

Thesis work for the degree of Licentiate of Technology

Sundsvall 2012

Maintenance Consideration for Long Life Cycle

Embedded System

Xiaozhou Meng

Supervisors: Dr. Benny Thörnberg
 Professor Mattias O’Nils

Electronics Design Division, in the
Department of Information Technology and Media

Mid Sweden University, SE-851 70 Sundsvall, Sweden

ISSN 1652-8948
Mid Sweden University Licentiate Thesis 81

ISBN 978-91-87103-14-8

Akademisk avhandling som med tillstånd av Mittuniversitetet i Sundsvall
framläggs till offentlig granskning för avläggande av teknologie Licentiate
examen i elektronik torsdag den 24 Maj 2012, klockan 10:15 i sal O102,
Mittuniversitetet Sundsvall. Seminariet kommer att hållas på engelska.

Maintenance Consideration for Long Life Cycle Embedded
System

Xiaozhou Meng

© Xiaozhou Meng, 2012

Electronics Design Division, in the
Department of Information Technology and Media
Mid Sweden University, SE-851 70 Sundsvall
Sweden

Telephone: +46 (0)60 148592
Printed by Kopieringen Mittuniversitetet, Sundsvall, Sweden, 2012

ABSTRACT

In this thesis, the work presented is in relation to consideration to the
maintenance of a long life cycle embedded system. Various issues can present
problems for maintaining a long life cycle embedded system, such as
component obsolescence and IP (intellectual property) portability.

For products including automotive, avionics, military application etc.,
the desired life cycles for these systems are many times longer than the
obsolescence cycle for the electronic components used in the systems. The
maintainability is analyzed in relation to long life cycle embedded systems for
different design technologies. FPGA platform solutions are proposed in order
to ease the system maintenance. Different platform cases are evaluated by
analyzing the essence of each case and the consequences of different risk
scenarios during system maintenance. This has shown that an FPGA platform
with a vendor and device independent soft IP has the highest maintainability.

A mathematic model of obsolescence management for long life cycle
embedded system maintenance is presented. This model can estimate the
minimum management costs for the different system architecture and this
consists of two parts. The first is to generate a graph in Matlab which is in the
form of state transfer diagram. A segments table is then output from Matlab
for further optimization. The second part is to find the lowest cost in the state
transfer diagram, which can be viewed as a transshipment problem. Linear
programming is used to calculate the minimized management cost and
schedule, which is solved by Lingo. A simple Controller Area Network (CAN)
controller system case study is shown in order to apply this model. The model
is validated by a set of synthetic and experimentally selected values. The
results provided by this are a minimized management cost and an optimized
management time schedule. Test experiments of the maintenance cost
responding to the interest rate and unit cost are implemented. The responses
from the experiments meet our expectations.

The reuse of predefined IP can shorten development times and assist
the designer to meet time-to-market (TTM) requirements. System migration
between devices is unavoidable, especially when it has a long life cycle
expectation, so IP portability becomes an important issue for system
maintenance. An M-JPEG decoder case study is presented in the thesis. The
lack of any clear separation between computation and communication is
shown to limit the IP’s portability with respect to different communication
interfaces. A methodology is proposed to ease the interface modification and
interface reuse, thus to increase the portability of an IP. Technology and tool
dependent firmware IP components are also shown to limit the IP portability
with respect to development tools and FPGA vendors.

v

SAMMANFATTNING

Denna avhandling beskriver de problem som specifikt kan uppstå vid
underhåll av produkter med inbyggd elektronik och som har en lång livscykel
på marknaden. Att de ingående elektroniska komponenterna ej längre finns
att köpa eller att (Intellectual Property) IP-komponenter ej är portabla är några
av de problem som kan uppstå.

Livscykeln för elektroniska produkter inom ex. fordon, flyg eller militär
industri är oftast många gånger längre än livscykeln för de komponenter som
ingår. Svårighetsgraden för underhåll av inbyggd elektronik analyseras med
avseende på olika designteknologier. Programmerbara grindmatriser, FPGA
förslås vara en kretsteknologi som underlättar underhåll. Olika
konstruktionsplattformar utvärderas utifrån ett antal riskscenarion och dess
påföljande konsekvenser. Studien visar att FPGA-teknologin med fabrikat-
och kretsoberoende mjuka IP-komponenter är den designteknologi som
resulterar i lägst svårighetsgrad för produktunderhåll.

En matematisk modell för minimering av kostnader orsakade av
åtgärder för produktunderhåll presenteras. Modellen väljer och schemalägger
ett antal underhållsåtgärder under tiden för produktens hela förväntade
livscykel. På så sätt kan den totala kostnaden för produktens underhåll
minimeras. Utifrån parametrar så som kostnader för omkonstruktion,
lagerhållning, ränta och de ingående komponenternas förväntade livscykel
genereras en tillståndsgraf i Matlab. Linjärprogrammering används därefter
för att välja den kombination av underhållsåtgärder som ger lägst kostnad. Vi
kan visa att ett enkelt inbyggt system bestående av en mikroprocessor och en
periferienhet kan analyseras med den utvecklade modellen.

Återanvändning av IP-komponenter kan korta utvecklingstider för
inbyggda elektroniksystem och underlätta för företag att snabbt nå marknader
med sina produkter. I de fall produkten har en lång livscykel blir det
oundvikligt att någon gång behöva flytta systemet till en ny typ av krets. IP-
komponenternas portabilitet blir därför en viktig parameter när svårigheter
för underhåll av en produkt skall analyseras. Brist på tydlig separation mellan
beskrivning av beräkning och kommunikation begränsar IP-komponenternas
portabilitet med avseende på val av kommunikationsinterface. En metodologi
föreslås i syfte att underlätta modifiering av IP-komponenternas
kommunikationsinterface. Teknologi- och verktygsberoende beskrivningar av
IP-komponenter är också begränsande för dess portabilitet med avseende på
utvecklingsverktyg och kretsfabrikat.

vi

vii

ACKNOWLEDGEMENTS

This research work would not have been possible without the support of
many people. I wish to my express deepest regards and gratitude to my
supervisor Dr. Benny Thörnberg who was abundantly helpful and offered
invaluable assistance, support and guidance. Deepest gratitude are also due to
Prof. Mattias O’Nils and Dr. Najeem Lawal, without whose knowledge and
assistance this study would not have been successful.

I am thankful to Fanny Burman and Carolina Blomberg for the
administrative support.

Further, I am thankful to my friends and colleagues Abdul Waheed Malik,
Khursheed Khursheed, Muhammad Imran, Naeem Ahmad, Mohammad
Anzar Alam, Jinlan Gao, Xin Cheng, Omeime Esebamen, Mazhar Hussain and
all the colleagues in the department for their discussions and cooperation.

I would also like to express my gratitude to Mid Sweden University
(miun), Knowledge Foundation (KK) for their financial and administrative
support.

I am forever indebted to my parents for their understanding, endless
patience and encouragement when it was most required.

Finally, I wishes to express my love and gratitude to my wife Yue Peng; for
her understanding and endless love, through the duration of my studies.

