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1. Introduction

Three quarks for Muster Mark!
Sure he hasn’t got much of a bark
And sure any he has it’s all beside the mark.

James Joyce “Finnegans Wake’

The topic of this thesis is within the field of hadron physics. A hadron is
a composite particle built up by quarks and held together by the strong in-
teraction. The most important aim of hadron physics is to understand how
the strong interaction binds the quarks into composite particles. This is the
least understood part of the Standard Model of particle physics with many in-
teresting challenges from both theoretical and experimental perspective. This
chapter begins with a short overview of the Standard Model and continues by
describing more in detail the particles and physics which will be of importance
for the rest of the thesis.

1.1 Standard Model of Particle Physics

The question of what the fundamental building blocks of the universe are has
a long history through humankind. The current understanding is described by
the Standard Model. It was developed in the sixties [1, 2, 3] and completed
in the early seventies with the discovery of quarks [4, 5, 6], which had been
theoretically predicted for some time [7, 8]. It has since been extremely well
tested experimentally. This theory includes all the elementary particles which
have been found so far and their interactions via the electromagnetic, the weak
and the strong force. Gravity, which is the fourth known force of nature, is not
included, but is negligibly small, in principle, for all particle physics calcu-
lations. The three interactions of the theory are described as the exchange of
spin 1 force mediating gauge bosons. These mediating bosons are the photon
for electromagnetism, the W+, W− and Z0 for the weak force and the eight

gluons for the strong force.
From a more theoretical point of view, the Standard Model is a renormal-

isable quantum field theory. Both the fermions which build up matter and
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the bosons which mediate the interactions are described by fields, which,

when quantised, gives rise to particles. The interactions between particles en-

ter the theory by demanding that the Lagrangian is gauge invariant under an

U(1)×SU(2)×SU(3) symmetry. In order for this symmetry to hold, gauge
fields corresponding to each of the subgroups have to be included in the La-
grangian. The U(1)×SU(2) part gives rise to the electroweak theory, where
the photon and Z0 fields are orthogonal combinations of the U(1) and one of

the three SU(2) gauge fields and W+ and W+ are combinations of the other
two SU(2) gauge fields. The gluon fields of the strong interaction come from
the eight SU(3) gauge fields.

The matter surrounding us is built up by fermions, particles with half-

integer spin. The 12 fundamental fermions are divided into two groups: quarks

and leptons1. The difference between the two is that the quarks are strongly
interacting particles, while the leptons are not. There are six flavours of quarks
(up, down, strange, charm, top, bottom), divided into three electroweak SU(2)
doublets (

u
d

) (
c
s

) (
t
b

)
(1.1)

where the quarks in the upper and lower row have electric charge +2/3e and
-1/3e, respectively, with e being the charge of the electron. Flavour can only
be changed through the weak interaction. Transitions within the same SU(2)
doublet are the most probable, even though transitions between the doublets
can happen. The probabilities for transitions between different flavours are
given by the CKM matrix [9, 10]. The leptons also form three electroweak
SU(2) doublets (

e
νe

) (
μ
νμ

) (
τ
ντ

)
(1.2)

where the leptons (called electron, muon and tauon) in the upper row have

electric charge -e and their corresponding neutrinos in the lower row are un-
charged. All 12 particles have been found experimentally, the latest being the

discovery of the top quark in 1994 [11]. An SU(2) doublet of quarks together
with an SU(2) doublet of leptons is called a generation and there are thus three
generations of fundamental particles. The particles of the first generation are
much lighter than the particles of the other two. Consequently, the particles
of the second and third generation decays to the particles of the first gener-
ation, while the particles of the first generation have no lighter generation to
decay to. This means that the particles of the first generation are the stable

ones which build up the matter of the world around us.

1For each particle there also exists an antiparticle with the same mass, but opposite charges.
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As described until this point, all particles of the theory are massless, which

is not the case in nature. The method to give these particles mass in the Stan-

dard Model is called the Higgs mechanism [12, 13, 14]. A scalar Higgs field is

introduced, with a non-vanishing vacuum expectation value. A local symme-

try is spontaneously broken, and some of the massless gauge fields become

massive. In this way, the Higgs mechanism explains why the W+, W− and
Z0 bosons are massive, whereas the photon is not. The interaction of particles

with the Higgs field gives them their mass.
The particles of interest for this thesis are the strongly interacting quarks

and the hadrons they are bound into. This will be discussed in the following
sections.

1.2 Quarks and Gluons

Apart from the electromagnetic and weak force, the quarks also, in contrast to
the leptons, interacts via the strong force. The charge of the strong interaction
comes in three colours, which are called red, blue and green. This should not
be confused with colour in everyday life, the name is given since the charges
share the property of colour that a combination of them all gives a neutral
(white) charge. Due to the naming of its charge after colour, the theory of the
strong interaction is called Quantum Chromo Dynamics, abbreviated QCD. A
quark carries one of these three colours and an antiquark carries one of the
corresponding anticolours. As mentioned earlier, the mediating bosons of the
strong interaction are the eight gluons. A major difference from the electro-
magnetic interaction is that the gluons themself carry colour charge, whereas
the photon, the mediating boson of the electromagnetic interaction, is electri-
cally neutral. This self interaction of the gluons gives rise to a striking feature
of the strong interaction called confinement. A qualitative understanding of
why the phenomenon arises is outlined in the following. Instead of having
field lines spreading in all directions as is the case for the electromagnetic
force, the strong force at sufficiently large distances has flux tubes between
colour charged particles. This means that the force between two such coloured
particles does not decrease with distance. Suppose that you want to separate
two colour charged particles which together build up a colour neutral com-
bination. At a certain distance it becomes energetically favourable to create
a shielding particle-antiparticle pair instead of moving the original pair fur-
ther apart. Instead of ending up with a separated colour charged particle, you
end up with more colour neutral combinations of them. This is an explanation
of why one does not see individual quarks in experiments, instead they are
always confined into colour neutral particles called hadrons.

As mentioned above, there are six flavours of quarks. The following relation
holds between their masses
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mu < md << ms << mc < mb << mt (1.3)

All quarks can be bound into hadrons except for the top quark, which is
very heavy and therefore decays too quickly to have time to form a bound
state.

1.3 Hadrons

The easiest ways to form a colour neutral composite particle of quarks, are ei-
ther to combine three quarks (or antiquarks) or to combine one quark and one
antiquark. In the former case the hadron is called a baryon and in the latter case
a meson. All hadrons which have been experimentally confirmed are of these
two types, even though a lot of experimental and theoretical activity is going
on to find hadrons of a more complex structure. The most common baryons
are the proton and the neutron. Their constituent quarks are of the two lightest
flavours, uud for the proton and udd for the neutron. Together they build up
the atomic nuclei. Consequently, the mass of the observable world around us
is almost entirely made up from hadrons. Of this mass only about two percent
comes from the mass of the individual quarks, i.e. the Higgs mechanism. The
rest is generated by the strong interaction itself. It is consequently a very inter-

esting question to study how the quarks are bound into hadrons. Unfortunately,
the length scale where this takes place is in a regime where it is very difficult

to make QCD calculations. The reason for this is connected to a feature of the
strong interaction called asymptotic freedom, which will be discussed in the
following.

The coupling constants of all the three interactions, which determine their
strengths, depend on the energy scale at which they are measured. This can
be understood through the concept of renormalisation. To calculate the cross
section of a process in particle physics, a perturbative method using Feynman
diagrams is used. In the Feynman diagrams different ways that the process can
take place through the exchange of gauge bosons are drawn and rules are given
how to calculate their contribution to the cross section (e.g. each vertex gives
one factor of the coupling constant). The Feynman diagrams are then ordered
according to the order of factors of the coupling constants they give rise to,
and the largest contribution to the cross section is assumed to be given by
the lowest order Feynman diagrams. Due to the fact that particle-antiparticle
pairs can be created, higher order Feynman diagrams, with loops of particle-
antiparticle pairs attached to the gauge boson lines, are introduced. Since the
particles in the loops can take any value of momentum this leads to infinities
in the calculations. Renormalisation is a way to remove these infinities by
redefining coupling constants, so that they in fact are no longer constants,
but dependent on energy scale. A qualitative way to describe this is that the
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Figure 1.1: The strong coupling constant as a function of the energy scale, Q [15].

effective charge in an interaction is different from the bare charge of a particle.
A problem that then arises is that the interaction strength would go to infinity
when the distance between charged particles goes to zero. This is hindered
by the fact that the charge is shielded by a cloud of particle-antiparticle pairs.
The higher the energy scale, the deeper you go into this cloud and the larger
effective charge you see. This is the case for the electromagnetic and weak
interaction, where the coupling constant increases with energy. For the strong
interaction, however, the self-interaction of the gluons gives rise to a new kind
of loop consisting of gluons. The result of these loops is an antiscreening
effect, causing the strong coupling constant instead to decrease with energy.
Figure 1.1 shows experimental and theoretical values of the strong coupling
constant at different energy scales. High energy scale can be related to a short
length scale through Heisenberg’s uncertainty principle.

The consequence of the decreasing coupling constant is that quarks asymp-
totically seem to behave as free particles at high energies, whereas at lower
energy scales they are tightly bound into hadrons. At high energy scales the

perturbative method ordered in powers of the strong coupling works, since the
value of coupling constant then is relatively low. When the coupling constant

becomes too large this is no longer possible and other approaches are needed.
For low energy scales, one possibility is to describe the strong interaction by

the exchange of mesons. In this way, two different pictures are needed to de-
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scribe the strong interaction. For high energies the quarks and gluons are the

relevant degrees of freedom, whereas hadronic degrees of freedom are suit-

able for the low energies. At medium energy scales it is not clear which of the

pictures is the more adequate. A suitable process to explore this energy region

is the creation of antihyperon hyperon pairs in antiproton-proton collisions.

1.4 Hyperons

Hyperons are baryons where at least one of constituent quarks is not an u or
a d quark. For the observed hyperons, most often these quarks are instead s

quarks, but they can also be c quarks in which case the hyperon is referred to as
a charmed hyperon. In the following hyperons of arbitrary sort will be denoted
with Y. Which ground state baryons built up by quarks of the three lightest
flavours are allowed is defined by the symmetry of the baryon wavefunction.
This wavefunction consists of four parts

Ψ = ψ(space)φ(flavour)χ(spin)ξ (colour) (1.4)

Remembering that baryons are fermions, we know that the total wave

function must be antisymmetric. The colour part of the wave function is
always antisymmetric under the exchange of two quarks. Furthermore, for the

ground state baryons, the relative angular momentum of the quarks is zero,
so that the space part of the wave function is symmetric. The remaining part
φ(flavour)χ(spin) must therefore be symmetric. Under the assumption that
the three lightest quarks are massless, SU(3) flavour symmetry holds. The
flavour part of the baryon wave function is then given by a decomposition of
three SU(3) multiplets for the three quarks

3⊗3⊗3 = 10S ⊕8MS ⊕8MA ⊕1A (1.5)

which should be combined with the spin part from three SU(2) multiplets

2⊗2⊗2 = 4S ⊕2MS ⊕2MA (1.6)

The subscripts describe the symmetry properties of the wavefunctions; S/A

means symmetric/antisymmetric with respect to the interchange of any two

of the quarks, while MS/MA means mixed symmetry properties, so that the
wave function is symmetric/antisymmetric with respect to the interchange of

the first two quarks. There are only two combinations which give symmet-
ric wavefunctions, (10,4) and (8,2). Thus, the baryons consisting of the three

lightest quarks are predicted to be in a decuplet with JP = 3
2

+
and an octet

with JP = 1
2

+
. In figure 1.2, these multiplets are shown using strangeness, s,
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and third component of isospin, I3, as coordinate axes. These hyperons have

all been found in experiments.
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Figure 1.2: The JP = 3
2

+
decuplet and the JP = 1

2

+
octet of baryons built up by quarks

of the three lightest flavours.

If we want to find out which charmed hyperons ought to exist, the reasoning
above can be expanded to also include the fourth lightest c quark. The flavour
symmetry is in this case described by SU(4), even though it should be remem-
bered that the assumption of massless quarks is not a very good one anymore.
In spite of that, the reasoning seems to work quite well. The corresponding
decomposition of SU(4) multiplets is

4⊗4⊗4 = 20S ⊕20MS ⊕20MA ⊕ 4̄A (1.7)

In this case the symmetric combinations with spin are (20,4) and (20,2). If
the 20-plets are decomposed into SU(3) multiplets

20S = 10⊕6⊕3⊕1
20M = 8⊕6⊕ 3̄⊕3

(1.8)

we see that the decuplet and octet, containing baryons from the three light-

est quarks, are included in these larger multiplets. In figure 1.3, the two 20-
plets are shown with the new dimension of charm, c, as the vertical axis. In

this picture the decuplet and octet form the bases of the two 20-plets. Charmed
hyperons with one c quark of all sorts have been found experimentally, while

no doubly charmed hyperon has been found yet.
The only possibility for hyperons to decay to lighter particles with fewer s

and c quarks is through the flavour changing weak interaction. An interesting
aspect of the weak interaction is that it does not conserve parity, which means
that the daughter particles of the hyperon are not isotropically distributed in
the decay. Instead, the daughter baryons are emitted more (or less2) preferably

2If the asymmetry parameter α , which will be introduced later in this thesis, is negative for the

hyperon, the daughter baryon will be emitted more preferably in the opposite direction of the

hyperon spin direction.
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in the hyperon spin direction. By studying the angular distribution in hyperon
decays it is therefore possible to extract the hyperon spin variables. While it
is often difficult to get information about spin in particle physics experiments,
hyperon decays open up a whole area of interesting spin physics.

1.5 Hyperon Physics in Antiproton-Proton Collisions
and the PANDA experiment

If protons and antiproton are collided at sufficiently high energy, u or d quark

antiquark pairs can be annihilated, while s or c quark antiquark pairs may be
created. At the hadron scale, this means that a hyperon-antihyperon pair is

created. In the most basic experimental setup where both the initial protons
and the antiprotons are unpolarised, the spin variables which can be studied
are the individual polarisations of the hyperon/antihyperon and certain corre-
lations between their spins.

Experimental information on spin variables is uesful in discriminating be-

tween theoretical models describing the p̄p → ȲY process. These models can
be divided into two main groups; the quark gluon picture and the meson ex-

change picture. Although the models have to describe both the differential
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cross sections and the spin variables of the existing data, no clear answer of

which picture is the most relevant has been found. New experimental data

are therefore needed, in particular on p̄p → ȲY processes, including heavier
hyperons, for which no data exist so far.

The spin variables of the hyperons can often be related to the spin of the
individual quarks. As an example, the Λ hyperon can be seen as a spin 0 ud
diquark combined with an s quark, so that the spin of the hyperon is carried
by the s quark. Consequently, studying spin variables in the p̄p → Λ̄Λ reaction
probes the role of spin in the creation of strangeness. The same argument holds
for creation of charm in the case of the Λ+

c hyperon. For other hyperons the
relation of their spin to the spins of the individual quarks is more complicated.

The existing data for p̄p → ȲY processes are almost exclusively for single
strangeness hyperons, with beam momenta from threshold up to a few GeV/c.
In the upcoming PANDA experiment, antiprotons and protons will be col-
lided at beam momentum up to 15 GeV/c, which is well above the treshold
for all of the multistrange and the lightest charmed hyperons. This means that
the multistrange and charmed sector of antihyperon hyperon physics will be
available for detailed experimental studies for the first time. Also for the sin-
gle strangeness processes, the amount of data from PANDA will exceed the
existing ones by orders of magnitude. The large amount of statistics makes it
promising to study the possible violation of CP symmetry in p̄p → ȲY. The
CP symmetry and its violation will be discussed in the next section.

1.6 CP Violation

In the understanding of particle physics, symmetry is a very important con-
cept. A fundamental property of quantum field theory is the conservation of
the symmetry CPT, where C stands for charge conjugation, P for parity trans-
formation and T for time reversal. The parity transformation means the inver-
sion of the axes of the reference system. It can be compared to a mirror, where

left goes to right and the other way around3. The laws of physics were long
thought to be symmetric under such a transformation, so that a mirror world
would be the same as ours. This is indeed true for the electromagnetic and
strong interaction, while it was found out in the fifties that the weak interac-
tion does not conserve parity [16, 17].

It was then believed that the if the parity transformation was combined with
a charge conjugation, turning particles into antiparticles, this new CP sym-
metry would hold also for the weak interaction. This turned out not be the
case, since small CP violating effects were measured first in kaon systems
[18, 19, 20] and later also in B-meson systems [21, 22]. Kaons are strange
mesons and the B-mesons are charmed. Since CPT should be conserved, this

3A stricter description of the parity transformation is a reflection, followed by a 180◦ rotation.
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means that also the time reversal symmetry must be broken, so that the laws

of physics would not be the same if time would go backwards. T violation has

also been directly measured in kaon systems [23].
One of the great puzzles of the universe is why it consists of matter and an

absence of antimatter. In order for the matter to exist, somehow an asymme-
try in the amount of matter compared to the amount of antimatter must have
arisen, otherwise all matter would have annihilated with antimatter. In 1967
Sakharov set up three famous conditions which, if all fulfilled, could give rise
to such an asymmetry [24]. One of the conditions is the violation of CP sym-
metry4. Investigating CP violation is consequently a part of trying to answer
the question why anything exists at all.

The theoretical cause of CP violation of the weak interaction in the Standard
Model is a complex phase in the CKM matrix. It can be shown that this way
of generating CP violation is only possible if there are at least three genera-
tions of quarks. CP violation in the strong interaction could also be generated
by an additional term (Θ-term [25]) in the QCD Lagrangian, but no indica-
tion of strong CP violation has been found in experiments. The reason for the
non-existence of CP violation in strong interactions is an open question often
referred to as the strong CP problem. The amount of CP violation within the
Standard Model is far too low to account for the matter antimatter asymmetry
of the universe. It is therefore important to search for sources of CP violation
beyond the Standard Model.

A lot of effort has been put into finding CP violation in hyperon systems,
both from the experimental and theoretical side. Various experiments have put
limits on some of the hyperon CP violation parameters, but no indication of
CP violation has been found so far. If it were to be found, it would be the first
time CP violation is found in a baryon system. All previous measurements
of CP violation are for meson systems. Furthermore, the Standard Model CP
violation predictions for hyperons give very low values. Hyperon violation
parameters are therefore sensitive to effects from physics beyond the Standard
Model such as supersymmetry, left-right symmetric models and multicharged
Higgs [26, 27, 28, 29, 30, 31].

1.7 Thesis Disposition

The thesis investigates the feasibility to study multistrange and charmed an-
tihyperon hyperon physics at PANDA. The main focus is on spin variables,
for which both calculations and simulations have been made. In addition, the
possibility for setting limits on CP violation parameters in the p̄p → ȲY is ex-
plored. In studying hyperon spin, a problem can arise due to the strong mag-

netic field of the PANDA detector. The hyperons are relatively long-lived and

4The other two being violation of baryon number and that the interactions do not take place in

thermal equilibrium
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their spin direction can be affected by the magnetic field during their travel

through the detector. The magnitude of this effect is investigated at the end of

the thesis.
Chapters 2 and 4 summarise previous work, chapters 3 and 5 contain

calculations performed by the author with some results which are present
in the literature and some which are new, while chapters 6 and 7 present
simulations performed by the author. A more detailed disposition of the
thesis is as follows:

Chapter 2: PANDA
This chapter describes the FAIR facility, the planned geometry and
subdetectors of the PANDA detector and the main physics topics which will
be adressed with PANDA.

Chapter 3: The p̄p → ȲY Reaction
This chapter contains calculations of how hyperon spin variables are
related to the angular distributions of their decay particles in the p̄p → ȲY
process. The calculations are based on the density matrix formalism and are

performed both for spin 1/2 and spin 3/2 hyperons. The new results for this
thesis are for the spin 3/2 case. Furthermore, the CP violation parameters for

the process are presented.

Chapter 4: Existing Data and Theoretical Predictions
Here, the existing data on p̄p → ȲY processes are summarised. First the
present situation of how the theoretical models compare to the existing data
is discussed. Then, the focus is on theoretical predictions and interesting
questions for multistrange and charmed processes, for which there are little
or no data and which are simulated in this work. Theoretical predictions and
existing data for CP violation in p̄p → ȲY are also presented.

Chapter 5: Analysis Methods
Ways to reconstruct spin variables from data on angular distributions are

deduced in this chapter. The new results are for the spin 3/2 case. Two

different ways to compensate for detector acceptance are presented. In

addition, CP violation parameters are related to up-down counting asymme-

tries, which are preferable as observables from the experimental point of view.

Chapter 6: Simulations of Multi-Strange and Charmed p̄p → ȲY
Reactions
In this chapter, simulations of three different multistrange and charmed
antihyperon-hyperon processes are presented: p̄p → Ξ̄+Ξ−, p̄p → Ω̄+Ω− and

p̄p → Λ̄−
c Λ+

c . For the CP violation parameters, simulations of p̄p → Λ̄Λ and

p̄p → Ξ̄+Ξ− are also presented.
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Chapter 7: Precession of the Hyperon Polarisation Vector in the
Magnetic Field of the PANDA Detector
This chapter presents an investigation of how the magnetic field in the

PANDA detector affects the spin of the hyperons as they travel through it.

The influence on the polarisation vector by the magnetic field is described

and a Monte Carlo simulation of the effect for p̄p → Λ̄Λ is presented.

Chapter 8: Conclusions and Outlook
The conclusions from the calculations and simulations of the thesis are given
in this chapter. In addition an outlook with suggestions for future studies is
given.

Chapter 9: Summary in Swedish - Svensk Sammanfattning
A short popularised summary of the contents of the thesis in swedish.
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2. PANDA

PANDA is an international collaboration, currently consisting of more than
500 scientists from over 50 institutions in 17 different countries. The aim of
the collaborations is to build a detector for studying hadron physics in colli-
sions of antiprotons and protons. The experiment will be located at the up-
coming FAIR facility outside of Darmstadt [32], which explains the acronym:
PANDA anti-Proton ANnihilation at DArmstadt. The expected startup time
for the first data collection is in 2018. This chapter introduces the FAIR facil-
ity, the different parts of the PANDA detector and the different areas of hadron
physics which will be studied in the PANDA experiment.

2.1 The FAIR Facility

A new international accelerator facility is under construction at the existing
GSI site outside of Darmstadt in Germany. FAIR stands for Facility for An-
tiproton and Ion Research, and it is the largest European research infrastruc-
ture that will be built in the coming years. Figure 2.1 shows the existing GSI
site together with the future FAIR facility. The existing accelerators of GSI
are the UNIversal Linear ACcelerator (UNILAC), the Experimental Storage-
cooler Ring (ESR) and the heavy ion synchrotron (SIS18). They will be used
as injectors for the two main accelerators of FAIR, called SIS100 and SIS300
[33]. SIS100 and SIS300 are built in the same tunnel, 17 m under ground, with
a circumference of 1100 m.

For the antiproton research, protons accelerated in SIS100 will be used.
The beam from SIS100 will have a pulse structure, with about 5 ·1013 protons
per pulse. These protons, with an energy of 29 GeV, will create antiprotons
in inelastic collisions with nuclei in a target made from either nickel, iridium
or copper. One proton pulse will strike the target every ten seconds with a
duration of 50 ns [34]. The produced antiprotons are precooled in the collector
ring (CR) and then collected and decelerated in the accumulator ring (RESR)1.
They are then injected into the high-energy storage ring (HESR), where the

PANDA detector will be placed. The momentum range in the HESR is from
1.5 GeV/c up to 15 GeV/c. Up to 8.9 GeV/c the antiprotons will be cooled

using electron cooling, while at higher momenta stochastic cooling will be

1The FAIR facility will be built in several consecutive steps. The RESR is not included in the

startup version of FAIR, but is planned to be built in a following step.
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Facility for Antiproton and Ion 

Research Primary Beams

•30 GeV protons 2(4)x1013 s-1

Secondary Beams

• Antiproton production target

  2x107 s-1 @ 3.8 GeV/c 

Storage and Cooler Ring

• 1011 stored and cooled 1.5  - 14.5 GeV/c 

    antiprotons

100 m

High resolution mode

• p/p  < 2x10 5 (electron cooling)

• Luminosity = 2x1031 cm 2 s 1

High luminosity mode

• Luminosity = 2 x 1032 cm 2 s 1 

• p/p  ~ 10 4 (stochastic cooling) 

HESR

Figure 2.1: The existing GSI site together with future FAIR facility shown in red [37].

used [35]. Two different modes are planned for the experiment: high resolution
mode, with a momentum resolution of δ p/p < 4 · 10−5 and a luminosity of
2 · 1031 cm−2s−1, and a high luminosity mode, with a momentum resolution

of δ p/p ≈ 10−4 and a luminosity of 2 ·1032 cm−2s−1 [36].
Apart from PANDA, several other collaborations are planning experiments,

where antiprotons or heavy ions will be used. The FLAIR experiment will
study antiprotonic atoms using antiprotons cooled in the new experimental
storage ring (NESR)2. A lot of research is planned in the area of nuclure struc-
ture, with the use of rare radioactive isotope beams. The NUSTAR collabora-
tion develops the Super-FRS, which is a superconducting fragment separator
followed by different experimental branches. Experiments which will use the
Super-FRS are R3B (reactions with relativistic radioactive beams to study re-

actions with exotic nuclei far from stability), HISPEC/DESPEC (studies of
the classical shell gaps and magic numers, where the radioactive beams are

directed onto neutron- and protonrich nuclei) and ELISe (scattering of elec-
trons off exotic nuclei). CBM will study nuclear matter under extreme condi-
tions, with a temperature and density that could enable quark gluon plasma to
be created. The SIS300 accelerator ring will be used for CBM. The SPARC
collaboration will study atomic shells under extreme conditions with highly

2The NESR and the FLAIR experiment are not included in the startup version of FAIR, but are

planned for following steps.
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charged very heavy ions. Plasma physics will also be studied using heavy ion

beams or laser beams.

2.2 The PANDA Detector

The PANDA detector is a detector designed for hadron physics in p̄p colli-

sions. The physics program is very broad and the detector is therefore rather

complex with a geometrical acceptance of almost 4π . The detector is split into
two main parts: the target spectrometer, which is built around the target cov-
ering tracks with large opening angles, and the forward spectrometer, for the
region where most tracks are going due to the forward boost from the fixed
target geometry.

Muon Detectors

Superconducting Solenoid

Central  Tracker

Micro Vertex Detector

Electromagnetic  Calorimeters

DIRC

Dipole Magnet

Drift Chambers

Forward  RICH

Forward SpectrometerTarget Spectrometer

GEM

p-Beam

Muon/Hadron ID

Figure 2.2: The PANDA detector [37].

The presentation in this section follows the geometry used in the simula-

tions of this thesis, which is also the one used for the PANDA physics perfor-
mance report [37]. A more detailed description of the detector layout, can be

found in this report.
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2.2.1 Target Spectrometer

The target spectrometer is of a cylindrical shape with a radius of about 2 m and
a length of about 6 m. It consists of a barrel part for emittance angles between
22◦ and 140◦ and a forward endcap for angles down to 5◦ in the vertical and
10◦ in the horizontal direction. The geometry of the barrel part reminds of an
onion, where different subdetectors are placed in layers around the beam axis.
Closest to the interaction point is a micro vertex detector (MVD), followed
by a central tracker. The electromagnetic calorimeter (EMC), which detects
photons and electrons, will be located outside the tracker. Outside of the de-
tecors there will be a superconducting magnet providing a 2 T solenoid field
for momentum determination of charged particles [38]. The homogeneity of
the field will be better than 2% in the tracking region. As an outermost part
of the target spectrometer, muon detectors will be placed. The beam pipe for
injection of the target material has to go through all the subdetectors in the
vertical direction perpendicular to the beam axis.

Figure 2.3: The target spectrometer [37].
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2.2.1.1 Target
The PANDA experiment is designed for a luminosity of 2 · 1032 cm−2s−1.

With 1011 stored antiprotons in the HESR, this requires a target thickness
of 4 · 1015 hydrogen atoms per cm2. Since the place for installment in the
detector is very limited, the construction of the target poses a great challenge.

Two options are available which fulfils the requirements: a pellet target and a
cluster jet target. Both options are planned to be used.

The pellet target generates frozen hydrogen droplets that are sent perpendic-
ularly into the beam in the vertical direction. To create the pellets, hydrogen

gas is liquified, cooled down and put into helium of low pressure, where it
forms a jet, which then breaks up into a stream of droplets. This kind of target
was first developed at The Svedberg Laboratory in Uppsala. It has then been
used succesfully in the WASA experiment [39] both at the CELSIUS [40] and
COSY [41] storage rings. The main advantage of the pellet target is a more

well defined interaction point, with a beamsize in the order of 1 mm and a
pellet size of 25-40 μm. The challenge is to get a sufficiently homogenius

luminosity and much of the present work is focused on making sure that the
interaction rate does not instantanously exceed the acceptance of the detector.
Fuurthermore, an optical pellet tracking system [42] is being developed which
could determine the interaction point to about 50 μm. Apart from hydrogen
pellets, also pellets of deuterium have already been used as targets. Pellets of
other gases such as N2, Ar and Xe are also possible [43]. The pellet target
option is used for the simulations.

For the cluster jet target pressurised hydrogen gas is injected through a noz-
zle into vacuum where it condensates and forms a narrow jet of hydrogen
clusters. This gives a lower but more homogenoues density profile. A disad-
vantage is that the interaction point is less well determined. The width of the
cluster jet should be smaller than 10 mm, so that the spread in interaction
point position transversely to the beam is not too large. Cluster jet widths of
this order have been obtained [44]. The position in the beam direction is not
known within this extension and has to be reconstructed from data.

For hypernuclear studies different targets are needed. The whole forward
endcap and part of the inner target spectrometer must then be reconfigured.

