 3d-series the
4s and 3d electrons possess roughly the same energy. The d-electrons are in general more
localised than the s-electrons, but they still form bands and participate in the bonding
between atoms. This can be seen by studying the density of states of these metals, which
in general consists of narrow d-states superimposed over broader s- and p-states [19].

Let us first consider the volume trends seen in the different d-series. We use the Wigner-
Seitz radius ryy g, which is defined as

Amryyg
3

= chlh (31)

where Q. is the volume of the unit cell per atom. The experimental Wigner-Seitz radii
of the transition metals can be seen in Figure 3.1. For the 4d and 5d metals the radii show
a parabolic trend, with the bottom of the parabola at the group 8 elements (Ru, Os). For

11



12 CHAPTER 3. TRANSITION METALS

4* T T T T T T
500
: [ o—e3d
) A -A4d
400 |- 4
1 6‘2 B . Sd
Z 300
5 L
) g
535 2 200~ -
PU = i
= I
2 Z 100
s
N
b
xR
o)
S &
)
25 | | | | | | |
3 4 5 6 7 8 9 10 11
Group

Figure 3.1. The experimentally determined Wigner-Seitz radii in Bohr atomic units
and bulk modulus in GPa of the elements in the 3d, 4d and 5d series. Data
taken from Refs. [8, 20, 21].

the 3d metals the parabolic trend shows up twice. The bulk modulus B = V%% is seen

av
plotted in the inset of Figure 3.1. Here, the trend is inverse parabolic.

To explain these trends, consider the atomic orbital radius. The radius for the nd-orbital
rq will be smaller than the radius 7 of the (n + 1)s-orbital by a factor of ~ n?/(n + 1)?
[19]. Hence it is the radius of the s-states that determine the radius of the atom, and
also the volume of the solid. However, the interplay with the d-electrons will determine
the effective potential felt by the s-electrons. To see this, notice that the (n + 1)s energy
level is lower than the nd energy level at the left part of the series, where d-electron
occupation is low. This can be seen by the fact that the s-states are doubly occupied
(For example, observe the atomic configuration of the group 3 elements Sc: [Ar]3d'4s?
and Y: [Kr]4d'5s?). This leads to ineffective screening by the d-electrons, and hence the
s-electrons feel an increased effective nuclear charge, shrinking their spatial extent. For
the group 8 elements the d-electron screening become better, and r; increases as one
goes to the end of the series.

To calculate the volume and bulk modulus using electronic structure theory, the total
energy can be calculated for a range of volumes. An equation of state can then be fitted
to these values. The equilibrium volume is the volume which minimizes this approxi-
mated equation of state, while the equilibrium total energy is the energy corresponding
to this volume. In the case of the hcp structure, one more degree of freedom except
volume is available, namely the c/a-ratio. This quantity is found by two-dimensional
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energy minimization by scanning both a range of volumes and a range of ¢/a-ratios.

3.2 Crystal structure

Trends can also be found in the crystal structures of the transition metals. Three different
structures occur at ambient conditions: body-centered cubic (bcc), face-centered cubic
(fcc) and hexagonally closed-packed (hcp). For the 4d and 5d metals the group 3-4 metals
crystallize in hcp, group 5-6 in bec, group 7-8 in hep and finally group 9-11 in fcc. The 3d
elements show some discrepancies, Mn has a complex cubic structure (instead of hcp),
Fe is bec (instead of hep) and Co is hep (instead of fcc).

Explanations for this trend was sought from about the 1960s using both empirical and
quantitative methods, for references to these early attempts see Refs. [22, 23]. By the
1970s it was found out that the trend can be explained using a very small set of pa-
rameters, which is quite remarkable considering the many degrees of freedom in these
metals. The theory behind these explanations is the so-called canonical band theory [23],
which assumes that the energy bands are unhybridized (i.e. no electron transfer be-
tween different /-states) and depend only on the crystal structure. This allows the ex-
planation of the hcp-bec-hcp-fec trend by considering the d-electron occupation and the
shape of the density of states for each lattice for each group of elements. This provides
the correct trend for the beginning of the series, but fails to predict the fcc stability for
high d-occupation. If hybridization is taken into account, the whole structural trend is
captured correctly [24].

To determine the crystal structure from electronic structure theory, one can calculate the
equations of state for each lattice type. The structure that has the lowest equilibrium
total energy will then be the most stable structure. In this thesis we let the fcc structure
be the reference structure, and introduce the quantity Ey;;; := Epec— Ec.. If this quantity
is negative, then the bcc structure is favoured over the fcc structure. Otherwise, fcc is
favoured. The same quantity can be defined for the hcp-fcc energy difference.