Sundsvall, March 2012

Xiaozhou Meng

 ix

TABLE OF CONTENTS

ABSTRACT.. III

SAMMANFATTNING ..V

ACKNOWLEDGEMENTS ...VII

TABLE OF CONTENTS ..IX

ABBREVIATIONS AND ACRONYMS ..XIII

LIST OF FIGURES .. XV

LIST OF TABLES .. XVII

1 INTRODUCTION ... 1

1.1 EMBEDDED SYSTEM ... 1

1.1.1 Embedded system overview ... 1

1.1.2 Design goals for an embedded system ... 3

1.2 EMBEDDED SYSTEM HARDWARE PLATFORM ... 3

1.2.1 Bus based embedded system ... 3

1.2.2 COTS IC hardware platforms .. 4

1.2.3 Programmable hardware platforms ... 4

1.3 DEVELOPMENT ENVIRONMENT .. 4

1.4 PROBLEM DESCRIPTION AND MOTIVATION ... 5

1.5 MAIN CONTRIBUTIONS .. 6

1.6 THESIS OUTLINE .. 6

2 MAINTAINACE ISSUES FOR EMBEDDED SYSTEM 9

2.1 ELECTRONIC COMPONENT LIFE CYCLE CONCEPTS ... 9

2.2 OBSOLESCENCE PROBLEM FOR EMBEDDED SYSTEM 11

2.3 OTHERS MAINTENANCE ISSUES... 12

2.4 CONCLUSION ... 13

3 MAINTAINABILITY ANALYSIS OF CAN CONTROLLER SYSTEMS 15

3.1 CAN BUS ... 15

3.2 DESIGN CASES .. 15

3.2.1 Case 1: COTS IC based CAN controller system 16

3.2.2 Case 2: vendor specific FPGA system ... 16

3.2.3 Case 3: vendor and device independent FPGA system 17

3.2.4 Case 4: mixed FPGA system .. 19

3.3 PROTOTYPE OF FPGA BASED CAN CONTROLLER SYSTEM 19

3.4 RISK ANALYSIS .. 21

3.4.1 Risk scenarios ... 21

3.4.2 Consequences .. 22

3.5 RESULT... 22

3.6 MAINTAINABILITY FOR DIFFERENT DESIGN CASES ... 24

3.6.1 COTS IC platform .. 25

3.6.2 Software issue for maintainability .. 25

3.6.3 FPGA platform ... 26

 x

3.7 CONCLUSION ... 27

4 FPGA IP PORTABILITY ANALYSIS .. 29

4.1 INTELLECTUAL PROPERTY ... 29

4.2 PROJECT BACKGROUND ... 30

4.3 M-JPEG DECODER .. 30

4.4 PORTABILITY ANALYSIS .. 32

4.5 ANALYSIS RESULTS .. 32

4.5.1 Portability with respect to FPGA vendor and tool/library 33

4.5.2 Portability with respect to communication interfaces 33

4.6 SOFT-IP INTERFACE MODIFICATION METHODOLOGY 34

4.6.1 IP verification ... 34

4.6.2 Interface-based soft IP model.. 34

4.6.3 Interface modification .. 35

4.6.4 IP integration ... 36

4.7 INTERFACES MODIFICATION OF M-JPEG DECODER 36

4.7.1 IP verification ... 36

4.7.2 Interface-based soft IP model.. 37

4.7.3 Interface modification .. 37

4.7.4 IP integration ... 38

4.8 CONCLUSION ... 38

5 COMPONENT OBSOLESCENCE MANAGEMENT MODEL FOR LONG
LIFE CYCLE EMBEDDED SYSTEM .. 39

5.1 EOL SOLUTIONS .. 39

5.1.1 Lifetime buy and Last-Time-Buy .. 39

5.1.2 Redesign.. 39

5.1.3 Others .. 40

5.2 MAINTENANCE MODEL .. 41

5.2.1 Overview .. 41

5.2.2 State transfer diagram ... 42

5.2.3 Cost estimation .. 43

5.2.4 Linear programming .. 44

5.3 CASE STUDY .. 45

5.3.1 Experimental system ... 45

5.3.2 Model validation experiment .. 46

5.3.3 Model response analysis ... 46

5.3.4 Result ... 47

5.4 CONCLUSION ... 52

6 THESIS SUMMARY .. 55

6.1 CONCLUSION ... 56

6.2 FUTURE WORKS ... 56

7 SUMMARY OF PUBLICATIONS .. 57

7.1 PAPER I ... 57

7.2 PAPER II .. 57

7.3 PAPER III ... 57

7.4 PAPER IV .. 57

 xi

7.5 AUTHORS CONTRIBUTIONS .. 57

8 REFERENCES .. 59

PAPER I ... ERROR! BOOKMARK NOT DEFINED.

PAPER II .. ERROR! BOOKMARK NOT DEFINED.

PAPER III ... ERROR! BOOKMARK NOT DEFINED.

PAPER IV... ERROR! BOOKMARK NOT DEFINED.

xiii

ABBREVIATIONS AND ACRONYMS

ADC Analog to Digital Convertor
AMS Analog/Mixed-Signal
ASIC Application Specific Instruction set Processor
BRAM ………... Block RAM
CAN ………... Controller Area Network
COTS Commercial Off-The-Shelf
CMOS Complimentary Metal-Oxide Semiconductor
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
DAC Digital to Analog Convertor
DCR Device Control Register
DMA Direct Memory Access
DRAM Dynamic RAM
DSP Digital Signal Processing
EDK Embedded Development Kit
EEPROM Electrically Erasable Programmable Read-Only

Memory
EIA Electronic Industries Association
EOI End of Image
EOL End of Life
FIFO First In First Out
FPGA Field Programmable Gate Array
FSL Fast Simplex Link
HDL Hardware Description Language
HDMI High-Definition Multimedia Interface
IC ………... Integrated Circuits
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property
ISA Industry Standard Architecture
JPEG Joint Photographic Experts Group
JTAG Joint Test Action Group
LGPL GNU Lesser General Public License
LP Linear Programming
LTB Last Time Buy
MCU Micro-Controller Unit
MDM MicroBlaze Debug Module
MJPEG Motion Joint Photographic Experts Group
MMU Memory Management Unit
NPI Native Port Interface
OPB On-chip Peripheral Bus

xiv

PC Personal Computer
PCI Peripheral Component Interconnect
PLB Processor Local Bus
PLC Product Life Cycle
PLD Programmable Logic Device
PROM Programmable Read-Only Memory
RAM Random Access Memory
RF Radio Frequency
RGB Red Green Blue
RISC Reduced Instruction Set Computing
ROM Read Only Memory
RTL Register Transfer Level
SDRAM Synchronous Dynamic Random Access Memory
SOC System on Chip
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
TFT Thin-Film Transistor
TTM Time to Market
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
VGA Video Graphics Array

xv

LIST OF FIGURES

Figure 1-1. Block diagram of embedded system .. 2
Figure 1-2. System architecture of bus based FPGA system 3
Figure 1-3. Typical embedded system design environment 5
Figure 2-1. Standardized life cycle curve for a device/technology group 9
Figure 3-1. Block diagram of COTS based CAN controller system 16
Figure 3-2. System architecture of Xilinx specific FPGA system 16
Figure 3-3. Architecture of Microblaze soft microprocessor 17
Figure 3-4. Architecture of OpenRISC 1200 .. 18
Figure 3-5. System architecture of OpenCores based FPGA system 19
Figure 3-6. System architecture of Xilinx and OpenCores mixed FPGA system

 .. 19
Figure 3-7. FPGA based CAN controller system prototype 20
Figure 3-8. Risk analysis for different cases .. 21
Figure 3-9. System maintainability model for different design technologies .. 24
Figure 4-1. IP portability issue for system designers ... 29
Figure 4-2. Architecture of the real-time display of multiple video streams ... 30
Figure 4-3. Block diagram of the decoder project .. 31
Figure 4-4. Internal data flow graph of the M-JPEG decoder 32
Figure 4-5. A generalized interface-based soft IP model 35
Figure 4-6. IPC design with a dummy function in the computation block 36
Figure 4-7. Interface design with dummy functions in the computational block

 .. 36
Figure 4-8. Block diagram of complete SOC including the updated decoder IP

 .. 37
Figure 4-9. Interface-based soft IP model for an M-JPEG decoder 38
Figure 5-1. Maintenance model overview.. 41
Figure 5-2. State transfer diagram ... 42
Figure 5-3. State transfer path duplication... 43
Figure 5-4. CAN controller system architecture ... 46
Figure 5-5. CAN controller system state transfer graph generated by Matlab 48
Figure 5-6. Final CAN controller system state transfer graph 49
Figure 5-7. Maintenance cost VS Time curve .. 50
Figure 5-8. Maintenance cost VS Interest rate curve .. 51
Figure 5-9. Maintenance cost VS Time comparison curve 52

xvi

xvii

LIST OF TABLES

Table 3-1. Consequences of different risk scenarios .. 24

Table 4-1. Portability analysis with respect to FPGA vendor and tool/library 33

Table 5-1. Input parameter .. 46

Table 5-2. Maintenance schedule .. 50

Table 5-3. Maintenance schedule for different unit price 51

Table 7-1. Authors’ contributions ... 58

xix

LIST OF PAPERS

This thesis is mainly based on the following four papers, herein referred
to by their Roman numerals:

Paper I

Embedded System Design with Maintenance Consideration
Xiaozhou Meng, Benny Thörnberg, Najeem Lawal
34th International Convention on Information and Communication
Technology, Electronics and Microelectronics, Opatija, Croatia,
May 23-27, 2011

Paper II Soft-IP Interface Modification Methodology

Xiaozhou Meng, Benny Thörnberg, Najeem Lawal
Proc of 2011 International Conference on Information and
Electronics Engineering, Bankok, Thailand, May 28-29, 2011

Paper III Portability analysis of an M-JPEG decoder IP from

OpenCores
Xiaozhou Meng, Benny Thörnberg, Najeem Lawal
Proc. of 6th IEEE International Symposium on Industrial
Embedded Systems, Vasteras, Sweden, Jun 15-17, 2011

Paper IV Component Obsolescence Management Model for Long Life

Cycle Embedded System
Xiaozhou Meng, Benny Thörnberg, Leif Olsson
Submitted to IEEE Autotestcon 2012, Anheim, California, Sep
10-13, 2012

Related papers not included into this thesis:

 Real-time Machine Vision System Using FPGA and Soft-core
Processor
Abdul Waheed Malik, Benny Thörnberg, Xiaozhou Meng,
Muhammad Imran
Accepted for publication in proceeding of Real-Time Image and
Video Processing conference, SPIE Photonics Europe, April 15-
19, 2012

xx

1

1 INTRODUCTION

1.1 EMBEDDED SYSTEM

The embedding of microprocessors into equipment and consumer
appliances started before the appearance of the PC (Personal Computer) and this
process consumes the majority of microprocessors that are made today. In this
way, embedded microprocessors are more deeply ingrained into everyday life than
any other electronic circuit. For instance, in a well-equipped car, nearly every
aspect has some form of electronic control associated with it and thus there is the
need for a microprocessor within an embedded system. [1]

1.1.1 Embedded system overview

An embedded system is a kind of computer system with either one or a few
dedicated specific functions. It is often embedded as part of a complete device
including hardware and mechanical parts.

� An embedded system is controlled by one or more main processing
cores such as microprocessor or digital signal processors (DSP),
described in Figure 1-1. Microprocessors come in many different levels
of sophistication and are usually classified by their word size [2].

� An 8-bit microprocessor is designed for low-cost applications.
� A 16-bit microprocessor is often used for more sophisticated

applications that may require either longer word lengths or off-
chip I/O and memory.

� A 32-bit RISC (Reduced Instruction Set Computing)
microprocessor offers very high performance for computation-
intensive applications.

� Embedded systems usually contain a memory chip. The memory can be
either on-chip or off-chip. [3]

� Internal RAM (Random Access Memory) in a microprocessor is
for register.

� Internal ROM (Read Only Memory) is for program
� External RAM is for the temporary data and stack
� Internal caches (in some microprocessor)
� EEPROM (Electrically Erasable Programmable Read-Only

Memory) or flash memory is for data saving
� External ROM or PROM (Programmable Read-Only Memory)

is for software
� RAM memory buffers at the interface ports

� Embedded system can communicate via peripherals, e.g. RS-232,
Ethernet, CAN (Controller Area Network) - bus.