2.2.1.2 Micro Vertex Detector
Closest to the interaction point is the micro vertex detector (MVD). It is de-
signed to detect secondary decay vertices from D mesons and hyperons. The
transverse momentum resolution will also be very much improved with the
help of the MVD. The MVD consists of radiation hard silicon pixel detec-
tors with fast individual pixel readout and silicon strip detectors. The MVD
geometry is shown in figure 2.4. The barrel part of the MVD, with an inner
radius of 2.5 cm and an outer radius of 13 cm, consists of four layers, placed
at distances 2, 4, 6 and 8 cm from the interaction point. The two closest to the
interaction point are made of pixel detectors, while the following two consist
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of double-sided silicon strip detectors. Outside the barrel part, for particles

going in the forward direction, six detector wheels are placed perpendicular

to the beam axis at distances between 15 and 22 cm. The first four are made

entirely from pixel detectors and the last two have strip detectors on the outer

radius and pixel detectors closest to the beam pipe.
Two silicon disk detectors are planned outside of the central MVD, at dis-

tances 40 and 60 cm. They are important for increasing the acceptance for
long-lived hyperons. In the detector geometry used for the simulations they
are included . More information about the MVD can be found in [45].

Figure 2.4: The micro vertex detector [37].

2.2.1.3 Tracking
Apart from the MVD, the tracking in the target spectrometer is divided into
a central tracker, which lies outside of the MVD and covers large angles and

three layers of GEM trackers for the forward angles. The tracking is designed
to have a good efficiency in reconstructing decay vertices outside of the MVD

and a momentum resolution δ p/p which does not exceed a few per cent.
For a long time there have been two options for the central tracker: straw

tube tracker (STT) and time projection chamber (TPC). Recently the decision
has fallen on the STT, which is shown in figure 2.5. The STT is also what
is used for the simulations. The straws of the STT are thin aluminised mylar
tubes filled with a gas mixture of Ar and CO2, with a stretched wire in the
middle. Charged particles which enter the straws will ionize the gas. An elec-

tric field is applied, causing the electrons and positive ions to drift in opposite
directions. With a sufficiently thin wire and high voltage, the gas will further

ionize close to it, which amplifies the signal for readout.
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Figure 2.5: The straw tube tracker [37].

The STT will have 4200 straws, which are placed in 24 layers with radial
distance from the beam between 15 and 42 cm. The straws will have a diam-
eter of 10 mm and a length of 150 cm. The inner 8 layers will be skewed, so
that the position of the hit in the direction parallel to the beam can be given
with an expected resolution of about 3 mm. The straws are made from 30 μm

mylar foil, with the wire being 20 μm gold plated tungsten. The mixture of
gas will not have a higher gain than 105, to allow for the detector to operate
for a long time. The resolution in the directions perpendicular to the beam is
expected to be 150 μm. More information about the STT can be found in [46].

For angles below 22◦, where the tracking is not completely covered by the

STT, three sets of gas electron multiplier (GEM) trackers are installed. They
are placed 1.1, 1.4 and 1.9 m down the beam direction. Due to the forward

boost of the reactions there will be many tracks in this region, so the require-
ment on count rate capacity is very tough. Therefore, instead of drift cham-

bers, GEM trackers with three orders of magnitude higher rate capabilities
are used. The GEM trackers are gaseous micropattern detectors based on am-
plification stages using GEM foils. The GEM foils are metal-coated polymer

which are pierced with many holes. If a high voltage is applied over the detec-
tor the field in the holes can become sufficiently strong, causing the primary

electrons which are collected in them to give rise to an avalanche of secondary
electrons. There will be three double planes with two projections per plane.

A readout plane has strips in two orthgonal projections and is divided into an
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inner ring with shorter strips and an outer ring with longer strips. A strong

correlation between orthogonal strips can be found from the charge sharing

between the strips, which gives almost 2D information instead of just two

projections.
Tracks in the target spectrometer are reconstructed by combining hits in

the MVD, STT and GEM detectors. The momenta of particles are given by
their bending radius in the strong 2 T magnetic solenoid field. Particles with

small polar angles will exit the solenoid field too quickly for a proper mea-

surement in the target spectrometer. Many of these particles will be covered

by the dipole magnet and tracking of the forward spectrometer.

2.2.1.4 Particle Identification
A good particle identification is necessary for a large momentum range from
200 MeV/c to 10 GeV/c, in order to study the wide range of hadron physics
topics foreseen. The PANDA detector will be able to identify five different
particle types: e, μ , π , K and p.

For particles with momenta above 1 GeV/c the particle identification is per-
formed by Cherenkov detectors3. There will be two DIRC detectors4, one in

the barrel part for polar angles from 22◦ to 140◦ and one in the forward endcap
for polar angles from 5◦ and 22◦. The barrel DIRC consists of 1.7 cm thich

quartz slabs located at a radial distance 45 to 54 cm from the beam pipe. The
Cherenkov light is focused onto micro channel plate photomultiplier tubes,

which have the advantage that they are insensitive to magnetic fields. The
same material is used for the forward endcap DIRC, but the radiator will in
this case be in the form of a 2 cm thick disc with a radius of 110 cm, placed
directly behind the forward endcap calorimeter. Focusing will be done at the
rim around the disc, using quartz elements, which reflects onto micro channel
plate photomultiplier tubes. The light will be measured at the rim around the
disc by focusing elements. A similar detector was used in the BaBar detector
[47].

For particles with lower momenta, the particles will be identified using the
fact that their energy loss, dE/dx, in materials depend on the particle type.

Information about dE/dx will be given from the MVD and the STT.
Slow particles with large polar angles will be identified with the use of a

time of flight (TOF) detector, located just outside the STT at radial distance
42 to 45 cm, covering angles between 22◦ and 140◦. A very good time res-
olution of 50-100 ps will be needed, due to the short flight path. There will
be no start detector, since that would introduce to much material close to the
interaction point. Instead, relative timing between different particles will be
used. In choosing a suitable detector, the consideration was a balance between
time resolution and material budget. The choice fell on a detector based on

3Detectors based on the principle that particles travelling at speeds above the speed of light in

the specific material emits light at a certain angle determined by the velocity.
4Detection of Internally Reflected Cherenkov light
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scintillating tiles, with less than 2% of a radiation length and the ability to

achieve a time resolution better than 100 ps. The TOF detector is not included

in the simulations.

2.2.1.5 Electromagnetic Calorimeter
The electromagnetic calorimeter (EMC) is the most expensive subdetector of
PANDA, consisting of approximately 15500 scintillating crystals divided into
three parts: a barrel part around the beam, a forward and a backward endcap.
The barrel and forward endcap part is shown in figure 2.6.

Figure 2.6: The electromagnetic calorimeter [37].

The EMC must be able to handle high count rates and be reasonably com-

pact. Also, the energy range of the photons that will be detected is very wide,
ranging from a few MeV up to some GeV. It has therefore been decided to use

lead tungstate crystals (PbWO4) for the EMC. This is a material with many
attractive features, which is also used by the high energy physics experiments
CMS and ALICE at CERN [48, 49]. This material is dense, radiation hard,
has a short radiation length and Moliere radius, and a fast decay time of the
scintillation process. The disadvantage is that the light yield is relatively low.
One way to increase the light yield is to cool the crystals. For that reason the
EMC will be operated at −25◦C, which will increase the light yield with a

factor of four, as compared to room temperature.
The barrel part will be 2.5 m long, consisting of 11360 crystals. The crys-

tals are placed in rings with an inner radius of 60 cm. The crystals are not
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directed directly to the interaction region, but are tilted about 4◦. The reason

for this is to avoid photons escaping detection by going along the gap between

two crystals. The forward endcap, with 3600 crystals, is placed 2.1 m from

the target and has a diameter 2 m. The smaller backward endcap, with 592

crystals, is placed 1 m from the target and has a diameter 0.8 m. All crystals

will be 200 mm long, which corresponds to about 22 radiation lengths. With

crystals of this length an energy resolution below 2% at 1 GeV is obtained

[50, 51, 52]. The shape of the crystals depend on where they will be placed

in the detector. In the backward endcap the crystals are rectangular, whereas

in the other parts they are tapered in various degrees. In total eleven different

shapes will be used. More information about the EMC can be found in [53].

2.2.2 Forward Spectrometer

Particles emitted with angles smaller than 5◦ in the vertical and 10◦ in the hor-
izontal direction can not be detected with the target spectrometer. They will
enter into the forward spectrometer. This spectrometer is an essiential part of
the detector, since many tracks go in the very forward direction in fixed target
experiments. It has similar subdetectors as the target spectrometer: a tracking
system with a dipole magnet, an electromagnetic calorimeter, particle identi-
fication and muon detectors. A magnet with a gap opening of 1× 3 m2 will
supply a 2 T dipole field for the forward tracking. Further down the beam pipe

a luminosity monitor will be placed, for determination of the total integrated
luminosity during cross section measurements.

2.2.2.1 Forward Tracking
To allow for tracking of partcles with both high and low momenta two wire
chambers will be put in front of the dipole magnet, two within and two behind.
The wire chambers will be made from double layer straw tubes. To be able
to reconstruct tracks in each chamber separately, they will each have three
detection layers, one with vertical wires and two with wires inclined ±5◦. A

momentum resolution of δ p/p = 2 ·10−3 for 3 GeV/c protons is expected.

2.2.2.2 Forward Particle Identification
Two detectors are planned for particle identification in the forward spectrom-
eter, a RICH detector5 and a Time-of-Flight Wall.

The RICH detector will supply particle identification for high momentum
particles, providing π/K/p separation in a momentum range between 200
MeV/c and 15 GeV/c. It will use components from the RICH detector of the
HERMES experiment at DESY [54]. The separation of π/K/p is obtained by
using two different radiators, silica aerogel and C4F10 gas.

5Ring-Imaging CHerenkov detector
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The Time-of-Flight wall will be placed 7 m from the target and consist of

slabs made of plastic scintillators. Additional detectors of the same type will

be put inside the dipole magnet opening, for low momentum particles which

do not leave the dipole magnet. Relative timing between any two of all the

charged tracks reaching the detectors will be measured. With the expected

time resolution of 50 ps, a 3σ separation of π/K and K/p will be possible up
to 2.8 GeV/c and 4.7 GeV/c, respectively.

Neither of the particle identification detectors of the forward spectrometer
are included in the simulations.

2.2.2.3 Forward Electromagnetic Calorimeter
The forward electromagnetic calorimeter will be of Shahlyk type. This means
that several scintillator layers are separated by lead layers which works as
absorbers and photon converters. Similar detectors have been used in various
other experiments and the resolution is expected to be about the same as for
the E865 experiment at BNL [55], which was 4%. The forward calorimeter
will be placed 7.5 m from the target.
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2.3 PANDA Physics

Using data from the PANDA experiment, many different questions in the
field of hadron physics can be adressed. Apart from the antihyperon-hyperon

physics described in this thesis, some of the major topics which are focused
on are:

• QCD bound states

An important aspect in studies of QCD is to understand the spectra of

bound states. There are several approaches to calculate these spectra:
non-relativistic potential models, effective field theories and lattice QCD.
Precise measurements are needed to discriminate between different
models. The focus of PANDA will be on the charmonium spectrum. The
low lying charmonium states are similar to the postronium spectrum,
and the understanding of charmonium from the strong interaction is
analogue to the understanding of positronium in the electroweak theory.
Since the mass of the c quarks are comparable to the mass of the states,
non-relativistic models are applicable. The states of charmonium are
narrow below the open charm treshold, which is an advantage in the search

for new exotic states. Above the open charm treshold very little is known
experimentally, but interesting new physics is expected. By scanning over

the states using different beam momenta of the HESR, the measured width
will not be determined by the detector resolution but only limited by the

spread in beam momentum. In this way PANDA will be able to measure
the states with very good resolution.

• Search for gluonic hadrons and multiquark states

As already mentioned in the introduction no hadron of more complex
structure than that of the ordinary mesons and baryons has been
experimentally confirmed. There is in principle no theoretical reason why
such exotic hadrons should not exist. One way to compose more complex
hadrons is to include gluonic degrees of freedom. Two sorts of gluonic
hadrons are thought to exist: glueballs, which are pure gluonic states, and
hybrids, which consist of a quarks and constituent gluons. Gluonic hadrons
may have quantum numbers which can not be formed from ordinary
hadron states. Such states are said to have exotic quantum numbers. An
important advantage of p̄p colliders compared to e+e− colliders, is that
states with any non-exotic quantum number can be observed already
in formation6 mode, while the quantum number is restricted to that of
the intermediate photon JPC = 1−− in e+e− collisions. Possible states

6A resonance is formed which then decays to several particles.
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with exotic quantum numbers can be formed in production7 mode. The

observation of a state in production mode but not in formation mode is

therefore a clear indication of exotic quantum numbers. Calculations from

lattice QCD predict about 15 different glueballs, some of them with exotic

quantum numbers, with masses that make them accessible to PANDA.

Exotic charmonium hybrids are expected to exist in the 3-5 GeV/c2 mass
region, where they can be resolved and unambiguously identified with
PANDA. Other complex compositions of hadrons are multiquark states,
which are colourless combinations of more quarks than the three quark or
quark antiquark structure of baryons and mesons.

• Studies of nucleon form factors

Studies of the nucleon structure are also planned for PANDA.
Electromagnetic processes such as deeply virtual Compton scattering and

p̄p → e+e−, will be used to determine the electromagnetic form factors
of the proton in the timelike region. A lot of focus is given to generalized
parton distributions (GPDs), which has been succesful in treating hard
exclusive processes in lepton scattering, under conditions where it is
possible to factorize short and long distance contributions to the reaction
mechanism. GPDs are related to non-diagonal matrix elements, so that
they do not only represent probabilities, but also include interference
between amplitudes. It is interesting to test wether the method is universal
and can be used in p̄p annihilation processes.

• Studies of hadrons in nuclear medium

The masses of hadrons change when they are embedded in a finite nuclear
density. The reason for this is believed to be a modification of chiral
symmetry breaking of QCD, which is thought to be partially restored in
the nuclear medium. Studies of these modifications can give insight into
the QCD vacuum and the origin of the hadron masses. Also the width of
the hadrons change, in general by an increase, since more decay modes
become available for the bound hadrons. Measuring the change in width
can give insight into the inelastic interactions of unstable hadrons, which
is hard to get in other ways. The PANDA experiment will allow to extend
such studies of hadrons in nuclear medium into the charmed sector by
using antiproton-nucleus collisions.

7The state is formed directly together with other particles.
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• Studies of hypernuclei

A hypernucleus is a nucleus where one or more of the nucleons are
replaced by a hyperon. In this way a third dimension of the nuclear
chart is introduced. The purpose of hupernuclei studies is to get a better
insight into both nuclear structure and properties of hyperons. Level
schemes in nuclei are created by applying the Pauli principle to protons
and neutrons separetely. Being of a different particle type, a hyperon in
a nucleus will not be affected by the protons and neutrons, with respect
to the Pauli principle. This means that deeply bound states of hypernuclei
are accessible to experiment. Such deeply bound states are difficult to
study in ordinary nuclei due to the Pauli blocking, so that hypernuclei
can give valuable information to the field of nuclear structure. While
it is hard to get information about nucleon-hyperon interactions from
scattering experiments, studying hyperons bound in hypernuclei may be
a good way to extract this information. In the PANDA experiment, it
is also planned to study double hypernuclei, which in a similar way can
give information about the hyperon-hyperon interaction. So far only a few

events with double hypernuclei have been detected. Hypernuclei also have
a connection to astrophysics, since hyperons may be present in neutron

stars, affecting their properties.

More detailed information about these and other topics can be found in
[37].
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3. The p̄p → ȲY Reaction

The parity violating weak decay of hyperons means that information about
their spin degrees of freedom is accessible by studying the angular distribution
of their decay particles. In the p̄p→ ȲY reaction, many spin variables are open

for study. For the PANDA experiment, where both the beam and target are

unpolarised, the non-zero spin variables are the polarisation of the individual

hyperon/antihyperon and certain correlations of their spins. In this chapter

the angular distributions of the hyperon decays, and their dependence on spin

variables, are deduced. Both the spin 1/2 case and the more complex spin 3/2

case are considered. Another interesting aspect of the p̄p → ȲY reaction is
that both the initial and final state are CP eigenstates, which makes it suitable

for studies of possible CP violation. This is adressed in the last part of this
chapter.

3.1 Spin Variables

To derive the dependence of the angular distributions on spin variables, it is
very convenient to use the density matrix formalism. Therefore this section
starts with a short introduction to the density matrix.

3.1.1 The Density Matrix

The density matrix formalism, developed in 1927 by von Neumann, is a way

to describe ensembles in quantum mechanics [56]. In a pure ensemble every
member is described by the same ket |Ψ〉, while for a mixed state different
fractions, populated by the amount ai, are described by different kets |Ψi〉.
For a pure state the expectation value of an observable E is given by

〈E〉 = 〈Ψ|E|Ψ〉 . (3.1)

In an orthonormal basis {|αk〉} the expectation value can be rewritten as
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〈E〉 = 〈Ψ|
(

∑
k
|αk〉〈αk|

)
E|Ψ〉 = ∑

k
〈Ψ|αk〉〈αk |E|Ψ〉 =

= ∑
k
〈αk|E|Ψ〉〈Ψ|αk〉 = Tr(E|Ψ〉〈Ψ|) .

(3.2)

If we define the density matrix as ρ ≡ |Ψ〉〈Ψ|, we have

〈E〉 = Tr(Eρ) . (3.3)

All physics information about the ensemble is contained in the density ma-
trix. With a slight modification it is also possible to define the density matrix
for a mixed state, for which eq.(3.2) becomes

〈E〉 = ∑
i

ai〈Ψi|E|Ψi〉 = ∑
i

ai〈Ψi|
(

∑
k
|αk〉〈αk|

)
E|Ψi〉 =

= ∑
k
〈αk|

(
E ∑

i
ai|Ψi〉〈Ψi|

)
|αk〉 = Tr

(
E ∑

i
ai|Ψi〉〈Ψi|

)
.

(3.4)

The expression for the expectation value in eq.(3.3) is again achieved if the
density matrix is now defined as ρ ≡ ∑i ai|Ψi〉〈Ψi|. For a pure state Tr(ρ) = 1,
which also holds for a mixed state if ∑i ai = 1. The density matrix is also
hermitian since

ρ† = (|Ψ〉〈Ψ|)† = 〈Ψ|†|Ψ〉† = |Ψ〉〈Ψ| = ρ . (3.5)

What also is needed to know about the density matrix is its transformation
properties. Let T be a transformation of |Ψi〉, with its physical meaning being

a transition from the initial to the final state of a reaction, so that T |Ψi〉 =
ti|Ψ′

i〉. The eigenvalues are then given by ti =
√

〈Ψi|T †T |Ψi〉, which ensures
normalisation of |Ψ′

i〉, since

〈Ψ′
i|Ψ′

i〉 =
1

|ti|2 〈Ψi|T †T |Ψi〉 = 1 . (3.6)

Then, the density matrix transforms as

ρfinal = T ρinitialT † . (3.7)

Writing this out explicitly, we have
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T ρinitialT † = T

(
∑

i
ai|Ψi〉〈Ψi|

)
T † = ∑

i
aiT |Ψi〉〈Ψi|T † = ∑

i
ait2

i |Ψ′
i〉〈Ψ′

i|
(3.8)

which gives back eq.(3.7) if a′i = ait2
i and ρfinal = ∑i a′i|Ψ′

i〉〈Ψ′
i|.

Combining eq.(3.3) and eq.(3.7), the angular distribution of the daughter

particles of a decay is given by [57]

I = Tr(T ρinitialT †) (3.9)

where T describes the decay.

3.1.2 Hyperon Density Matrices

To get the density matrix for a particle of arbitrary spin j, one may use an

expansion in hermitian matrices QL
M [58, 59]

ρ =
1

2 j +1
I +

2 j

∑
L=1

ρL (3.10)

with

ρL =
2 j

2 j +1

L

∑
M=−L

QL
MrL

M (3.11)

and where I is the identity matrix. Using this normalisation the particle’s
degree of polarisation is given by

d(ρ) =

√√√√ 2 j

∑
L=1

L

∑
M=−L

(rL
M)2 . (3.12)

The QL
M matrices are related to the multipoles T L

M through

QL
0 =

√
2L+1

2 j
T L

0

QL
M = (−1)M

√
2L+1

j
1

2
(T L

M +T L†
M )

QL
−M = (−1)M

√
2L+1

j
1

2i
(T L

M −T L†
M ) where M > 0 .

(3.13)

39



To get an explicit expression for the density matrix, the components of T L
M

can be calculated using Wigner’s 3 j symbol

(T L
M)m

n =
√

2 j +1

(
m L j
j M n

)
= 〈 jnLM| jm〉 . (3.14)

3.1.2.1 The Spin 1/2 Hyperons
Most low mass hyperons are spin 1/2 particles. For spin 1/2 the density matrix
takes a very simple form. The Q1

M matrices become the Pauli matrices and the

corresponding r1
M can be interpreted as the vector polarisation

ρ(1/2) =

[
ρ11 ρ1−1

ρ−11 ρ−1−1

]
=

1

2
(I + P̄ · σ̄) =

1

2

[
1+Pz Px + iPy

Px − iPy 1−Pz

]
.

(3.15)
In the case of hyperons created by strong interaction in the p̄p → ȲY pro-

cess, the conservation of parity can be used to impose symmetries of the den-

sity matrix. With the hyperon rest system constructed in such a way that the

x− and z-axes form the production plane, the symmetries from parity conser-
vation are [57]

ρ(1/2) =

[
ρ11 ρ1−1

−ρ1−1 ρ11

]
. (3.16)

Comparing with eq.(3.15) this means Px = Pz = 0, i.e. the hyperon is only
polarised perpendicular to the production plane, so that

ρ(1/2) =
1

2

[
1 iPy

−iPy 1

]
. (3.17)

3.1.2.2 The Spin 3/2 Ω Hyperon
The Ω hyperon has spin 3/2, which makes the density matrix much more com-

plicated. The L number in eq.(3.10) now takes on the values 1, 2 and 3. As be-
fore the Q1

M matrices are the three spin matrices (with a normalisation factor
2√
15

)
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Q1
0 =

2√
15

⎡
⎢⎢⎢⎣

3
2 0 0 0

0 1
2 0 0

0 0 −1
2 0

0 0 0 −3
2

⎤
⎥⎥⎥⎦ , Q1

1 =
2√
15

⎡
⎢⎢⎢⎢⎣

0 −
√

3
2 0 0

−
√

3
2 0 −1 0

0 −1 0 −
√

3
2

0 0 −
√

3
2 0

⎤
⎥⎥⎥⎥⎦ ,

Q1
−1 =

2√
15

⎡
⎢⎢⎢⎢⎣

0
√

3
2 i 0 0

−
√

3
2 i 0 i 0

0 −i 0
√

3
2 i

0 0 −
√

3
2 i 0

⎤
⎥⎥⎥⎥⎦ .

(3.18)

There are five Q2
M matrices, which corresponds to products of two spin

matrices. The explicit expressions are

Q2
0 =

1√
3

⎡
⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎤
⎥⎥⎥⎦ , Q2

1 =
1√
3

⎡
⎢⎢⎢⎣

0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦ ,

Q2
−1 =

1√
3

⎡
⎢⎢⎢⎣

0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0

⎤
⎥⎥⎥⎦ , Q2

2 =
1√
3

⎡
⎢⎢⎢⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎦ ,

Q2
−2 =

1√
3

⎡
⎢⎢⎢⎣

0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0

⎤
⎥⎥⎥⎦ .

(3.19)

Finally, there are seven Q3
M matrices, which corresponds to triple products

of spin matrices
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Q3
0 =

1√
15

⎡
⎢⎢⎢⎣

1 0 0 0

0 −3 0 0

0 0 3 0

0 0 0 −1

⎤
⎥⎥⎥⎦ , Q3

1 =
1√
15

⎡
⎢⎢⎢⎣

0
√

2 0 0√
2 0 −√

6 0

0 −√
6 0

√
2

0 0
√

2 0

⎤
⎥⎥⎥⎦ ,

Q3
−1 =

1√
15

⎡
⎢⎢⎢⎣

0 −√
2i 0 0√

2i 0
√

6i 0

0 −√
6i 0 −√

2i
0 0

√
2i 0

⎤
⎥⎥⎥⎦ , Q3

2 =
1√
15

⎡
⎢⎢⎢⎣

0 0
√

5 0

0 0 0 −√
5√

5 0 0 0

0 −√
5 0 0

⎤
⎥⎥⎥⎦ ,

Q3
−2 =

1√
15

⎡
⎢⎢⎢⎣

0 0 −√
5i 0

0 0 0
√

5i√
5i 0 0 0

0 −√
5i 0 0

⎤
⎥⎥⎥⎦ , Q3

3 =
1√
15

⎡
⎢⎢⎢⎣

0 0 0
√

10

0 0 0 0

0 0 0 0√
10 0 0 0

⎤
⎥⎥⎥⎦ ,

Q3
−3 =

1√
15

⎡
⎢⎢⎢⎣

0 0 0 −√
10i

0 0 0 0

0 0 0 0√
10i 0 0 0

⎤
⎥⎥⎥⎦ .

(3.20)

Inserting all the QL
M matrices into eq.(3.10) gives the following density ma-

trix
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ρ(3/2) =

=
1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+3
√

3
5 r1

0+ − 3√
5

r1
1 + i 3√

5
r1
−1−

√
3r2

2 − i
√

3r2
−2+

√
6r3

3 − i
√

6r3
−3

+
√

3r2
0 +

√
3
5 r3

0 −√
3r2

1 + i
√

3r2
−1+ +

√
3r3

2 − i
√

3r3
−2

+
√

6
5 r3

1 − i
√

6
5 r3

−1

− 3√
5

r1
1 − i 3√

5
r1
−1− 1+

√
3
5 r1

0− −2
√

3
5 r1

1 + i2
√

3
5 r1

−1−
√

3r2
2 − i

√
3r2

−2−
−√

3r2
1 − i

√
3r2

−1 −√
3r2

0 −3
√

3
5 r3

0 −3
√

2
5 r3

1 + i3
√

2
5 r3

−1 −√
3r3

2 + i
√

3r3
−2

+
√

6
5 r3

1 + i
√

6
5 r3

−1

√
3r2

2 + i
√

3r2
−2+ −2

√
3
5 r1

1 − i2
√

3
5 r1

−1− 1−
√

3
5 r1

0− − 3√
5

r1
1 + i 3√

5
r1
−1+

+
√

3r3
2 + i

√
3r3

−2 −3
√

2
5 r3

1 − i3
√

2
5 r3

−1 −√
3r2

0 +3
√

3
5 r3

0 +
√

3r1
2 − i

√
3r2

−1+

+
√

6
5 r3

1 − i
√

6
5 r3

−1

√
6r3

3 + i
√

6r3
−3

√
3r2

2 + i
√

3r2
−2− − 3√

5
r1

1 − i 3√
5

r1
−1+ 1−3

√
3
5 r1

0+

−√
3r3

2 − i
√

3r3
−2 +

√
3r2

1 + i
√

3r2
−1+ +

√
3r2

0 −
√

3
5 r3

0

+
√

6
5 r3

1 + i
√

6
5 r3

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.21)

As in the spin 1/2 case, parity conservation in the creation mechanism of

the particle impose symmetries on the density matrix [57]

ρ(3/2) =

⎡
⎢⎢⎢⎣

ρ33 ρ31 ρ3−1 ρ3−3

ρ∗
31 ρ11 ρ1−1 ρ∗

3−1

ρ∗
3−1 −ρ1−1 ρ11 −ρ∗

31

−ρ3−3 ρ3−1 −ρ31 ρ33

⎤
⎥⎥⎥⎦ . (3.22)

Using these symmetries eight of the fifteen r coefficients can be set to zero

and eq.(3.21) reduces to
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ρ(3/2) =

=
1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+
√

3r2
0 i 3√

5
r1
−1 −

√
3r2

1

√
3r2

2 − i
√

3r3
−2 −i

√
6r3

−3

−i 3√
5
r1
−1 −

√
3r2

1 1−√
3r2

0 i2
√

3
5 r1

−1 + i3
√

2
5 r3

−1

√
3r2

2 + i
√

3r3
−2

√
3r2

2 + i
√

3r3
−2 −i2

√
3
5 r1

−1 − i3
√

2
5 r3

−1 1−√
3r2

0 i 3√
5
r1
−1 +

√
3r2

1

i
√

6r3
−3

√
3r2

2 − i
√

3r3
−2 −i 3√

5
r1
−1 +

√
3r2

1 1+
√

3r2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.23)

Compared to the spin 1/2 particle, where the total polarisation of the parti-
cle is in one component of the vector polarisation, the situation is here more

complicated. To get the polarisation, the seven remaining r coefficients, r3
−3,

r3
−2, r3

−1, r2
2, r2

1, r2
0 and r1

−1, need to be measured.

3.1.3 Angular Distributions for Hyperon Decays

The elements of the hyperon density matrix can be determined by studying the
angular distribution of the hyperons decay particles. As shown in section 3.1.1
this angular distribution is given by

I = Tr(T ρinitialT †) (3.24)

where T is the decay matrix. In this section decay matrices for hyperons
with different spins will be given and the angular distributions will be derived
first for one single decay and then for two succesive decays.

3.1.3.1 spin 1/2 → spin 1/2 spin 0
For a spin 1/2 hyperon decaying to a spin 1/2 baryon and pseudoscalar spin
0 meson, conservation of total spin implies that the final state can have an-
gular momentum 0 or 1. The parity of the final state is given by (−1)L+1,

but since the decay is weak both the parity conserving P state and the par-
ity violating S state are allowed. The elements of the decay matrix, denoted

T (1/2 → 1/2 0)2mbar2mhyp
, are built up by the S and P amplitudes and the cor-

responding Clebsch-Gordan coefficients and spherical harmonics
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T (1/2 → 1/2 0)11 = TsY 0
0 +

1√
3

TpY 0
1

T (1/2 → 1/2 0)−11 = −
√

2

3
TpY 1

1

T (1/2 → 1/2 0)1−1 =

√
2

3
TpY−1

1

T (1/2 → 1/2 0)−1−1 = TsY 0
0 − 1√

3
TpY 0

1

(3.25)

or in matrix form with the explicit expressions for the spherical harmonics
inserted

T (1/2 → 1/2 0) =
1√
4π

[
Ts +Tp cosΘ Tp sinΘe−iφ

Tp sinΘeiφ Ts −Tp cosΘ

]
. (3.26)

However since Tr(T ρT †) = Tr(ρT †T ), the calculation of the angular dis-
tribution is simplified if the matrix A = T †T is calculated as a first step

A(1/2 → 1/2 0) =
1

4π

[
1+α cosΘ α sinΘe−iφ

α sinΘeiφ 1−α cosΘ

]
(3.27)

where the asymmetry parameter α has been introduced. The asymmetry
parameters are the following combinations of the S and P amplitudes

α = 2Re(T ∗
s Tp)

β = 2Im(T ∗
s Tp)

γ = |Ts|2 −|Tp|2 .