Notice that the hcp-fcc difference will in general be smaller then the bee-fce difference.
This is because the fcc and hcp lattices have the same number of nearest neighbours
(they differ only in next-nearest neighbours), which makes fcc structurally closer to hcp
than to bcc.

3.2.1 A classical estimation

If only classical electrostatics would play a role in the structural stabilty of matter, then
a bcc lattice would be the most stable configuration in 3D. To see this one can use an
argument given by A. W. Overhauser [25]:

Analyze the classical electrostatic energy U of a lattice of NV point sources in a box of
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length L:

Z R, Z/dr "R, 2//drdr (3.2)

#J

Here R, are the lattice vectors and n = N/L? is the constant charge density of the uni-
form background. The first term is due to the interaction between point sources, the
second term is the interaction of the sources with the background and the third term is
the interaction of the background with itself. If the R;’s are the sites of a simple Bravais
lattice, then the charge density can be expressed as

= Zé(r -R)) = nZeiGi' i (3.3)

where the G;’s are the reciprocal lattice vectors. It can be shown (see appendix A) that
the electrostatic energy per particle is

N LG e ®4

G;ﬁO q7é0

Note that only the first term contains information about the specific lattice structure.
Hence, for a given volume of the primitive unit cell, the crystal with the largest magni-
tude of its first reciprocal vector should be the most stable. Comparing the magnitude
of the first reciprocal vector of the bec lattice Gy pe. ~ 2.24n1/371 with that of the fcc lattice
G fee ® 2.18n'37, one can conclude that the bec lattice should be more stable than the
fcc lattice. This estimate will be of use later on. This problem can actually be solved
exactly, giving bec as the most stable lattice. See Ref. [25] for details.

3.3 The 6d metals

During the recent decades, more and more of the transactinide elements have been syn-
thesized, the most recent at the time of writing being the element 117 [26]. All of the
transactinide transition elements have been synthesized, although only a few number
of atoms at a time. These elements are quite unstable, most of the isotopes having
half-lives less then seconds, see table 3.1. Since no macroscopic sample of any of these
elements has ever been produced, no experimental study of the solid state of them ex-
ists. However, there do exist electronic structure theory studies of the transactinides
[28, 29, 30, 31], confirming that they in general have similar properties to their lighter
counterparts (or homologues) in the periodic table, with some exceptions.

In figure 3.2 the calculated Wigner-Seitz radius and bulk modulus is plotted for the 6d
metals (solid curve), together with the 4d metals (dashed curve). The computations
are done with the EMTO method, using the scalar relativistic approximation (see sec-
tion 2.3) and the local density approximation [7]. We also mention that a similar study



3.3. THE6D METALS 15

Table 3.1. The 6d transition metals. Shown are the atomic number, chemical sym-
bol, half-life of the most stable isotope, and name. The half-lives are taken
from Ref. [27].

103 Lr, 104 Rf, 105 Db,
3.6 h, Lawrencium | 75.5 s, Rutherfordium | 16 h, Dubnium
106 Sg, 107 Bh, 108 Hs,
21 s, Seaborgium | 17 s, Bohrium | 14 s, Hassium
109 Mt, 110 Ds, 111 Rg,

0.72's, Meitnerium | 7.6 s, Darmstadtium | 3.6 s, Roentgenium
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Figure 3.2. Wigner-Seitz radii in Bohr atomic units and bulk modulus in units of
kBar for the 4d (dashed curve) and 6d (solid curve) metals.

was performed independently by Gyanchandani and Sikka [31], using a full-potential
method and the generalized gradient approximation. As seen, the same parabolic trend
can be seen as for the 4d and 5d metals, with the smallest volume (and largest bulk
modulus) being given by the group 8 element hassium (Hs).

The c/a-ratios are tabulated in table 3.2, and are in good agreement with data taken
from Ref. [31]. It is noted that the elements Db, Sg, Ds and Rg all have large ¢/a-ratios,
compared with the ideal ratio ¢/a ~ 1.633. However, as will be seen later, none of these
elements crystallize in the hcp structure. That the ¢/a-ratios can reach values far from
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Table 3.2. The calculated hcp c¢/a-ratios for the 6d transition metals. Comparison is
made with the full potential results of Ref. [31] where data is available.

Lr Rf Db Sg Bh Hs Mt Ds Rg
This work: 1.58 1.61 171 174 162 159 164 173 1.72
Ref. [31]: 1.55 1.58 1.61 1.58

the ideal in metals which do not crystallize in the hcp structure was also found by Shang
et al. [32] using a projector-augmented wave method.
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Figure 3.3. Structural energy differences for the 6d metals. Inset: Structural energy
differences for the 4d metals. The scalar relativistic approximation was
used for both series.