2

� Radio transceiver can be integrated into the system. E.g. RF (Radio
Frequency) transmitter, Bluetooth transmitter.

� Analogue ADC (Analog to Digital Convertor) converts an analogue
signal from a sensor to a digital signal for data processing by the
embedded system. Also, DAC (Digital to Analog Convertor) can
convert a digital signal to an analogue signal for the actuator.

� An embedded system usually contains one or more debug ports for
system debugging.

� Human interface such as the TFT (Thin-Film Transistor) monitor, in
which the keyboard is the communication channel between a human
and the embedded system. E.g. TFT monitor, keyboard.

� Others hardware unit such as timers, interrupt handler etc. and are not
shown in the figure.

A microcontroller (MCU) is a single chip containing a microprocessor,
memory, timers, interrupt controller, and peripheral for different requirement etc.
MCU is used in embedded system for automatic control or communication.

Software is also an important part for embedded system, however in this
thesis we will focus on hardware part.

Embedded systems are widely used in commercial electronic, industry
systems, avionics etc. They can be divided into several application types:

General purpose system:
• Functions are similar to those for a PC but in an embedded package.
• Video game console, set-top boxes, tablet

Control system:
• Real-time system
• Vehicle engines control system, flight control system

CPU DAC

Memory
Radio

Human
Interface

Peripheral

Sensor Actuator

Debug
Port

ADC

Figure 1-1. Block diagram of embedded system

3

Signal processing system:
• Large data stream and significant computation
• Video decoder, radar

Communication system:
• Information switching and transmission
• Telephone system, network router

1.1.2 Design goals for an embedded system

A system design process has several important goals:

• Function: Mobile phone, Vehicle control etc.

• Performance: Clock frequency, response time etc.

• Manufacturing cost: Important for a consumer product to have a
low retail price.

• Power consumption: Especially important for handheld devices.

• TTM: The profitable market life is time limited.

• Design cost: Development environment and engineering costs.

• Quality: Reliability, usability etc.

• Others: Maintainability, security.

1.2 EMBEDDED SYSTEM HARDWARE PLATFORM

The hardware architecture of the embedded system can be formed as a bus
based system, see Fig.1-2. There could be different hardware technology platforms
for an embedded system, including Application-Specific Integrated Circuit (ASIC),
Field Programmable Gate Array (FPGA).

1.2.1 Bus based embedded system

Figure 1-2. System architecture of bus based FPGA system

Debugger Peripheral CPU RAM

:

BUS

4

In this thesis, the embedded system hardware architecture is considered as a
bus based system. The bus is the mechanism by which the CPU communicates
with others devices in the system [2]. The bus forms the backbone of the hardware
system. One of the major roles of the bus is to provide an interface in relation to the
memory and other devices. Each component requires interface protocol logic to
connect to the bus.

1.2.2 COTS IC hardware platforms

COTS is short for Commercial Off-The-Shelf, which means products that are
ready-made and available for sale to the general public. A modern embedded
system designer would prefer to use COTS IC to implement embedded system,
such as MCU, DDR-SDRAM etc. These will provide the best performance and
lowest power consumption since their functions and performance are analyzed
before their fabrication.

1.2.3 Programmable hardware platforms

A programmable logic device or PLD is an electronic component used to
build reconfigurable digital circuits. A PLD has an undefined function at the time
of manufacture. The function can be defined and programmed by the user
(designer) such as FPGA or CPLD (Complex Programmable Logic Device). There
are several basic process technology types for FPGA including Flash , Anitfuse ,
EEPROM, SRAM. An antifuse based FPGA is one-time programmable, while the
others are re-programmable. In this thesis, the FPGAs mentioned are those of the
re-programmable type.

1.3 DEVELOPMENT ENVIRONMENT

A typical embedded system design environment is shown in Fig.1-3. The
software and hardware (e.g. FPGA) development is implemented in a PC, known
as a host system which is illustrated in Fig.1-3. The hardware on which the code
will finally run is known as the target system. The target system connects to the
host system via a UART (Universal Asynchronous Receiver/Transmitter),
debugger or Ethernet etc.

The main tasks of the host system include:

• Program hardware for the target (FPGA)
• Load software programs into the target
• Start and stop program execution on the target
• Examine memory and registers on the target
• Receive debugging information from the target

5

1.4 PROBLEM DESCRIPTION AND MOTIVATION

Some products are not as capable of adjusting to leading-edge technology as
others and to catching the development pace of consumer products. For products
such as automotive, avionics, military application etc., the desired life cycle for
these systems is significantly longer than the life cycle for the electronic
components used in the systems. The life cycle in this thesis refers to the product
field life. It is the time period for which the product is available on the market.
Component obsolescence problems occur in all systems with a life cycle longer
than that of one or more of their components. No publication yet offers an
obsolescence management solution in relation to controlling the system
maintenance costs.

The reuse of predefined Intellectual Property (IP) can lead to great success in
system design and can assist the designer in meeting the TTM requirements. It is
true that using IPs based FPGA device can mitigate the component obsolescence
problem. However, the designer will still encounter problems if this is not used
correctly. The lack of any clear separation between computation and
communication will limit the IP’s portability with respect to different
communication interfaces. Technology and tool dependent firmware IP will limit
the IP’s portability with respect to development tools and FPGA vendors.

In addition to obsolescence, a system will require re-engineering if its
requirements change over time or if it becomes necessary to change the
specifications. The availability of newer and better architectures (processors,
interconnections and interface blocks) can provide the motivation for a re-
engineering of a product. System migration between devices during the system life
cycle is unavoidable.

Based on these considerations, it is important that the IP has a high
portability in order to maintain a long life cycle embedded system.

PC

CPU UART

Debugger
Development

Board

Host system
Target system

Figure 1-3. Typical embedded system design environment

6

In this thesis, the maintenance issues including component obsolescence and
IP portability etc. are discussed. Suggestions and a mathematic model are
proposed in order to ease the maintenance problem for a long life cycle embedded
system.

1.5 MAIN CONTRIBUTIONS

In this thesis, maintenance issues regarding to component obsolescence and
IP portability are analyzed. A mathematic model for component obsolescence
management is proposed.

I. Maintenance issues for an embedded system are presented. An
analysis is conducted in relation to the maintainability of long life
cycle embedded systems for different design technologies. The
result shows that an FPGA platform with a vendor and device
independent soft IP provides the highest maintainability.

II. A soft IP interface modification methodology for systems on FPGA
is suggested. The methodology will ease the interface modification
and interface reuse for an FPGA soft IP.

III. Maintenance issues associated with the IPs portability for the
embedded FPGA system are highlighted. The lack of any clear
separation between computation and communication is shown to
limit the IP’s portability with respect to different communication
interfaces. Technology and tool dependent firmware specifications
within a soft IP are also shown to limit the IP portability with
respect to development tools and FPGA vendors.

IV. A mathematic model for a life cycle analysis of the long life cycle
embedded system maintenance is proposed. This model is able to
estimate the minimized maintenance cost caused by component
obsolescence for different system architectures. An optimized
maintenance schedule will also be provided by the model. It can
offer maintenance strategy guidance to those designers who
encounter a components obsolescence problem.

1.6 THESIS OUTLINE

Chapter 1 provides the introduction, chapter 2 addresses the maintenance
issues for the embedded system, chapter 3 focuses on the maintainability analysis
of the CAN controller system, chapter 4 presents a portability analysis of an FPGA
IP, chapter 5 describes a component obsolescence management model for the long
life cycle embedded system, chapter 6 concludes the thesis summary while chapter

7

7 presents a publications summary. Papers which are basis for this research work
are listed at the conclusion part.

8

9

2 MAINTAINACE ISSUES FOR EMBEDDED SYSTEM

Modern embedded system designers consider various metrics during the
design process, including performance, cost, power etc. However, one issue is
often missing from this list, namely maintainability. Due to the rapid development
in electronic technology, obsolescence and upgrade are inevitable for the majority
of embedded systems which may create a variety of problems when maintaining a
long life cycle system.

2.1 ELECTRONIC COMPONENT LIFE CYCLE CONCEPTS

The electronics industry is one of the fastest growing sectors of the world
economy. Those new electronic components with faster speed, smaller size and
lower power consumption will quickly dominate the market. Therefore, the
occasion might arise in which electronic components which are the component
parts of a product have a shorter life cycle than the actual life cycle of the product.

Paper [4] described the product life cycle for the following curve:

Gaussian distributions have been used by the Electronic Industries
Association (EIA) as their standardized product life cycle (PLC) curve [5]. The
equation of the life cycle curve is

�(�) = ��(−(�−)
/2

) (1.1)

where �(x) gives values for the sales revenue of the device/technology group (or
number of units shipped, or the percentage market demand), � is the year, and
�(x) is defined by the mean 	, which denotes the point in time of the sales-peak of
the curve and the standard deviation
. The factor � is the sales peak, the number
of units shipped, or the percentage demand.

Time μ

Growth Maturity Decline
Phase-
out

σ

p

Obsolescence
Introduction

σ σ σ σ σ σ

S
a
le
s
 V
a
lu
e

Figure 2-1. Standardized life cycle curve for a device/technology group

10

An electronic component life cycle can be divided into several stages:
introduction, growth, maturity, decline, phase-out and obsolescence, as shown in
Fig.2-1. A more in-depth explanation can be found in [6].

A. Introduction Stage

The introduction stage is the first stage of a product life cycle. The
production costs are usually high because of the initial incurred design costs and
low yield, frequent modifications and low or unpredictable production volumes.