(3.28)

They are numbers between -1 and 1, which has to be measured for each
specific decay. By construction they fulfill α2 +β 2 + γ2 = |Ts|2 + |Tp|2 = 1.

Finally, using the A matrix the angular distribution becomes

I(Θ,φ) = Tr(ρ(1/2)A(1/2 → 1/2 0)) =
1

4π
(1+αPy sinΘsinφ) (3.29)

or expressed in Cartesian instead of spherical coordinates

I(k̂) =
1

4π
(1+αPyky) (3.30)
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where k is a unit vector pointing in the direction of the daughter baryon

momentum, as defined in the previously introduced coordinate system, where

the x- and z-axes form the production plane.

3.1.3.2 spin 3/2 → spin 1/2 spin 0
For the spin 3/2 Ω hyperon decaying to a spin 1/2 Λ hyperon and a spin 0
kaon, conservation of total spin in this case implies that the final state can
have angular momentum 1 or 2. The parity violating S state in the previous
spin 1/2 case is here replaced by a D state. The same strategy as in eq.(3.25)
can be used to write out the elements of the decay matrix

T (3/2 → 1/2 0)13 = TpY 1
1 +

1√
5

TdY 1
2

T (3/2 → 1/2 0)−13 = − 2√
5

TdY 2
2

T (3/2 → 1/2 0)11 =

√
2

3
TpY 0

1 +

√
2

5
TdY 0

2

T (3/2 → 1/2 0)−11 =
1√
3

TpY 1
1 −

√
3

5
TdY 1

2

T (3/2 → 1/2 0)1−1 =
1√
3

TpY−1
1 +

√
3

5
TdY−1

2

T (3/2 → 1/2 0)−1−1 =

√
2

3
TpY 0

1 −
√

2

5
TdY 0

2

T (3/2 → 1/2 0)1−3 =
2√
5

TdY−2
2

T (3/2 → 1/2 0)−1−3 = TpY−1
1 − 1√

5
TdY−1

2

(3.31)

or in matrix form with the explicit expressions for the spherical harmonics
inserted

√
8πT (3/2 → 1/2 0) =⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−√
3sinΘeiφ 2Tp cosΘ+ sinΘe−iφ √

3Td sin2 Θe−2iφ

×(Tp +Td cosΘ) +3Td cos2 Θ−Td ×(Tp +3Td cosΘ)

−√
3Td sin2 Θe2iφ sinΘeiφ 2Tp cosΘ− √

3sinΘe−iφ

×(−Tp +3Td cosΘ) −3Td cos2 Θ+Td ×(Tp −Td cosΘ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.32)
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For the Ω hyperon the asymmetry parameters can be defined in the same

way as for the spin 1/2 hyperons by replacing the S amplitude with the D

amplitude. It is an experimental fact that the α parameter is almost zero (α =
0.0175 [95]) for the Ω hyperon. If α is put to zero the A matrix is very much
simplified

A(3/2 → 1/2 0) =

=
1

8π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3sin2 Θ −√
3eiφ sin2Θ −√

3e2iφ sin2 Θ 0

−√
3e−iφ sin2Θ 1+3cos2 Θ 0 −√

3e2iφ sin2 Θ

−√
3e−2iφ sin2 Θ 0 1+3cos2 Θ

√
3eiφ sin2Θ

0 −√
3e−2iφ sin2 Θ

√
3e−iφ sin2Θ 3sin2 Θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.33)

giving the angular distribution

I(Θ,φ) = Tr(ρ(3/2)A(3/2 → 1/2 0)) =

=
3

4π
(ρ33(1− cos2 Θ)+ρ11(

1

3
+ cos2 Θ)− 2√

3
Reρ3−1 sin2 Θcos2φ

− 2√
3

Reρ31 sin2Θcosφ) .

(3.34)

With the the explicit expressions for the density matrix elements inserted
this becomes

I(Θ,φ) =
1

4π
(1+

√
3

2
(1−3cos2 Θ)r2

0

− 3

2
sin2 Θcos2φr2

2 +
3

2
sin2Θcosφr2

1)
(3.35)

or

I(k̂) =
1

4π

(
1+

√
3

2
(1−3k2

z )r
2
0 −

3

2
(1− k2

z −2k2
y)r

2
2 +3kxkzr2

1

)
(3.36)

where again the spherical coordinates are replaced by the k̂ vector. Thus,

only three, r2
2, r2

1 and r2
0, out of the seven non-zero coefficients are accessible,
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the parameters r3
n and r1

−1 are not. A similar expression is presented in [57],

but without the explicit density matrix components inserted.

3.1.3.3 spin 1/2 → spin 1/2 spin 0 → spin 1/2 spin 0 spin 0
Some hyperons decay to states which also includes hyperons, e.g. Ξ− decays
to Λπ−. In this case additional information can be obtained by also studying
the angular distribution in the decay of the daughter hyperon. This angular
distribution can, in principle, be calculated from the decay matrices of the two
decays

I = Tr(T2T1ρT †
1 T †

2 ) = Tr(ρT †
1 A2T1) (3.37)

with the indices denoting the first and second decay. However, a rotation
matrix R must be introduced to make the spins in the two decays defined with
respect to the same axis. This is, of course, related to the angles, Θ1 and φ1, of
the first decay. The system should be rotated by an angle φ1 around the z axis
and then a rotation of −Θ1 around the y axis will make the spins defined with
respect to the same axis;

R = e−i 1
2 φ1σzei 1

2 Θ1σyei 1
2 φ1σz =

[
cos Θ1

2 sin Θ1
2 e−iφ1

−sin Θ1
2 eiφ1 cos Θ1

2

]
. (3.38)

To simplify the calculation, it is convenient to define a reference system
where the spin of the initial hyperon defines the z-axis and the momentum of
the daughter hyperon is in the x z plane, with py = 0 and px > 0. This means
that φ1 = 0 and that the density matrix of the initial hyperon takes the form

ρ =
1

2

[
1+P 0

0 1−P

]
. (3.39)

The angular distribution then takes the simple form

I(Θ1,Θ2,φ2) = Tr(ρT †
1 R†A2RT1) =

=
1

16π2
(1+α1PcosΘ1 +α2PcosΘ1 cosΘ2 +α1α2 cosΘ2+

+α2PsinΘ1 sinΘ2(β1 sinφ2 − γ1 cosφ2)) .

(3.40)

By integrating over the angles of the first decay one gets the angular distri-
bution of the second decay according to
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I(Θ2,φ2) =
∫

I(Θ1,Θ2,φ2)dΩ1 =

=
1

4π

(
1+α1α2 cosΘ2 +

π
4

α2PsinΘ2(β1 sinφ2 − γ1 cosφ2)
) (3.41)

or by introducing the vector k̂ (see section 3.1.3.1)

I(k̂) =
1

4π

(
1+α1α2kz +

π
4

α2β1Pky − π
4

α2γ1Pkx

)
. (3.42)

This expression is the same as the one given in [60]. What is noticeable is

that the asymmetry parameters β and γ which do not show up in the angular
distribution of the first decay, appear in the expression for the angular distri-
bution of the succeeding decay. The β parameter is important for CP-violation
measurements, as presented in section 3.2.

3.1.3.4 spin 3/2 → spin 1/2 spin 0 → spin 1/2 spin 0 spin 0
Also the spin 3/2 Ω hyperon has a Λ daughter particle in its dominant decay,
Ω → ΛK. The angular distribution of the Λ decay is calculated in the same
way as eq.(3.40), by instead using the density matrix describing the spin 3/2
hyperon and the T matrices describing the spin 3/2 → spin 1/2 spin 0 decay. It

is in this case not possible to get such a simple density matrix as in eq.(3.39),
by choosing the z axis in the direction of the spin of the Ω. The multiplication

of all the matrices in eq.(3.40) will in this case give a very complicated result.
However, if the simplification to put α for the Ω decay to zero, i.e. α1 = 0, is

used and the angles of the first decay are integrated out, the result becomes

I(Θ2,φ2) =

=
1

4π
(1+β1α2

(√
3

5
r1
−1 +

3

2
√

10
r3
−1

)
sinΘ2 cosφ2+

+ γ1α2

(√
3

5
r1
−1 +

3

2
√

10
r3
−1

)
sinΘ2 sinφ2)

(3.43)

or as a function of k̂

I(k̂) =
1

4π

(
1+

(√
3

5
r1
−1 +

3

2
√

10
r3
−1

)
(β1α2kx + γ1α2ky)

)
. (3.44)

It is now possible to identify what can be measured by studying this sec-
ondary decay. A linear combination of r1

−1 and r3
−1 shows up. Neither of those
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can be measured from the first decay. The combination
√

3
5r1

−1 + 3

2
√

10
r3
−1 will

consequently give additional input. Also the asymmetry parameters β and γ
for the Ω hyperon are not known. If α is assumed to be zero, the sum of their
squares must be one, which means that they can be written as β = sinφ and

γ = cosφ . The angle φ can in principle be determined from this angular dis-
tribution. It can also be noted that if α for the Ω hyperon is not put to zero, its
only contribution to this angular distribution of the Λ decay is a term αΩαΛkz.
This means that αΩ can be measured in the z direction, which is not present in
eq.(3.44).

A previous calculation of the Ω → ΛK → pπK decay chain exists [61],
where a different strategy is used. According to this calculation one parameter

of the vector polarisation can be extracted from a measurement of the decay
angles in the Λ → pπ decay in a certain direction. The angles of the Ω → ΛK

decay are not used to get additional information. In the method described in
this thesis the angular distributions of both decays are used and also polarisa-
tion parameters which are not part of the vector polarisation can be extracted.

3.1.4 Spin Variables in the p̄p → ȲY Reaction

In the p̄p→ ȲY reaction, not only the polarisations of the individual hyperons,
but also the correlations of their spins, are accessible. The total angular dis-
tribution for both the hyperon decays is needed to measure these correlations.
This section is a deduction of this angular distribution for spin 1/2 hyperons,
which follows in large the one given in [62].

3.1.4.1 The Density Matrix for the Two Hyperons
The spins of the proton and the antiproton are uncorrelated in the initial state
in the p̄p → ȲY process. Therefore, the density matrix for the initial state is
just the outer product of their individual density matrices, with a normalisation
factor of 4π for the solid angle,

ρ p̄p =
1

4π
1

4
(I + P̄p̄ · σ̄ p̄)⊗ (I + P̄p · σ̄p) =

=
1

16π

(
I +

3

∑
i=1

Pp̄
i σ p̄

i +
3

∑
j=1

Pp
j σp

j +
3

∑
i, j=1

Pp̄
i Pp

j σ p̄
i σp

j

)
(3.45)

which can be compactified to

ρ p̄p =
1

16π

3

∑
i, j=0

Pp̄
i Pp

j σ p̄
i σp

j (3.46)
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if the convention to define P0 = 1 and σ0 = I is used. It is possible that

the spins of the hyperons in the final state are correlated due to effects in their

production mechanism. Consequently, it is not possible to write the density

matrix as an outer product of the two separate density matrices. Instead, the

density matrix of the initial state can be transformed into the density matrix of

the final state. Let M be the operator that does this transformation. Then we
have according to section 3.1.1

ρ ȲY = Mρ p̄pM† =
1

16π

3

∑
i, j=0

Pp̄
i Pp

j Mσ1
i σ2

j M† (3.47)

where the antiparticles are represented by σ1 and the particles by σ2. To
write the density matrix in a form which displays the spin variables more

explicitly it is convenient to do an expansion using Pauli matrices. Since it is
a 4× 4 matrix, a base of 16 linearly independent matrices is needed. This is

given by the outer product σ1
μσ2

ν , where the zeroth component is taken as the
identity matrix as usual

ρ ȲY =
3

∑
μ,ν=0

xμνσ1
μσ2

ν . (3.48)

Using the properties of the Pauli matrices, σiσ j = δi j + iεi jkσk and Tr(σi) =
0, the coefficients in the expansion can be extracted by multiplying with the

corresponding Pauli matrices and taking the trace

xμν =
1

4
Tr(σ1

μσ2
ν ρ ȲY) =

1

16π

3

∑
i, j=0

Pp̄
i Pp

j
1

4
Tr(σ1

μσ2
ν Mσ1

i σ2
j M†) (3.49)

where the expression from eq.(3.47) has been inserted. The coefficients can
in turn be inserted into eq.(3.48) to give

ρ ȲY =
1

16π

3

∑
μ,ν=0

3

∑
i, j=0

Pp̄
i Pp

j
1

4
Tr(σ1

μσ2
ν Mσ1

i σ2
j M†)σ1

μσ2
ν . (3.50)

By defining the spin variables, χi jμν , and the differential cross section, IȲY
0 ,

as

χi jμν =
Tr(σ1

μσ2
ν Mσ1

i σ2
j M†)

Tr(MM†)

IȲY
0 =

1

4
Tr(MM†)

(3.51)
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the final form of the density matrix becomes

ρ ȲY =
IȲY
0

16π

3

∑
μ,ν=0

3

∑
i, j=0

Pp̄
i Pp

j χi jμνσ1
μσ2

ν . (3.52)

The indices i, j, μ , ν represents the antiproton beam, proton target, antihy-
peron and hyperon respectively.

3.1.4.2 Spin Variables in the Angular Distribution of the Decay Baryons
As shown in previous sections it is possible to deduce the polarisation, P, of
hyperons from the angular distribution of their daughter baryons. In a similar
way spin variables in the p̄p → ȲY process can be deduced from the angular
distribution of both the decay baryon and antibaryon. Using the T matrices
from section 3.1.3.1, the density matrix for the hyperons in eq.(3.52) can be
transformed to the density matrix of the daughter baryons

ρ B̄B = TȲTYρ ȲYT †

Ȳ
T †

Y =
IȲY
0

16π

3

∑
μ,ν=0

3

∑
i, j=0

Pp̄
i Pp

j χi jμνTȲTYσ1
μσ2

ν T †

Ȳ
T †

Y (3.53)

and the angular distribution is achieved by taking the trace of this density

matrix

IB̄B
0 = Tr(ρ B̄B) =

IȲY
0

16π

3

∑
μ,ν=0

3

∑
i, j=0

Pp̄
i Pp

j χi jμνTr(TȲTYσ1
μσ2

ν T †

Ȳ
T †

Y) . (3.54)

Using the A matrix from eq.(3.27) it is straightforward to show that

Tr(TYσiT
†

Y) = Tr(σiAY)

=
2αki

4π
(3.55)

with k0 = 1
α , which turns eq.(3.54) into

IB̄B
0 =

IȲY
0

64π3

3

∑
μ,ν=0

3

∑
i, j=0

ᾱαPp̄
i Pp

j χi jμν k̄μkν (3.56)

where the bar over α and k denotes the antiparticle. The 256 spin vari-

ables χi jμν are given in table 3.1, where I denotes differential cross section,
A asymmetry, P polarisation, D depolarisation, K polarisation transfer, C spin

correlation and M, N spin correlation tensor elements.
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Polarised Particle None Beam Target Both

None I0000 Ai000 A0 j00 Ai j00

Scattered P00μ0 Di0μ0 K0 jμ0 Mi jμ0

Recoil P000ν Ki00ν D0 j0ν Ni j0ν

Both C00μν Ci0μν C0 jμν Ci jμν

Table 3.1: Names of the 256 spin variables χi jμν . The first row tells which of the initial
particles are polarised and the first column which of the final particles are.

For PANDA both the beam and the target are unpolarised. This means that
i = j = 0 and out of the original 256 spin variables only the 16 variables, the
cross section, the polarisation PȲ ,l = χ00l0, PY,l = χ000l and the spin correla-

tions Clm = χ00lm are accessible.

3.1.5 Hyperon Rest Systems and Symmetry Constraints on Spin
Variables

By defining the two rest systems, shown in figure 3.1, with the y-axis as a
pseudovector perpendicular to the production plane

x̂ = ŷ× ẑ

ŷ =
p̄beam × p̄Ȳ

|p̄beam × p̄Ȳ |
ẑ = p̂Ȳ/Y

(3.57)

maximum use of C and P invariance is obtained. As already seen in sec-
tion 3.1.2.1, the parity invariance of the strong interaction means that PȲ ,x =
PY,x = PȲ ,z = PY,z = 0. With this definition of the rest system, it is clear that ŷ
is unaffected by a parity transformation, whereas x̂ and ẑ change sign. All spin
variables with odd number of x and z must therefore be zero, so apart from
the polarisations also Cxy = Cyx = Cyz = Czy = 0. For PANDA, eq.(3.56) then
reduces to

IB̄B(ΘȲ, ˆ̄k, k̂) =
I0

64π3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

+PȲ ,yᾱ k̄y +PY,yαky

+Cxxᾱα k̄xkx

+Cyyᾱα k̄yky

+Czzᾱα k̄zkz

+Cxzᾱα k̄xkz

+Czxᾱα k̄zkx .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.58)
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Due to the rotational invariance of the p̄p → ȲY reaction, the relations

χi jμν = χ jiνμ hold. For the spin variables accessible for PANDA this means
PȲ ,y = PY,y and Cxz =Czx. Thus we are left with five measurable spin variables.

Figure 3.1: Definitions of the rest systems for Ȳ and Y in the p̄p → ȲY reaction.

For reactions where also the daughter particle is a weakly decaying hy-

peron, additional spin information can be obtained from the second decay,
as shown previously. In this case the rest system for the daughter hyperon is
defined through

x̂2 = ŷ2 × ẑ2

ŷ2 =
ŷ× p̄Ȳ2

|ŷ× p̄Ȳ2
|

ẑ2 = p̂Ȳ2/Y2

(3.59)

where ŷ is the pseudovector transverse to the production plane for the orig-

inal hyperons.

3.1.6 Restrictions on Spin Variables from Theoretical
Considerations

It should be noted that already before measurement some combinations of val-

ues of the spin variables can be excluded based on theoretical considerations.
A thorough review of how the spin variables depend on each other is given in

[63]. After the symmetry considerations, the non-zero spin variables can be

54



described by six independent complex amplitudes [64, 65, 66]. An empirical

way to investigate how the spin variables depend on each other is to randomly

generate the aforementioned amplitudes and then plot different spin variables

against each other, to see which part of the plane the values populate. This has

been done in [67, 68]. The result for the spin variables of interest for this the-

sis is summarised in table 3.2. Here, fs means that values covering the whole

plane are allowed, for © the values can only be within a circle of radius 1

centered at (0,0), while � and � denotes the triangles |2 ·SpinVariable1| ≤
SpinVariable2 +1 and |2 ·SpinVariable2| ≤ SpinVariable1 +1 respectively. In
addition studies involving three spin variables have been made in the same
way [69, 70], resulting in allowed volumes in the cube. As an example (Py,

Cxz, Cyy) are only allowed inside a cone and (Cyy, Czz, Cxx) inside a tetrahe-
dron. All these relations can of course be hard to keep track on, but a lot can
be gained in doing so. For instance, the spin variable Dyy, which was impor-
tant for discriminating between different theoretical models (see section 4.1),
can only be measured using a polarised target. With a polarised target it was
measured at LEAR to be close to zero, but this result could have been deduced
from already existing data on other spin variables.

Cxx Cyy Czz Cxz

© � © © Py

fs fs © Cxx

fs � Cyy

© Czz

Table 3.2: Domain of square which is allowed for pairs of spin variables.

Also for the polarisation variables of the Ω hyperon, theoretical restrictions
can be deduced from constraints that the density matrix has to fulfill. In par-
ticular the relation ρiiρ j j ≥ |ρ j j|2 [71] gives rise to the following inequalities

(r2
0)

2 +(r2
2)

2 +(r3
−2)

2 ≤ 1

3

(r2
0)

2 +(r2
1)

2 +
5

3
(r1

−1)
2 ≤ 1

3

6(r3
−3)

2 ≤ (1+
√

3r2
0)

2

12

5
(r1

−1)
2 +

18

5
(r3

−1)
2 ≤ (1−

√
3r2

0)
2

(3.60)

where for instance the first two can be used to put a limit on r3
−2 and r1

−1,

if r2
0, r2

1 and r2
2 are measured from the angular distribution of the decay Λ

hyperon. In fact, using the inequalities and measured values, limits can be put

on all seven of the non-zero polarisation parameters.
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3.2 CP Violation Parameters

CP violation can be studied in a very clean way in the p̄p→ ȲY process. Since
the initial state is a CP eigenstate, the antihyperon hyperon pair of the final

state has the same symmetry and therefore no hadronic final state interactions
can give rise to a false signal. Also, baryon number conservation guarantees

that there is no mixing between the antihyperon and the hyperon. It is possible
to define a few CP violation parameters for p̄p → ȲY, for which a non-zero
measurement would be a clear proof of CP violation [72]. As seen previously,
the asymmetry parameter α quantifies the tendency of the decay baryon to
be preferably emitted in the hyperon spin direction. Charge conjugation turns
the hyperon into the corresponding antihyperon and a parity transformation
rotates the emission direction by 180◦. If CP is conserved, the relation α =−ᾱ
therefore holds, so that the following parameter should be zero

A =
Γα + Γ̄ᾱ
Γα − Γ̄ᾱ

� α + ᾱ
α − ᾱ

(3.61)

where Γ is the partial width for the decay. Some hyperons decay to new

hyperons which in turn also decays weakly in a two-step process. In this case,
also the parameter β is accessible from the second decay. Also for β CP con-

servation means β = −β̄ , so that the following CP violation parameters can
be formed

B =
Γβ + Γ̄β̄
Γβ − Γ̄β̄

� β + β̄
β − β̄

B′ =
Γβ + Γ̄β̄
Γα − Γ̄ᾱ

� β + β̄
α − ᾱ

.

(3.62)

CP violation can only occur when amplitudes with different phases mix. In
the case of the CP violation parameters defined through asymmetry parame-
ters, it is the S- and P-wave amplitudes of the decay which mix [28, 73, 29].
Another CP violation parameter is for partial widths, which should be the
same for the CP conjugate decays Y → Bπ and Ȳ → B̄π [74]. The amplitudes
which mix are here instead between the different isospin transitions1 ΔI = 1/2

and ΔI = 3/2. The parameter which should be zero can be defined through

D =
Γ− Γ̄
Γ+ Γ̄

. (3.63)

1D is consequently only a CP violation parameter for hyperon decays where different isospin

transitions are possible. As an example the decay Ξ− → Λπ− has only a ΔI = 1/2 transition

and D is not a CP violation parameter in this case.
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From theoretical considerations [29], the order of magnitude of the different

CP violation parameters can be ordered in the following way

0.1O(B) ≈ O(B′) ≈ 10O(A) ≈ 100O(D) . (3.64)

The parameter D is probably too small to be accessible. The A parameter
has the advantage that it can be measured for all hyperons, while the more sen-
sitive B and B′ parameters can only be measured for hyperons which have new
hyperons as daughter particles. Since a large amount of statistics is needed for
CP violation measurements the interesting reactions are mainly p̄p → Λ̄Λ for
A and p̄p → Ξ̄+Ξ− for B and B′. Unfortunately Ξ− has a very low β value

of approximately -0.04, which means that it is difficult to measure B due to
the β − β̄ in the denominator. The somewhat less sensitive B′ parameter is
therefore the preferred choice to study.
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4. Existing Data and Theoretical
Predictions

Most of the high quality data for the p̄p → ȲY reaction comes from the PS185
experiment at LEAR , which was a fixed target experiment that took data up

to 2 GeV/c beam momentum. The highest amount of statistics is 40k events
for the p̄p → Λ̄Λ reaction at 1.64 GeV/c, where both the Λ̄ and Λ hyperon
were reconstructed [75]. There is a comparable amount of events at 6 GeV/c,
but most often with just one of the hyperons reconstructed [76]. Otherwise,
the experimental information in the region above 2 GeV/c comes mostly from
bubble chamber experiments with low statistics (a handfull of events at most).
A compilation of these is given in [77]. The experimental situation for the
cross section measurements is summarised in figure 4.1.

Figure 4.1: Experimental cross sections for the p̄p → ȲY reactionsas a function of

the beam momentum [78]. Thresholds for different processes are indicated on the

beam momentum axis. The momentum region below 2.1 GeV/c is expanded in the

left figure.

Almost all the data points in figure 4.1 are for the single strangeness hy-
perons Λ and Σ. The datapoints for the double strangeness Ξ hyperon pro-
duction are from bubble chamber experiments where only total cross section
(and sometimes only upper limits) were measured from a few events [79, 80].
The thresholds for different p̄p → ȲY channels are noted on the beam mo-

mentum axis. As seen, apart from the p̄p → Ξ̄+Ξ− also the triple strangeness

p̄p → Ω̄+Ω− channel and the charmed p̄p → Λ̄−
c Λ+

c channel are well within

reach for PANDA with a maximum beam momentum of 15 GeV/c. These are

59



the channels which this thesis is focused on. The first part of this chapter de-

scribes what is known about antihyperon hyperon physics from experimental

and theoretical studies. The second part focuses on the p̄p → ȲY channels
which will be studied for the first time with PANDA. The third part deals
with theoretical predictions and existing experimental limits on hyperon CP
violation parameters.

Figure 4.2: The p̄p → ȲY process for single, double and triple strangeness hyperons,

seen in the quark line (left) and meson exchange (right) picture [78].

4.1 Prior Knowledge on the p̄p → ȲY Reaction

The creation of antihyperon hyperon pairs in antiproton proton collisions takes
place at momentum transfers were the relevant degrees of freedom to describe

the process can be discussed. The low energy nuclear physics approach is to
use the exchange of mesons. This was the method that was first used histor-

ically. Calculations for nucleon nucleon scattering could be adjusted to the
hyperon sector by introducing the exchange of kaons with strangeness instead

of non-strange mesons [81, 82, 83, 84, 85]. Different calculations include dif-
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ferent combinations of K, K∗ and K∗∗ mesons. Later also calculations using

an approach with constituent quarks and gluons as degrees of freedom were

made [82, 86, 87, 88, 89]. Here the process is seen as annihilation of light qq̄
pairs and creation of ss̄ pairs. The remaining light quarks are treated as spec-
tators. Here, the transition from qq̄ to ss̄ is mediated by gluon exchange with
quantum numbers 3S1 or 3P0. The former corresponds to a single gluon ex-
change, whereas the latter to a two gluon exchange. The production of single,
double and triple strangeness hyperons are sketched in figure 4.2, seen in the
meson exchange picture and as quark line diagrams.

In the calculations for p̄p → ȲY reactions it is very important to include
initial and final state interactions. The same strategy to do this is used for both
pictures. The initial state p̄p interaction is described by a one-boson-exchange
potential combined with a short range potential for the annihilation which
is adjusted to fit antinucleon-nucleon, N̄N, data. The unknown ȲY final state
interaction is also described using a one-boson-exchange potential, in this case
combined with a short range potential which is parametrized to fit hyperon
production data. The calculations differ in the mesons included and coupling
constants in the one-boson-exchange potentials and the strengths, ranges and
number of terms in the short range potentials. The parameters for the initial
state interactions can be fixed using N̄N data. The parameters of the final state

interactions, on the other hand, are free parameters used to fit the data.
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Figure 4.3: Differential cross section for p̄p → Λ̄Λ at 1.64 GeV/c beam momentum,

measured by the PS185 experiment [75].

The high statistics of the PS185 experiment allowed for measurements of
differential cross sections and the spin variables described in chapter 3 [75].

The differential cross section and polarisation for p̄p → Λ̄Λ at 1.64 GeV/c
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is shown in figure 4.3 and figure 4.4, respectively. A lot of data were now

available to test the calculations made from meson exchange and quark-gluon

models. Two surprising experimental observations stood out. The first one was

the appearance of a forward peaking of the differential cross section already

very close to threshold, which indicates that the contribution of P-waves was

important already at this low beam momentum. An explanation for this is a

suppression of the S-wave from final-state interactions [82].
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Figure 4.4: Polarisation as a function of Λ̄ production angle for p̄p → Λ̄Λ at 1.64

GeV/c beam momentum, measured by the PS185 experiment [75].

The other result which stood out has to do with spins of the Λ̄Λ pair. The
non-zero spin correlations were reconstructed from the data, shown in fig-
ure 4.1. From these spin correlations it is possible to calculate the singlet frac-
tion

SF =
1

4
(1+Cxx −Cyy +Czz) . (4.1)

If this quantity is measured to be 1, the conclusion would be that the Λ̄Λ
pair were produced in a singlet state. Correspondingly, a measurement of 0
would mean that the Λ̄Λ pair were always produced in a triplet state. If the
spins are completely uncorrelated the measurement would give 0.25. As seen
in figure 4.6 the data from PS185 showed that the Λ̄Λ pair are in a triplet state
for all beam momenta up to 2 GeV/c. Since the Λ hyperon can be viewed as

a spin 0 ud diquark together with an s quark, this observation can be related
directly to the spins of the ss̄ pair, which are then also produced in a triplet

state.
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Figure 4.5: Spin correlations as a function of the reduced four-momentum transfers

measured by the PS185 experiment [78].

It could be argued that neither meson exchange nor quark gluon models are
appropriate to describe p̄p → ȲY. The meson exchange models have prob-
lems with processes involving large momentum transfers, while hadronic ef-
fects may mean that the use of quarks and gluons is too simplified. However,
calculations made in both meson exchange and quark gluon models seem to
describe the PS185 data reasonably well. An example of a comparison of dif-
ferent theoretical predictions to data is shown in figure 4.7. A review of the sit-
uation from both theoretical and experimental side is given in [90]. Although
they differ greatly in the way to describe the process no clear conclusion can
be drawn from the data which approach is the better.

Model-independent analyses of the PS185 data have been performed. A
partial-wave amplitude analyses of the data near threshold, using only partial

waves with L < 2 and 3D1, was presented in [91]. The data was reasonably
well described very near threshold. From these studies the conclusion was

drawn that the dominance of the P-wave contribution over the S-wave contri-
bution near threshold was to some extent just due to the endothermic nature of

the p̄p → ȲY reaction. This means that the demand for the meson exchange
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and quark-gluon pictures to find an explanation for the S-wave suppression is

somewhat relaxed.