In figure 3.3 the energy differences between the different crystal structures is seen for
the 4d and 6d metals. For the 4d metals the correct hcp-bec-hep-fec trend is captured,
and good agreement is found with the data given in Ref. [23]. For the 6d metals the
topologies of the energy difference curves are similar to the ones given for the lighter
transition metals, with the marked exception of the last two metals darmstadtium (Ds)
and roentgenium (Rg), which are predicted to crystallize in the bcc structure instead of
the fcc structure. Especially roentgenium has a large energy difference between the bcc
and fcc structure, amounting to Ey.. — Er.. = —21 mRy. However, it should be noted
that also the lighter homologue of roentgenium, namely silver, is barely stable in the fcc
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structure, having the calculated energy difference Ej.. — Et.. = +2 mRy. The same is
true for the other group 11 elements copper and gold as well [23].

To find an explanation for this anomalous behaviour we begin by plotting the /-resolved
density of states (DOS) for roentgenium in the bce structure using both the SR (dashed
line) an NR (full line) approximations, see lower figure 3.4. As SR terms are taken into
account, the bands broaden by a large amount. This effect is not as strong in silver, see
upper figure 3.4. For the d-states of roentgenium, this band broadening is so large that
the d-band crosses the Fermi level, while the lower band edge is relatively unchanged.
In the NR limit, we get that E.. — Ef.. = +1 mRy for roentgenium, which favours the
fec structure. This indicates that the SR terms are important in the determination of the
structural configuration.

DOS/atom

DOS/atom

-0.7 —0:6 -0.5 —0:4 -03 -02 -0.1
E-E. (Ry)

Figure 3.4. /-resolved density of states for the 4d-metal silver (Ag) and the 6d-metal
roentgenium (Rg) in the bcc structure, using nonrelativistic and scalar rel-
ativistic approximations. Note the large band broadening for roentgenium
when scalar relativistic terms are taken into account.

The physics behind the band broadening can be viewed in two steps [33]. First, the
relativistic effects lead to a shrinking s- and p-shell radii, which lead to a more effective
screening of the nucleus than in the nonrelativistic case [34]. Due to this improved
screening, the d-states feel a reduced attraction to the nucleus, and are more delocalised
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in space. This will push the upper d-band edge to higher energies, shifting the band
upwards. Secondly, as the d-states are now more extended they have greater overlap,
which broadens the DOS. For the group 11 metals this results in a relatively unchanged
lower band edge.

The large change in the DOS for roentgenium makes it possible to explain why it favours
the bcc phase over the fcc one, as we will now argue. First we would like to point
out the work by Singh [35], where it was shown why mercury (Hg) favours the fcc
structure over the hcp structure. There it was argued that the relativistic lowering of the
s-potential will lead to an increased hybridization between s- and p-states. It was then
argued that charge transfer from s — p will lead to a favouring of the fcc structure.

Our argument is similar. In the case of roentgenium we also have a s-potential low-
ering (as can be seen by observing the s-DOS in figure 3.4) when SR terms are added.
However, in this case we have a larger hybridization with the d-states, since the d-states
are now delocalised as explained earlier. This leads to a transfer of charge from the d-
states to the s-states when going from NR to SR approximations. This is seen in table
3.3 where the number of states at the Fermi level is tabulated for roentgenium in fcc
and bcc structures, using different relativistic approximations. Since the s-states have
a larger spatial extension, it is reasonable to assume that a charge transfer d — s leads
to a larger interstitial charge density. An indication of the magnitude of charge in the
interstitial can be obtained by looking at the first non-zero multipole moment ()4 of the
charge density, where the multipole moment is defined as

¢
Qun = 5% [ (2 @)Yt 0)dx — Z0n. (35)
Here the integration is performed over the Wigner-Seitz cell, and Y;,, is the real har-
monics while Z is the nuclear charge. ()4 is tabulated in table 3.3, where it is seen to
increase as SR terms are taken into account.

Table 3.3. Number of d- and s-states at the Fermi level and first non-zero multipole
moment Q4.

NR d s Q40 SR d s Q0
fccRg 9.656 0.689 0.028 | fccRg 9.060 1.223 0.029
bccRg 9.650 0.693 0.030 | bccRg 8.967 1.300 0.034
fccDs 8.794 0.584 0.033 | fccDs 8.030 1.085 0.040
bcc Ds 8.807 0.583 0.036 | bcc Ds 8.014 1.147 0.046

Since a large charge density in the interstitial will lead to stronger electrostatic inter-
actions between the ions, it is reasonable to assume that this will favour a bcc crystal
structure. This is because the bcc structure is the most stable configuration if only elec-
trostatics are taken into account, see section 3.2.1 for an explanation. In the case of
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darmstadtium the d-states cross the Fermi level both in the NR and SR approximations
(see figure 4 in Paper I), as is also the case for the other group 10 elements. The same
mechanism of d — s charge transfer as for roentgenium applies, as is seen in table 3.3,
and the bce-fce energy difference equals Ey.. — Ef.c = +1 mRy in the NR limit, making
fcc the most stable structure.