B. Growth Stage

In the growth stage, the product is accepted by the market. The volume of
sales increases gradually which brings about a price reduction.

C. Maturity Stage

The maturity stage is usually characterized by high-volume sales.
Competitors with lower production cost may enter the market and thus, at this
stage, the product will have the lowest costs throughout the entire life cycle.

D. Decline Stage

The decline stage indicates both decreasing demand and profit. During the
decline stage, only a few specialized manufacturers remain in the market.

E. Phase-out Stage

During phase-out stage, a manufacturer may set a date for which the
production of the part will cease. Usually, the manufacturer issues a
discontinuance notice to customers, provides a last-time buy date, and suggests
alternative parts or aftermarket manufacturers.

F. Discontinuance and Obsolescence

Discontinuance occurs when the manufacturer ceases to produce the
components. The components may still be available in the market if the production
line or stocks were bought by an aftermarket source. Obsolescence occurs at a
technology level, while discontinuance occurs for a part number or manufacturer
specific level.

There are some commercial databases containing component lifecycle
forecast data, such as CAPS Expert from PartMiner [7]. A data mining based
algorithm [8] is also proposed to improve their predictive capabilities.

11

2.2 OBSOLESCENCE PROBLEM FOR EMBEDDED SYSTEM

Obsolescence or end of life (EOL) is the final state of a product’s life cycle
when a vendor will no longer produce, sell and sustain it (i.e. no longer provided
by the vendor). The growing use of COTS components and equipment increases
the risk of obsolescence. The reasons for obsolescence could be technological,
market, planned or environmental etc.

If a product is not popular in the market and becomes unprofitable, the
manufacturer then has to commit the facilities and equipment to producing
another product that results in greater profits. According to Moore’s law, the
number of transistors on a chip doubles every 18 to 24 months: poor planning with
regards to parts obsolescence causes companies to spend progressively more in
order to deal with the effects of aging systems [8]. Intel is relatively famous for its
rapidly developing technology and the result of this is the rather rapid
obsolescence of their products. It demonstrates a unique capability for engineering
major product improvements and releasing these products into the market every
18 to 24 months. The new product will rapidly dominate the market, based on its
increased performance, while still maintaining a similar price to that of its
predecessor. It is possible to divide obsolescence into several types for embedded
systems:

� Peripheral interface obsolete: The peripheral interface standard is developing.
A new standard will rapidly enter the mainstream based on its improved
specifications. For instance, the USB (Universal Serial Bus) has become the
most popular peripheral interface standard for consumer products during
the past few years. The earlier IEEE 1284 parallel interface is no longer able
to be supported in most devices. Thus, it becomes a possibility that long
life cycle systems will suffer from the problem of interface mismatch
because of these modern peripherals.

� Communication bus obsolete: In this case, the communication bus is
considered as an on-board or on-chip bus, which is the link between each
component in the system. For example, it is not possible to support the
previous Industry Standard Architecture (ISA) bus which is replaced by
the Peripheral Component Interconnect (PCI) bus. For a hardware
component, backward compatibility is not always guaranteed unless it
incorporates an additional hardware bridge between two buses. A System-
on-chip (SOC) design can also suffer from the obsolescence associated with
the communication bus. For example, the On-chip Peripheral Bus (OPB)
has been replaced by the Processor Local Bus (PLB) [10] for the Xilinx
FPGA on-chip bus.

12

� Component obsolete: A component is a product provided by the vendor,
which for the majority, contains some unique properties and cannot be
replaced by a product from other vendors. Component obsolescence is a
severe case since it frequently occurs. Industry experts have estimated that
over 200 000 components from over 100 manufacturers became obsolete in
the year 2000 [11].

� Others: Obsolescence issues such as obsolete development tools and test
systems etc. must all be faced by designers.

In the commercial markets, electronics components in consumer electronics
such as PCs or portable applications, for instance, are updated very rapidly, while
in automotive, avionics, military application etc., the desired life cycle for these
systems is many times longer than the obsolescence cycle for the electronic
components used in the systems. For avionics and defense applications, systems
face obsolescence even before they enter into service (due to the long design,
manufacturing and test cycles).

It is often the case that only a part of the system is actually obsolete or
requiring modification. Unfortunately, the replacement or modification is usually
as difficult as designing an entire system because the system has been developed
as a single entity, with much interdependence between its hardware and software
[12].

Obsolete technology impacts on a company in many ways. It impacts their
costs in conducting their business and hence their profits, as well as their day-to-
day operations. Management must be aware of the impact of technology
obsolescence on all aspects of their business, and factor this into their decision
processes [13].

2.3 OTHERS MAINTENANCE ISSUES

The availability of newer and better architectures (processors,
interconnections and interface blocks) can provide the motivation for the re-
engineering of a product. In the commercial arena, manufacturers must re-engineer
their products in order to provide those new features required by their customers,
to incorporate newer technologies and standards, or to reduce costs and increase
value [14].

Lower prices or better circuit technology could offer the opportunity for
designers to replace the legacy components or even an entire system, so that they
can reduce costs and increase value. However, it has not proved to be easy to
enable either migration or replacement to occur within the different technologies
as this will involve costly hardware and software redesigns.

13

It is a self evident truth that the customer always wants more.
Manufacturers must re-engineer their products in order to provide new features
required by the customers, to incorporate newer technologies and standards.
Exciting new technologies can result in a better form and fit for a specification.
Functions will require to be changed as will the bugs contained within the system
and these require that the legacy system has to be re-engineered [14]. This is
always both costly and time consuming.

2.4 CONCLUSION

This chapter has introduced electronic component life cycle concepts.
Various problems in relation to maintaining a long life cycle embedded system are
discussed, including obsolescence, function change requirement or technology
migration etc. A more detailed analysis and a case study will be presented in
subsequent chapters.

14

15

3 MAINTAINABILITY ANALYSIS OF CAN CONTROLLER SYSTEMS

CAN [15] is an industrial bus standard designed to allow microcontrollers
and devices to communicate with each other. In this section, four types of CAN
controller systems architecture are described. The maintainability in relation to
these experimental systems was to be analyzed.

3.1 CAN BUS

The CAN bus was designed for automotive electronics and was first used in
production cars in 1991. CAN is very widely used in vehicle and other industry
applications. CAN runs at rate of 1Mb/s over a twisted pair connection of 40m. The
bus protocol supports multiple masters on the bus.

The devices that are connected by a CAN network are typically sensors,
actuators, and other control devices. These devices are not connected directly to the
bus, but through a host processor and a CAN controller. Each CAN node requires
a host processor, a CAN controller and a transceiver.

3.2 DESIGN CASES

The project started from a CAN controller system used in industrial
construction machinery. In such a case, cost, performance and power consumption
are not critical issues. However, this type of long life cycle system requires greater
consideration in relation to maintainability.

The microprocessor (or MCU) and the CAN controller are two key
components for this system. A peripheral of RS-232 is used for sensor reading.

Two major design platform methods are mentioned, namely the COTS IC
platform and the FPGA platform. The FPGA system mentioned in this chapter is
an IP based design system. A wide range of choices exists for the COTS
microcontrollers and CAN controllers IC from different vendors within the
marketplace.

However, for the FPGA platform, the soft microprocessors are divided into
two categories:

• Vendor dependent soft microprocessors: Such types of soft
microprocessors are usually provided by the FPGA vendors, so it is not
possible to implement them on any other vendor’s devices. E.g. Xilinx
MicroBlaze and Altera Nios II.

• Vendor independent soft microprocessors: Unlike the vendor
dependent soft microprocessors, these have no restrictions and can be
implemented on any vendors’ devices. E.g. ARM Cortex-M1 and
OpenRISC from OpenCores.

16

3.2.1 Case 1: COTS IC based CAN controller system

For the traditional COTS IC CAN controller system, an MCU was
implemented onto the board. The UART controller and the physical interface
circuit RS-232 were integrated as one chip for the peripheral interface. A CAN
controller and its physical interface circuit CAN transceiver were implemented on
board for the CAN bus protocol. The system board architecture with its relevant
components can be seen in Fig. 3-1.

3.2.2 Case 2: vendor specific FPGA system

A vendor specific design case based on the Xilinx Spartan3E FPGA is shown
in Fig. 3-2. The MicroBlaze [16] is a soft processor core designed for Xilinx FPGAs,
which can be implemented and configured by Xilinx EDK (Embedded
Development Kit), as shown in Fig. 3-3. In the system, a MicroBlaze soft processor
controls the UART lite and XPS-CAN via the PLB. The Xilinx 128-bit PLB v4.6
provides the bus infrastructure for connecting an optional number of PLB masters
and slaves into an overall PLB system. It consists of a bus control unit, a watchdog
timer, separate address, write, and read data path units, as well as an optional
DCR (Device Control Register) slave interface to provide access to its

PIC16F876

Figure 3-1. Block diagram of COTS based CAN controller system

MAX3110

UART
RS-232

MCP25020 MCP2551

CAN
Controller

CAN
Transceiver

S

P

I

MCU

Figure 3-2. System architecture of Xilinx specific FPGA system

Spartan3E

P

L

B

CAN
Transceiver

TJA1050

XPS-CAN

MDM

RAM

MicroBlaze

UART Lite

ST3232

RS-232

17

Figure 3-3. Architecture of Microblaze soft microprocessor

bus error status registers [17].

The MicroBlaze Debug Module (MDM) is used for system debugging. The
development tools, FPGA devices and IPs are all provided by Xilinx. It is a
relatively simple task to perform system development since the majority of the IPs
are verified and can be plug-and-play. The whole design and verification process
can be executed with a Xilinx tool set. The RS-232 (ST3232) and CAN transceiver
(TJA1050) physical interface circuits are also integrated on board.