Figure 4.6: Singlet fractions for different excess energies measured by the PS185

experiment [78]. 200 MeV/ excess energy corresponds to a beam momentum of 2

GeV/c.

A main difference between the two pictures is how they explain why the

Λ̄Λ pairs are always produced in a triplet state. In the meson exchange pic-
ture, this is caused by a strong tensor force and consequently a spin flip be-
tween the initial p̄p state and the final Λ̄Λ state. In the quark gluon picture

the quantum numbers of the exchange allows only for a triplet state of Λ̄Λ,
and no tensor force (and hence no spin flip) is needed1. It was therefore hoped
that a measurement of the spin transfer observables D (depolarisation) and

K (polarisation transfer), defined in section 3.1.4.2, using a polarised target
would help to discriminate between the two pictures. The existence of a large

spin flip would give negative values of D and K, while no spin flip would give
positive values. The measurement was made and the values of D and K were

found to be non-conclusive for the discrimination between the two pictures

[93]. The question of how to describe the p̄p → ȲY reaction remains essen-
tially open, and the upcoming data from PANDA will be very useful to make

progress.

1It has also been suggested that the p̄p → ȲY reaction can occur via an annihilation of the ūu

quarks and a "shake-out" of a polarised s̄s pair from the proton [92]. The proton has a non-zero

strange quark contribution which is polarised opposite to the spin of the proton. This model can

account for the dominance of the triplet state of the Λ̄Λ pairs and also predicts negative values

for the spin transfer observables.
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Figure 4.7: Theoretical predictions compared to data for polarisation of the Λ hyperon

in the p̄p → Λ̄Λ reaction at 1.645 GeV/c beam momentum. The solid and dashed lines

are obtained from the meson exchange picture, whereas the dashed-dotted and dotted

lines are from quark-gluon models [90].

4.2 Hyperon Channels for This Thesis

The properties of the hyperons accessible to PANDA are summarised in ta-

ble 4.1. The purpose of the simulations in this thesis is to investigate how well

multistrange and charmed p̄p → ȲY channels can be measured with PANDA.
In many cases this will constitute the first measurement. For simulations of
the single strangeness channels at different beam momenta was covered in a
previous thesis [94].

4.2.1 The p̄p → Ξ̄+Ξ− Reaction

The reaction p̄p → Ξ̄+Ξ− involves involves the creation of two s̄s pairs in the

quark gluon picture or the exchange of two kaons in the hadronic picture. Ξ−
decays almost exclusively to Λπ− and the dominant decay mode for Λ is to
pπ−, with a branching ratio of 0.64. A drawing of such a reaction is given in

figure 4.8. The existing data for this reaction consists of bubble chamber mea-
surements of the total cross section with a handfull of events in total [79, 80].

PANDA is capable of increasing the statistics dramatically and give access to
differential cross sections and spin variables. Due to the lack of experimental

data there are not as many theoretical calculations of the p̄p → Ξ̄+Ξ− reac-
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Table 4.1: Properties of hyperons energetically accessible for PANDA [95].

tion, as compared to p̄p → Λ̄Λ. There are, however, some calculations, both in

the meson exchange picture [96] and in the quark gluon picture [97, 98, 99].
The change in strangeness by two units instead of one means that the interac-
tion process takes place at a shorter distance, which makes the process more
suitable to study the relevance of quark and gluon degrees of freedom. It will
therefore be very interesting to compare this process to p̄p → Λ̄Λ.

The differential cross section is expected to be flatter than for p̄p → Λ̄Λ,
since in this case two of the quarks are annihilated and only one then could
acts as a spectator. In fact, one theoretical calculation in the meson exchange
picture [96] predicts the differential cross section for p̄p→ Ξ̄+Ξ− to be almost
isotropic.

Concerning spin variables, it will be interesting to see how the p̄p → Ξ̄+Ξ−
data compares to the p̄p → Λ̄Λ data, with respect to the fact that the Λ̄Λ pairs

are practically always produced in a triplet state. In a quark-diquark picture,
the triplet state of the Λ̄Λ pairs can be interpreted in such a way that the s̄s

pairs are produced in a triplet state. The p̄p → Ξ̄0Ξ0 channel corresponds to
annihilation of the spin zero diquarks and would therefore be very interesting
to compare with. This channel is however hard to reconstruct due to the π0 in

the final state. In the more easily reconstructable double strangeness channel
p̄p → Ξ̄+Ξ− instead the two d quarks are annihilated.

Another interesting comparison will be of the cross section, which relates
to the OZI-rule and its possible violations. The OZI rule [100, 101, 102] de-

scribes the suppression of cross section for processes with disconnected quark
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Figure 4.8: Schematic view of the reaction p̄p → Ξ̄+Ξ− → Λ̄π+Λπ− →
p̄π+π+pπ−π−.

lines. It has mostly been used for processes involving mesons, but can also
be applied to hyperons [103]. The process p̄p → Ξ̄+Ξ− has one more dis-

connected quark line compared to p̄p → Λ̄Λ, and one less than p̄p → Ω̄+Ω−.
Precise measurements of the cross sections of the three processes would give
insight into the OZI rule for hyperons.

As an additional feature Ξ− decays to Λπ−, where Λ also decays weakly. In
section 3.1.3.3 describing the subsequent decays of particles with spin

(
1
2

)→(
1
2

)
(0) → (

1
2

)
(0)(0), we saw that the decay parameters β and γ then shows

up in the decay distribution of the daughter Λ. As described in section 3.2 it
is possible to form a more sensitive CP violation parameter from β , than the
one formed from α . For this reason p̄p → Ξ̄+Ξ− is very interesting for CP

violation studies.

4.2.2 The p̄p → Ω̄+Ω− Reaction

No data exists for the p̄p → Ω̄+Ω− reaction. The only existing theoretical cal-
culation predicts the maximum cross section to be about 2 nb [104]. It should
be noted that this prediction is very low. The cross section for p̄p → Ξ̄+Ξ− is

about 1/30 of the cross section for p̄p → Λ̄Λ. If the same relation holds be-
tween the cross sections for p̄p → Ξ̄+Ξ− and p̄p → Ω̄+Ω−, the cross section

for p̄p → Ω̄+Ω− would instead be about 60 nb. The two main decays of Ω− is
to ΛK−, with a branching ratio of 0.68 and to Ξ0π−, with a branching ratio of

0.24 [95]. Again, Ξ0 is hard to reconstruct due to the π0 in the final state, so
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Figure 4.9: Schematic view of the reaction p̄p → Ω̄+Ω− → Λ̄K+ΛK− →
p̄π+K+pπ−K−.

the decay studied is the one to ΛK−. With this decay the full interaction chain

is sketched in figure 4.9.
In the p̄p → Ω̄+Ω− reactions all of the quarks of the initial q̄q pairs of the

initial p̄p system are annihilated, and three s̄s pairs are created. Since there are
no spectator quarks that carry on the momentum of the initial antiprotons, it
will be interesting to see if the differential cross section is completely isotropic
or if there is some other mechanism for making it forward peaked.

The Ω− hyperon has spin 3/2. The description of polarisation for spin 3/2
particles is much more complex as for spin 1/2 particles, with 15 polarisa-
tion parameters instead of the 3 from ordinary vector polarisation. Since the
Ω̄+Ω− pair is created via the strong interaction, parity conservation can be

used to show that 8 of these parameters are zero. As showed in section 3.1.3.2,
three of the remaining polarisation parameters can be extracted from the angu-

lar distribution of the Ω− → ΛK− decay. In the subsequent Λ → pπ− decay,
a linear combination of two other shows up. Also appearing in this angular

distribution are the two asymmetry parameters β and γ , which have never
been measured for the Ω− hyperon. In principle, all these parameters can be
deduced by measuring the angular distributions of the two decays.

The p̄p → φφφ reaction is similar to the p̄p → Ω̄+Ω− reaction, in the sense
that all quarks of the initial p̄p pair are annihilated and three s̄s pairs are cre-

ated. In the p̄p → φφφ reaction, however, the s̄s pairs forms the φ mesons,
whereas in the p̄p → Ω̄+Ω− reaction the three s quarks form the Ω− hyperon

and the three s̄ quarks form the Ω̄+ hyperon. A comparison of the two reac-
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tions can therefore give insight into the role of how the quarks are structured

into hadrons.

4.2.3 The p̄p → Λ̄−
c Λ+

c Reaction

The p̄p → Λ̄−
c Λ+

c reaction is very similar to p̄p → Λ̄Λ, with the difference that
the s quarks are replaced by c quarks. A comparison between the production
mechanisms of strangeness and charm can be made by comparing these two
channels. The creation of c̄c pairs involves much higher momentum transfer
and is therefore much less probable, so the cross section for p̄p → Λ̄−

c Λ+
c will

be much lower. Also for this reaction there is no experimental data, but the
theoretical estimates of the cross section that exist predict cross sections in
the range from 10 to 100 nb [104, 105, 106, 107, 108]. A difficulty with the
charmed channel is that the Λ+

c hyperon has very many decay modes, none
of which has a branching ratio of more then a few per cent. The decay which
is interesting for analysing spin variables is to Λπ+, with a branching ratio
of 1%. On the other hand, a promising feature of Λ+

c is the large value, -

0.91, of the asymmetry parameter α , which means that the polarisation can be
reconstructed from relatively few events.

4.3 CP Violation

The theoretical predictions within the Standard model for the values of CP vi-
olation parameters in hyperon decays, see section 3.2 for definitions, are typi-
cally of the order 10−5 to 10−4. Early calculations from the eighties [29] give
AΛ =−5 ·10−5, AΞ =−7 ·10−5 and BΞ = 8.4 ·10−4. A more recent calculation
using Chiral Perturbation Theory [109] gives −3 · 10−5 ≤ AΛ ≤ 4 · 10−5 and
−2 · 10−5 ≤ AΞ ≤ 1 · 10−5. As seen, the predicted values within the standard
model are small. If physics beyond the standard model is introduced, larger
values can be obtained. For example, predictions from calculations using su-
persymmetry give values in the order of 10−3 for AΛ [26]. A measurement of a
non-zero value of a hyperon CP violation variable would therefore not only be
the first detection of CP violation in baryon systems, but possibly also give in-
formation on physics beyond the standard model. The observed CP violations
in decays of neutral kaons [18, 19, 20] and B mesons [21, 22] are to a large ex-
tent consistent with the standard model, even though one measurement could
be a hint of new physics [110].

The experimental search for CP violation in hyperon decays started in the
middle of the nineties, but has only recently reached the precision neces-
sary to test the predictions. The chronological progression of the measured
values of CP violation parameters is shown in figure 4.10. The first mea-
surement of a hyperon CP violation variable was from PS185, which found
AΛ =−0.013±0.022 [75, 111]. The limits on CP violation of Ξ decays comes
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from experiments were the decays of are measured separately. The measured

CP violation in these experiments is

AΞΛ =
αΞαΛ − ᾱΞᾱΛ
αΞαΛ + ᾱΞᾱΛ

≈ AΞ +AΛ . (4.2)

In 2000, the E756 collaboration at Fermilab found AΞΛ = 0.012± 0.014
[112]. In 2004 the HyperCP collaboration, also at Fermilab, presented a 20
times more precise result, AΞΛ = [0.0±5.1(stat)±4.4(syst)] ·10−4 [113]. This
result, however, only used 17% of their data sample. In 2009 they presented

the value obtained from their full dataset of over 109 events, resulting in the
first measurement of CP violation parameter where zero is not within the er-

ror limits: AΞΛ = [−6.0±2.1(stat)±2.0(syst)] ·10−4 [114]. No measurement
exists for the B parameter.

Using data from PANDA, new measurements on AΛ, AΞ and BΞ can be
obtained. This will be discussed in section 6.5.
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5. Analysis Methods

This chapter describes the methods used for reconstructing hyperon spin vari-
ables once the decay angles of the daughter baryons have been measured. With
the angular distributions calculated in chapter 3 as starting points, expressions
relating spin variables to expectation values of the angles are deduced for both
spin 1/2 hyperons and the spin 3/2 Ω hyperon. Since the detector acceptance is
different for different decay angles, the experimentally measured expectation
values will not be the true ones. Two different ways to deal with this problem
are presented. In the last part of the chapter the CP violation parameters are
related to up down counting asymmetries which are more suitable as experi-
mental observables.

5.1 Spin Variables for the Spin 1/2 Hyperons

It is straightforward to calculate the spin variables from the angles of the hy-
peron decay particles. To find expressions for the spin variables it is a good
starting point to calculate the following expectation values

〈k̄y〉 =
∫ 1

−1

∫ 1

−1
k̄yI( ˆ̄k, k̂)dk̄ydky

〈ky〉 =
∫ 1

−1

∫ 1

−1
kyI( ˆ̄k, k̂)dk̄ydky

〈k̄ik j〉 =
∫ 1

−1

∫ 1

−1
k̄ik jI( ˆ̄k, k̂)dk̄idk j

(5.1)

where I(k̄i,k j) is given by eq.(3.58), renormalised for the angles which are
not integrated over explicitly in the expressions above. Since the integration
interval is between -1 and 1, only terms with an even power of both k̄i and k j
are non-zero, which means

〈k̄y〉 =
1

4

∫ 1

−1

∫ 1

−1
ᾱP̄k̄2

ydk̄ydky =
1

3
ᾱP̄

〈ky〉 =
1

4

∫ 1

−1

∫ 1

−1
αPk2

ydk̄ydky =
1

3
αP

〈k̄ik j〉 =
1

4

∫ 1

−1

∫ 1

−1
ᾱαCi jk̄2

i k2
j dk̄idk j =

1

9
ᾱαCi j .

(5.2)
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Using the above relations, the spin variables are given from

P̄ =
3

ᾱ
〈k̄y〉 =

3

ᾱ

N

∑
m=1

k̄y,m

N

P =
3

α
〈ky〉 =

3

ᾱ

N

∑
m=1

ky,m

N

Ci j =
9

ᾱα
〈k̄ik j〉 =

9

ᾱα

N

∑
m=1

k̄i,mk j,m

N

(5.3)

with errors calculated through

σP̄ =
3

|ᾱ|

√
1

N −1

(〈k̄2
y〉−〈k̄y〉2

)
σP =

3

|α|

√
1

N −1

(〈k2
y〉−〈ky〉2

)
σCi j =

9

|ᾱα|

√
1

N −1

(
〈k̄2

i k2
j〉−〈k̄ik j〉2

)
.

(5.4)

Using the same method as above the expectation values become

〈k̄2
y〉 =

∫ 1

−1

∫ 1

−1
k̄2

y I( ˆ̄k, k̂)dk̄ydky =
1

4

∫ 1

−1

∫ 1

−1
k̄2

ydk̄ydky =
1

3

〈k2
y〉 =

∫ 1

−1

∫ 1

−1
k2

y I( ˆ̄k, k̂)dk̄ydky =
1

4

∫ 1

−1

∫ 1

−1
k2

ydk̄ydky =
1

3

〈k̄2
i k2

j〉 =
∫ 1

−1

∫ 1

−1
k̄2

i k2
j I(

ˆ̄k, k̂)dk̄idk j =
1

4

∫ 1

−1

∫ 1

−1
k̄2

i k2
j dk̄idk j =

1

9

(5.5)

which gives the following expressions for the errors

σP̄ =
1

|ᾱ|

√
3− (ᾱP̄)2

N −1

σP =
1

|α|

√
3− (αP)2

N −1

σCi j =
1

|ᾱα|

√
9− (αᾱCi j)

2

N −1
.

(5.6)
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5.2 Polarisation and Asymmetry Parameters of the Ω
Hyperon

The same method as described in section 5.1 can be used to get expressions for

the r coefficients for the Ω hyperon. However, since the angular distribution
in the Ω → ΛK decay does not only depend on the angle in one direction, it is

easier to do the the integrations over the initial spherical coordinates Θ and φ ,
instead of over the components of the k̂ vector

〈k2
z 〉 = 〈cos2 Θ〉 =

∫
cos2 ΘI(Θ,φ)dΩ =

1

3
− 2

√
3

15
r2

0

〈k2
y〉 = 〈sin2 Θsin2 φ〉 =

∫
sin2 Θsin2 φ I(Θ,φ)dΩ =

1

2
− 1

2
〈k2

z 〉−
3

16
r2

2

〈kxkz〉 = 〈cosΘsinΘcosφ〉 =
∫

cosΘsinΘcosφ I(Θ,φ)dΩ =
1

5
r2

1

(5.7)

where I(Θ,φ) is given by eq.(3.36). Consequently, the r coefficients are
given by the following combinations of expectation values

r2
0 =

15

2
√

3

(
1

3
−〈k2

z 〉
)

r2
2 =

8

3

(
1−〈k2

z 〉−2〈k2
y〉
)

r2
1 = 5〈kxkz〉 .

(5.8)

In this case the errors are given by

σr2
0
=

15

2
√

3

√
1

N −1

(〈k4
z 〉−〈k2

z 〉2
)

σr2
2
=

8

3

√
1

N −1

((〈k4
z 〉−〈k2

z 〉2
)
+4

(〈k4
y〉−〈k2

y〉2
)
+2

(〈k2
z k2

y〉−〈k2
z 〉〈k2

y〉
))

σr2
1
= 5

√
1

N −1

(〈k2
xk2

z 〉−〈kxkz〉2
)

.

(5.9)

Calculating the expectation values 〈k4
z 〉, 〈k4

y〉, 〈k2
xk2

z 〉 and 〈k2
z k2

y〉, the follow-
ing expressions for the errors are obtained
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σr2
0
≈ 15

2
√

3

√
1

N −1

(
0.089−0.121r2

0

)
σr2

2
≈ 8

3

√
1

N −1

(
0.845+0.030r2

0 +0.333r2
2

)
σr2

1
≈ 5

√
1

N −1

(
0.067−0.016r2

0

)
(5.10)

where several fractional numbers have been approximated by one deci-
mal number and higher order terms in polaristaion parameters have been ne-

glected.
The angular distribution of the subsequent Λ → pπ decay is easier to anal-

yse. In the same way as in eq.(5.2), the expectation values of 〈kx〉 and 〈ky〉 can
be calculated by instead inserting the angular distribution of eq.(3.44)

〈kx〉 =
1

3
LβΩαΛ

〈ky〉 =
1

3
LγΩαΛ

(5.11)

where L denotes the linear combination of polarisation parameters√
3
5r1

−1 + 3

2
√

10
r3
−1. Remembering that αΩ ≈ 0 so that β 2

Ω + γ2
Ω ≈ 1, the

relation between them is given by

tanφΩ =
βΩ
γΩ

=
〈kx〉
〈ky〉 (5.12)

and the square of the linear combination of the polarisation parameters by

L2 =
3

|αΛ|
(〈kx〉2 + 〈ky〉2

)
. (5.13)

As seen, L can only be measured up to a sign. The reason is that from the
beginning there are three parameters to be determined, L, βΩ and γΩ, but only

two observables to be measured, 〈kx〉 and 〈ky〉. When β 2
Ω + γ2

Ω ≈ 1 is used to
reduce the number of parameters to two, a sign ambiguity is introduced. In

the best case scenario one of the two solutions is forbidden according to the
inequalities in eq.(3.60).

The errors in the expectation values are as before
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σ〈kx〉 =

√
1

N −1
(〈k2

x〉−〈kx〉2) =

√
1

N −1

(
1

3
− 1

9
L2β 2

Ωα2
Λ

)

σ〈ky〉 =

√
1

N −1

(〈k2
y〉−〈ky〉2

)
=

√
1

N −1

(
1

3
− 1

9
L2γ2

Ωα2
Λ

) (5.14)

and consequently

σtanφΩ =

√√√√σ2
〈kx〉

〈ky〉2
+

〈kx〉2σ2
〈ky〉

〈ky〉4
+

〈kx〉cov(〈kx〉,〈ky〉)
〈ky〉3

=

=
1

|LcosφΩαΛ|

√
1

N −1

(
3− 2

3
tan2 φΩ − 10

9
L2 sin2 φΩα2

Λ

)

σL2 =
9

α2
Λ

√
2〈kx〉σ2

〈kx〉 +2〈ky〉σ2
〈ky〉 +4〈kx〉〈ky〉cov(〈kx〉,〈ky〉) ≈

≈
√

18|L|
|αΛ|3(N −1)

(
sinφΩ + cosφΩ − L2α2

Λ
3

(sin3 φΩ + cos3 φΩ)
)

.

(5.15)

where the very small covariance term is neglected in the last line.
From T invariance, one can deduce that β = 0 if there are no final state

interactions [57]. This also means γΩ =±1. If this is assumed, the reconstruc-
tion of L becomes simpler. The absolute value of L can then be reconstructed

from

|L| = 3

αΛ
〈ky〉 (5.16)

with the error given by

σ|L| =
3

|ᾱ|

√
1

N −1

(〈k̄2
y〉−〈k̄y〉2

)
. (5.17)

Also in this case only the absolute value of L can be reconstructed, since

the sign of γΩ is not known.
The calculations in this section have been done for particles only, but the

same expressions holds, of course, also for antiparticles.
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5.3 Methods to Compensate for Angular Dependence
of Reconstruction Efficiency

Depending on their decay angles in the hyperon rest systems, the final particles

will go into different parts of the detector. The reconstruction efficiency for the

events will therefore depend on these decay angles. This must be compensated

for in the reconstruction of spin variables. Two different ways to do this are

presented in this section.

5.3.1 Method Using Monte Carlo Based Acceptance Functions

The most straightforward way to compensate for the difference in detector

reconstruction efficiency is to use Monte Carlo based acceptance functions.

To weight the sums in eq.(5.3), both one dimensional acceptance functions for

the hyperon and antihyperon, AY(ky) and AȲ(k̄y), as well as two dimensional
combined ones A(k̄i,k j) are needed

P̄ =
3

ᾱ
〈k̄y〉 =

3

ᾱ

∑N
m=1

k̄y,m
AȲ(k̄y)

∑N
m=1

1
AȲ(k̄y)

P =
3

α
〈ky〉 =

3

ᾱ
∑N

m=1
ky,m

AY(ky)

∑N
m=1

1
AY(ky)

Ci j =
9

ᾱα
〈k̄ik j〉 =

9

ᾱα

∑N
m=1

k̄i,mk j,m
A(k̄i,k j)

∑N
m=1

1
A(k̄i,k j)

.

(5.18)

A very good knowledge of the acceptance for different parts of the detector
is needed to use this method. It is also hard to include the errors of the accep-
tance functions in the error of the reconstructed spin variables. In the case of
the parameters for Ω hyperon this is the only method available.

5.3.2 Method Without the Use of Monte Carlo Based
Acceptance functions

There is a way of extracting the spin variables for spin 1/2 hyperons without

the use of Monte Carlo based acceptance functions [116]. Using this method

the problem with the errors of the acceptance functions is avoided. The draw-

back is, however, that it is only approximate and depends on a symmetry in

the detector acceptance. The symmetry that the method takes advantage of is

the following
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AY(ky) = AY(−ky)

AȲ(k̄y) = AȲ(−k̄y) .
(5.19)

To see the use of this symmetry it is convenient to formulate the calculation
of the spin variables in matrix form. The spin variables and expectation values

of the directional cosines are then put into the following matrices and vectors

D =

⎡
⎢⎢⎢⎣

1 αPΞ−,x αPΞ−,y αPΞ−,z

ᾱPΞ+,x ᾱαCxx ᾱαCxy ᾱαCxz

ᾱPΞ+,y ᾱαCyx ᾱαCyy ᾱαCyz

ᾱPΞ+,z ᾱαCzx ᾱαCzy ᾱαCzz

⎤
⎥⎥⎥⎦

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈1〉 〈kx〉 〈ky〉 〈kz〉

〈k̄x〉 〈k̄xkx〉 〈k̄xky〉 〈k̄xkz〉

〈k̄y〉 〈k̄ykx〉 〈k̄yky〉 〈k̄ykz〉

〈k̄z〉 〈k̄zkx〉 〈k̄zky〉 〈k̄zkz〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F̄ =
(
1,〈k̄2

x〉,〈k̄2
y〉,〈k̄2

z 〉
)

F =
(
1,〈k2

x〉,〈k2
y〉,〈k2

z 〉
)

.

(5.20)

The following relations between spin variables and expectation values hold

E =
1

16π2
¯A DA

F̄ =
1

16π2
B̄DC

F =
1

16π2
C̄ DB

(5.21)

if the acceptance matrices and vectors are defined through
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¯Aμ,ν =
∫

k̄μ k̄νAantihypdΩ̄

Aμ,ν =
∫

kμkνAhypdΩ

B̄μ,ν =
∫

k̄2
μ k̄νAantihypdΩ̄

Bμ,ν =
∫

kμk2
νAhypdΩ

C̄μ,ν =
∫

k̄μAantihypdΩ̄ = ¯A0μ

Cμ,ν =
∫

kμAhypdΩ = Aμ0

(5.22)

where the k vectors has been made into four vectors with the zero compo-

nent equal to 1. Using the symmetry in eq.(5.19), components with an odd
power of cosΘ̄y or cosΘy are zero, i.e.

¯A =

⎡
⎢⎢⎢⎣

¯A00
¯A01 0 ¯A03

¯A10
¯A11 0 ¯A13

0 0 ¯A22 0

¯A30
¯A31 0 ¯A33

⎤
⎥⎥⎥⎦

B̄ =

⎡
⎢⎢⎢⎣

B̄00 B̄01 0 B̄03

B̄10 B̄11 0 B̄13

B̄20 B̄21 0 B̄23

B̄30 B̄31 0 B̄33

⎤
⎥⎥⎥⎦

(5.23)

and correspondingly for A and B. In section 3.1.5, it was shown that the
only non-zero components of D are

D =

⎡
⎢⎢⎢⎣

1 0 D02 0

0 D11 0 D13

D20 0 D22 0

0 D31 0 D33

⎤
⎥⎥⎥⎦ . (5.24)

Approximate expressions for E, F and F̄ can be calculated using eq.(5.21).

Noticing that B0,μ = Aμ,μ one obtains
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E =

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

¯A00A00 + · · · ¯A00A01 + · · · ¯A00D20A22
¯A00A03 + · · ·

¯A01A00 + · · · ¯A01A01+ ¯A01D20A22
¯A01A03

+ ¯A11D11A11+ + ¯A11D13A33+
+ · · · + · · ·

¯A22D20A00
¯A22D20A01

¯A22D22A22
¯A22D02A03

¯A03A00 + · · · ¯A03A01+ ¯A03D20A22
¯A03A03+

+ ¯A33D31A11+ + ¯A33D33A33+
+ · · · + · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F̄ =
(

¯A00A00 + · · · , ¯A11A00 + · · · , ¯A22A00 + · · · , ¯A33A00 + · · ·
)

F =
(

¯A00A00 + · · · , ¯A00A11 + · · · , ¯A00A22 + · · · , ¯A00A33 + · · ·
)

.

(5.25)

where higher order terms in acceptances have been neglected. The spin vari-
ables can be obtained by combining the components of E, F and F̄
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P̄ =
1

α
〈k̄y〉
〈k̄2

y〉

P =
1

α
〈ky〉
〈k2

y〉

Cxx =
1

αᾱ
〈k̄xkx〉−〈k̄x〉〈kx〉

〈k̄2
x〉〈k2

x〉
Cyy =

1

αᾱ
〈k̄yky〉
〈k̄2

y〉〈k2
y〉

Czz =
1

αᾱ
〈k̄zkz〉−〈k̄z〉〈kz〉

〈k̄2
z 〉〈k2

z 〉

Cxz =
1

αᾱ
〈k̄xkz〉−〈k̄x〉〈kz〉

〈k̄2
x〉〈k2

z 〉

Czx =
1

αᾱ
〈k̄zkx〉−〈k̄z〉〈kx〉

〈k̄2
z 〉〈k2

x〉
.

(5.26)

These are however approximate expressions since terms have been

neglected in eq.(5.25). In addition, they are only valid if the symmetry in
eq.(5.19) is true. The covariance matrix of the expectation values in eq.(5.26)

can be calculated using [115]

Vi j =
1

N(N −1)

(
N

∑
n=1

fi f j − 1

N

(
N

∑
n=1

fi

)(
N

∑
n=1

f j

))
(5.27)

where the functions f are the different combinations of cosines in eq.(5.26).

The errors and covariances can then be propagated to give the errors in the spin
correlations.

The two different ways to reconstruct spin variables described in this and
the previous section will be compared for the case of p̄p → Ξ̄+Ξ− in sec-
tion 6.2.10

5.4 CP violation parameters

In the CP violation parameters described in section 3.2 asymmetry parameters
of hyperons are compared to the asymmetry parameters of the corresponding
antihyperons. From an experimental point of view, the problem is that the hy-
perons and antihyperons can decay in very different part of detector. It may
therefore happen that different acceptance in different parts of the detector
introduce systematical uncertainties, if the asymmetry parameters were mea-
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sured separately and then compared. A better strategy is to relate the CP vio-

lation to up-down counting asymmetries [72], so that the detector acceptance

only needs to be symmetric on the average with respect to the different sides

of the antihyperon-hyperon production plane.
To see the relation of the difference in particles going up and down to α and

ᾱ , consider the distribution of N events with respect to ky and k̄y

d2N
dkydk̄y

=
N
4

(
1+αPky + ᾱPk̄y +αᾱCyykyk̄y

)
. (5.28)

If the numbers of events where decay baryons and antibaryons go in certain
direction are denoted with two indices, + meaning up with respect to the anti-
hyperon hyperon production plane and - meaning down, the expression above
can be integrated to give

N++ =
∫ 1

0

∫ 1

0

d2N
dkydk̄y

dkydk̄y =
N
4

(
1+

α + ᾱ
2

P+
αᾱ
4

Cyy

)

N−− =
∫ 0

−1

∫ 0

−1

d2N
dkydk̄y

dkydk̄y =
N
4

(
1− α + ᾱ

2
P+

αᾱ
4

Cyy

)

N+− =
∫ 1

0

∫ 0

−1

d2N
dkydk̄y

dkydk̄y =
N
4

(
1+

α − ᾱ
2

P− αᾱ
4

Cyy

)

N−+ =
∫ 0

−1

∫ 1

0

d2N
dkydk̄y

dkydk̄y =
N
4

(
1− α − ᾱ

2
P− αᾱ

4
Cyy

)
.