To conclude this chapter, we note that the 6d-metals behave in much the same way as
their lighter homologues in the periodic table. However, for the noble metals anomalous
behaviour surface, which can be explained by considering how the charge density is
modified when relativistic effects are introduced.



Chapter 4

Analytic continuation

In this chapter we investigate the analytic continuation needed for the many-body im-
plementation outlined in section 2.2.1, namely the Padé approximant, which is intro-
duced in section 4.1. In section 4.2.1 we discuss some of the problems and issues which
surface when one implements the Padé approximant in electronic structure theory, and
discuss possible solutions. Section 4.2.2 discusses earlier studies of the Padé approxi-
mant, and in section 4.2.3 we investigate new methods.

4.1 Padé approximants - definition

We begin by defining the function f(z), a rational complex function of the form

f(z) — Z?:Jrll a;z" _m +asz +agz? + -+ Apyq 2"
S bzt by +boz + b322 + -+ 2m

, 4.1)

i.e. a quotient of two polynomials. Notice that b,,,, := 1. The nominator polynomial
will be of maximum order n, n > 0, and the denominator polynomial of maximum order
m, m > 0. The polynomial coefficients are in general allowed to be complex, (a;, b;) € C.
Now, we can define the type-I Padé approximant [36, 37] of order [n/m] of a function
f(2) as the function of the form f(z) which agrees with f(z) up to the highest possible

S8} .

order. Assuming that the function f has a power series expansion f(z) = 3 ¢;2' !, this
i=1

condition implies that the coefficients in (4.1) should satisfy

) Zn—l—l CL‘ZZ_I
i—1 =1 "1 _ n+m+1 n+m+2
D G = STy i = Cnm? + Cnm+32 + (4.2)
i—1 Dty bz

The problem of finding the polynomial coefficients when given the Taylor coefficients

_ 90
Ci = o)

is then formulated as a linear system of equations. It can be noted that Padé

20
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approximants should in general give better approximations than Taylor expansions to
functions that contain simple poles. This is because they are rational polynomial func-
tions, and hence contain poles by default.

If the value of a function f(z) is given for a discrete set of N complex points 21, 2o, ..., 2n
one can construct a so-called N-point (or type-II) Padé approximant. The condition is
then that the following relation should hold:

f(Zl) = f(Zl)
f(ZQ) = f(22)
f(z3) = f(zs)
flen) = flzn). (4.3)

This is exactly the problem that we have when we perform the analytic continuation
outlined in section 2.2.1. There, we have a Green’s function G(z;) calculated for a set
of complex energies z; along a contour in the complex energy plane. This function has
to be known on the Matsubara frequencies iw; along the imaginary axis. To perform
this analytic continuation, we use the values of the Green’s function known for the
complex energies z; and construct an approximant of the form (4.1), demanding that the
relations in (4.3) should hold. Once we know G/(iw;) for the Matsubara frequencies the
many-body solver can be called. After the many-body problem is solved we have a self-
energy X (iw;) known for the Matsubara frequencies, that we now need to know for the
energy points z; along the complex contour. Hence we now construct an approximant
for the self-energy, using the same procedure as for the Green’s function. It is hence this
type-II Padé approximant that will be our main interest, and we will refer to it simply
as a Padé approximant of order /N from now on. In the next two sections we will review
two methods that can be used to construct this Padé approximant.

In this thesis the functions to be approximated have the asymptotic behaviour f(z) —
1/|z| as |z] — oo. Hence the approximants should be of the order n = m — 1, i.e. the
denominator polynomial should be one order higher than the nominator polynomial.
To see this, consider a Green’s function G(z) in an electronic structure calculation. As
implied in section 2.2, it will have simple poles at the eigenvalues of its corresponding
Hamiltonian. Using partial fraction decomposition the Green’s function can be written
as a sum running over the eigenvalues E;, viz.

Glz) =Y — (4.4)

where w; is the residue (or weight) of the 7’th pole. Summing this together will give a
rational polynomial function where the denominator polynomial has a order one larger
than the nominator order.
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Later in this thesis it will be important to know the poles and zeros of the approximant,
i.e. the, in general complex, roots of the denominator and nominator polynomials re-
spectively. These are found using a root-search algorithm [38, 39] for each of the two
polynomials separately, and we will denote the zeros of the approximant as p; and the
poles as g;.