3.2.3 Case 3: vendor and device independent FPGA system

A vendor and device independent system is a “soft” system which can be
implemented on any FPGA device. The IP could be open-source licensed or
provided by third party IP providers.

Such a case is based on OpenCores soft IPs. The OpenRISC 1200 (OR1200) is
a 32-bit scalar RISC with Harvard micro-architecture, 5 stage integer pipeline,
virtual memory support (MMU) and basic DSP capabilities. OR1200 is licensed
under a GNU Lesser General Public License (LGPL). The processor has already
been verified as running on many vendors’ devices and can be downloaded free
and can be modified by any individual. Its architecture is shown in Fig. 3-4. The
soft microprocessor is described using the Verilog HDL (Hardware Description
Language). As an open source core, the design is fully public and can be
downloaded and modified by any individual.

18

Figure 3-4. Architecture of OpenRISC 1200

The CAN controller system based on the OpenRISC 1200 is shown in Fig. 3-
5. The board structure is the same as in case 2, while the FPGA on-chip architecture
is different.

Every IP in the system is open source licensed in addition to being vendor
and device independent. They communicate with each other via a wishbone bus,
which is an open source hardware computer bus intended to allow communication
between the parts of an integrated circuit communicate with each other. The aim is
to allow the connection of differing cores to each other inside a chip. The Wishbone
Bus is used by many designs in the OpenCores project. There are two types of
Wishbone interconnects, namely the shared bus and crossbar switch. A shared bus
interconnect only allows one master to communicate with one slave at the same
time, while a crossbar switch may allow N masters to connect to N slaves at the
same time, according to the number of implemented buses. In this particular
implementation, shared bus architecture is used, which has similar features to
those of a PLB bus. A debugger is used for debugging and software downloading.
Different JTAG (Joint Test Action Group) cables can be used on different vendor
devices and the entire system can be synthesized by using any synthesis tool. The
GNU toolchain [18] which is running on a PC, including a compiler, simulator,
debugger etc, is used to support the C software development as well as system
debugging.

CPU/DSP

POWERM

DEBUG

PIC

IMMU

DMMU

ICache

DCache TICK TIMER

WB
I

WB
I

PM
I/F

DB
I/F

INT
I/F

OpenRISC 1200
System I/F

19

3.2.4 Case 4: mixed FPGA system

This solution is comprised of a mixture of vendors specifics and an
OpenCores platform. The board structure is the same as in case 2 and is shown in
Fig. 3-6. A bridge IP is incorporated between the Xilinx PLB and the OpenCores
Wishbone bus. The open-source licensed soft IPs, such as the CAN controller and
the UART, can then be integrated into the system as a peripheral core for the Xilinx
system. The software application is running on Microblaze microprocessor. All of
the design and verification processes can be conducted in a Xilinx development
environment.

3.3 PROTOTYPE OF FPGA BASED CAN CONTROLLER SYSTEM

A simple FPGA-CAN system demonstration is implemented. It works as a
CAN node with a temperature sensor. The microprocessor, CAN controller and
UART controller IP are implemented on the FPGA. The experimental system setup
is described as follow (also marked in Fig. 3-7):

1. Digilent Nexys2 [19] board with Xilinx Spartan-3E FPGA.

P

L

B

MDM

RAM

MicroBlaze

Figure 3-6. System architecture of Xilinx and OpenCores mixed
FPGA system

TJA1050

CAN
Transceiver

CAN
Controller

ST3232

UART RS-232

PLB2WB
Bridge

w
i
s
h
b
o
n
e

Xilinx OpenCores Spartan3E

Figure 3-5. System architecture of OpenCores based FPGA system

Debugger

Spartan3E

ST3232

TJA1050

CAN
Transceiver

CAN
Controller

UART RS-232

w
i
s
h
b
o
n
e

RAM

OR1200

20

2. The CAN transceiver (TJA1050) in the black box is the interface circuit
between the CAN protocol controller and the physical bus. It connects to
FPGA via Pmod ports.

3. The temperature sensor transmits temperature values through an RS-232
port on the FPGA board.

4. Xilinx platform cable USB is used for downloading and debugging.
5. USB-CAN is the interface controller between the CAN bus and the USB. The

data then can be transmitted or received by the PC via a USB port.

Figure 3-7. FPGA based CAN controller system prototype

The UART controller (OpenCores) can receive (interrupt based) the
temperature data from the temperature sensor via the RS-232. The temperature
data is then transmitted to the CAN controller (OpenCores). The CAN controller
transmits the data to the CAN bus via a CAN transceiver (TJA1050). The
temperature data is received by the USB-CAN and is displayed on the screen by
the software running on the PC.

CAN BUS

USB

FPGA-CAN

USB-CAN

PC

21

3.4 RISK ANALYSIS

A risk analysis is taken for all the cases described in section 3.1. A number of

potential risk scenarios are identified. No probability is attached to the occurrence
of each risk, but the consequences for the maintenance work are classified and
evaluated, as shown in Fig. 3-8.

3.4.1 Risk scenarios

For the different platform cases presented in section 3.2, the system
maintainability is evaluated by analyzing several potential risk scenarios. These
scenarios have been developed according to the general problem issues discussed
in section 2.2.

• Microprocessor obsolescence: Microprocessor is the heart of an embedded system.
If it becomes obsolete, then there could be serious consequences.

• Peripheral interface obsolescence: A peripheral interface standard can be obsolete.
The RS-232 interface in the system has the risk of obsolescence, including a
UART controller chip, the physical interface circuit and connector.

• Communication bus obsolescence: The communication bus has a connection with
every component in the system. Its obsolescence will soon lead to the
obsolescence of all associated components.

• Better circuit technology migration: Better performance, lower price or being
friendlier towards the environment would force the system to migrate to a new
circuit technology.

• FPGA vendor device migration: Vendor portability is a special issue for the FPGA
system. For example, if the FPGA vendor stops providing the devices
(obsolescence), in this situation, the system is forced to migrate from one
vendor device to another.

Figure 3-8. Risk analysis for different cases

Preferred design technology

Evaluation

Case1

Risk analysis

Case2 Case3 Case4

Risk scenarios

22

• Function change requirement: For different requirements, add, delete or
modification of functions are inevitable. For example, some systems might
require an Ethernet interface for data transportation.

3.4.2 Consequences

Some of the consequences with regards to the risk scenarios are classified:

• Major board redesign: This work is to redesign the board, including replacing or
adding components, modifying the on-board bus system etc., which is costly
and time consuming and can almost be equivalent to designing a new board.

• Minor board redesign: The redesign of a minor part of the board, including
replacing or adding physical interface circuits, redefining the pins for chips,
changing the connector etc., which require significantly lower design efforts as
compared to those associated with a major board redesign.

• Driver redesign: This is the redesigning of the software drivers’ work in order to
be consistent with hardware changes.

• Interface modification: Modify the soft IPs’ communication bus interface protocol
or add an interface converter.

• Vendor restriction: Vendor restriction is specified for an FPGA platform. It means
that the FPGA devices can be changed, but this is restricted to the same vendor.

• Vendor independent: In contrast with vendor restriction, it does not have any
restriction regarding the vendors. Any vendor device could be used.

• Major system redesign: It means that there is a whole redesign of the FPGA
system, including the on-chip hardware and software driver redesign.

• Minor system redesign: Redesign parts of an FPGA system, including parts of the
on-chip hardware and software driver redesign.

3.5 RESULT

Table 3-1 presents the results of the risk analysis for the design cases defined
in section 3.1. The following is the explanation of table 3-1 for each of the risk
scenarios:

• Microprocessor obsolescence: For a COTS product based platform, if the MCU
becomes obsolete, the entire system will become obsolete. It results in a major
board redesign and driver redesign for a new MCU system. While the FPGA
microprocessor is described as a synthesizable soft code, such a special form
completely eliminates the risk of microprocessor obsolescence. The legacy IP
can still be implemented on a recent FPGA device, which can solve the
component obsolete issue described in section 2.2.1.

• Peripheral interface obsolescence: The RS-232 serial interface in the system has the
risk of obsolescence. If the MCU on the COTS platform does not support the

23

new peripheral interface standard, it should be replaced or a new interface
controller should be integrated together with a physical interface circuit. Both
situations will lead to a major board redesign. While for the FPGA platform, the
interface controller can be changed by replacing a soft controller IP on-chip. The
physical interface circuit (voltage converter etc.) and connector must also be
changed which is a significantly easier task. A software driver redesign is
necessary in order to adapt the new interface controller to the system. This will
ease the peripheral interface obsolete issue of section 2.2.1.

• Communication bus obsolescence: For the COTS platform, the whole system has to
be redesigned since every component which is associated with the bus is
obsolete. The FPGA soft IP does not have any risk of obsolescence, but new IPs
will face interface mismatch problems with an old communication bus.
Interface modification is required if the new IPs are integrated into the system,
which will ease the communication bus obsolescence describe in section 2.2.1.

• Better circuit technology migration: It is difficult for the COTS IC platform to
benefit from better circuit technology requiring a major board and driver
redesign. However, all the “soft” systems on the FPGA proposed in section V
have the capability of accommodating new technology, only requiring minor
board redesigns to redefine the pins for the new FPGA chip. However, a
technology migration with regards to cases 2 and 4 is restricted to using the
same vendor’s device. Case 3 is the best choice regarding the maintenance issue
described in section 2.2.2 because of its device independency.