(5.29)

To get the (α + ᾱ) numerator in the CP violation parameter A, one uses

events were the baryons and antibaryons go the same way, since

N++−N−−

N
=

α + ᾱ
4

P (5.30)

while

N+−−N−+

N
=

α − ᾱ
4

P . (5.31)

The first expression can consequently be used as an up-down counting
asymmetry probing CP violation, while the second with events were the
baryon and antibaryon go opposite ways is not important. The relation to the
A parameter can be seen through

Ã =
N++−N−−

N
=

α + ᾱ
4

P =
α + ᾱ
α − ᾱ

(α − ᾱ)
P
4
≈ A

|α|
2

P . (5.32)
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In a plane spanned by ky and k̄y, the above expression corresponds to com-

paring the number of events in the upper right quadrant to the lower left. It

is however possible to obtain better statistics by using the events in all four

quadrants [72]. To see this, again consider the expression for how the events

are distributed with respect to the y axes

d2N
dkydk̄y

=
N
4

(
1+αPky + ᾱPk̄y +αᾱCyykyk̄y

)
. (5.33)

If new variables u = 1
2(ky + k̄y) and v = 1

2(ky − k̄y) are introduced, the ex-
pression turns into

d2N
dudv

=
N
4

(
1+(α + ᾱ)Pu+(α − ᾱ)Pv+αᾱCyy(u2 − v2)

)
. (5.34)

If this expression, after v is integrated out, is evaluated at u or −u only one

term differ. The following subtraction becomes proportional to the previous
CP violation parameter

dN
du

|u − dN
du

|−u =
N
4

(α + ᾱ)Pu = NÃu . (5.35)

When integrated over events with positive and negative values of u respec-

tively, the new CP violation parameter becomes

Ȧ =
∫ 1

0

∫ 1
−1

d2N
dudvdudv− ∫ −1

0

∫ 1
−1

d2N
dudvdudv∫ 1

0

∫ 1
−1

d2N
dudvdudv+

∫ −1
0

∫ 1
−1

d2N
dudvdudv

. (5.36)

Consequently, the way to get as high statistics as possible is to compare
the number of events with positive values of u to the number of events with
negative values of u. The distributions of events in all four quadrants are used
in this expression. The important thing for the detector acceptance is then that
it is symmetric on both sides of the u = 0 diagonal in the ky k̄y plane.

In the corresponding expression for Ḃ, positive and negative values of v
should be compared. In this case the events are distributed with respect to the

y axes according to

d2N
dudv

∝ 1+
π
4

(ᾱ2β̄1 +α2β1)Pu+
π
4

(ᾱ2β̄1 −α2β1)Pv (5.37)

where u and v now are built up by ky and k̄y of the second decay. Because
of the additional α/ᾱ factor from the second decay1, it is the v term which
has the factor (β + β̄ ) that is needed for the B parameter. The same reasoning

1Since ᾱ = −α the v term can be rewritten as − π
4 (β̄1 +β1)|α2|Pv.
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as for the Ȧ holds this case, now integrating over u and comparing v to −v,

resulting in

Ḃ =
∫ 1
−1

∫ 1
0

d2N
dudvdudv− ∫ 1

−1

∫ −1
0

d2N
dudvdudv∫ 1

−1

∫ 1
0

d2N
dudvdudv+

∫ 1
−1

∫ −1
0

d2N
dudvdudv

. (5.38)

The parameter sensitive to CP violation is in this case the difference of the
number of events on both sides of the v = 0 diagonal.
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6. Simulations of Multi-Strange and
Charmed p̄p → ȲY Reactions

Simulations of multi-strange and charmed p̄p → ȲY reactions for PANDA
are presented in this chapter. Previous simulations have exclusively dealt with

single-strangeness hyperons [94]. Going into the multi-strange and charmed
sector of antihyperon-hyperon physics very little, if anything, is experimen-
tally known. Simulations were made for the reactions p̄p → Ξ̄+Ξ−, p̄p →
Ω̄+Ω− and p̄p → Λ̄−

c Λ+
c , to see what experimental information can be ex-

pected from PANDA. Special attention was given to the reconstruction of spin
variables. Simulations to investigate the possibility to improve limits on CP
violation parameters are presented in the last part of the chapter. Before the
sections containing the results of the simulations, the used simulation frame-
work is presented.

6.1 The Simulation Framework

The simulations presented in this thesis use the same simulation framework,
which was used for the PANDA physics performance report [37]. This soft-
ware has in large part been taken from other high energy experiments and
been adjusted for PANDA and can therefore be considered as well tested. The
approach is object oriented and most of the code is written in C++.

As event generator EvtGen [117], which was initially developed by the

BaBar collaboration, is used. The generated particles are then followed
through the detector using the GEANT4 [118, 119] transport code. The

interactions and decays that may happen to the particles in the detector
are considered in GEANT4. A collection of hits is given as output,
consisting of the intersection points and energy losses of all particles in

the individual subdetectors. This information is then used as input for the
next step, which is the digitisation. The digitisation models the signals

from the individual subdetectors and the processing of these in the front
end electronics. The purpose is to produce a detector output as similar as

possible to real experimental data, so that the same reconstruction code can
be used for the simulations and future experimental data. For performance
reasons, an effective smearing is used instead, for some subdetectors. This
effective smearing has been derived from Monte Carlo calculations with full
digitisation.
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The detector setup used in the simulations was described in chapter 2. The

pellet option is chosen as target, with a spread of the interaction point of

σ = 0.275 mm in each direction. A detailed description of the simulation
framework is given in [37].

6.1.1 Digitisation

For the MVD, the readout is different for the two types of detectors, silicon
strip and pixel, and they are treated in different ways in the digitisation. The
channel number in the detection is defined by the hit position on the surface
of the sensor. The charge collected by electronics is given by the energy depo-

sition. For the pixel detectors, the trajectory was projected to the surface and
used to calculate all excited pixels which share the charge signal depending

on their fraction of the track. The strips are treated in a similar way, but give

information in only one dimension. The threshold for the electronics signal

was set to the equivalent of 300 electrons.
The same method for digitisation is used for both the STT and the drift

chambers. The local helix trajectory of a charged particle passing through the

gas is derived from the GEANT4 intersection points. The shortest distance
from this helix to the wire is used, to get the drift time of the ionisation elec-

trons. This distance is smeared with a Gaussian distribution of σ = 150 μm
for the STT and σ = 200 μm for the drift chambers, to take the resolution in

drift time into account.
The GEMs have two detector planes separated by 1 cm. They are modeled

to have two strips in each detector layer, oriented perpendicular to each other.
No detailed simulation of the gas amplification process and response of the
strip detectors is performed. Instead, the entry point of a charged track into
the detector plane is used. This was taken directly from GEANT4 and then
smeared with a Gaussian distribution of σ = 70 μm.

For the DIRC, one joint method is used to take the light propagation in the
radiators, the signal processing in the front-end electronics and the reconstruc-
tion of the Cherenkov angle into accont. The resolution of the reconstructed
Cherenkov angle is taken to be the uncertainty of the single photon angle di-
vided by the square root of the number of detected Cherenkov photons. A
value of 10 mrad is used for the uncertainty of the single photon angle. The
number of photons is calculated using the velocity of the charged particle, its
path length in the radiator, a sensitive wavelength interval of [280 nm, 350
nm] and a total efficiency of 7.5% per photon. For 1 GeV/c pions, the average
number of detected photons varies between 20 and 40 depending on the polar
angle. In this way a resolution of the Cherenkov angle of σ = 2.33 mrad is
obtained.
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6.1.2 Track Reconstruction

The information of a charged particle’s trajectory through the detector is kept
in the track object, which contains hits from the different subdetectors used
for tracking. The residual to a reference trajectory and the precision of the
measurement are given for each hit. For the STT, the hit residual is the clos-
est distance from the trajectory to the wire of the straw minus the actual drift
distance. For the MVD and the GEMs, the residual is the distance between
the sensor and the trajectory in the detector plane. Monte Carlo truth infor-
mation is used to assign the reconstructed hits to the right track. The pattern
recognition is, in this sense, an idealised version compared to real data. Tracks
with less than 8 detector hits are rejected. A Kalman Filter algorithm is used
to fit the tracks in the target spectrometer. This algorithm considers the hit
measurements, their resolutions and the effect of interactions with detector

material. The implementation of the algorithm is done in the same way as in
the reconstruction software of the BaBar collaboration. A description of this

implementation is given in [120]. The magnetic field is assumed to be constant
and parallel to the beam axis.

For the forward spectrometer, a χ2 is calculated from the hit residuals in
the drift chambers. A Runge-Kutta integration method is used for the prop-
agation of the track through the detector and the MINUIT [121] package is

used to minimize χ2. This results in a five-parameter helix and its covariant
matrix. These are then used as constraints in a Kalman filter fit when includ-

ing also hits in the target spectrometer. Since multiple scattering and energy
loss effects depend on particle type, the tracks are refitted for the five different

particle hypotheses: e, μ , π , K and p.
To investigate the efficiency of this track reconstruction algorithm, a track

is considered to be well reconstructed if the difference between the gener-
ated and reconstructed momentum is less than 3 σ of its resolution. For pions
generated at 60◦ polar angle, 90% of the tracks are well reconstructed for
transverse momenta over 0.2 GeV/c, while the efficiency falls to 70% for a
transverse momentum of 0.1 GeV/c. This efficiency is comparable to real data
from the BaBar detector [122].

6.1.3 Charged Particle Identification

The software for charged particle identification uses two steps. The identifica-
tion is first performed for each subdetector individually, resulting in probabil-
ities for all five particle hypotheses: e, μ , π , K and p. Then, the global particle

identification (PID) combines information from all subdetecors by using a
likelihood method. The result is four different particle candidate lists for each
particle, with increasingly strict demand on the global likelihood for the par-

ticle type in question. The lists are called VeryLoose, Loose, Tight and Very-
Tight. For the particles of interest for this thesis (π , K, p), the lists correspond

to selection criteria with the following minimal values for the global likeli-
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Figure 6.1: dE/dx plot from the STT as a function of momentum for five different

particles [37].

hood: VeryLoose 20%, Loose 30%, Tight 55% and VeryTight 70%. There is
also a list consisting of all charged tracks with no PID selection criterium,
called ChargedTracks.

For the lower momenta, the information for particle identification is mainly

supplied by energy loss, dE/dx, measurements in the MVD and the STT. The
energy loss depends both on particle type and momentum. A plot of energy

loss in the STT versus momentum is shown in figure 6.1. There are two draw-

backs with this method. First, the energy loss distributions of the different

particles overlap at certain momenta, as seen in figure 6.1. Second, the distri-

butions have long tails, which obstructs the identification.
A track gives rise to at most 4 hits in the barrel part of the MVD and 5-6

hits in the forward part. This means that the PID information from the MVD is
quite limited. Still this information can be used to separate protons and kaons

from the other particle types, which are superpositioned in the same band in
a dE/dx vs momentum plot. Instead of summing the individual dE/dx hit

measurements, they are combined into the quantity
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S = ∑dEi

∑dxi
n−1

e (6.1)

where n−1
e is the electron density in silicon. This quantity gives a smaller

spread of the energy loss distribution. The energy loss distributions are de-
scribed by a Landau distribution, to which all uncertainties merged into a sin-
gle Gaussian distributed error is added. The resulting distribution has three
momentum dependent parameters. These parameters have been fitted with
polynomials for each particle type by generating single particle events from
50 MeV/c to 1.5 GeV/c, which are then used for the calculation of particle
hypothesis.

The energy loss of charged particles traversing individual straws of the STT
will be measured. Since these measurements are performed in thin layers of
only a few mm of gas there will be fluctuations which give rise to a long Lan-
dau tail in the energy loss distribution. The truncated arithmetic mean is used
to deal with this problem. The choice of the truncation parameter is a compro-
mise between the resolution of the Gaussian fit and how much of the tail that
still remains after the truncation. The best value is found for a truncation pa-
rameter of 70, which means that 70% of the lowest energy loss values are kept.
The parameters of the Gaussian have been generated for the five particle types
in the angular range covered by the STT for momenta from 400 MeV/c up to
the maximum momenta allowed for a beam momentum of 15 GeV/c. These
parameters are then used to calculate probabilities for all five particle types,
which can then be directly combined with information from other detectors in
the global PID. A lower limit on the likelihood is set to 1% to take possible
non-Gaussian tails into account. Using this method for electrons, the PID effi-
ciency of the STT is over 98% for momenta between 0.2 and 5 GeV/c, while
the contamination1 from other particles varies from 1% to 16%. The contam-
ination increases for forward angles due to the decrease of the number of hits
in the STT.

The particle identification information for higher momenta comes mainly
from the DIRC. If a charged track can give rise to Cherenkov light in the
DIRC, the expected Cherenkov angle and its errors are calculated using the
reconstructed momentum, the reconstructed path length and the particle hy-
pothesis. This value is then compared with the measured Cherenkov angles
to calculate the likelihood and significance level for each particle type. As an
example, using the Loose criterion for kaons gives an efficiency of 80% for
identification in the DIRC above the Cherenkov threshold of approximately
500 MeV/c. The fraction of pions misidentified as kaons is less than 0.1%
below 3 GeV/c momentum and increases to 10% for 5 GeV/c momentum.

1The probability for other particles to be identified as electrons.
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The identification of protons, pions and kaons cover all the final states of the

processes in the simulations of this thesis. For the identification of electrons

and muons, information from the EMC and muon detectors is used in addition.
The information of all subdetectors are combined with a standard likelihood

method in the global PID. The probability that a track is of a certain particle
type, p(k), is calculated from the likelihoods from each individual subdetector
using the expression

p(k) = ∏i pi(k)
∑ j ∏i pi( j)

(6.2)

where the index i runs over the subdetectors used for PID and the index j
runs over the five particle types. These probabilities are used for the particle
candidate lists.

6.1.4 Analysis

The data needed for physics analysis are saved at three levels of different
detail:

• the TAG level, containing brief event summary data

• the Analysis Object Data (AOD), which consists of the particle candidate
lists as well as Monte Carlo truth data

• the Event Summary Data (ESD), which includes data down to the level of
detector hits

Most physics simulations, including those of this thesis, do not use the de-
tailed ESD data.

The analysis is performed in three steps. First, a fast preselection using only

the TAG data is done. For events which do not pass this preselection, only the

TAG data is saved. This decreases the time needed for analysis jobs signifi-

cantly. The second step is an event reconstruction and refined event selection

using the AOD data. The events are reconstructed by building decay trees and
applying geometrical and kinematic fits. Cuts on invariant masses, fit proba-

bilities and kinematic properties can be applied in this step, using Beta, Be-
taTools and fitters [123], which has been taken from BaBar and then adapted

for PANDA. In simulations for exclusive physics reactions, a kinematical fit
of the reconstructed decay tree has been found to be especially important to

improve the quality of the data and suppress background. The higher level
analysis is performed using the ROOT [124] toolbox, in the last step.

6.1.5 Ongoing Software Development

A new simulation framework for PANDA, called PANDAroot, is under de-
velopment. The FAIRroot framework [125] will provide the most important

services for detector simulations and offline analysis. FAIRroot is based on
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ROOT and the Virtual Monte Carlo (VMC) [126] interface. PANDAroot will,

in contrast to the old framework, provide a complete reconstruction and pat-

tern recognition chain. It will be possible to use different transport models

for the simulations. So far GEANT3 [127], GEANT4 and Fluka [128] can be

used. The possibility to switch transport model will increase the lifetime and

validity of the framework significantly. The information from the transport

model is digitised to simulate signals from individual subdetectors. After this

the data is in the same format as real experimental data. The reconstruction

takes only the digitised data as input, and no Monte Carlo information of the

true origin of hits is used. Consequently, it will also be possible to study back-

ground from fake tracks and pileup effects. Algorithms based on conformal

mapping [129] and extended Riemann techniques [130] will be used to find

charged tracks and correlate them with information from the PID detectors.

PANDAroot will also include a track follower based on the GEANE package

[127] combined with a generic Kalman filter for momentum reconstruction

for charged particles. The new framework will also include a fast-simulation

package, based on a parametrisation of the subdetector responses, in order to
be able to generate a large number of background events in a manageable time.

The Rho package [131] will be used in PANDAroot, for higher level analy-
sis. Vertex and kinematic fitting tools, based on the KFitter package from the

Belle collaboration [132], will also be included.
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6.2 The p̄p → Ξ̄+Ξ− Reaction

6.2.1 Data Generation

Approximately 4 ·106 events, with the decays Ξ− → Λπ− and Λ → pπ−, were
generated at a beam momentum of 4 GeV/c. There is no experimental data

for the differential cross section of p̄p → Ξ̄+Ξ−, but it is reasonable that the
creation of two ss̄ pair instead of one should make the angular distribution

more isotropic compared to p̄p → Λ̄Λ. The p̄p → Ξ̄+Ξ− events were therefore
generated with an isotropic angular distribution of the Ξ̄+ particles.

Polarisation and spin correlations were applied using weights, according to
eq.(3.58). The polarisation and spin correlations must be zero when the mo-
mentum of Ξ̄+ is parallel to the beam axis, i.e. when cosΘΞ̄+ = ±1. Since no

data on spin variables exists for the p̄p → Ξ̄+Ξ− reaction, sine functions were
used, so that the value 0 was obtained for cosΘΞ̄+ = ±1. More specifically,

the following functions were used for the different spin variables

PΞ̄+,y = PΞ−,y = sin2ΘΞ̄+

Cx̄,x = Cȳ,y = Cz̄,z = Cx̄,z = sinΘΞ̄+ .
(6.3)

6.2.2 Event Reconstruction

The p̄p→ Ξ̄+Ξ− reaction has four displaced vertices, see figure 4.8. Therefore
the problem with background is not expected to be very severe. No strict re-
quirements on PID probabilities were therefore used. The particles in the final
state are protons and pions. For the protons the VeryLoose candidate list was
used. The PID for the pions has very low efficiency, since many of them spiral
in the magnetic field and therefore do not travel a sufficiently large distance
in the STT. To get an acceptable reconstruction efficiency, the ChargedTracks
list was used for pions. Using particle candidates from these lists the recon-
struction was done according to the following steps:

• Identified pairs of antiprotons (protons) and π+ (π−) were fitted to a com-
mon vertex under a Λ̄ (Λ) hypothesis, requiring a χ2 probability > 0.001.

• The invariant p̄π+ (pπ−) mass window was set to 1.110 GeV/c2 ≤ MΛ ≤
1.120 GeV/c2.

• Pairs of Λ̄ (Λ) and π+ (π−) were fitted to a common vertex under a Ξ̄+

(Ξ−) hypothesis, requiring a χ2 probability > 0.001.
• The invariant Λ̄π+ (Λπ−) mass window was set to 1.310 GeV/c2 ≤ MΞ ≤

1.330 GeV/c2.
• The remaining events were fitted to the p̄p → Ξ̄+Ξ− hypothesis in a 4C

treefit, requiring a χ2 probability > 0.001.
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6.2.3 Reconstruction Efficiency and Background

An overall efficiency of 0.18 was obtained to reconstruct p̄p → Ξ̄+Ξ− events
by using the criteria outlined in section 6.2.2. To get an estimate of how many

reconstructed events one may expect in PANDA, the experimental cross sec-
tion of approximately 2 μb and the expected luminosity of 2 · 1032 cm2s−1

were used. Also needed are the branching ratios for the decays of interest.
The branching ratio for Ξ → Λπ is practically 100%, while the branching ra-
tio for Λ → pπ is 64% [95]. This branching ratio comes in squared, since both
the Λ and the Λ̄ must decay to pπ . Thus, the number of reconstructed events

per second becomes

0.18 ·L σBR(Λ → pπ)2 ≈ 30 events/s (6.4)

A large amount of data will consequently be collected in a short time. As
a comparison, the only existing data points in figure 4.1 for this reaction are

from bubble chamber experiments with only a handful of events.

The four displaced decay vertices of the p̄p → Ξ̄+Ξ− reaction, see figure
4.8, put very severe constraints on the background. We therefore expect that a
main background channel is p̄p → Σ̄+(1385)Σ−(1385), since it has the same
final state (Λ̄Λπ+π−) as the Ξ̄+Ξ− channel, and a similar cross section [133].

106 events of this channel were generated and none passed the selection cri-
teria, described in the section 6.2.2. Consequently the signal to noise ratio is

at least 5000 for this background channel. The direct p̄p → Λ̄Λπ+π− reaction
should also be studied as background.

6.2.4 Reconstruction Efficiency as a Function of the Ξ̄+

Production Angle

The reconstruction efficiency as a function of the CM production angle of
Ξ̄+ is shown in figure 6.2. It can be seen that the efficiency goes down in

the forward and backward direction. This is a consequence of particles being
lost in the beam pipe. There is an significant asymmetry in efficiency around

cosθΞ̄+ = 0. No such asymmetry would be present if particles and antiparti-
cles were treated the same way, since the direction of Ξ− is exclusively deter-
mined to be the opposite of Ξ̄+. The asymmetry disappeares if the Charged-
Tracks list was used for the protons. The reason must therefore be that the PID
has different efficiency for protons and antiprotons. For measurements where
it is important to have symmetric reconstruction efficiency, i.e. CP violation
measurements, it is therefore important to ignore particle identification and
consider all charged tracks. It should be noted that the efficiency is non-zero
for all CM angles, which means that the differential cross section and the spin
variables can be reconstructed for all values of cosΘΞ̄+ .
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Figure 6.2: The reconstruction efficiency as a function of the CM production angle of

Ξ̄+ in the p̄p → Ξ̄+Ξ− reaction at a beam momentum of 4 GeV/c.

6.2.5 Reconstruction of Decay Vertices

The position of the decay vertices of the Ξ̄+ and the subsequent Λ̄ particles
are shown in figure 6.3. The relatively long lifetimes of these hyperons mean

that they can go a long way in the detector before they decay. As seen in the
figure, the decay vertices can be over a meter away from the interaction point

in forward direction and up to half a meter in the radial direction. Also notable
is that the reconstruction efficiency depends on the position of the decay ver-

tices. The reconstruction efficiency decreases for small angles, where particles
may be lost in the beam pipe, and for large angles, where particles may go in
directions where the distance traveled in the STT and the GEMs is short.

6.2.6 Ξ− Lifetime Reconstruction

The number of Ξ− decays as a function of time is proportional to the number
of Ξ− hyperons left, which follows the ordinary decay law

N(t) = N0e−λ t (6.5)

where λ is the decay constant and the lifetime is defined as τ = 1
λ . Since the

Ξ− hyperons move with relativistic velocities, one must use the proper time
of the hyperons. If the velocity and the distance, x, traveled by the hyperon is
known, the proper time can be calculated through t = x

cβγ . Furthermore, the

reconstruction efficiency becomes worse for events where the hyperons decay
after a long time, since the hyperon vertices are far away from the interaction

point and many subdetectors may have no signals. This must also be taken

94



 vertex in z direction [cm]+
Ξ

0 20 40 60 80 100

 v
er

te
x 

in
 x

y-
pl

an
e 

[c
m

]
+

Ξ

-10

0

10

20

30

40

50

1

10

210

310

410

510

 vertex in z direction [cm]+
Ξ

0 20 40 60 80 100

 v
er

te
x 

in
 x

y-
pl

an
e 

[c
m

]
+

Ξ

-10

0

10

20

30

40

50

-110

 vertex in z direction [cm] Λ

0 20 40 60 80 100

 v
er

te
x 

in
 x

y 
pl

an
e 

[c
m

] 
Λ

-10

0

10

20

30

40

50

1

10

210

310

410

 vertex in z direction [cm] Λ

0 20 40 60 80 100

 v
er

te
x 

in
 x

y 
pl

an
e 

[c
m

] 
Λ

-10

0

10

20

30

40

50

-210

-110

1

Figure 6.3: Decay vertex distributions of the Ξ+ (upper figures) and Λ̄ (lower figures)

hyperon in the p̄p → Ξ̄+Ξ− reaction at a beam momentum of 4 GeV/c. The Monte

Carlo truth distributions are shown in the left figures and the reconstruction efficiency

dependencies on the decay vertex position are shown in the right figures.

into account. The reconstruction efficiency dependency on the Ξ− proper time
before decay is shown in figure 6.4. The time distribution corrected for the
reconstruction efficiency is also shown. Fitting an exponential function in the
interval between t = 0.1 and t = 0.4 ns, a Ξ− lifetime of 0.1640±0.0001 ns
is obtained. The agreement with the established tabulated value of 0.1639±
0.0015 ns [95] is very good.

The distance that the hyperon travels in the detector is determined by its

momentum and lifetime. The relation between distance traveled and lifetime
is shown in figure 6.5, where the distance from interaction point to the Ξ−
vertex is plotted against the proper time of Ξ− before decay.

6.2.7 Invariant Mass

The reconstructed invariant masses of Ξ̄+ and Λ̄ are shown in figure 6.6. Fit-

ting the two histograms with Gaussians gives a σ of 2.1 MeV/c2 and 1.7
MeV/c2, respectively. The σ of the Λ̄ mass is comparable to those obtained

in previous simulations of p̄p → Λ̄Λ [94], where the RMS of the reconstructed
mass varied between 1 and 2 MeV/c2 for beam momenta between 1.64 Gev/c

and 15 GeV/c.
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Figure 6.4: Reconstructed proper lifetime of the Ξ− hyperon corrected for acceptance

(left) and the reconstruction efficiency dependence on lifetime (right).
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Figure 6.5: Proper time of the Ξ− hyperon before decay versus its distance traveled

in the detector.

6.2.8 Correction for the Bending of the Ξ̄+ and Ξ− Trajectories
in the Magnetic Field

Since Ξ̄+ and Ξ− are charged particles, their trajectories are bent by the mag-
netic field. This influences their momentum vectors, so that the direction of the
momentum vectors at their decay are not the same as at their production. The
reconstructed momentum is the momentum at the time of the decay. However,
the polarisation and the spin correlations relate to the momentum of the Ξ hy-
perons at the production. Consequently, the momentum at the production has

to be calculated from the momentum at the decay. The magnetic field in the
PANDA detector is in the direction of the beam axis, which means that only

the part of the momentum which is perpendicular to the beam axis is affected.
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Figure 6.6: Reconstructed invariant mass of Ξ̄+ (left) and Λ̄ (right).

The perpendicular part of the momentum is bent in a circular pattern with a
radius given by

R =
p⊥

0.3B
(6.6)

where p⊥ is the hyperon momentum transverse to the beam axis and B the
magetic field [15]. The momentum at the production can therefore be calcu-
lated, when the production and decay vertices are known. The reconstructed
momentum versus the Monte Carlo truth at production before and after the
correction for the bending in the magnetic field is shown in figure 6.7. There
are two solutions to the calculation of momentum at production, correspond-
ing to two trajectories between production and decay with the same bending
radius but with opposite bending direction. Depending on the sign of the x-
component of the hyperon momentum, different solutions should be chosen.

A band of points perpendicular to the main diagonal close to zero momen-
tum is clearly seen in the figure showing corrected momentum in y direction.

These are events where the wrong solution was chosen, due to the small mo-
mentum. These are very few events and pose no real problem. The difference
between the reconstructed momentum and the Monte Carlo truth at produc-
tion is shown in figure 6.8. It can be seen that the σ goes from 5.3 MeV/c to
1.9 MeV/c in the x and y direction, when the correction for the bending in the
magnetic field is applied.

6.2.9 Reconstruction Efficiency as a Function of the Λ̄ Decay
Angle in the Ξ̄+ rest frame

The calculation of spin variables uses the decay angles of the Λ hyperon in the

Ξ rest system, as defined in section 3.1.5. It is therefore important to investi-
gate how the reconstruction efficiency depends on these decay angles. It can

be seen in figure 6.9 that the reconstruction efficiency is non-isotropic. The
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Figure 6.7: Reconstructed Ξ̄+ momentum versus Monte Carlo truth in x, y and z di-

rection, before (left) and after (right) the correction for the bending in the magnetic

field, for the p̄p → Ξ̄+Ξ− reaction.

main reason, except for particles lost in the beam pipes, is that pions with mo-

mentum under 50 MeV/c spiral in the detector without reaching the STT, with
the result that these events are not reconstructable. The effect is apparent in
figure 6.10, where the momentum distributions of pions from the Monte Carlo
truth are compared to those of the reconstructed events, for pions originating
both from the Ξ and Λ decays. It is clearly seen that low momentum pions are
not reconstructed. The non-isotropic reconstruction efficiencies are therefore
explained by the fact that certain decay angles in the Ξ rest systems give rise

a larger fraction of slow pions.

6.2.10 Comparison Between the Methods for Calculation of
Spin Variables

As described in chapter 5, there are two different ways of dealing with the non-

isotropic reconstruction efficiency: with and without the use of Monte Carlo
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Figure 6.8: The difference between reconstructed Ξ̄+ momentum and Monte Carlo

truth in x, y and z direction, before (left) and after (right figures) the correction for the

bending in the magnetic field, for the p̄p → Ξ̄+Ξ− reaction.

based acceptance functions. At a first glance, the reconstruction efficiency in
the y direction of figure 6.9 looks promising. It is almost symmetric around

ky = 0. It should therefore be possible to calculate the spin variables without
the use of the acceptance functions.

Using the method with Monte Carlo based acceptance functions the sum
in eq.(5.18) was taken over the directional cosine vectors, k̂, of the approxi-
mately 7.3 · 105 reconstructed events. The spin variables were reconstructed

separately in ten intervals of cosθΞ,CM. The corresponding acceptance func-
tions were also generated using Monte Carlo data. In each angle interval both

one dimensional, with 10 bins used for the reconstruction of polarisation, and
two dimensional acceptance functions, with 5x5 bins used for reconstruction

of spin variables, were generated. The obtained spin variables are shown in
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Figure 6.9: Reconstruction efficiency of the p̄p → Ξ̄+Ξ− reaction as a function of the

Λ decay angle in x, y and z direction of the Ξ− rest system.

figure 6.11 (polarisation) and figure 6.12 (spin correlations) with the func-
tions used as input for the simulations indicated with a solid line. The errors
in the spin variables are the statistical errors calculated from eq.(5.6). The er-
rors in the acceptance functions are not included. To propagate these errors to
the spin variables, the effect of the error in each bin of the acceptance function
on the spin variables would be needed. This effect is not possible to obtain for
the calculation, since different terms in the sums of eq.(5.18) includes differ-
ent bins of the acceptance function. It can be seen that the agreement between
input and reconstructed values in figure 6.11 and figure 6.12 is very good.