4.1.1 Matrix formulation

Perhaps the most transparent way to construct a Padé approximant is by formulating
it as a matrix equation, as was done by Beach et al. [40]. Assume that we are given

a set of N function values f(z1), f(22), -, f(2n) for N number of (complex) points
21,22, ,zy. The goal is to construct a [§ — 1/5] approximant. Setting M := N/2,

the following system of equations should be solved:

M—1
CL1+CL221+"'+CLM21

= z
bl+522’1+"'+bMZ{V‘[_1+Z{W J(z1)
a1+(1122+"'+(1MZ§/[_1
M—1 M f(ZQ)
bl+b22’2+"‘+b1\/122 +22
a1+ aszy + -+ apy !
= = f(2n).

bi +bozy + -+ b]V[Z%_l + M

If each of the N equations are multiplied by their respective denominators, the terms
can be rearranged to give the matrix equation Av = b, where

oo MU f() —f(e)a o —fz)EM
| e AT ) S e )
1 oy e z%._l —f(zn) —f(zn)zn - —f(Zj\})ZJ]t/f[—l

and

v=[a;--ay b1---bM]T

b= [Z{wf(Zl) T Z%f(ZN)]T-

The unknown coefficient vector v can then be found by matrix inversion of A. Noth-
ing can be said about the matrix A concerning sparsity and bandedness etc., hence the
matrix inversion will be of O(N?) complexity. It should also be noted that A is an ill-
conditioned matrix, making its inversion nontrivial. See Beach et al. [40] for details.
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4.1.2 Thiele algorithm

The calculation of the approximant can be speeded up by the use of recursive meth-
ods. One such method is the Thiele reciprocal difference method [36, 37, 41], which
constructs a continued fraction form of the Padé approximant:

fe) = Enr , 45)
1+ 1)42

(z — z9)ag
(z — zi21)ay
L+ (2 — 2i)gi+1(2)
where the a;’s are the continued fraction coefficients that makes the approximant fit to
the input data. The g;’s are defined as

1+
14

— f(z () = gi71(2i71> —9171(2) ;
91(2) - f( )a gl( ) (Z _ Zifl)gz;1<2) , 1= 2. (46)

The a;’s can be shown to be equal to a; = g;(2;) by the use of induction, viz.

(2)
i(2) = —
g 1 + (Z — Zi)gi+1(z)
a; .
_ 91(21) gi(z) —
L+ (2 = 2) 20
a;
) & a4 = gz(Zz)a (4.7)
gi(2)

where (4.5) and (4.6) where used. Putting z = 2; in Eq. (4.5) gives f(z) = ay. Putting the
rest of the points 2, 23, ... in sequence one sees that Eq. (4.5) gives the correct fit. Using
the a,’s the approximant can be evaluated at a point z using a recursive expression:

f(z) _ @ _ An—1+ (2 — z2nv_1)anAn—2
By  By_1+(z—2n_1)ayBy_2’
AQ == O, Al = aq, BO = Bl =1. (48)

If the number of input points is N, N being odd, f(z) will be a [ /¥~1] approximant.

If N is even the approximant will be of order [§ — 1/4]. The computation will be of
O(N?) complexity.

4.2 Analytic continuation in electronic structure theory

4.21 Possible issues concerning the approximant

Analytic continuation is a so-called ill-posed problem in numerical analysis, meaning
that its solution is very sensitive to small changes of the input values. We stress that this
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is not a feature specific to the Padé approximant, but rather to the problem of numeric
analytic continuation in general. However, if high enough precision is used during com-
putations, very accurate solutions can still be found, as was shown for the Padé approx-
imant in Ref. [40]. Electronic structure codes are usually written in low-level languages
like FORTRAN or C/C++, where high precision is usually not available. However, rea-
sonable good accuracy can still be reached, as we wish to show in this thesis.

Another issue is how to choose the order of the approximant. As is apparent from
sections 4.1.1 and 4.1.2, if one would like to approximate a function having M poles,
one should use twice as many input points N = 2M. However, usually one has no a
priori knowledge of how many poles the function has. If too few input points are used,
the approximant will obviously have difficulties in capturing the correct structure of the
function. If too many input points are used, there will be more poles in the approximant
than in the true function. Looking at the formulation in section 4.1.1, the system of
linear equations will be over-complete. If arbitrary precision is used, the approximant
will cancel a spurious pole by placing a zero of the nominator at the same location as the
pole. However, if the precision is not good enough, or if the input data is contaminated
by errors, this cancellation will not be perfect. These spurious pole-zero pairs are defects
in the approximant. As will be seen, these defects can affect the electronic structure
calculations. In principle, the defects could be removed manually from the approximant
by the operation

HORF(O | ®9)

)
i Z—Di

where the product should run over all spurious poles and zeros.