• FPGA Vendor device migration: Vendor portability is an issue which is only
relevant for FPGA systems. As has been mentioned previously, case 2 is a
vendor specific solution and thus it is not possible to migrate it to other
vendors’ devices. If the vendor ceases to provide the devices, e.g. vendor
bankruptcy, the only choice is to redesign a whole new system for another
vendor’s device. There is a better situation associated with case 4 as parts of the
system are vendor independent and with the assistance of a new bus bridge,
these parts could be migrated to other vendors’ device. The design effort as
compared to that for case 2 is significantly lower. For example, the Avalon to
wishbone bus bridge IP could be used if the system is migrated to the Altera’s
device. Case 3 is a totally vendor independent system and thus offers the best
portability from the FPGA platform cases and it would be easy to implement
the vendor device migration.

• Function change: The function must be changed for any new function
requirement or for removing bugs in the current component or system. It is a
costly task for a COTS platform, because it results in a major board redesign.
Due to FPGA’s reconfigurabilty, the function in the form of a soft IP can be
added, deleted or modified on-chip. In some situations, a physical circuit is
required, such as an Ethernet controller. Some function changes do not even

24

require a board redesign but only a modification on-chip, if the FPGA is
sufficiently large to accommodate the function, such as a video decoder.

Table 3-1. Consequences of different risk scenarios

Risks Consequences
Case

1a 2b 3c 4d

Microprocessor
obsolescence

Major board redesign
Driver redesign

√
√

-
-

-
-

-
-

Peripheral interface
obsolescence

Major board redesign
Minor board redesign
Driver redesign

√
-
√

-
√
√

-
√
√

-
√
√

Communication bus
obsolescence

Major board redesign
Interface modification

√
-

-
√

-
√

-
√

Better circuit
technology migration

Major board redesign
Minor board redesign
Driver redesign
Vendor restriction
Vendor independent

√
-
√

N/A
N/A

-
√
-
√
-

-
√
-
-
√

-
√
-
√
-

FPGA vendor device
migration

Major system redesign
Minor system redesign
Minor board redesign

N/A
N/A
N/A

√
-
√

-
-
√

-
√
√

Function change
requirement

Major board redesign
Minor board redesign
Driver redesign

√
-
√

-
√
√

-
√
√

-
√
√

a. COTS IC based CAN controller system

b. Vendor specific FPGA system

c. Vendor and device independent FPGA system

d. Mixed FPGA system

3.6 MAINTAINABILITY FOR DIFFERENT DESIGN CASES

According to the evaluation in section 3.5, Fig. 3-9 can be used to
encapsulate the conclusion for the case study.

Figure 3-9. System maintainability model for different design technologies

Maintainability

IC

FPGA

IP
Providers

FPGA
Vendors

IC
Providers COTS IC

Vendor Specific

Vendor and device independent

Mixed

25

3.6.1 COTS IC platform

COTS IC solution has no reconfigurability and portability. The MCU and
CAN controller are in the fixed hard form provided by the IC providers. The
platform defines its specific drivers and software applications. After the
completion and release of the system design, it becomes difficult to make any
further changes. Therefore, it always requires a major board and driver redesign as
shown in table 3-1, the implication of which is that this will involve high
maintenance costs. However, the benefits of the COTS IC are its mature technology
and market. COTS IC design technology is now the dominant design method for
an embedded system. Compared to the FPGA platform, it is more attractive with
respect to higher performance, lower power consumption and cost.

3.6.2 Software issue for maintainability

Although software development and related tools are not included in the
risk analysis, they also represent an unavoidable part in the present day embedded
systems’ development.

The software application of an embedded system is usually programmed in
a high level language (e.g. C), which always contains some processor dependent
code. Even if it is a non-processor-specific code, the device drivers and device
management, initialization and locator modules and initial boot-up record data
require modifications when the hardware changes [20]. The majority of the
currently available software written for embedded systems is almost 100% target
dependents. Any change to the hardware requires a change in the software [21]. If
the microprocessor is replaced by a different one, the software has to be
consistently modified. The development environment, such as the compiler and
library, can also be different. Such software modification and environment change
will result in a system re-verification, which is time consuming. Depending upon
the volume of the code, a redesign can cost hundreds of man-years of time, much
of which will be devoted to validation and testing [22]. For this issue, the portable
code [12] is proposed, which allows compiled software to be executed on any
platform without change thus reducing the cost of hardware obsolescence.

Using an embedded operating system can also mitigate the system
migration problem. For example, embedded Linux brings vendor independence.
Vendors of all embedded Linux distributions have more or less the same business
model. The distributions are variations of the same theme. They all have the same
and common basic components such as Linux kernel, libraries, basic utilities, and
the like [23].

26

3.6.3 FPGA platform

The FPGA system is described using a high level language and is
implemented on a single chip. If sufficient space is reserved on the chip, a system
function could easily be changed using EDA tools. Sometimes, the function
requires only small changes of the physical circuit and connectors as thus a minor
board redesign, as is shown in table 3-1. Thus the embedded system built on the
FPGA platform is very promising when maintenance issues are taken into
consideration.

3.6.3.1 Vender specific system

Vendor specific design technology is possibly the most widely used on an
FPGA platform. Provision of the IPs for the system is by the FPGA vendors. IPs,
such as this, are of reliable quality and it is very easy to integrate them into the
system. Designers can obtain adequate support and guarantees. The system might
be portable within the same vendor’s devices. However, such system design
technology is unable to eliminate the risk that a vendor might cease to provide the
devices (obsolescence). The reason for using a mixed solution is that it has better
portability and is associated with the device independent parts. A designer can
make an effort to integrate the OpenCores parts to other vendors systems by using
a different bus bridge. Such mixed platforms benefit from vendor specific as well
as vendor and device independent IPs, which can provide a compromised
alternative for an embedded system design.

3.6.3.2 Vendor and device independent system

The FPGA platform implemented with vendor and device independent soft
IPs is a preferred solution from the viewpoint of system maintenance, since it can
solve all the maintenance problem issues described in section 2.2. The whole
system, including the hardware and software, can be accommodated into any
vendor device with any technology. The software application and GNU toolchain
can be used on a new system device when performing the system migration. This
thus eliminates the risk of device obsolescence from providers and it is also
possible to benefit from the use of new circuit technology or lower cost hardware.
Functions can also be modified for specific customer’s requirements. Therefore,
such a method could be compared to the traditional manner for a COTS IC based
embedded system design technology and the system on an FPGA, in combination
with soft IPs has significantly higher maintainability according to the results
shown in table 3-1.

It is well known that FPGA’s circuit technology and performance are not
always growing as fast as a COTS IC component, but this could be tolerated by
control, monitoring or communication systems, which are manufactured in low
volumes [24]. Many of these systems do not require the newest state of the art

27

technology and would be in use, preferably, for more than 10 years, such as is the
case for the CAN controller system.

The soft IP market is, at present, not sufficiently mature and for this
OpenCores based platform, the quality of the open source IP is not satisfactory,
since the designer can obtain very limited guarantee from providers. Because there
is a lack of intensive verification, our experience is that IPs always contain bugs.
However, it is to be expected that in the future, the high reliability vendor and
device independent soft IP could be delivered by third party IP providers. Such IPs
will become very good resources for designing a long life cycle embedded system.

3.7 CONCLUSION

A CAN controller system case study is present in this chapter. Various
potential risks and their consequences for a long life cycle embedded system are
discussed. It was proposed that an FPGA platform be used to replace the COTS IC
platform for the system design. Different CAN controller system platforms have
been evaluated using a number of risk scenarios. The results show that an FPGA
platform with vendor and device independent soft IP has the highest
maintainability.

28

29

4 FPGA IP PORTABILITY ANALYSIS

In last section, we proposed the use of an FPGA platform implemented with
vendor and device independent soft IPs. This technique can increase the
maintainability of an embedded system. In this section, the portability issue for an
M-JPEG decoder will be analyzed and discussed.

4.1 INTELLECTUAL PROPERTY

Due to the rapid development of silicon technology, the capacity and
performance of FPGAs has improved significantly every year. This allows the
designers to build more complex SOCs. In a SOC design, a shorter product life
cycle means a shorter time to profit from sales. It is widely recognized that the
reuse and sharing of IPs is becoming fundamental to closing the deep sub-micron
design gap for successful SOC design [25]. The semiconductor IP industry is over
15 years old but the reuse of IPs still contains many challenges for IP providers,
system designers, IP business and IP tool developers [26].

A reusable IP [27] can be a digital IP or an analog/mixed-signal (AMS) IP
which is in the form of a processor, memory, decoder, mixed-signal converter, etc.
Digital IP is the most popular form for design reuse in present day industry [28].
They are divided into three categories: soft, firm and hard [29]. A soft IP is a
hardware specification at the register transfer level (RTL) and this specification
involves synthesizable code written in HDL. It is a more suitable form of digital IP,
since HDL can be written in a technology-independent manner and synthesized to
gate level. Its advantages include flexibility, portability and reusability [30]. A firm
IP is in the form of a parameterized netlist and a hard IP is a technology-specific
layout. For FPGA system design, the IP usually refers to either a soft or firm IP.

System designers usually obtain IPs, FPGA devices, library and tools from
providers. In the majority of cases, they have a very limited knowledge with
reference to the structural content of the adopted IP, so it must be considered to be
a black box [30]. If an IP for FPGAs is truly portable, it must easily adapt to

FPGA Vendor

Tool/Library

Open
Source

ISE/EDK
10.1

Interface 2

Communication

Figure 4-1. IP portability issue for system designers

IP
Vendor

s

ISE/EDK
8.1

IP Provider

System Designer

Altera

Interface 1

Xilinx
Actel

30

different communication interfaces, being portable between different FPGA
vendors and devices and having no dependencies with regards to the tool set used
for the system design. This is illustrated in Fig. 4-1. Firm IPs for FPGAs are usually
more or less technology dependent netlists which are also dependent on the used
tool set.