For the simulations it is not completely satisfactory, having to correct the
spin variables using acceptance functions which were also generated from

Monte Carlo data. Once PANDA is running, experimental data can be used
to test the acceptance functions. Fortunately, there is a way to test the method

for reconstructing spin variables based on acceptance functions already in the
simulations. As shown in section 5.4, the spin variables can be calculated from
eq.(5.26), taking averages over combinations of the different components of
the k̂ vectors from the reconstructed events. The result is shown in figure 6.13
(polarisation) and figure 6.14 (spin correlations). The statistical errors of the

spin variables were in this case calculated from the errors in expectation values
obtained from eq.(5.27). Since no acceptance functions were used in the re-

construction of these spin variables, there is no problem with the inclusion of
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Figure 6.10: The Monte Carlo truth distribution of pion momenta (purple line) and
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area. The left figure shows the distributions for pions that come from the Λ decay and

the right figure shows the distributions for pions that come from the Ξ decay.
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Figure 6.11: Ξ polarisation as a function of CM production angle of Ξ̄+ in the y
direction, reconstructed with the use of acceptance functions. The Ξ polarisation is

taken to be the average of the polarisation of Ξ̄+ and Ξ−. The black line shows the

input polarisation function for the simulations.

their errors. However, it must be remembered that approximations were made
in the derivation of eq.(5.26) and that it only holds if the reconstruction effi-

ciency in the y direction is symmetric around ky = 0. Comparing figure 6.13
and figure 6.14 with figure 6.11 and figure 6.12, it is seen that the two methods

give similar results. This is clear indication that it should be safe to use either
method.
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Figure 6.12: Spin correlations as a function of CM production angle of Ξ̄+, recon-

structed with the use of acceptance functions. The correlation between the x and z
direction is taken to be the average of Cxz and Czx. The black lines show the input spin

correlation functions for the simulations.
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Figure 6.13: Ξ polarisation as a function of CM production angle of Ξ̄+ in the y
direction, reconstructed without the use of acceptance functions. The Ξ polarisation

is taken to be the average of the polarisation of Ξ̄+ and Ξ−. The black line shows the

input polarisation function for the simulations.
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Figure 6.14: Spin correlations as a function of CM production angle of Ξ̄+, recon-

structed without the use of acceptance functions. The correlation between the x and z
direction is taken to be the average of Cxz and Czx. The black lines show the input spin

correlation functions for the simulations.
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6.3 The p̄p → Ω̄+Ω− Reaction

6.3.1 Data Generation

The cross section for the p̄p → Ω̄+Ω− reaction is assumed to be very small,
see section 4.2.2. Therefore only 1 · 105 events were generated, to see what

can be reconstructed from a comparatively small amount of data. The beam
momentum was 12 GeV/c. The hyperons were set to decay according to Ω−→
ΛK− and Λ → pπ−. There is no experimental information for this reaction.
Since all quarks are annihilated in this reaction, the differential cross section
can be expected to be close to isotropic. The events were therefore generated

with an isotropic cross section.
The polarisation and asymmetry parameters were applied using weights,

according to eq.(3.36) and eq.(3.44). The polarisation parameters r2
0, r2

1 and

r2
2 have 1√

3
as their maximum value. The function 1√

3
sinΘΩ̄+ was therefore

used as input for these parameters. The same function was used for the linear

combination L =
√

3
5 r1

−1 + 3

2
√

10
r3
−1. Two options were used for the angle φ

which determines the relation between β and γ . Either this angle was assumed
to be zero in accordance with T invariance or no such initial assumption was
made and the angle was set to 45◦ to see if this could be reconstructed.

6.3.2 Event Reconstruction

As for p̄p → Ξ̄+Ξ− reaction, also the p̄p → Ω̄+Ω− has four displaced ver-

tices, which puts strict constraints on background. Thus, neither for this reac-
tion strict requirements on PID probabilities were used. The particles in the
final state are in this case protons and kaons. For the protons the VeryLoose

candidate list was used and the ChargedTracks list was used for kaons. Using
particle candidates from these lists the reconstruction was done according to

the following steps:

• Identified pairs of antiprotons (protons) and π+ (π−) were fitted to a com-
mon vertex under a Λ̄ (Λ) hypothesis, requiring a χ2 probability > 0.001.

• The invariant p̄π+ (pπ−) mass window was set to 1.110 GeV/c2 ≤ MΛ ≤
1.120 GeV/c2.

• Pairs of Λ̄ (Λ) and k+ (k−) were fitted to a common vertex under a Ω̄+

(Ω−) hypothesis, requiring a χ2 probability > 0.001.
• The invariant Λ̄k+ (Λk−) mass window was set to 1.66 GeV/c2 ≤ MΩ ≤

1.68 GeV/c2.
• The remaining events were fitted to the p̄p → Ω̄+Ω− hypothesis, requiring

a χ2 probability > 0.001.
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Figure 6.15: The reconstruction efficiency dependence on the CM production angle

of Ω̄+ in the p̄p → Ω̄+Ω− reaction at a beam momentum of 12 GeV/c.

6.3.3 Reconstruction Efficiency and Background

An overall efficiency of 0.30 was obtained, using the conditions above. The
expected number of reconstructed events can be calculated in a similar way to
eq.(6.4). The Ω hyperon does not always decay into ΛK, but has a branching

ratio for Ω → ΛK of 0.68 [95], which must also be included. The cross section
of the reaction has never been measured, but there is a theoretical estimate of

2 nb. Using this value the expected number of reconstructed events becomes

0.30 ·L σBR(Ω → ΛK)2BR(Λ → pπ)2 ≈ 80 events/hour (6.7)

As expected the event rate is much smaller than for p̄p → Ξ̄+Ξ−, but it is
still possible to get reasonable amount of data.

The four displaced vertices should make the problem with background
small. Since no particle identification was used for the kaons, the final state

of the p̄p → Ω̄+Ω− reaction can not be separated from the final state of the

p̄p → Ξ̄+Ξ− reaction. If the pions are taken as kaons in the p̄p → Ξ̄+Ξ−
reaction the reconstructed mass of the Ξ hyperons would be higher. This
mass of can be calculated to be 1.56 GeV/c2, which is still far away from the
Ω mass, considering that the typical resolution of the invariant masses is a

few MeV/c2. However, there are some Σ resonances which are close in mass
and have large widths which can decay to Λπ , e.g. Σ(1670) and Σ(1775)
with branching ratios to Λπ in the order of 10-20% [95]. The cross sections
for producing the Σ resonances are not known, which makes it difficult to

estimate their contribution to the background.
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Figure 6.16: Decay vertex distributions of the Ω+ (upper figures) and Λ̄ (lower fig-

ures) hyperon for the p̄p → Ω̄+Ω− reaction at a beam momentum of 12 GeV/c. The

Monte Carlo truth distributions are shown in the left figures and the reconstruction

efficiency dependencies on decay vertex are shown in the right figures.

6.3.4 Reconstruction Efficiency as a Function of the Ω̄+

Production Angle

Figure 6.15 shows the reconstruction efficiency as a function of the Ω̄+ CM
production angle. It is seen that the reconstruction efficiency is larger in the
region of cosΘΩ ≈ 0, i.e. when the Ω hyperon is emitted perpendicularly to
the beam axis in the CM frame. This effect was not seen for the p̄p → Ξ̄+Ξ−
reaction. The reason for its appearance for the p̄p → Ω̄+Ω− reaction is the

higher beam momentum. In order not to have too small emittance angles due
to the large forward boost and loose particles in the beam pipe, there should be

a large momentum transverse to the beam pipe. The problem with asymmetry
from PID is not present at this high beam momentum. The efficiency is non-

zero for all angles also for this process, so that differential cross section and
polarisation parameters can be reconstructed over the full angular range.

6.3.5 Reconstruction of Decay Vertices

The position of the decay vertices of the Ω̄+ and the daughter Λ particles
are shown in figure 6.16. The Ω− hyperon has a shorter lifetime than the Ξ−
hyperon, which means that it decays closer to the interaction point. Even with
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Figure 6.17: Reconstructed proper lifetime of Ω− corrected for acceptance (left) and

the reconstruction efficiency dependence on lifetime (right).

the higher beam momentum for this case, figure 6.16 shows that the daughter
Λ hyperons go considerably shorter before they decay than for the p̄p→ Ξ̄+Ξ−
case. The reconstruction efficiency dependence on position of decay vertices
is shown in the same figure, and the same behaviour as for p̄p → Ξ̄+Ξ− is

noticed, i.e. the reconstruction efficiency decreases for small and large angles.

6.3.6 Ω− Lifetime Reconstruction

As for the Ξ− hyperon, the lifetime τ = 1
λ of the Ω− hyperon can be deduced

from the decay law

N(t) = N0e−λ t (6.8)

with the time taken to be the proper time of the hyperons. As for the Ξ−
hyperon, the difference in reconstruction efficiency for different decay times
has to be corrected. Figure 6.17 shows how the reconstruction efficiency de-

pends on the Ω− proper time before decay and the time distribution cor-
rected for the difference in reconstruction efficiency. Fitting an exponential

function in the interval between t = 0.1 and t = 0.4 ns, an Ω− lifetime of
0.0826±0.0004 ns is obtained. The agreement with the established tabulated

value of 0.0821±0.0011 ns [95] is very good.

6.3.7 Invariant Mass

The reconstructed invariant masses of Ω̄+ and Λ̄ are shown in figure 6.18.

Fitting the two histograms with Gaussians gives a σ of 2.2 MeV/c2 and
1.7 MeV/c2, respectively. The σ for the Λ̄ mass is comparable to the p̄p →
Ξ̄+Ξ−case.
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Figure 6.18: Reconstructed invariant mass of Ω̄+ (left) and Λ̄ (right).

6.3.8 Reconstruction of Polarisation and Asymmetry
Parameters

Since the Ω− hyperon is charged, it is bent by the magnetic field. Before the
polarisation parameters can be reconstructed this must therefore be corrected
for. The same method to correct for the magnetic field that was used for the

p̄p → Ξ̄+Ξ− reaction was used for this reaction, even though the effect is
smaller here due to the shorter lifetime of Ω−.

In sections 3.1.3.2 and 5.2 it was shown how three of the non-zero Ω polari-
sation parameters, r20, r22 and r21, can be deduced from the angles of its decay

Λ hyperons. Eq.(5.8) was used to calculate these parameters, in ten angular
intervals of cosθΩ,CM. One-dimensional acceptance functions with ten bins,

generated using Monte Carlo data, in each angle interval were used for cor-
rections. The obtained polarisation parameters are shown in figure 6.19. The

errors in the spin variables are the statistical errors calculated from eq.(5.10).
It can be seen that the agreement between input and reconstructed values in
figure 6.19 is very good.

Additional information can be extracted from the subsequent decay of the
daughter Λ hyperon, see section 3.1.3.4. The expression for the angular dis-

tribution in this decay, given in eq.(3.44), involves the linear combination of

polarisation parameters L =
√

3
5r1

−1 + 3

2
√

10
r3
−1, as well as the asymmetry pa-

rameters β and γ . These asymmetry parameters have not been measured for

the Ω hyperon. However, from T invariance and no final state interactions it
can be concluded that β ≈ 0. Two different strategies for the reconstruction
of variables form this decay were therefore considered. The expressions for
reconstructing the parameters in for these two cases were deduced in section
5.2.

As a first option β was assumed to be zero. In this case, the angular dis-
tribution is only non-isotropic in the y direction of the Ω rest system, where

the slope is given by αΛγL. The slope is only given up to a sign, since γ2 = 1.
For the investigation of the ability to reconstruct L, γ = 1 was used as input

and then assumed in the reconstruction. The linear combination L was calcu-
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Figure 6.19: Ω polarisation parameters r20, r22 and r21 as a function of CM production

angle of Ω̄+, reconstructed with the use of acceptance functions. The Ω polarisation

parameters are taken to be the average of the parameters for Ω̄+ and Ω−. The black

lines show the input polarisation parameter functions for the simulations.

lated from eq.(5.16) in ten angular intervals of cosθΩ,CM. One-dimensional
acceptance functions with ten bins, generated using Monte Carlo data, in each
angle interval were used for corrections. The result is shown in figure 6.20.
The value of L is reconstructed reasonably well in this case, but it should be
remember that the sign of L can not be given from the measurement.

The second option is to make no initial assumption for the value of the

angle φ , which relates α and β through tanφ = β
γ . In this case, both the

value of tanφ and the linear combination squared L2 can be reconstructed,
using eq.(5.12) and eq.(5.13). To see if a non-zero value of φ could be recon-

structed, it was set to 45◦ as input. The values were reconstructed with the
same acceptance functions as for the previous case. The reconstructed values
of L2 are shown in figure 6.21, were the agreement with the input function

is again reasonably good. Since only L2 is reconstructed, also in this case the
value of L is only measured up to a sign. The reconstructed value of tanφ was
0.949±0.035, close to the input value of 1.
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Figure 6.20: The linear combination L as a function of CM production angle of Ω̄+,

reconstructed with the use of acceptance functions. The φ is set to be 0◦ for this
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and Ω−. The black line shows the input function for the simulations.
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Figure 6.21: The linear combination squared L2 as a function of CM production angle

of Ω̄+, reconstructed with the use of acceptance functions. The φ is set to be 45◦ for

this reconstruction. The value of L2 for Ω is taken to be the average of the value for

Ω̄+ and Ω−. The black line shows the input function for the simulations.
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6.4 The p̄p → Λ̄−
c Λ+

c Reaction

6.4.1 Data Generation

Theoretical calculations of the cross section for the p̄p → Λ̄−
c Λ+

c reaction
predict it to be up to 50 times higher than for the p̄p → Ω̄+Ω− reaction

[104, 105, 106, 108]. The problem with the Λ+
c hyperon is that it can de-

cay to very many different final states, none of which has a branching ratio

of more than a few percent. The branching ratio for the decay of interest for
measuring spin variables, Λ+

c → Λπ+, is only 1% [95]. since a low number of
events with the right decay is expected, 1 ·105 events were generated for this

reaction as well, at a beam momentum of 12 GeV/c. The hyperons were set to
decay according to Λ+

c → Λπ+ and Λ → pπ−.

The spin variables were set to the same functions as for p̄p → Ξ̄+Ξ−

PΛ̄−
c ,y = PΛ+

c ,y = sin2ΘΛ̄−
c

Cx̄,x = Cȳ,y = Cz̄,z = Cx̄,z = sinΘΛ̄−
c

.
(6.9)

6.4.2 Reconstruction

The reconstruction of the p̄p → Λ̄−
c Λ+

c events was done in a similar way as
for the previous reactions. The particles in the final state are in this case pro-
tons and pions. For the protons the VeryLoose candidate list was used and the
ChargedTracks list was used for pions. Using particle candidates from these
lists the reconstruction was done according to the following steps:

• Identified pairs of antiprotons (protons) and π+ (π−) were fitted to a com-
mon vertex under a Λ̄ (Λ) hypothesis, requiring a χ2 probability > 0.001.

• The invariant p̄π+ (pπ−) mass window was set to 1.110 GeV/c2 ≤ MΛ ≤
1.120 GeV/c2.

• Pairs of Λ̄ (Λ) and π− (π+) were fitted to a common vertex under a Λ̄−
c

(Λ+
c ) hypothesis, requiring a χ2 probability > 0.001.

• The invariant Λ̄π− (Λπ+) mass window was set to 2.27 GeV/c2 ≤ MΛc ≤
2.30 GeV/c2.

• The remaining events were fitted to the p̄p → Λ̄−
c Λ+

c hypothesis, requiring

a χ2 probability > 0.001.

6.4.3 Reconstruction Efficiency and Background

Using the conditions outlined above an overall reconstruction efficiency of

0.35 was obtained. This is slightly higher than for p̄p → Ω̄+Ω−. With a 50
times higher cross section one could think that this would mean a higher rate

of reconstructable events. However, the branching ratio for Λ+
c →Λπ+ of only

1% comes in squared when calculating the expected event rate, since both Λc
hyperons have to have the right decay. Combining these numbers gives
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Figure 6.22: The reconstruction efficiency dependence on the CM production angle

of Λ̄−
c in the p̄p → Λ̄−

c Λ+
c reaction at a beam momentum of 12 GeV/c.

0.35 ·L σBR(Λc → Λπ)2BR(Λ → pπ)2 ≈ 25 events/day (6.10)

Thus, even though the cross section is larger, the very small branching ratio
for Λ+

c →Λπ+ means that the event rate for p̄p→ Λ̄−
c Λ+

c will be much smaller

than for p̄p → Ω̄+Ω−.
The background situation is a bit different from the p̄p → Ω̄+Ω− reaction,

in the sense that the Λ+
c hyperons decay very close to the interaction point.

Therefore only the decay vertices of the daughter Λ hyperons can be consid-
ered to be displaced. In this case the resonances Σ(2030) and Σ(2250) can
give rise to background, when they decay into Λπ , but their cross sections are
not known. More work to clarify the background situation is needed.

6.4.4 Acceptance as a Function of the Λ̄−
c Production Angle

The reconstruction efficiency as a function of the CM production angle of Λ̄−
c ,

is shown in figure 6.22. Since the Λ+
c hyperon decays almost directly after it

is produced, its production angle is not expected to have much influence the
reconstruction efficiency. This is also what is seen in figure 6.22, where the

efficiency distribution is almost isotropic. Spin variables can be reconstructed
over the full angle interval since the reconstruction efficiency is non-zero for

all values of cosΘΛ̄−
c

.
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Figure 6.23: Decay vertex distributions of the daughter Λ̄ hyperon in the p̄p → Λ̄−
c Λ+

c
reaction at a beam momentum of 12 GeV/c. The Monte Carlo truth distribution is

shown in the left figure and the reconstruction efficiency dependence on decay vertex

is shown in the right figure.
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Figure 6.24: Reconstructed invariant mass of Λ̄−
c (left) and Λ̄ (right).

6.4.5 Reconstruction of Decay Vertices

The Λ+
c hyperon has a very short lifetime, cτ = 6.0 ·10−5 m [95], and decays

very close to the interaction point. Therefore the vertices of the daughter Λ
hyperons, shown in figure 6.23, are much closer to the interaction point than
for the p̄p→ Ω̄+Ω− reaction at the same beam momentum. The reconstruction

efficiency dependence on position of the daughter Λ̄ decay vertices is shown in
the same figure, and the same behavior as for the other reactions is observed,

i.e. the reconstruction efficiency decreases for small and large angles.

6.4.6 Invariant Mass

The reconstructed invariant masses of Λ̄−
c and Λ̄ are shown in figure 6.24.

Fitting the two histograms with Gaussians gives a σ of 5.9 MeV/c2 and 1.6
MeV/c2, respectively. The σ for the Λ̄ mass is comparable to the other two

reactions.
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direction, reconstructed with the use of acceptance functions. The Λc polarisation is
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c . The black lines show the

input polarisation function for the simulations.

6.4.7 Reconstruction of Spin Variables

The very low expected event rate will make it difficult to reconstruct spin vari-
ables. A positive thing though, is that the asymmetry parameter for Λ+

c is large,
α = −0.91 [95]. The number of events needed to reconstruct the polarisation

and spin correlations reasonably well is therefore not very large. Polarisation
and spin correlations were reconstructed, using the method with acceptance
function for corrections. Both one dimensional, with 10 bins used for the re-
construction of polarisation, and two dimensional acceptance functions, with
5x5 bins used for reconstruction of spin variables, were generated for the ten
angle intervals. The spin variables were then calculated using eq.(5.18). The
results are shown in figure 6.25 (polarisation) and figure 6.26 (spin correla-
tions) with the functions used as input for the simulations indicated with a
solid line. The errors in the spin variables are the statistical errors calculated
from eq.(5.6). As seen the values are very well reconstructed from the approx-

imately 3.5 ·104 reconstructed events.

6.4.8 Other Charmed Hyperons

Can PANDA provide data for p̄p → ȲY reactions with heavier charmed hy-
perons? The threshold beam momenta for the p̄p → Ξ̄cΞc and p̄p → Ω̄cΩc
reactions are 12.0 GeV/c and 14.6 GeV/c, respectively, so they are energeti-
cally accessible at PANDA. There are no theoretical predictions for the cross
sections of these reactions. In a naive assumption, the cross sections would
be suppressed by a factor of α2

s for the first reaction and α4
s for the second,

with respect to the cross section for the p̄p → Λ̄−
c Λ+

c . At the relevant energy

scale, the value of the strong coupling constant is about 1/5, which means
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Figure 6.26: Spin correlations as a function of CM production angle of Λ̄−
c , recon-

structed with the use of acceptance functions. The correlation between the x and z
direction is taken to be the average of Cxz and Czx. The black lines show the input spin

correlation functions for the simulations.

suppression factors of 1/25 and 1/625 for the two reactions2. Branching ratios
for the decays of Ξc and Ωc are not known. Considering the expected rate of

reconstructed events of 25 per day for p̄p → Λ̄−
c Λ+

c , maybe a few events for

p̄p → Ξ̄cΞc can be collected, whereas the prospects for p̄p → Ω̄cΩc are not
very promising.

2There is one theoretical calculation [134] which predicts the cross section for p̄p → Ξ̄cΞc to

be considerably closer to the cross section for p̄p → Λ̄−
c Λ+

c
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6.5 CP Violation in Hyperon Decay

6.5.1 General Experimental Considerations

In p̄p → ȲY reactions it is possible to probe CP violation in hyperon decays.
The hyperon CP violation parameters were defined in section 3.2 and related

to up-down counting asymmetries in section 5.4. The statistical error in the
CP violation parameter A is given by [72]

σA =
1

α|P|

√
3

2N
(6.11)

where N is the number of events. The PS185 experiment at LEAR per-
formed CP violation tests for the p̄p → Λ̄Λ reaction at beam momenta in the
range 1.5-1.7 GeV/c [75, 111], with an average value of the polarisation over
the full production angle interval of 0.27. Using this value, a statistical er-
ror of 10−4, which is in the vicinity of the theoretical predictions, would be

reached for approximately 5 · 109 events. For PANDA the expected number
of reconstructed p̄p → Λ̄Λ events at this beam momentum is about 700 per

second [94]. A beam time of approximately 80 days, would then be sufficient
to reach a statistical uncertainty of this order.

As seen in eq.(6.11), the error is inversely proportional to α|P|. It is there-
fore not certain that it advantageous to use all events. Rather, events in an
interval of the hyperon production angle where the quantity |P| dσ

dΩ is maxi-
mized should be used.

It is very important to control the systematic errors in a measurement of
the CP violation parameter A. The most important aspect of the detector is
that its efficiency must be azimuthally symmetric. An inefficiency which is
the same for all azimuthal angles can not fake a CP violation signal, since
the important information is whether the final particles go up or down with
respect to the production plane. The long decay lengths of the hyperons mean
that the hyperon decays can occur far away from the beam axis. This, in turn,
means that efficiency holes, which are not azimuthally symmetric, may not
cancel from the fact that the production plane is arbitrary oriented from event
to event [72]. Another systematic error comes from the fact that particles and
antiparticles interact differently with matter. This may cause problems if the
result is that the reconstruction efficiency of the decay of the hyperon and the
antihyperon differ. Also depolarising scattering may be different for hyperons
and antihyperons.

6.5.2 Reconstruction of the CP Violation Parameter A for the
p̄p → Λ̄Λ Reaction

To investigate the possibility to measure CP violation in the p̄p→ Λ̄Λ reaction,
1 ·106 events were generated for a beam momentum of 1.64 GeV/c. The events
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Figure 6.27: The reconstruction efficiency dependence on the CM angle of Λ̄. In the

left figure the VeryLoose list has been used for protons in the reconstruction. In the

right figure the ChargedTracks list has been used for protons. For both figures the

ChargedTracks list has been used for pions.

were generated with an isotropic differential cross section and the decay of Λ
was set to be Λ → pπ−. No CP violation and 100% polaristaion was used as
input. 1.72 ·105 out of the generated events were reconstructed. It was seen in

section 6.2.4 that for the p̄p → Ξ̄+Ξ− reaction the reconstruction efficiency as
a function of the Ξ̄+ production angle is not symmetric around cosθΞ̄+ = 0.
The same asymmetry is present for the p̄p → Λ̄Λ reaction, as seen in the left
part of figure 6.27. This would not be the case if the hyperon and antihyperon
are treated in the same way, since cosθΛ̄ = −cosθΛ. In section 6.2.4 it was
also noted that this asymmetry disappeared if no PID criterium is used. This
is also true for the p̄p → Λ̄Λ reaction, as shown in the right part of figure 6.27
for the p̄p→ Λ̄Λ reaction. Since it is important for CP violation measurements
that the detector respons is the same for particles and antiparticles, it could be
a good idea not to use any PID criterium for these measurements. If no PID
is used for the reconstruction the number of reconstructed events increases
slightly to 1.85 ·105.

The description of how one relates CP violation parameters to asymmetries
of the number of emitted final state particles with respect to the opposite sides
of the production plane of the hyperon was given in section 5.4. The parameter
A can be related to the difference in the number of events between having
positive or negative values of u, with u defined as

u =
1

2
(ky + k̄y) (6.12)

where ky and k̄y are the projections of the decay direction on the y axis of

the hyperon rest system which is perpendicular to the production plane. The
reconstruction efficiency dependence in the ky k̄y plane is shown in figure 6.28.

The important aspect is that the efficiency is symmetric around the u = 0 di-
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Figure 6.28: The reconstruction efficiency dependence in the k̂y
¯̂ky plane for the p̄p →

Λ̄Λ reaction.

agonal, which goes from the upper left to the lower right in figure 6.28. As
seen in figure 6.28, this symmetry seems to be present.

The Ȧ parameter was calculated from the reconstructed events with the re-
sult −0.0333± 0.0012. This indicates that systematic errors gives rise to a

false CP violation signal which is much larger than the statistical errors. A
strategy to decrease systematic errors, both from detector asymmetries and
depolarisation of the hyperons as they interact in the detector, is to only con-
sider events where the hyperons decay close to the beam axis. Figure 6.29
shows the value of the Ȧ parameter, calculated from reconstructed events

where different limits on the maximum distance of the hyperon decays from

the beam axis have been used. It can be seen that the values slowly approach

zero with more stricter limits. If only events where the hyperons decays closer

than 2 cm from the beam axis were considered, the extracted Ȧ value became
−0.0211±0.0016. 55% of the reconstructed events fulfills this requirement.

Still, a false CP violation signal much larger than the statistical errors is
present. As already mentioned, another way to reduce systematic errors is

to use no PID in the reconstruction, since this reconstructs particles and an-
tiparticles differently. Figure 6.30 shows the Ȧ parameter value calculated

in the same way as in figure 6.29, but for events reconstructed using the
ChargedTracks list for both protons and pions. In this case the value became
−0.0147± 0.0012 if all events were used. The value approaches zero as a

function of the strictness of the allowed maximum radial distance from the
beam axis of the decays, as shown in figure 6.30. The false signal disappeared

if only events where the hyperons decay closer than 2 cm from the beam axis
were considered. In that case the value of Ȧ was 0.0008 ± 0.0016. Conse-

quently, to reduce systematic errors in the measurement of this CP violation
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Figure 6.29: The calculated value of the Ȧ parameter for the p̄p → Λ̄Λ reaction, as

a function of the maximum radial length allowed from the beam axis to the hyperon

decays. The VeryLoose list has been used for protons in the reconstruction.

parameter no PID should be used and only events where the hyperons decay
closer than 2 cm from the beam axis should be considered. Another advantage
of only considering events where the hyperons decay close to the beam axis is
that a larger fraction of the hyperons will decay inside the vacuum of the beam
pipe, which has a radius of 10 mm in the vicinity of the interaction point. This
will decrease the risk for depolarising scattering of the hyperons before the
decay.

6.5.3 Reconstruction of CP Violation Parameters for the p̄p →
Ξ̄+Ξ− Reaction

For the p̄p → Ξ̄+Ξ− reaction, the two CP violation parameters A and B can
be measured. 1 ·106 events were generated for a beam momentum of 4 GeV/c
to study this. The events were generated with an isotropic differential cross
section and the decay of the daughter Λ hyperon was set to be Λ → pπ−. No

CP violation and 100% polarisation was used as input. 1.96 ·105 events were
reconstructed, if no PID was used in the reconstruction.

The A parameter is measured in the ky k̄y plane for the Ξ → Λπ decays,
using the same method as for the p̄p → Λ̄Λ case. The reconstruction efficiency
dependence in this ky k̄y plane is shown in figure 6.31. The reconstruction

efficiency seems to be reasonably symmetric around the u = 0 diagonal.
The parameter B is measured in the ky k̄y plane for the subsequent Λ →

pπ decays. It was shown in section 5.4 that this parameter is related to the
difference in the number of events between having postitive or negative values

of v, with v defined as
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Figure 6.30: The calculated value of the Ȧ parameter for the p̄p → Λ̄Λ reaction, as

a function of the maximum radial length allowed from the beam axis to the hyperon

decays. The ChargedTracks list has been used for protons in the reconstruction.

v =
1

2
(ky − k̄y) . (6.13)

The reconstruction efficiency dependence in the ky k̄y plane for the Λ → pπ
decays is shown in figure 6.32. The important aspect here is the symmetry

around the v = 0 diagonal, which goes from the upper right to the lower left.
As seen in figure 6.32, there is no such symmetry at all. This is not too sur-

prising since the y axes in these reference systems are paralell to the beam
axis. This means that the method of only considering events close to the beam

axis has no effect. This asymmetry in reconstruction efficiency must therefore
be compensated for by using acceptance functions, which will introduce more
systematic errors. The measurement is, however, worth doing since there is
no previos measurement of BΞ− . The investigation in this thesis has been re-
stricted to the A parameter, for which the required detector symmetry is almost

present.
The Ȧ parameter was calculated from the reconstructed events and the result

was −0.0522± 0.0011, when no PID was used in the reconstruction. This is
a larger false CP violation signal than for the p̄p → Λ̄Λ reaction. The same
method for making this false signal disappear that was used for the p̄p → Λ̄Λ
reaction can also be used here. Figure 6.33 shows the value of the Ȧ parameter,

calculated from reconstructed events where different limits on the maximum

distance of the hyperon decays from the beam axis have been used. As seen

in this figure, the method works for this reaction as well. The false signal

disappears if the limit is put to about 1-2 cm.
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Figure 6.31: The efficiency dependence in the ky k̄y plane of the Ξ → Λπ decays for

p̄p → Ξ̄+Ξ− reaction.

yk
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

yk

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Figure 6.32: The reconstruction efficiency dependence in the ky k̄y plane of the Λ →
pπ decays for p̄p → Ξ̄+Ξ− reaction.
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7. Precession of the Hyperon
Polarisation Vector in the Magnetic
Field of the PANDA Detector

As seen in previous sections, the polarisations and spin correlations of the
hyperons are extracted from the angular asymmetry in their decay. However,
due to their weak decay hyperons have a typical decay length of several cm.
As they travel this distance through the detector, their polarisation vector is
affected by the magnetic field. The measured spin variables can consequently
differ from the spin variables in the production of the hyperons. The effect
was noted in the report on measurements of CP-violation in hyperon decays
at the once planned, but never realised SUPER-LEAR facility at CERN and
was assumed to be “calculable or negligible” [72]. However, the magnetic
field at SUPER-LEAR was planned to be 0.5 T, while it is foreseen to be
2 T in PANDA. It is therefore important to investigate if this effect is suffi-
ciently large to be taken into consideration. This chapter presents of the ex-
pressions for how the polarisation vector is affected by magnetic fields. The
results from a Monte Carlo simulation of this effect for the p̄p → Λ̄Λ reaction
in the PANDA experiment are then given.