To see how these defects can have an effect on calculations, we consider a test case of
solid hydrogen. First, fcc hydrogen is self-consistently run to convergence using the
EMTO method. After convergence the Green’s function is explicitly calculated for the
tirst few Matsubara frequencies. We use these function values as input to construct a
Padé approximant, and this approximant is used to calculate the density of states along
a horizontal contour close to the real axis. This approximant is then compared with the
exactly calculated density of states. The test case has a setup similar to that used in
Paper II, please see section V in Paper II for further details. This procedure of analytic
continuation is not the same as for those used in the EMTO+DMFT method, but it is
however a critical test of the approximant since it evaluates its ability to capture the fine
structure of the density of states.

In figure 4.1 (left) the density of states constructed using a N = 42 Padé approximant
is compared with the true function. Also plotted in figure 4.1 (right) is the approxi-
mant pole-zero distribution in the complex plane. Note that the approximant has an
unphysical peak situated about 0.5 Ry below the Fermi level. By studying the pole-zero
distribution one sees that a pole-zero pair situated at about 0.5 Ry below the Fermi level,
close to the real axis, is the cause for this unphysical peak. By explicitly removing this
pole-zero pair the peak disappears. As seen, these defects can indeed effect computa-
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tions done using the Padé approximant.
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Figure 4.1. Left: Density of states of solid hydrogen constructed using a N = 42
Padé approximant, using input data from the Matsubara frequencies. Ex-
act density of states plotted for comparison. Note the unphysical peak
close to the bottom of the band, due to a defect in the approximant. Inset:
Same as main figure, but with the defect removed explicitly. Right: Pole-
zero distribution of the approximant. Six poles and six zeros farther out in
the complex plane not shown. Note the defect pointed out by the arrow.

A pertinent question is how one is to decide which poles are physical and which are
spurious. The most obvious way would be to make a geometric search in the complex
plane and investigate whether a chosen pole has a zero in its neighbourhood. One of the
simplest ways would be to let the neighbourhood be a circle of some predefined radius.
However, this straightforward method has some pitfalls. It is for example not obvious
how to specify the neighbourhood in the most optimal way since the pole-zero pairs
usually have different separations. If the neighbourhood is defined too large, then more
than one zero can be present inside, leading to ambiguity or the accidental removal of
a physical zero. If on the other hand the neighbourhood is chosen too small, a spurious
pole in a pole-zero pair with a large separation could mistakenly be considered as a
true pole of the approximant. Hence, in practice, this method is difficult to implement
inside any self-consistent loop, where an algorithm would be necessary to automate the
tiltering of defects. A schematic picture illustrating the geometric search is shown in
tigure 4.2.

Another issue which presents itself is which kind of Green’s function that one should
analytically continue. In the present implementation it is the k-integrated Green'’s func-
tion G(z) = [5, Grrrr (k, z)dk which is analytically continued to the imaginary axis,
as discussed in section 2.2.1. Numerically, this function is a sum over k-points in the
irreducible Brillouin zone of the k-resolved Green’s function G(k, z). The k-integrated
Green’s function is hence a sum of several (as many as there are k-points) functions,
each of which contains one or several poles. If one instead would perform the analytic
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Figure 4.2. Schematic figure of a hypothetical geometric pole-zero search in the
complex plane. The picture shows a true pole and a true zero of the ap-
proximant, located along the real axis. The rest of the poles and zeros are
defects. To the left a too small neighbourhood (a circle with radius R’) is
chosen, not detecting the zero in the pole-zero pair. In the right part of the
figure the neighbourhood (circle with radius R”) is too large. This circle
not only includes the zero belonging to the pole-zero pair, but also the zero
coming from another pair as well as a true zero of the approximant.

continuation for each of the k-resolved Green’s functions, one would construct the Padé
approximant for several simpler functions. The Bloch sum could then be performed af-
ter the analytic continuation is done. A schematic picture of this procedure is seen in
figure 4.3.

4.2.2 Previous studies

The first use of Padé approximants for analytic continuation was by Vidberg and Serene
[41] who used the Thiele algorithm to analytically continue spectral functions from the
Matsubara frequencies to the real axis. They noticed the ill-posedness of the problem
and the need for high accuracy, as well as the introduction of defective pole-zero pairs,
having similar distributions as what was found in figure 4.1. In that work it was also
concluded that an approximant could be considered good if the number of poles in the
lower half-plane remained constant on the inclusion of further input points.