4.2 PROJECT BACKGROUND

The aim of this work is to implement a real-time video processing system on
an FPGA platform. The video system receives a video stream from several network
cameras and manipulates them into a single video stream to be displayed on a
single monitor. The system will be integrated into an industrial system of
construction machinery. In order to develop the system, a host development
computer, an FPGA board, a display monitor and network cameras are required.
Fig. 4-2 depicts the real-time video processing experimental system. On the FPGA
a video decoder, VGA controller and a soft microprocessor running Linux
operating system were implemented. The host computer also acts as the console
for the target board in relation to monitoring and recording the results through a
UART interface or a telnet protocol.

4.3 M-JPEG DECODER

JPEG, or Joint Photographic Experts Group, is a standardized image
compression mechanism. The lossy compression method takes advantage of the
visual capabilities of the human eye. This kind of file can be split into two areas,
namely the headers and the compressed scan data. The headers contain the
information about the compressed data (size, format and so on) as well as the

PC
Monitor

Network switch

Network
Cameras

Development board

Figure 4-2. Architecture of the real-time display of multiple video streams

31

quantization tables and Huffman tables. This standard defines many different
techniques used to compress, decompress and store image data. Whereas an M-
JPEG is an informal name for multimedia formats, only the result of applying a
JPEG to individual frames of a video sequence is called the M-JPEG.

M-JPEG compression format uses standard JPEG still images for video
streaming. These images are displayed and updated at a rate which is sufficient to
create a video stream. Although this method demands many bandwidths, it
provides excellent image quality and can provide access to every individual image
contained in the stream.

This project implemented an M-JPEG decoder project [31] that was a free
download from OpenCores [32]. The decoder IP will be integrated into an
industrial system of construction machinery which has long life cycle expectancy.
It is used as a test case for the portability analysis described in section 4.4.

The M-JPEG decoder project was originally developed using ISE/EDK 8.1 on
the Xilinx Virtex II pro FPGA. Fig. 4-3 shows the architecture of the decoder
system. Three main blocks are involved: M-JPEG Decoder Function, OPB IPIF and
VGA Controller&Reorder. The Decoder IP behaves as a master on the OPB enabling
the decoder to retrieve compressed JPEG data from Memory.

OPB IPIF is the OPB interface protocol. The M-JPEG Decoder Function
decodes the compressed JPEG data and outputs the uncompressed RGB data in a
sequence corresponding to a series of Minimum Coded Units (MCU). This
uncompressed RGB data is output directly to the VGA Controller&Reorder and
further as an analog VGA signal to the Monitor.

The internal data flow of the M-JPEG Decoder Function is further illustrated
in Fig. 4-4. Compressed data enters the decoder at the Input Buffer and
decompressed data is output from YCbCr2RGB (YCbCr to RGB color converter).
Check FF is a function to check the end of image (EOI) marker.

M-JPEG
Decoder
Function

VGA
(VGA Controller
& Reorder)

Decoder
IP

 OPB

IPIF

Mon
-itor

Memory

OPB

Figure 4-3. Block diagram of the decoder project

32

4.4 PORTABILITY ANALYSIS

This section describes the experimental method used to analyze the
portability of the M-JPEG decoder IP described in section 4.3. This experiment
includes all three dimensions shown in Fig. 4-1: Communication, FPGA Vendor
and Tool/Library.

The portability was firstly analyzed with respect to the FPGA Vendor and
Tool/Library. Consideration in this first part will be given to the decomposition of
the hardware specification into a number of components shown in the data flow
graph in Fig. 4-4. For each one of these components’ corresponding to a hardware
specification file, the following will occur:

• Investigate the type of HDL specification, Firm IP (technology dependent
netlists), Soft IP (RTL specifications) or Soft&Firm (a mix of soft and firm
specifications).

• Attempt to synthesize the hardware specification for Xilinx, Altera and Actel
FPGA devices to verify whether or not this is possible.

• Transfer the hardware specification from the Xilinx tool set ISE 8.1 to the ISE
10.1. Test whether the transferred specification file can be synthesized in the
ISE 10.1.

Secondly, the decoder IPs portability will be analyzed with respect to
Communication. This analysis is to be conducted on the decoder’s hardware
architecture to determine whether it allows the communication interfaces to be
easily modified. For an easy change of communication interface, it is important to
verify that the hardware components are designed with a clear separation between
communication and computation.

4.5 ANALYSIS RESULTS

This section describes the results from the case study described in section 4.4.

Input
Buffer

Entropy
Decoding

Dequantize

Dezigzag IDCT Up Sampling

Huffman
Tables

Quantization

Tables Sampling

YCbCr2RGB

Check
FF

Check
FF FIFO

JPEG
Input

Video
Output

Header Readout

Figure 4-4. Internal data flow graph of the M-JPEG decoder

33

Table 4-1. Portability analysis with respect to FPGA vendor and tool/library

Component
Type of

specification

Library

instantiations

Portability

Tool/

library

Ven-

dor

Input Buffer Firm FIFO - -
Check FF Soft - √ √

Check FF FIFO Firm FIFO - -

Entropy
Decoding

Soft & Firm
Memory, Shift
Reg

- -

Dequantize Soft & Firm
Multiplier, Shift
Reg

- -

Dezigzag Soft - √ √
IDCT Soft & Firm 2-D DCT - -
Up Sampling Soft & Firm Block Memory - -
YCbCr2RGB Soft - √ √
Header
Readout

Soft - √ √

VGA
Controller &
Reorder

Soft & Firm
Block Memory,
Digital clock
manager(DCM)

- -

OPB IPIF Soft - √ √

4.5.1 Portability with respect to FPGA vendor and tool/library

Table 4-1 shows the library instantiations (column 3) in addition to a
portability analysis with respect to Tool/library (column 4) and Vendor (column 5)
for each component (column 1) in the M-JPEG Decoder IP. Column 2 shows that
this IP is not a pure soft IP but contains several technology dependent firm IPs
generated by the Xilinx CORE Generator. A check is made with regards to their
portability from the Xilinx tool and library set ISE 8.1 to ISE 10.1. These
components are also synthesized for Altera and Actel devices in order to check
their portability between vendors.

4.5.2 Portability with respect to communication interfaces

The M-JPEG decoder IP shown in Fig. 4-3 has two communication interfaces:

• Video Input: Compressed data enters the decoder at the Input

Buffer. See Fig. 4-4. This is an FIFO buffer which connects to the OPB bus
interface protocol OPB IPIF. See Fig. 4-3.

• Video Output: Decompressed data is output from the YCbCr2RGB
and is further written into the input buffer of the VGA Controller&Reorder
for analog interfacing with the Monitor.

In accordance with the experimental method specified in section 4.4, there is
a requirement to analyze whether the two interfaces have a clear separation
between the communication and computation.

34

• Video Input: This interface has an FIFO, Input Buffer which clearly
separates the communication specified in OPB IPIF from the computation
within the Decoder IP. This will allow a system designer to easily exchange
the OPB bus interface to an arbitrary bus interface.

• Video Output: This interface outputs uncompressed RGB data in a
sequence corresponding to a series of MCU blocks. The sequence of pixels
carried by the analog video signal must correspond to either the
progressive video or to the interlaced video. This means that data must be
reordered from MCU wise to line wise. This reordering is implemented in
the VGA Controller&Reorder component. If the system designer would like
to exchange the current VGA interface into High-Definition Multimedia
Interface (HDMI) or any other arbitrary video interface, the reorder of the
video data will be missing. This means that the Video Output interface
cannot be exchanged as easily as the Video input interface.

4.6 SOFT-IP INTERFACE MODIFICATION METHODOLOGY

To make efficient reuse of the IP and its interfaces, an interface-based soft IP
model is introduced. Based on this model, the Soft-IP Interface Modification
Methodology (SIPIMM) is proposed to ease the communication interface mismatch
problem.

4.6.1 IP verification

When the integrator obtain the IP, it is necessary to know its usage history.
From a functional point of view, it is valuable to know whether or not the IP has
been proven in silicon. This detailed information includes in which device or
configuration it was used and what the success rate was and so on. This is useful
information which will assist the integrator in avoiding unnecessary detours.

After this investigation and depending on its outcome, an ambitious
functional verification of the IP core should be carried out. This step can, for
example, be particularly important for an open-source IP, which offers very limited
guarantees. Any test bench or verification methodology from the IP provider will
ease this work. Otherwise, this task can be very difficult and time consuming,
especially for configurable IPs.

4.6.2 Interface-based soft IP model

A soft IP core has the possibility of communicating with an external system.
The on-chip system includes an on-chip bus, other system components or
peripherals. The core can be an initiator (master) core or a target (slave) core
depending on the implementation. For the interface-based soft IP model, several
boundaries inside the core should be clarified, as shown in Fig. 4-5.

35

1) Isolate the computation logic from the interface logic: The soft IP core can be mainly
divided into two blocks: computational block and interface block. The
Computational Block contains the main logic functions of an IP. The Interface Block
implements all IP communication divided into one or several Interface Protocol
Cells (IPC) as well as various ports for dataflow, control signals and debug signals.
The Computational Block has a higher chance of being re-used since the Interface

Block might be changed frequently due to different system configurations. This
separation of computation from communication is effective for IP database
management. It is a suggestion to the IP providers for creating reuse of IP in SOC
Design [33].

2) Boundaries between functions: Different functions in the Computational Block
should have clear boundaries (Fcn1 to Fcnm). It might occur that the integrators only
require parts of the functions of a Computational Block. A reduced Computational

Block must then be working correctly after the removal of some of the unnecessary
functions.