7.1 Precession of Polarisation Vectors in a Magnetic
Field

The time evolution of a polarisation vector, Σ̄, in a magnetic field is given by
[135, 136]

dΣ̄
dτ

= −
[

1

γ +1

(
ū× dū

dτ

)
+

ge
2m

B̄(0)

]
× Σ̄ (7.1)

where ū = p̄
m , g is the gyromagnetic ratio and B̄(0) is the magnetic field in

the particle rest frame

B̄(0) = γ
(

B̄− γ
γ +1

(β̄ · B̄)β̄
)

. (7.2)
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Figure 7.1: Reference system defined by the magnetic field in the hyperon rest frame

and the polarisation vector at production. The part of the spin vector which is parallel

to the magnetic field is constant, while the perpendicular part rotates as the hyperon

travels through the magnetic field.

An uncharged hyperon is not accelerated by the magnetic field, which

means that the first term in eq. (7.1) is zero and we get

dΣ̄
dτ

= − ge
2m

B̄(0)× Σ̄ (7.3)

This is a rotation of the perpendicular part of Σ̄ around the, in this case
constant, vector B̂0 with the angular velocity ω = ge

2m

∣∣B̄(0)
∣∣. It is therefore

conveniant to define a reference system with the unit vectors

m̂ = B̂0

l̂ = B̂0 × Σ̂(0)

k̂ = (B̂0 × Σ̂(0))× B̂0 .

(7.4)

A graph of this coordinate system is shown in figure 7.1. The polarisation

vector can be expressed in terms of these unit vectors as a function of the
proper time τ

Σ̄(τ) =
∣∣Σ̄∣∣cosΘ · m̂− ∣∣Σ̄∣∣sinΘsinωτ · l̂+

+
∣∣Σ̄∣∣sinΘcos(ωτ) · k̂ (7.5)
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where Θ is the angle between Σ̄(0) and B̄(0). This angle becomes π
2 which in

the case of antihyperon-hyperon production in the PANDA detector, since the

polarisation vector is perpendicular to the production plane and the magnetic

field is parallel to the beam axis. As seen in eq.(7.5), the part of the polarisation

vector which is parallel to the magnetic field,
∣∣Σ̄∣∣cosΘ, is constant, while the

transverse part,
∣∣Σ̄∣∣sinΘ, rotates in the k̂ l̂ plane.

Hyperon Mass [MeV/c2] cτ [cm] μ [μN]

Λ 1116 8.0 -0.613

Σ+ 1189 2.4 2.46

Σ0 1193 2.2 ·10−9 1.61

Σ− 1197 2.4 -1.16

Ξ0 1315 8.7 -1.25

Ξ− 1321 4.9 -0.651

Ω− 1672 2.5 -2.02

Table 7.1: Properties of the hyperons which are used in the calculation of their pre-
cession in the magnetic field [95].

7.2 Effect on the measurement of Λ Polarisation

The Λ hyperon has a relatively long decay length. This means that its polari-
sation vector will be affected by the magnetic field in the PANDA detector. It
is uncharged which makes the method described in the previous section appli-
cable. Monte Carlo simulations of the p̄p → Λ̄Λ reaction were therefore made
both for a low beam momentum, 1.64 GeV/c, and the highest possible beam
momentum of PANDA, 15 GeV/c, to see how the effect depends on beam
momentum. 500000 events were generated at each beam momenta.

The properties of the different hyperons which are needed in the calcula-
tion for their precession in the magnetic field are given in table 7.1. Once the

angular velocity is calculated, only the lifetime of the Λ hyperon is needed
to get the angle that the polarisation vector has rotated between the time of

production and decay. Figure 7.2 shows the rotation angle for the two beam
momenta. The mean value of the rotation angle is 2.9◦ for 1.64 GeV/c beam
momentum and 5.38◦ for 15 GeV/c. As expected, the polarisation vector ro-

tates more at the higher beam momentum of 15 GeV/c, since the value of∣∣B̄(0)
∣∣ becomes higher.

Chapter 5 contains a description how to get the polarisation of the hyper-
ons from the decay angles in their rest system. As a consequence of the parity

invariance of the strong interaction, the hyperon is only polarised in the y di-
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Figure 7.2: The angular difference between the polarisation vector of Λ at production

and decay in PANDA, for a beam momentum of 1.64 GeV/c (left figure) and 15 GeV/c

(right figure).

rection. Due to the precession in the magnetic field this is no longer the case

at the time of the decay, if the angles of the Λ rest system at production are
used. The polarisation vector is, however, not given for each generated event.

It is reconstructed from the angular distribution in the hyperon decay using the
full data sample. However, if the polarisation is reconstructed using hyperon
decay angles from rest systems which have been rotated in the opposite direc-
tion as the polarisation vectors1, the effect of the rotation on the polarisation
measurement can be quantified.

The data was generated with an initial polaristion of 100% in the y direction,
to see how much of this polarisation is rotated into the other directions. The
generated Monte Carlo data were used to reconstruct the polarisation, using
initial and rotated rest systems, respectively. Figure 7.3 shows the difference
in the polarisation between the two different reconstruction procedures, for
different values of the Λ̄ production angle. The errors in polarisation are the
statistical errors of the two reconstructed values added in quadrature, the er-

rors in cosΘΛ̄ are the bin widths. The upper figure shows the result for the
data with a beam momentum of 1.64 GeV/c. The expected effect, that po-

larisation in the y direction is transferred to the other directions, is clearly
seen. The amount of decrease in the y direction is not substantial, while the
increase in the x and z direction is significant. By simple geometrical consid-
erations the average decrease in the y direction should be 1−cos2.9◦ ≈ 0.001
and the increase in the other directions sin2.9◦ ≈ 0.05, which is consistent

with the result in figure 7.3. The lower figure shows the result for the data at
15 GeV/c beam momentum. In this case the geometrical considerations give

1− cos5.4◦ ≈ 0.004 and sin5.4◦ ≈ 0.09 respectively, which is also roughly
consistent with figure 7.3 for the x and z directions. A noticeable difference

1The method to compensate for the effect when experimental data is used to reconstruct the

polarisation is to rotate the rest systems in the same way as the polarisation vector.
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Figure 7.3: The difference in reconstructed polarisation using a Λ rest system which

has been rotated in the opposite way as the polarisation vector as compared to using

the rest system at production, in the x (black), y (red) and z (green) directions. In the

upper figure the beam momentum is 1.64 GeV/c and in the lower 15 GeV/c.

from the lower beam momentum is that the polarisation in the y direction is
affected for negative values of cosΘΛ̄.

7.3 Effect on the measurement of Λ̄Λ Spin Correlations

Intuitively, it seems that the rotation of the polarisation vectors should also

affect the measured values of spin correlations between the Λ̄ and Λ hyperon.
At production the polarisation vectors of the Λ̄ and Λ hyperon are in the y
direction of their respective rest system, which means that they are parallel.
The two polarisation vectors are then rotated in opposite directions, which

means that they are no longer parallel at their decay. Figure 7.4 shows the
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Figure 7.4: The angle between the polarisation vectors of Λ and Λ̄ at the decay which

are parallel at production, at a beam momentum of 1.64 GeV/c (left figure) and 15

GeV/c (right figure).

angle between the Λ polarisation vector and the Λ̄ at the decay for the two
beam momenta. The mean value of the angle is 3.5◦ for 1.64 GeV/c beam

momentum and 5.8◦ for 15 GeV/c beam momentum.
As for the polarisation, the effect of the rotation can be investigated by

comparing spin correlations calculated using rotated and initial rest systems
respectively. As described in section 3.1.5, the spin correlations, which ac-

cording to parity conservation, can be non-zero are Cxx, Cyy, Czz and Cxz =Czx.
The data was generated with Cyy = 1 and the others equal to zero. The results
are shown in figure 7.5 for 1.64 GeV/c beam momentum and in figure 7.6 for
15 GeV/c beam momentum. The errors in spin correlations are the statisti-
cal of the two reconstructed values added in quadrature. The spin correlations
appear to be completely unaffected by the rotation of the rest system at 1.64
GeV/c and marginally affected at 15 GeV/c. One way to understand this is
that rotating the two rest systems in opposite directions do not always make
the hyperon spins defined in them less correlated. Depending on the origi-
nal relation between the two spin directions they might as well become more
correlated.

A more strict explanation can be given by calculating the expectation value
〈cosΘp̄,i cosΘp, j〉 used for the reconstruction of the spin variable Ci j. Let the
two angles change by φ1 and φ2, respectively, due to the rotation of the rest
systems. The new expectation value then becomes

〈cos
(
Θp̄,i +φ1

)
cos

(
Θp, j +φ2

)〉 =

=
1

4

∫ 1

−1

∫ 1

−1
cos

(
Θp̄,i +φ1

)
cos

(
Θp, j +φ2

)
× (

1+αᾱC1, j cosΘp̄,i cosΘp, j
)

dcosΘp̄,idcosΘp, j

(7.6)

If only linear terms in the rotation angles are kept, this expression becomes
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Figure 7.5: The difference in reconstructed spin correlations (Cxx, Cyy, Czz and Cxz)

using Λ rest systems which has been rotated in the opposite way as the polarisation

vector as compared to using the rest systems at production. The beam momentum is

1.64 GeV/c.
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(
cosΘp̄,i cosΘp, j −φ1 sinΘp̄,i cosΘp, j −φ2 cosΘp̄,i sinΘp, j

)
× (

1+αᾱC1, j cosΘp̄,i cosΘp, j
)

dcosΘp̄,idcosΘp, j =

=
1
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∫ 1
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cosΘp̄,i cosΘp, j

(
1+αᾱC1, j cosΘp̄,i cosΘp, j

)
dcosΘp̄,idcosΘp, j =

= 〈cosΘp̄,i cosΘp, j〉
(7.7)

where the fact that only terms with even power of both cosines are non-

zero since the integration interval is between -1 and 1 has been used. The
result is that to the precision of first order terms in the rotation angles, the spin

correlations are unaffected.
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Figure 7.6: The difference in reconstructed spin correlations (Cxx, Cyy, Czz and Cxz)

using a Λ the rest systems at production as compared to systems which has been

rotated in the opposite way as the polarisation vector. The beam momentum is 15

GeV/c.

7.4 Other Hyperons

The investigation in this chapter has been focused on Λ hyperons, since the
fact that it is uncharged considerably simplifies the calculations. Of the other
uncharged hyperons, the Σ0 hyperon decays electromagnetically and conse-
quently the decay length is far too short for the polarisation vector to have

time to be affected by the magnetic field. The Ξ0 hyperon, on the other hand,
has a long decay length and a large magnetic moment, see table 7.1. However,

due to the π0 in the final state Ξ0 will be difficult to reconstruct in the PANDA
data.

The equations become much more complicated for charged hyperons, since
they are accelerated by the magnetic field. Looking at their properties rele-
vant for the equations in table 7.1 one may think about the qualitative differ-

ence from the case of Λ hyperons. The charged Σ, Ξ and Ω hyperons all have
shorter decay lengths, higher masses and magnetic moments which are equal

or higher compared to the Λ hyperon. The rotation angles of their polarisation
vectors are therefore expected to be smaller than for the Λ hyperon, perhaps

with the exception of the Σ+ hyperon, which has a large magnetic moment
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of μ = 2.458μN. All charmed hyperons have too short decay lengths for the

polarisation vector to be affected by the magnetic field.
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8. Conclusions and Outlook

The conclusions focus on the work I have done and are divided into three parts.
The first part concerns the derivation of the decay angular distributions for the
spin 3/2 Ω hyperon and its daughter Λ hyperon, to see which Ω polarisation
parameters can be reconstructed from an unpolarised initial state. The second
part deals with the simulations of multi-strange and charmed p̄p → ȲY reac-
tions with emphasis on the extraction of spin variables, as well as simulations
for CP violation in hyperon decays. The last part concerns the investigation of
the effect of the magnetic field on the measurement of hyperon spin variables
in the PANDA detector. An outlook for future studies is also given.

8.1 Calculations of Decay Angular Distributions for the
Spin 3/2 Ω Hyperon

The density matrix formalism was used to calculate the decay angular distri-
butions of hyperons. Both spin 1/2 and 3/2 hyperons were considered. The
new results for this thesis are for the spin 3/2 Ω hyperon. An explicit ex-
pression for the density matrix of a spin 3/2 particle, containing polarisation
parameters, was derived. A spin 3/2 particle has 15 polarisation parameters,
instead of three for spin 1/2 particles. Eight of these parameters are zero, since
the Ω hyperons are created with the parity conserving strong interaction in the

p̄p → Ω̄Ω reaction. The angular distribution for the Ω− → ΛK− decay was
calculated, using the density matrix for spin 3/2 particles. This calculation is
simplified by the fact that the asymmetry parameter α is close to zero for this
decay and the result is given in eq.(3.36). This angular distribution is only
given without explicit expressions for the density matrix elements previously
in the literature. Three of the seven non-zero polarisation parameters show up
in the angular distribution. The daughter Λ hyperon also decays weakly and
the angular distribution of this Λ → pπ− decay was also calculated. The result

is given in eq.(3.44). This angular distribution, with all polarisation parame-
ters considered, is not previously reported. A linear combination of two of the

other non-zero polarisation parameters contributes to the angular distribution
of this subsequent decay. The Ω asymmetry parameters β and γ , which have

not been measured, are also involved.
There are constraints from quantum mechanics that the density matrix has

to fulfill. Having the explicit form of the spin 3/2 density matrix, these con-

133



straints can be used to put constraints on the possible values of Ω hyperon

polarisation parameter. Four inequalities that the parameters have to fulfill

were deduced. These are given in eq.(3.60).
In chapter 5, expressions were deduced for the reconstruction of the Ω hy-

peron polarisation and asymmetry parameters from the experimental data. By
calculating expectation values, it was shown how these parameters can be re-
constructed by taking averages of the decay angles. For the linear combination
of polarisation parameter in the Λ → pπ− decay distribution, the value can be
reconstructed up to a sign. The expressions are given in eq.(5.8), eq.(5.12) and
eq.(5.13). Expressions for the errors of the parameters are given in eq.(5.10)
and eq.(5.15).

8.2 Simulations of Multi-Strange and Charmed p̄p →
ȲY Reactions

Simulations were performed for the reactions p̄p → Ξ̄+Ξ−, p̄p → Ω̄+Ω− and

p̄p→ Λ̄−
c Λ+

c . The reconstruction efficiency and the expected number of recon-

structed events for the three reactions are given in the table below. The beam
momenta and the cross sections used for the calculation of expected number

of events are given in the same table. As seen, high statistics will be collected
in a short time for the p̄p→ Ξ̄+Ξ− reaction, where the existing data consists of

only a handful of events. For the p̄p → Ω̄+Ω− and the p̄p → Λ̄−
c Λ+

c reactions,
the PANDA data will be the first.

p̄p → Ξ̄+Ξ− p̄p → Ω̄+Ω− p̄p → Λ̄−
c Λ+

c

beam momentum [GeV/c] 4 12 12

reconstruction efficiency [%] 17 30 35

σ ∼2 μb ∼2 nb ∼0.1 μb

expected # of events ∼30/s ∼80/hour ∼25/day

Table 8.1: Reconstruction efficiency and expected number of reconstructed events ob-
tained from the simulations for the p̄p → Ξ̄+Ξ−, p̄p → Ω̄+Ω− and p̄p → Λ̄−

c Λ+
c re-

actions. The beam momenta and the cross sections used for the calculation are also
given.

The reconstruction efficiency for all three reactions were found to be non-
zero for all values of the hyperon CM production angles. This means that spin
variables can be reconstructed over the full angular interval. Two different
methods to compensate for asymmetry in detector efficiency were tested in the

reconstruction of spin variables for the p̄p → Ξ̄+Ξ− reaction. Both methods,
one using acceptance functions generated from Monte Carlo and the other

based on a symmetry of the detector efficiency, worked well. In this way both
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polarisation and spin correlations were well reconstructed for this reaction.

For the p̄p → Ω̄+Ω− and the p̄p → Λ̄−
c Λ+

c reactions polarisation parameters,
polarisation and spin correlations were well reconstructed using the method
with acceptance functions.

Simulations were also performed to investigate the possibility of measur-
ing CP violation parameters for hyperon decays. Both the p̄p → Λ̄Λ and the

p̄p → Ξ̄+Ξ− reactions were considered. It was found that it is important to not

use PID in these measurements, since it will introduce asymmetry between

particles and antiparticles. For the A parameter, which quantifies the differ-
ence in the value of the asymmetry parameter α between the hyperon and
antihyperon, it was shown that the measurement is feasible only if events with

hyperon decays close to the beam axis are considered. In the p̄p → Ξ̄+Ξ− re-
action, also the B parameter, which quantifies the difference in the value of the

asymmetry parameter β between the hyperon and antihyperon, can be mea-
sured. This parameter is measured in the decay of the daughter Λ hyperon. For
this measurement the required symmetry of the detector is along a direction of
the Λ rest system which is not perpendicular to the beam axis. Since no such

symmetry exists, acceptance functions have to be used for this measurement.

8.3 Effect of Magnetic Field on Measurement of
Hyperon Spin Variables

Monte Carlo simulations were made for the p̄p → Λ̄Λ reaction to investigate

the effect of the magnetic field in the PANDA detector on the measurement
of spin variables. The simulations were made at two different beam momenta,
1.64 GeV/c and 15 GeV/c, to study the beam momentum dependence.

The average value of the angle that the polarisation vector rotates between
production and decay of the Λ hyperon was found to be 2.9◦ at 1.64 GeV/c
and 5.4◦ at 15 GeV/c. Neglecting this in the measurement of the Λ polarisation
will affect the measured values slightly. No effect was found at 1.64 GeV/c in
the direction which perpendicular to the production plane of the Λ hyperon.
In the directions which are in the production plane, however, the effect was
found to be a fake polarisation of about 5%. At 15 GeV/c, a small decrease
in the direction perpendicular to the production plane of up to 5%, was found
for negative values of cosΘΛ̄. The fake polarisation in the directions in the

production plane was found to be about 10-20% in this case.
The polarisation vectors of the Λ̄ and Λ hyperons are parallel at production.

Due to their precession in the magnetic field this will no longer be the case at
the decay of the hyperons. In the simulations the average value of the angle
between the two polarisation vectors at decay was found to be 3.5◦ at 1.64

GeV/c and 5.8◦ at 15 GeV/c. It was found that this does not affect measure-
ments of spin correlations, since the effect averages to zero over all events.
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8.4 Outlook

The development of the new framework for PANDA, called PANDAroot, was
not at the stage where antihyperon hyperon physics could be studied at the

time of this thesis. Since the framework used in this thesis has an idealised
version of reconstruction and pattern recognition, the results should in this

sense be viewed as a best case scenario. In the future, these p̄p→ ȲY reactions
should also be studied in PANDAroot, which will have a full reconstruction

and pattern recognition chain, for comparison.
Other questions for future studies are to find a suitable trigger for p̄p → ȲY

reactions and more extensive background studies for the multi-strange and
charmed reactions..

Concerning the calculations of the Ω hyperon decay, it would be interesting
to investigate whether more polarisation parameters can be extracted from the
decays if angular distributions depending on angles from both decays are stud-
ied. This will give a slightly more complex analysis and worse statistics since
fewer angles are integrated out. Still, it might be worth it if more information
can be extracted.
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9. Svensk sammanfattning

Titeln på avhandlingen är Multi-strange and Charmed Antihyperon-Hyperon
Physics for PANDA. Arbetet tillhör ett område av fysiken som omnämns
hadronfysik.

Vad är en hadron?

Dagens teori om hur materien är uppbyggd kallas standardmodellen.
Enligt standardmodellen, som är väldigt väl testad experimentellt, finns
det tolv elementära partiklar som bygger upp materien. Dessa växelverkar
via tre krafter: elektromagnetism, den svaga kraften och den starka
kraften. Den fjärde kraften som finns i naturen, gravitationen, är inte
inkluderad i standardmodellen, men den är försumbar för beräkningar
påelementarpartikelnivå. De tolv partiklarna är indelade i två grupper:
kvarkar och leptoner. Skillnaden mellan dem är att kvarkar växelverkar via
den starka kraften, medan leptoner inte gör det. För varje partikel finns även
en antipartikel med samma massa men motsatt laddning.

De tre krafterna beskrivs i standardmodellen som utbyte av en sorts partiklar
kallade gaugebosoner. För elektromagnetism är denna utbytespartikel fotonen.

Motsvarande partiklar för den starka kraften kallas gluoner, vilka finns av åtta
olika sorter. En stor skillnad mellan gluonerna och fotonerna är att gluonerna
själva växelverkar via den starka kraften, medan fotonerna är opåverkade av
elektromagnetismen. Denna växelverkan mellan gluonerna leder till ett my-
cket speciellt beteende hos den starka kraften. Vid tillräckligt långa avstånd
avtar inte kraften med avståndet. Om två starkt växelverkande partiklar förs
allt längre ifrån varandra växer den potentiella energin mellan dem mot oänd-
ligheten. Vid ett visst avstånd blir det därför energetiskt fördelaktigt att bilda
nya partiklar och antipartiklar för att skärma kraften. Resultatet blir att det
inte går att isolera en partikel som har laddning med avseende på den starka

kraften. Den starka kraften har tre sorters laddning, kallade röd, blå och grön.
De har inget med de vanliga vardagliga färgerna att göra. Deras namn beror på

att kombinationen av de tre laddningarna ger en neutralt färgladdad partikel,
precis som färgerna blandas till vitt. Eftersom ingen partikel med färgladdning

kan isoleras, dyker de starkt växelverkande elementarpartiklarna upp i naturen

i form av kombinationer som tillsammans ger en neutral laddning. Det är de
partiklar som utgörs av en sådan neutral kombination av elementarpartiklar
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som kallas hadroner. Eftersom kvarkar har laddning utav en färg och antik-

varkar laddning av en antifärg, finns det två enkla sätt att skapa en färgneutral

partikel: tre kvarkar av var sin färg, i vilket fall partikeln kallas för baryon och

en kvark tillsammans med en antikvark, i vilket fall partikeln kallas för me-

son. Även antibaryoner med tre antikvarkar av var sin antifärg ger en neutral

kombination. Alla kända hadroner är utav något av dessa slag.
Standardmodellens teori för att ge massa åt elementarpartiklarna kallas

Higgs-mekanismen. Den går ut på att ett Higgs-fält introduceras, vars

växelverkan med elementarpartiklarna ger dem massa . Higgsfältet ger

också upphov till en Higgs-partikel, vilken nyligen med största sannolikhet

har observerats experimentellt på LHC. Elementarpartiklarnas massa utgör

dock bara en mycket liten del av hadronernas, och därmed världens, massa.

Över 98% av hadronernas massa genereras istället av den starka kraften

när den binder kvarkarna till en sammansatt partikel. En förståelse av hur

det går till när den starka kraften binder kvarkarna till hadroner är därför

viktig. Det är denna fråga hadronfysik handlar om. Det är ett teoretiskt sett

svårt område, eftersom energiskalan där kvarkar binds till hadroner ligger

mellan två olika sätt att göra beräkningar på partikelreaktioner. För höga

energier används en störningsmetod, där den starka kraften beskrivs som

utbyte av gluoner. För lägre energier finns effektiva teorier, där den starka

kraften istället beskrivs som utbyte av mesoner. Däremellan är det oklart

vilken teoretisk beskrivning som bör användas. Mer experimentell data för

reaktioner vid denna energiskala kommer därför bli av stor betydelse för att

klargöra situationen.

Vad är en hyperon?

Det finns sex olika sorters kvarkar kallade up (u), down (d), charm (c), strange

(s), top (t), bottom (b). De två första lättaste kvarkarna är de stabila kvarkarna,

vilka de tyngre kvarkarna sönderfaller till. Tillsammans bygger de upp proto-

nen (uud) och neutronen (udd). Protonen och neutronen bygger i sin tur upp

atomkärnan och alltså i stort sett all världens synbara materia.
Det finns dock icke-stabila baryoner där en eller flera u- och d-kvarkar är

utbytta mot tyngre kvarkar. Det är dessa baryoner som kallas för hyperoner.
För de vanligaste hyperonerna är de tyngre kvarkarna s-kvarkar, vilket är den
tredje lättaste kvarksorten, men de kan också vara c-kvarkar, i vilket fall par-
tikeln kallas för charmerad hyperon.

När hyperonerna sönderfaller till lättare bayoner omvandlas de tyngre

kvarkarna till lättare sorter. Detta kan bara ske via den svaga kraften. Den
svaga kraften har en speciell egenskap. Den är inte symmetrisk under en

paritetstransformation1. Detta innebär att vinkelfördelningen hos hyperonens

1Om fysikreaktionen beskrivs i ett koordinatsystem, innebär paritetstransformationen en 180◦
rotation följt av en spegling av koordinatsystemets axlar.

138



dotterpartiklar i sönderfallet inte behöver vara isotrop i rummet. Istället

fördelar de sig på ett speciellt sätt i förhållande till riktningen av hyperonens

spinn. Spinn är ett inre rörelsemängdsmoment, som partiklar har utöver

banrörelsemängdsmoment. Det är en kvantmekanisk egenskap som inte har

någon motsvarighet inom klassisk fysik. Det är ofta svårt att få information

om partiklars spinn i experiment. För hyperoner kan dock olika spinnvaribler

extraheras genom att mäta vinkelfördelningarna i deras sönderfall.

En annan aspekt av hyperoner som är intressant att studera är om det
finns brott mot CP-symmetrin i deras sönderfall. CP-transformationen
innebär paritetstransformation kombinerat med att partiklarnas laddning
byter tecken. Praktiskt taget alla fysikens lagar är symmetriska under denna
transformation. Dock har små brott mot CP-symmetrin observerats i system
av mesoner. Eftersom den kombinerade CPT symmetrin, där T står för
tidsinversion, tros gälla för all fysik, innebär ett brott mot CP-symmetrin
även ett brott mot tidssymmetrin, d.v.s. att fysikens lagar inte är de samma
om tiden ändrar riktning. För baryoner har CP-brott aldrig observerats och
ett observerat CP-brott hos hyperoner skulle därför vara en stor upptäckt.
CP-brott krävs för att förklara överskottet av materia jämfört med antimateria
i universum. De observerade brotten hos meson-system är alldeles för småför
att kunna ge upphov till detta överskott, och mycket möda läggs därför påatt
hitta CP-brott hos andra partiklar. Vidare är de teoretiska förutsägelserna från
standardmodellen små för värdena på de parametrar som testar CP-brott hos
hyperoner. Om större värden uppmäts är det en indikation om fysik bortom
standardmodellen.

Vad är PANDA?

PANDA är en kollaboration som planerar att bygga en detektor för att ut-
föra hadronfysikexperiment vid forskningscentret FAIR, vilket håller på att
byggas utanför Darmstadt i Tyskland. Över 500 forskare från 17 olika län-
der arbetar inom kollaborationen. PANDA står för anti-Proton ANnihilation
at DArmstadt. Vad som används i experimentet är alltså en accelererad stråle
av antiprotoner, vilka sedan kan annihileras mot protoner i vila. PANDA har
ett mycket brett forskningsprogram inom hadronfysik. Ett av områdena som
kan studeras är antihyperon-hyperonfysik. Antiprotonerna accelereras till hög
rörelseenergi, vilken i kollisionen kan omvandlas till massa så att partik-
lar som är tyngre än det ursprungliga antiproton-protonparet kan bildas. Om
rörelseenergin är tillräckligt hög kan antihyperon-hyperonpar bildas. Dessa
reaktioner sker vid den problematiska energiskalan beskriven ovan, där det är
oklart vilket teoretiskt angreppssätt som är lämpligt. Det är därför intressant
att testa teoretiska modeller baserade på de två angreppssätten mot experi-
mentell data. Något som dessa modeller måste beskriva är de olika spinnvari-
ablerna som kan mätas genom sönderfallsfördelningar. Om både antiproton-
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erna och protonerna innan kollisionen är opolariserade, är spinnvariablerna

som kan mätas polarisation2 hos de enskilda hyperonerna samt korrelationer
mellan spinnen hos antihyperonen och hyperonen i vissa riktningar.

Vad har jag gjort?