Later, Beach et al. [40] made further investigations of the Padé approximant by using the
matrix formulation. They showed that the analytic continuation of spectral functions
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Figure 4.3. Schematic diagram of the analytic continuation before (straight path) or
after (dashed path) Bloch summation. G (k, z) in the top left corner is given
for a set of points. The goal is to obtain an analytic expression G(z') (lower
right corner) that can be used to approximate the true function G(z’). Fol-
lowing the straight path, the Padé approximant needs to be constructed for
each k € IBZ and the Bloch sum is performed at the desired point. Along
the dashed path, only one single Padé approximant is needed.

could be performed with high accuracy by using symbolic software, enabling arbitrary
precision calculations. Further, a goodness-of-fit test was constructed by investigating
the polynomial coefficients.

The Padé approximant has also been used in the field of scattering theory by Sokolovski
et al. [38]. The functions that were approximated were of a different kind (S-matrix
elements) than the Green’s functions presented in this thesis, but spurious poles and
zeros occurred there as well. One observation done in that study was that the placement
of these defects where sensitive to the addition of random numbers to the input data,
while the placement of the true poles were more stable. Hence random numbers could
be used to separate true and spurious poles in the approximant.

4.2.3 New developments and results

In this section we investigate the issues presented in section 4.2.1 and possible solu-
tions to them. As a test case we use solid hydrogen in the fcc structure, without adding
many-body effects. The Green’s function is calculated for the Matsubara frequencies
(temperature 7' = 500 K) and then analytically continued to a horizontal complex con-
tour on which the density of states is calculated. Comparison is then made with the
exactly calculated density of states, and the following error measure is introduced, viz.

Error(E) = |DOS(E) — DOS,,(E)], (4.10)

where DOS,,,(E) is the approximated density of states as a function of energy. This
is done for several different approximant orders for the k-integrated and k-resolved
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Green’s function, and the result is seen in figure 4.4. As seen the k-integrated approx-
imant gives a somewhat good fit of the true function, and is able to capture the band
width. However, it fails to capture the density of states faithfully at the band edges,
where it over- or undershoots the true value. The k-resolved approximant does in gen-
eral give a better fit than does the k-integrated approximant. The price that has been
paid is that more approximants (the same amount as the number of k-points) has to be
constructed in this former case. However, the order (i.e. the number of input points V)
can be made lower for each of these k-resolved approximants.
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Figure 4.4. Left: k-integrated approximants for the density of states compared with
exact value. The number of input points are N = 8, 16, 32 and 64. Right: k-
resolved approximants for the density of states compared with exact value.
The number of input points are N = 2,4, 8 and 16.

There still remains the problem of how to deal with the spurious poles and zeros of the
approximant. As was discussed in section 4.2.2, Sokolovski et al. [38] used randomly
generated numbers to separate the defects from the true poles. We will proceed in a
similar manner by introducing random factors of the form:

1—nz; i=1,...,N, (4.11)

where 7 is a real scaling factor and the z;’s are real random numbers between —0.5
and 0.5, i.e. a random number close to 1, depending on the magnitude of . These
random numbers are multiplied with the input Green’s functions, and the new pole-
zero distribution is compared with the original distribution (where 7 = 0). This is done
for the I'-point of the N = 16 k-resolved approximant (see right figure 4.4), and the
resulting pole-zero distributions can be seen in figure 4.5, for two different values of
n. The black symbols correspond to n = 0, while red correspond to  # 0. The I'-
point has a physical pole situated about 0.6 Ry below the Fermi level, and this pole is
relatively stable compared to the defective poles for n = 107 (left figure). For n = 10
the physical pole also shows a larger scattering, hence the magnitude of the random
numbers needs to be chosen with care.
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Figure 4.5. Left: Pole-zero distribution for = 0 and eta = 107%. Right: Same as
left, but here = 1073,

More information can be extracted about the poles of the approximant by investigating
their residues w;. These are shown in table 4.1 for the N = 16 approximant of the I'-
point. The true pole is marked by a star in the table, and it has a residue close to one,
with a small imaginary part. The other poles all have residues with small magnitudes,
negative values or large imaginary parts, which indicates that they are unphysical.

Table 4.1. Real and imaginary parts of the N = 16 approximant poles with respec-
tive residues. The pole i = 5 (%) is a true pole of the approximant, while the
rest (f) are spurious. The poles can be seen plotted (black, n = 0) in figure

4.5.
i Re(q;) Im(q;) Re(w;) Im(w;)
P10 1.1449469 1072 0.1360169 —2.6324331- 1013 —4.5109522 - 1013
T2 —4.0764097-102 0.3192908 —1.3977842 - 1071%  6.7675740 - 107!
73 —0.5137978 1.111784 1.0184415- 1073 —1.3286583 - 10~*
T4 4.0205983-1073 0.2173124 —1.2889500 - 10713 —2.2621590 - 10713
*5 —0.5958811 —3.5719320 - 107  0.9999138 4.7717123 - 1075
T6 —2.8055273-1072 0.1243891 1.6093394 - 1072 —6.1991449 - 1013
T7 1.547490 2.5824822 - 1072 0.9696459 0.1238033
T8 2.441888 —0.1386907 —1.142889 —0.1035025

When the true poles have been singled out, the approximant can be constructed by the
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sum

fo ==

Y
; 24

where the sum should be over physical poles only.

Here we end with a list of conclusions:

(4.12)

e Numerical analytic continuation is ill-posed, making it sensitive even to small er-
rors. This can in principle be remedied by computing in high precision, but this is

far from possible in many cases of interest.

o If high accuracy is needed, it is better to use the k-resolved approximant instead
of the k-integrated one. The reason is that the analytic continuation is performed
for a simpler function. The price that has to be paid is that several approximants

has to be constructed in this case.

e Due to numerical errors and lack of precision, defects might enter into the ap-
proximant. These defects can be found by root-searching, after which they can
be removed. To select out the true poles the use of random numbers and pole

residues can be used.



Chapter 5

Concluding remarks and Future work

We have performed first principles calculations on the solid state of the 6d transition
metals and found that they share many common properties with the lighter d-metals.
We proposed that the discrepancies found in the 6d-series can be attributed to relativistic
effects, which cause changes in the charge density. Due to the nuclear instability of these
elements, the experimental verifications of these findings seem far away at the time of
writing. However, the synthesizing of heavier elements is a thriving field of research,
and one does not know what the future has in store.

We have also considered implementational aspects of many-body effects in first prin-
ciples calculations, where the analytic continuation of numerical data is an important
task. Even though this problem is ill-posed, and need better precision than what is
usually available in electronic structure calculations, the results presented in this thesis
show that much information can still be gained about the involved functions.

In the future, the goal is to find the most optimal way to implement DMFT into the
EMTO method charge self-consistently, using a numerically controlled analytic contin-
uation. To this end, the Padé approximant should be continually investigated, as should
other possible techniques. Another interesting research path which could be taken is to
investigate the analytic continuation of functions containing branch cuts, which is not
considered in this thesis. Once a new EMTO+DMFT method is available, methods from
random alloy theory, like the coherent potential approximation (CPA), can be imple-
mented as well. This would make it possible to calculate the properties of a host of new
materials, while taking many-body effects into account.

Returning to the transition metals, recently large interest has been shown for heavy
transition metal compounds where strong correlations play an important role, like for
the iridates [42, 43]. Here relativistic effects and electron interactions intermingle to pro-
duce novel phenomena. Investigations of these elements using first principle methods
combined with many-body techniques could be a fruitful endeavour.
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Appendix A

Electrostatic lattice energy

Assuming periodic boundary conditions for the box of length L, the Fourier transform
of the V(r) = 1/r-potential to g-space can be defined as

= 7 Z V(g)ear, (A1)

where
= /drV(r)e’iq'r. (A.2)

V(q) can be shown to equal V(q) = ‘;—7{ by making the replacement V' (r) — ;in% V(r)e "

in the integral in Eq. (A.2), which will make it convergent. The limit A — 0 will be taken
only at the end of the following calculation:
The background-background energy in Eq. (3.2) can be written as

—iq-r’ zqr:
2//drdr |r—r’| 2L32//drdrv
3
2L32L(5 a) [ dr'Vig)e

?V( = 0)L3, (A.3)

where the definition of the delta function, §(q) = 5 [ dre’®™, was used. In the same way
we get for the source-background part:

- z/ = f Y [ dre g -
Z S VL

- nV(q = O)N. (A4)
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For the charge-charge interaction we use the lattice transform to get that

1 1 1 / J(r—R,)
Z ——— dr—— "7/ _—
22 R -R 22 TR

i Y [ V(g s - Ry =

qa i#j
1 o R iar N
S [ drV (g TS ~ R) s V() =
DL 4 £ 203 =
n —iq-R; Jiq-r iGr N
@ZZZ/drV(q)e ighdT et @ZV(Q) =
qa j G q

N
nN>» V(G)—— > Vg,
SVIO) - XV
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(A.5)

where the expression for the charge in Eq. (3.3) was used, as well as the property

eiG-R

+ = 1 of the reciprocal lattice vector. Adding together the singular terms (G = ¢ = 0)

of Egs. (A.3-A.5) will result in a term —%&0) that goes to zero in the thermodynamic
limit L — oco. Only now can the limit A — 0 be taken, giving the electrostatic energy per

particle U/N given in Eq. (3.4).
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