Jag har studerat reaktioner där ett antihyperon-hyperonpar bildas i antiproton-
proton kollisioner. Mitt fokus har legat på reaktioner av den typen där hy-
peronerna innehåller mer än en s-kvark (därav multi-strange i titeln) eller en
c-kvark (därav charmed i titeln). Nästan all nu existerande data är för reak-

tioner där hyperonerna innehåller en enda s-kvark, och avseendet med mitt
arbete är därför att undersöka vad det kommande PANDA-experimentet kan

ge för data i det här outforskade området av antihyperon-hyperonfysik.
Avhandlingens innehåll består av tre delar. Den första delen innehåller

beräkningar, för att relatera spinnvariabler till vinkelfördelningar i hyperon-
sönderfallen. De flesta hyperoner har spinn 1/2. Sönderfallsfördelningarna för
dessa ges av standardberäkningar. Ω−-hyperonen har dock spinn 3/2 vilket

gör beräkningar ganska komplicerade. Genom att använda en formalism
med densitetsmatriser har jag genomfört dessa beräkningar. Även uttryck

för hur spinnvariabler beräknas från uppmätta vinklar har härletts. Andra
delen består av simuleringar för att undersöka hur väl mätningar för dessa

reaktioner som kan utföras med PANDA-detektorn. PANDA-detektorn består
av många subdetektorer för detektion av olika partiklar. Vad som har hänt
i en fysikreaktion måste rekonstrueras utifrån deras respons. Hur väl det
går att göra måste undersökas genom simuleringar. För dessa simuleringar
finns ett ramverk där hela detektorn har modellerats. Simuleringarna går ut
på att fysikhändelser (exempelvis att antihyperon-hyperonpar bildas) först
genereras, vilket ger partiklar som går åt olika håll genom detektorn. Sedan
modelleras vilken respons de olika subdetektorerna hade gett på dessa
partiklar. Utifrån denna respons ska sedan de ursprungliga fysikhändelserna
rekonstrueras. Jag har gjort simuleringar för de tre fysikreaktionerna

p̄p → Ξ̄+Ξ−, p̄p → Ω̄+Ω− och p̄p → Λ̄−
c Λ+

c . De inblandade hyperonerna
har kvarkinnehållen dss (Ξ−), sss (Ω−) respektive udc (Λ+

c ). Simuleringarna

visar att statistiken kommer att bli mycket bättre för p̄p → Ξ̄+Ξ− reaktionen,
än i tidigare mätningar vilka bara hade en handfull händelser. Även för

p̄p → Ω̄+Ω− och p̄p → Λ̄−
c Λ+

c , vilka aldrig tidigare mätts, kommer statistiken
att bli ganska bra. För alla fallen kan spinnvariabler rekonstrueras väl
från vinkelfördelningarna i hyperonernas sönderfall. Jag har även gjort
simuleringar som berör sökandet efter CP-brott i hyperonsönderfall. De visar
att man i sådana mätningar bör begränsa sig till händelser där hyperonerna
sönderfaller nära strålaxeln. Detta för att minimera systematiska fel från

2Om partiklar är polariserade är inte spinnets riktning slumpmässig, utan pekar företrädelsevis

i en speciell riktning.
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asymmetrier i detektorrespons. Den tredje delen behandlar ett möjligt

problem som kan uppstå vid studerandet av antihyperon-hyperonfysik

med PANDA-detektorn. Ett starkt magnetfält på 2T kommer att ligga över

detektorn, för att möjliggöra rörelsemängdsmätningar. Detta magnetfält

påverkar dock spinnet på hyperonerna. Jag har genom simuleringar

undersökt vad detta innebär för studierna av spinnvariabler. Effekten visar sig

vara ganska liten och kan kompenseras för.

141





10. Acknowledgements

Firstly, I would like to thank my supervisor Tord Johansson. You have always
taken your time to discuss questions which have come up during my work.
A lot of interesting physics has been discussed, in addition to the regular
updates on the current state of MFF and Brynäs. I also appreciated our
many travels together, with the occasional late night drinking red wine. Your
many suggestions for the thesis were of great value. Thanks also to my
other supervisor Andrzej Kupsc for having trust in me and checking the thesis.

Secondly, I would like to thank my three office mates during my phD studies.
When I first arrived at the department, Sophie Grape, who I then shared the

ofiice with, made me feel aquainted with the place in a short time. We had
much fun during the two and a half years we shared the office. You always

kept me alert with your many question on everything from physics to clowns.
Our discussions about almost anything often became very interesting.
Thanks for being my companion in the exploration of PANDA simulations

and hyperons. Thanks also for the proof-reading of the thesis. I then shared
the office with Lena Heijkenskjöld for a short but very nice period. Thanks

for a lot of interesting discussions and for giving me good literary tips,
without knowing it yourself. Then followed my current office mate Li

Caldeira-Balkeståhl, who I would also like to thank for keeping up the good
atmosphere of the office, even though I feel I have been a bit distant during
this period, being on parental leave and writing the thesis.

My gratitude also goes to Stefan Leupold for all the time you have spent
answering my theory questions and discussing hyperon decays, Göran Fäldt
for help concerning spin vectors in magnetic fields, Magnus Wolke for
discussions on CP violation and comments on the thesis, Kjell Fransson for
help on my work concerning PWO crystals which did not end up in the thesis
and Karin Schönning for a lot of valuable input when writing the thesis.

For help concerning the simulation framework, I am grateful to the Bochum

group: Matthias Steinke, Bertram Kopf, Marc Päzelius and Jan Zhong. I
would also like to thank the PANDA people in Stockholm, Per-Erik and Klas

Marcks von Würtemberg, for very nice company during MAX-lab weeks and
PANDA meetings.

143



Thanks to Inger Ericsson and Annica Elm for help on various problems and

to Teresa Kupsc for fixing my computer.

During my years at department I have gotten to know many interesting
people. I enjoyed going to art exhibitions and baking cakes with P-A. Thanks
to Henrik J. and Oscar for taking me to football games. Thanks to Patrik for
being a good friend and helping my in the thesis process, when you were
always three weeks ahead of me. Among the other nice people I have gotten
to know are Carla, Henrik P., Camille, Olle, Carl-Oscar, Agnes, David, Anna,
Elias, Aila, Glenn, Dominik, Christoph, Jan, Jörn, Marek, Pawel, Maja,
Kristofer, Mikael, Peder.

Thanks to my old physics friends (and Calle) in the book club for keeping up
our very interesting meetings some times a year.

To my family in Lund and Malmö: Bibbi, Göran, Elin, Ronny, Kajsa, Lisa,
Hanna, Sanna, Katrin and Clara. I feel very close to you even though I am far
away geographically. I think that we get strength from each other during the
hardest of times that we are going through. I hope to move closer to you in
the future.

To my wife Lovisa, who I love very much: Sharing life with you makes

everything better. I am very happy to have spent these five years in Uppsala
(as well as the previous ten years) with you.

And, above all, to Alva: it has been wonderful spending so much time with
you during the last two and a half years. Thank you for waking me up early in
the morning and always making me happy whenever I think of you.

144



11. Bibliography

[1] S. L. Glashow, Nucl. Phys. 22 (1961) 579.

[2] S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.

[3] A. Salam, 8th Nobel Symposium, 19-25 May 1968, Lerum, Sweden, Conf.

Proc. C 680519 (1968) 367.

[4] E. D. Bloom et al., Phys. Rev. Lett. 23 (1969) 930.

[5] M. Breidenbach et al., Phys. Rev. Lett. 23 (1969) 935.

[6] J. I. Friedman and H. W. Kendall, Ann. Rev. Nucl. Part. Sci. 22 (1972) 203.

[7] M. Gell-Mann, Phys. Lett. 8 (1964) 214.

[8] G. Zweig, in ’Developments In The Quark Theory Of Hadrons’, Vol. 1 ed. by

D. B. Lichtenberg and S. P. Rosen, Hadronic Pres Nonantum, MA (1980) ISBN

0-911767-02-9, p. 22-101 and preprint CERN-TH-401

[9] N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.

[10] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.

[11] F. Abe et al. [CDF Collaboration], Phys. Rev. Lett. 74 (1995) 2626 [hep-

ex/9503002].

[12] F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321.

[13] P. W. Higgs, Phys. Lett. 12 (1964) 132.

[14] P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508.

[15] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86 (2012)

010001.

[16] T. D. Lee and C. -N. Yang, Phys. Rev. 104 (1956) 254.

[17] C. S. Wu et al., Phys. Rev. 105 (1957) 1413.

[18] J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, Phys. Rev. Lett. 13
(1964) 138.

[19] A. Alavi-Harati et al. [KTeV Collaboration], Phys. Rev. Lett. 83 (1999) 22

[hep-ex/9905060].

145



[20] V. Fanti et al. [NA48 Collaboration], Phys. Lett. B 465 (1999) 335 [hep-

ex/9909022].

[21] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 87 (2001) 091801

[hep-ex/0107013].

[22] Y. Chao et al. [Belle Collaboration], Phys. Rev. Lett. 93 (2004) 191802 [hep-

ex/0408100].

[23] A. Angelopoulos et al. [CPLEAR Collaboration], Phys. Lett. B 444 (1998) 43.

[24] A.d. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz 5, (1967) 32; JETP Lett. 5 (1976)

24 [hep-ex/0408100].

[25] G. ’t Hooft, Phys. Rev. Lett. 37 (1976) 8.

[26] X. -G. He, H. Murayama, S. Pakvasa and G. Valencia, Phys. Rev. D 61 (2000)

071701 [hep-ph/9909562].

[27] C. -H. Chen, Phys. Lett. B 521 (2001) 315 [hep-ph/0110098].

[28] J. F. Donoghue and S. Pakvasa, Phys. Rev. Lett. 55 (1985) 162.

[29] J. F. Donoghue, X. -G. He and S. Pakvasa, Phys. Rev. D 34 (1986) 833.

[30] D. Chang, X. -G. He and S. Pakvasa, Phys. Rev. Lett. 74 (1995) 3927 [hep-

ph/9412254].

[31] S. Weinberg, Phys. Rev. Lett. 37 (1976) 657.

[32] H. H. Gutbrod, K. D. Gross, W. F. Henning and V. Metag (eds.), “An

international accelerator facility for beams of ions and anti-protons. Con-

ceptual design report” (FAIR CDR), GSI Darmstadt (2001), http://www-

alt.gsi.de/documents2/FOLDER-1080636714.html

[33] W. Barth, “The Injector Systems of the FAIR Project”, Presented at LINAC08,

XXIV Linear Accelerator Conference, Victoria, BC, Canada, Sept 29-Oct 03,

2008, http://accelconf.web.cern.ch/AccelConf/LINAC08/papers/mo204.pdf

[34] The PANDA Collaboration. “Technical Design Report, FAIR Antiproton Tar-

get and Separator”, FAIR/GSI (2008)

http://www-win.gsi.de/FAIR-EOI/information.htm

[35] H. Stockhorst et al., COOL2007-MOA1C02.

[36] The PANDA Collaboration. “FAIR Baseline Technical Design Report”,

FAIR/GSI (2006)

http://www.gsi.de/documents/DOC-2006-Jul-40-1.pdf

[37] M. F. M. Lutz et al. [PANDA Collaboration], “Physics Performance Report for

PANDA: Strong Interaction Studies with Antiprotons,” arXiv:0903.3905 [hep-

ex].

146



[38] W. Erni et al. [PANDA Collaboration], “Technical Design Report for

the PANDA Solenoid and Dipole Spectrometer Magnets,” arXiv:0907.0169

[physics.ins-det].

[39] C. Ekstrom et al. [WASA Collaboration], Nucl. Instrum. Meth. A 371 (1996)

572.

[40] Chr. Bergholz et al. [CELSIUS/WASA Collaboration], Nucl. Instrum. Meth. A

594 (2008) 339.

[41] H. -H. Adam et al. [WASA-at-COSY Collaboration], nucl-ex/0411038.

[42] Ö. Nordhage, PhD-Thesis, Uppsala Universitet, Sweden (2006)

[43] A. V. Boukharov et al., Phys. Rev. Lett. 100 (2008) 174505 [arXiv:0804.1782

[physics.flu-dyn]].

[44] A. Khoukaz, PoS STORI 11 (2011) 036.

[45] The PANDA Collaboration. “Technical Design Report for the: PANDA Micro

Vertex Detector,” arXiv:1207.6581 [physics.ins-det].

[46] The PANDA Collaboration. “Technical Design Report for the: PANDA Straw

Tube Tracker,” arXiv:1205.5441 [physics.ins-det].

[47] H. Staengle et al., Nucl. Instrum. Meth. A 397 (1997) 261.

[48] Technical Proposal, CERN/LHC 9.71.

[49] Technical Proposal, 1994 CERN/LHCC 94-38, LHCC/P1

[50] K. Mengel et al., IEEE Trans. Nucl. Sci. 45 (1998) 681.

[51] R. Novotny et al., IEEE Trans. Nucl. Sci. 47 (2000) 1499 [Radiat. Meas. 33
(2001) 615].

[52] M. Hoek et al., Nucl. Instrum. Meth. A 486 (2002) 136.

[53] The PANDA Collaboration. “Technical Design Report for PANDA Electro-

magnetic Calorimeter (EMC),” arXiv:0810.1216 [physics.ins-det].

[54] N. Akopov et al., Nucl. Instrum. Meth. A 479 (2002) 511 [physics/0104033].

[55] G. S. Atoian et al., Nucl. Instrum. Meth. A 531 (2004) 467 [physics/0310047].

[56] J. J. Sakurai, “Modern quantum mechanics”, (Addison-Wesley Publishing

Company, USA, 1994)

[57] H. Pilkuhn, “The interaction of hadrons”, (North-Holland Publishing Com-

pany, Amsterdam, 1967)

[58] M. G. Doncel et al., Phys. Rev. D 7 (1973) 815.

147



[59] M. G. Doncel, L. Michel and P. Minnaert, Nucl. Phys. B 38 (1972) 477.

[60] W. Koch, in: “Analysis of scattering and decay”, ed. M. Nikolic (Gordon and

Breach, New York-London-Paris, 1968), p. 231

[61] K. -B. Luk, FERMILAB-THESIS-1983-16.

[62] K. Paschke, PhD-Thesis, Carnegie Mellon University, USA (2001)

[63] X. Artru, M. Elchikh, J. -M. Richard, J. Soffer and O. V. Teryaev, Phys. Rept.

470 (2009) 1 [arXiv:0802.0164 [hep-ph]].

[64] B. Holzenkamp, K. Holinde and J. Speth, Nucl. Phys. A 500 (1989) 485.

[65] J. Haidenbauer, K. Holinde and J. Speth, Nucl. Phys. A 562 (1993) 317.

[66] K. Paschke and B. Quinn, Phys. Lett. B 495 (2000) 49 [hep-ex/0008008].

[67] J. -M. Richard, Phys. Lett. B 369 (1996) 358 [nucl-th/9601015].

[68] M. Elchikh and J. -M. Richard, Phys. Rev. C 61 (2000) 035205 [hep-

ph/9905400].

[69] J. -M. Richard and X. Artru, Nucl. Instrum. Meth. B 214 (2004) 171 [nucl-

th/0304015].

[70] X. Artru and J. -M. Richard, Phys. Part. Nucl. 35 (2004) S126 [hep-

ph/0401234].

[71] C. Cohen-Tannoudji, B. Diu and F. Laloë, “Quantum mechanics volume 1”,

(Wiley and sons, New York, 1977)

[72] N. Hamann et al. [CP-Hyperon Study Group Collaboration], CERN Geneva -

CERN-SPSLC-92-19 (92/03,rec.Apr.) 48 p.

[73] J. F. Donoghue, B. R. Holstein and G. Valencia, Phys. Lett. B 178 (1986) 319.

[74] L. -L. Chau and H. -Y. Cheng, Phys. Lett. B 131 (1983) 202.

[75] P. D. Barnes et al., Phys. Rev. C 54 (1996) 1877.

[76] H. Becker et al. [CERN-Munich Collaboration], Nucl. Phys. B 141 (1978) 48.

[77] V. Flaminio, W. G. Moorhead, D. R. O. Morrison and N. Rivoire, CERN-

HERA-84-01

[78] T. Johansson, “Antihyperon-hyperon production in antiproton-proton colli-

sions”, in AIP Conf. Proc.Eight Int. Conf. on Low Energy Antiproton Physics,

page 95, 2003.

[79] B. Musgrave and G. Petmezas, Nuovo Cim. 35 (1965) 735.

[80] C. Baltay et al., Phys. Rev. B 140 (1965) 1027.

148



[81] F. Tabakin and R. A. Eisenstein, Phys. Rev. C 31 (1985) 1857.

[82] M. Kohno and W. Weise, Phys. Lett. B 179 (1986) 15.

[83] P. La France, B. Loiseau and R. Vinh Mau, Phys. Lett. B 214 (1988) 317.

[84] R. G. E. Timmermans, T. A. Rijken and J. J. de Swart, Phys. Rev. D 45 (1992)

2288.

[85] J. Haidenbauer, K. Holinde and J. Speth, Phys. Rev. C 46 (1992) 2516.

[86] H. R. Rubinstein and H. Snellman, Phys. Lett. B 165 (1985) 187.

[87] S. Furui and A. Faessler, Nucl. Phys. A 468 (1987) 669.

[88] M. Burkardt and M. Dillig, Phys. Rev. C 37 (1988) 1362.

[89] M. A. Alberg, E. M. Henley and L. Wilets, Z. Phys. A 331 (1988) 207.

[90] E. Klempt, F. Bradamante, A. Martin and J. M. Richard, Phys. Rept. 368 (2002)

119.

[91] F. Tabakin, R. A. Eisenstein and Y. Lu, Phys. Rev. C 44 (1991) 1749.

[92] M. A. Alberg, J. R. Ellis and D. Kharzeev, Phys. Lett. B 356 (1995) 113 [hep-

ph/9503333].

[93] B. Bassaleck et al., Pys. Rev. Lett. 89 (2002) 212302

[94] S. Grape, PhD-Thesis, Uppsala Universitet, Sweden (2009)

[95] W. M. Yao et al. [Particle Data Group Collaboration], J. Phys. G G 33 (2006)

1.

[96] J. Haidenbauer, K. Holinde and J. Speth, Phys. Rev. C 47 (1993) 2982.

[97] P. Kroll and W. Schweiger, Nucl. Phys. A 474 (1987) 608.

[98] P. Kroll, B. Quadder and W. Schweiger, Nucl. Phys. B 316 (1989) 373.

[99] H. Genz, M. Nowakowski and D. Woitschitzky, Phys. Lett. B 260 (1991) 179.

[100] S. Okubo, Phys. Lett. 5 (1963) 165.

[101] G. Zweig, CERN report TH-401.

[102] J. Iizuka, Prog. Theor. Phys. Suppl. 37 (1966) 21.

[103] T. Kunihiro and T. Hatsuda, Phys. Lett. B 240 (1990) 209.

[104] A. B. Kaidalov and P. E. Volkovitsky, Z. Phys. C 63 (1994) 517.

[105] A. I. Titov and B. Kampfer, Phys. Rev. C 78 (2008) 025201 [arXiv:0807.1822

[hep-ph]].

149



[106] A. T. Goritschnig, P. Kroll and W. Schweiger, Eur. Phys. J. A 42 (2009) 43

[arXiv:0905.2561 [hep-ph]].

[107] J. He, Z. Ouyang, X. Liu and X. -Q. Li, Phys. Rev. D 84 (2011) 114010

[arXiv:1109.5566 [hep-ph]].

[108] A. Khodjamirian, C. Klein, T. .Mannel and Y. M. Wang, Eur. Phys. J. A 48
(2012) 31 [arXiv:1111.3798 [hep-ph]].

[109] J. Tandean and G. Valencia, Phys. Rev. D 67 (2003) 056001 [hep-ph/0211165].

[110] S. W. Lin et al. [Belle Collaboration], Nature 452 (2008) 332.

[111] P. D. Barnes et al., Phys. Lett. B 199 (1987) 147.

[112] K. B. Luk et al. [E756 Collaboration], Phys. Rev. Lett. 85 (2000) 4860 [hep-

ex/0007030].

[113] T. Holmstrom et al. [HyperCP Collaboration], Phys. Rev. Lett. 93 (2004)

262001 [hep-ex/0412038].

[114] C. Materniak [HyperCP Collaboration], Nucl. Phys. Proc. Suppl. 187 (2009)

208.

[115] A. Frodesen, O.Skjeggestad, and H. Tofte, “Probability and statistics in particle

physics”, (Universitetsforlaget, Bergen, 1979)

[116] R. L. Tayloe, PhD-Thesis, University of Illinois, USA (1995)

[117] D. J. Lange, Nucl. Instrum. Meth. A 462 (2001) 152.

[118] J. Allison et al., IEEE Trans. Nucl. Sci. 53 (2006) 270.

[119] S. Agostinelli et al. [GEANT4 Collaboration], Nucl. Instrum. Meth. A 506
(2003) 250.

[120] D. Brown, E. Charles, and D. Roberts, The BaBar track finding algorithm,

Proc. Computing in High Energy Physics Conference, Padova, 2000.

[121] F. James and M. Roos, Comput. Phys. Commun. 10 (1975) 343.

[122] B. Aubert et al. [BABAR Collaboration], Nucl. Instrum. Meth. A 479 (2002)

1 [hep-ex/0105044].

[123] R. Jacobsen, Beta: A High Level Toolkit for BaBar Physics Analysis, 1997,

presented at Conference on Computing in High Energy Physics, Berlin.

[124] R. Brun and F. Rademakers, Phys. Res. A 389, 81 (1996 1997).

[125] FairRoot, Simulation and Analysis Framework, http://fairroot.gsi.de.

[126] Virtual Monte Carlo, http://root.cern.ch/root/vmc.

150



[127] CERN Program Library W5013 (1991).

[128] FLUKA, http://www.fluka.org.

[129] P. Yepes, Nucl. Instr. and Meth. A380, 582 (1996).

[130] R. Frühwirth, A. Strandlie, and W. Waltenberger, Nucl. Instr. and Meth. in

Phys. Res. A490, 366 (2002).

[131] Rho: A Set of Analysis Tools for ROOT,

http://savannah.fzk.de/websites/hep/rho.

[132] Belle Kinematic Fitter,

http://hep.phys.s.u-tokyo.ac.jp/jtanaka/BelleSoft/KFitter.

[133] B. R. French, J. Moebes and C. Pols, Nucl. Phys. B 119 (1977) 237.

[134] A. I. Titov and B. Kampfer, arXiv:1105.3847 [hep-ph].

[135] A. Chakrabarti, Il Nuovo Cimento 43A (1966) 3.

[136] V. Bargmann, L. Michel and V. L. Telegdi, Phys. Rev. Lett. 2 (1959) 435.

151





1–11: 1970–1975
12. Lars Thofelt: Studies on leaf temperature recorded by direct measurement and by thermo-

graphy. 1975.
13. Monica Henricsson: Nutritional studies on Chara globularis Thuill., Chara zeylanica Willd.,

and Chara haitensis Turpin. 1976.
14. Göran Kloow: Studies on Regenerated Cellulose by the Fluorescence Depolarization Tech-

nique. 1976.
15. Carl-Magnus Backman: A High Pressure Study of the Photolytic Decomposition of Azo-

ethane and Propionyl Peroxide. 1976.
16. Lennart Källströmer: The significance of biotin and certain monosaccharides for the growth

of Aspergillus niger on rhamnose medium at elevated temperature. 1977.
17. Staffan Renlund: Identification of Oxytocin and Vasopressin in the Bovine Adenohypophysis.

1978.
18. Bengt Finnström: Effects of pH, Ionic Strength and Light Intensity on the Flash Photolysis of

L-tryptophan. 1978.
19. Thomas C. Amu: Diffusion in Dilute Solutions: An Experimental Study with Special Refer-

ence to the Effect of Size and Shape of Solute and Solvent Molecules. 1978.
20. Lars Tegnér: A Flash Photolysis Study of the Thermal Cis-Trans Isomerization of Some

Aromatic Schiff Bases in Solution. 1979.
21. Stig Tormod: A High-Speed Stopped Flow Laser Light Scattering Apparatus and its Appli-

cation in a Study of Conformational Changes in Bovine Serum Albumin. 1985.
22. Björn Varnestig: Coulomb Excitation of Rotational Nuclei. 1987.
23. Frans Lettenström: A study of nuclear effects in deep inelastic muon scattering. 1988.
24. Göran Ericsson: Production of Heavy Hypernuclei in Antiproton Annihilation. Study of their

decay in the fission channel. 1988.
25. Fang Peng: The Geopotential: Modelling Techniques and Physical Implications with Case

Studies in the South and East China Sea and Fennoscandia. 1989.
26. Md. Anowar Hossain: Seismic Refraction Studies in the Baltic Shield along the Fennolora

Profile. 1989.
27. Lars Erik Svensson: Coulomb Excitation of Vibrational Nuclei. 1989.
28. Bengt Carlsson: Digital differentiating filters and model based fault detection. 1989.
29. Alexander Edgar Kavka: Coulomb Excitation. Analytical Methods and Experimental Results

on even Selenium Nuclei. 1989.
30. Christopher Juhlin: Seismic Attenuation, Shear Wave Anisotropy and Some Aspects of

Fracturing in the Crystalline Rock of the Siljan Ring Area, Central Sweden. 1990.
31. Torbjörn Wigren: Recursive Identification Based on the Nonlinear Wiener Model. 1990.
32. Kjell Janson: Experimental investigations of the proton and deuteron structure functions.

1991.
33. Suzanne W. Harris: Positive Muons in Crystalline and Amorphous Solids. 1991.
34. Jan Blomgren: Experimental Studies of Giant Resonances in Medium-Weight Spherical

Nuclei. 1991.
35. Jonas Lindgren: Waveform Inversion of Seismic Reflection Data through Local Optimisation

Methods. 1992.
36. Liqi Fang: Dynamic Light Scattering from Polymer Gels and Semidilute Solutions. 1992.
37. Raymond Munier: Segmentation, Fragmentation and Jostling of the Baltic Shield with Time.

1993.

Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science

Editor: The Dean of the Faculty of Science




	Abstract
	Contents
	1. Introduction
	1.1 Standard Model of Particle Physics
	1.2 Quarks and Gluons
	1.3 Hadrons
	1.4 Hyperons
	1.5 Hyperon Physics in Antiproton-Proton Collisions and the PANDA experiment
	1.6 CP Violation
	1.7 Thesis Disposition

	2. PANDA
	2.1 The FAIR Facility
	2.2 The PANDA Detector
	2.2.1 Target Spectrometer
	2.2.2 Forward Spectrometer

	2.3 PANDA Physics

	3. The p¯p→ Y ¯ Y Reaction
	3.1 Spin Variables
	3.1.1 The Density Matrix
	3.1.2 Hyperon Density Matrices
	3.1.3 Angular Distributions for Hyperon Decays
	3.1.4 Spin Variables in the p¯p→ Y ¯ Y Reaction
	3.1.5 Hyperon Rest Systems and Symmetry Constraints on Spin Variables
	3.1.6 Restrictions on Spin Variables from Theoretical Considerations

	3.2 CP Violation Parameters

	4. Existing Data and Theoretical Predictions
	4.1 Prior Knowledge on the p¯p→ Y ¯ Y Reaction
	4.2 Hyperon Channels for This Thesis
	4.2.1 The ¯pp→ Ξ+ ¯ Ξ Reaction
	4.2.2 The p¯p→ Ω ¯ + Ω Reaction
	4.2.3 The p¯p→ Λ ¯Λ + Reaction

	4.3 CP Violation

	5. Analysis Methods
	5.1 Spin Variables for the Spin 1/2 Hyperons
	5.2 Polarisation and Asymmetry Parameters of the Ω Hyperon
	5.3 Methods to Compensate for Angular Dependence of Reconstruction Efficiency
	5.3.1 Method Using Monte Carlo Based Acceptance Functions
	5.3.2 Method Without the Use of Monte Carlo Based Acceptance functions

	5.4 CP violation parameters

	6. Simulations of Multi-Strange and Charmed p¯p→ Y ¯ Y Reactions
	6.1 The Simulation Framework
	6.1.1 Digitisation
	6.1.2 Track Reconstruction
	6.1.3 Charged Particle Identification
	6.1.4 Analysis
	6.1.5 Ongoing Software Development

	6.2 The ¯pp→ Ξ+ ¯ Ξ Reaction
	6.2.1 Data Generation
	6.2.2 Event Reconstruction
	6.2.3 Reconstruction Efficiency and Background
	6.2.4 Reconstruction Efficiency as a Function of the Ξ+ ¯ Production Angle
	6.2.5 Reconstruction of Decay Vertices
	6.2.6 Ξ Lifetime Reconstruction
	6.2.7 Invariant Mass
	6.2.8 Correction for the Bending of the Ξ+ ¯ and Ξ Trajectories in the Magnetic Field
	6.2.9 Reconstruction Efficiency as a Function of the Λ ¯ Decay Angle in the Ξ+ ¯ rest frame
	6.2.10 Comparison Between the Methods for Calculation of Spin Variables

	6.3 The p¯p→ Ω ¯ + Ω Reaction
	6.3.1 Data Generation
	6.3.2 Event Reconstruction
	6.3.3 Reconstruction Efficiency and Background
	6.3.4 Reconstruction Efficiency as a Function of the Ω ¯ + Production Angle
	6.3.5 Reconstruction of Decay Vertices
	6.3.6 Ω Lifetime Reconstruction
	6.3.7 Invariant Mass
	6.3.8 Reconstruction of Polarisation and Asymmetry Parameters

	6.4 The p¯p→ Λ ¯Λ+ Reaction
	6.4.1 Data Generation
	6.4.2 Reconstruction
	6.4.3 Reconstruction Efficiency and Background
	6.4.4 Acceptance as a Function of the Λ ¯ Production Angle
	6.4.5 Reconstruction of Decay Vertices
	6.4.6 Invariant Mass
	6.4.7 Reconstruction of Spin Variables
	6.4.8 Other Charmed Hyperons

	6.5 CP Violation in Hyperon Decay
	6.5.1 General Experimental Considerations
	6.5.2 Reconstruction of the CP Violation Parameter A for the p¯p→ Λ ¯ Λ Reaction
	6.5.3 Reconstruction of CP Violation Parameters for the ¯pp → Ξ+ ¯ Ξ Reaction


	7. Precession of the Hyperon Polarisation Vector in the Magnetic Field of the PANDA Detector
	7.1 Precession of Polarisation Vectors in a Magnetic Field
	7.2 Effect on the measurement of Λ Polarisation
	7.3 Effect on the measurement of Λ ¯ Λ Spin Correlations
	7.4 Other Hyperons

	8. Conclusions and Outlook
	8.1 Calculations of Decay Angular Distributions for the Spin 3/2 Ω Hyperon
	8.2 Simulations of Multi-Strange and Charmed pp¯ → Y ¯ Y Reactions
	8.3 Effect of Magnetic Field on Measurement of Hyperon Spin Variables
	8.4 Outlook

	9. Svensk sammanfattning
	Vad är en hadron?
	Vad är en hyperon?
	Vad är PANDA?
	Vad har jag gjort?

	10. Acknowledgements
	11. Bibliography