3) Boundaries between IPCs: When using multiple interfaces, each IPC should be
independent (IPC1 to IPCn). This also prepares the way for selective reuse in the
future design.

4.6.3 Interface modification

1) Interface selection: Before designing the Interface Block, the integrator should
already have conducted sufficient investigation in order to make a decision
regarding which type of communication interface is the most suitable for the
design specification. When the core requires multiple interfaces, the Interface Block
is merely the assembly of different IPCs. IPC can be predefined and reused. This
method for interface reuse can save a great deal of time since the designer need
only to change some parameters without compromising the functionality of the IP
core.

2) Interface design: One or more IPCs might be designed if they are not predefined.

• IPC design: Computational Block is a set of Dummy Functions in this case.
See figure Fig 4-6. This set of dummies can be any synthesizable simple
logic or test vector generator. A simulation of the IP that contains the

On-Chip
System

Soft IP
Core

IPC1

Interface
Block

H

Computational
Block

Fcn1

Fcn2

Fcnm

H

IPC

IPC

Figure 4-5. A generalized interface-based soft IP
model

36

Dummy Functions and the IPC can be made using a simple test bench.
Following this, the RTL code can be synthesized and the software
application can be written. The IP verification can then be implemented in
the FPGA prototype. Because the aim for the IPC for widespread reuse
block, the aim in relation to the verification must be for zero-defect.

• IPCs assembling (multiple interfaces): Iteratively assemble and verify the
designed or predefined IPCs one by one, until the whole Interface Block is
verified through simulation and hardware prototyping. A model of an
assembled Interface Block with Dummy Functions is shown as Fig 4-7.

3) Interface mapping: Remove the original Interface Block. Map the output of the
Computation Block to the input of the newly designed Interface Block. Write a test
bench to verify the functionality of the complete IP as depicted in Fig. 4-5.

4.6.4 IP integration

Synthesize the RTL code. Write the software driver and test the software for
a functional verification of the IP core. Integrate the entire IP into the system by
connecting it to a simplified SOC for functional verification. Run the test software
for the entire system. Evaluate the IP function and performance in order to finalize
the design.

4.7 INTERFACES MODIFICATION OF M-JPEG DECODER

This section describes the work of modifying the M-JPEG decoder’s
interfaces described in section 4.3 using the proposed methodology SIPIMM.

4.7.1 IP verification

Firstly, the functionality of the original decoder IP was verified by
simulation using the test bench supplied as part of the decoder project. Following
this, we implemented the original system of the project on our FPGA board. The IP

Computational Block

Dummy
Functions

Data

Control

IPC

Protocol

Figure 4-6. IPC design with a dummy function in the computation block

Computational
Block

Dummy

Functions

IPC1

H

IPC2

IPCn

Interface Block

Figure 4-7. Interface design with dummy functions in the computational block

37

functionality was verified using the original development environment of the
project.

4.7.2 Interface-based soft IP model

The computation and interface boundaries were vague in the original IP
structure. The VGA Controller (interface protocol) and the Reorder (computational)
were blended. It represented a low portability and was difficult to migrate to
another system with different functions and different bus interfaces. In order to
integrate the core into our system and increase its portability, several modifications
to its structure were performed.

For this work, we defined the interface-based soft IP model shown in Fig 4-8.
The Reorder function was made into a part of the Computational Block and the VGA
function was removed from the Decoder IP. The Interface Block contains two IPCs
for the streaming of both compressed and uncompressed video. There is clearly a
distinct separation of computation from communication in the developed
interface-based soft IP model shown in Fig 4-5.

4.7.3 Interface modification

1) Interface selection: According to the investigation and system specification, the
Fast Simplex Link (FSL) and Native Port Interface (NPI) interfaces were selected to
replace the OPB and VGA interfaces. The On-Chip System feeds the decoder IP with
the compressed video through the FSL interface at IPC1. The decoder IP outputs
data to the system through the NPI interface at IPC2. The NPI interface was
selected for its low latency and high bandwidth target to memory which is ideal
for real time video communication. FSL and NPI are custom interfaces and not
predefined, so the two IPCs must be designed.

2) Interface design: The FSL and NPI interfaces were designed in accordance with
Fig 4-6. The Dummy Function was designed as a clock counter for verification of
both interfaces. After simulation and prototyping of both FSL and NPI, these
interfaces were merged into a single interface block in accordance with Fig 4-7.
The Dummy Functions were now selected as a copy of the input data from the FSL
to output on the NPI.

Figure 4-8. Block diagram of complete SOC including the updated decoder IP

PLB
Memory

MicroBlaze

TFT

Decoder
IP PLB

FSL

NPI

38

3) Interface mapping: The reorder function component was connected to the M-
JPEG decoder component output. The FSL interface was mapped as an input port
to the decoder function. The NPI interface was mapped as an output port from the
decoder function. Using a debugger, it was possible to verify an image that was
decoded in the hardware and written to the system’s memory through the NPI
output.

4.7.4 IP integration

The Decoder IP shown in Fig 4-9 was integrated with a complete SOC
consisting of a MicroBlaze soft processor core, Memory controller, a TFT controller
for video displaying and other components not shown in the figure. The MicroBlaze
processor feeds the Decoder IP with compressed video through the FSL. The
decoded video is written directly to memory by the decoder through the NPI and
into the same video memory area as is also read by the TFT controller on the PLB.
The graphics displaying this SOC were visually verified by running the system on
a prototyping board.

4.8 CONCLUSION

This chapter presents a case study analyzing the portability of an FPGA-
based M-JPEG decoder IP. The use of vendor and tool dependent firmware
specifications within the M-JPEG decoder is shown to limit the decoder’s
portability with respect to development tools and FPGA vendors. The lack of any
clear separation between computation and communication is shown to limit the
decoder’s portability with respect to different communication interfaces. A
methodology SIPIMM is proposed to increase the IP’s portability regarding
communication interface.

M-JPEG
Decoder

Reorder

IPC1

IPC2

Interface
Block

Computational
Block

On-Chip
System

Decoder
IP

Figure 4-9. Interface-based soft IP model for an M-JPEG decoder

39

5 COMPONENT OBSOLESCENCE MANAGEMENT MODEL FOR LONG LIFE
CYCLE EMBEDDED SYSTEM

This section discusses the component obsolescence problem and presents a
mathematic model of obsolescence management for long life cycle embedded
system maintenance. A simple CAN controller system case study is also shown in
order to apply this model.

5.1 EOL SOLUTIONS

When components arrive at the EOL state, designers usually receive an
obsolescence notice from the vendor. In this situation, a short term or long term
strategy should be implemented to solve the obsolescence problem.

5.1.1 Lifetime buy and Last-Time-Buy

Lifetime buy is to buy components, which covers the entire system life. Last-
time-buy (LTB) is to cover a short period of time as a short term strategy. [34]

The lifetime buy and LTB problem have two aspects: 1) demand forecasting,
and 2) Order quantity determination.

Organizations that make lifetime buys or LTB of electronic components
generally have little or no control over the supply chain for the components and
cannot manufacture the components themselves. These organizations can purchase
components until the manufacturer discontinues them at which time they must
place a final order or implement some other mitigation strategy. [34]

The management strategy associated with lifetime buys of electronic
components is to determine the number of components to purchase. Lifetime buys
are risky, as forecasting demand and spares requirements for, potentially, 10-20
years into the future is not an exact science, especially in today's dynamic
technology and market atmosphere. However, LTB only considers a short period
of time to wait until a long time term strategy is taken. LTB is preferred in this
paper, because it is less risky and easier for an organization to estimate the order
quantity.

5.1.2 Redesign

Redesign is a long term strategy for obsolescence management. According to
its complexity level, we could divide redesign into several categories:

Component(s) replacement

Component(s) replacement is the pin-for-pin replacement of an obsolete
component(s) with the same function and pin compatible component(s).
Replacement includes using COTS components, with a modern solid-state
component in the same package type for a legacy obsolescence component [35]. For

40

example, some physical interface circuit or transmitter can be replaced directly.
This component replacement process does not require any board redesign.

Part(s) redesign

Part(s) redesign is the practice of redesigning parts of or even the whole
circuit board in the system. The redesigned part(s) contains new circuitry but uses
a function and interface equivalent to that of the original part(s). There are two
different design processes for parts redesign:

One is to replace obsolete components in the circuit with components having
a similar function in a more advanced technology. For example, the
microcontroller can be replaced by a new one which has more advanced
technology and functions. Such replacement may involve board redesign and
software re-writing.

The second method is to reverse engineer the part(s). It is not always the
case that it is possible to find a replacement part in the market. If components with
similar function do not exist, a reverse engineering should be implemented. This
process analyzes an obsolete part’s intended function, then redesigns a new part
and makes it interface so that it is compatible with the system. This method
assumes that an accurate specification is available or can be created. Engineers
often find the original documentation incomplete, or even inaccurate. Many
systems have components whose uses are undocumented, and the original
designers are no longer available to provide assistance. Accurately extracting
information from legacy systems is time consuming and costly. The lack of
available information also drives up the cost of developing test benches and test
vectors necessary for validating the design.

System(s) redesign

Usually, when one part in a system becomes obsolete, other interfacing
components will also have a high obsolescence risk [35]. Moreover, a system has
been developed as a single entity, with much interdependence between its
hardware and software and thus replacement or modification is usually as difficult
as designing an entire system. [12] Therefore in some cases, a redesign of the whole
system should be implemented. This process includes redesigning hardware and
software, which is costly and time consuming.

5.1.3 Others

Aftermarket

There are some aftermarket manufactures that provide a custom assembly of
obsolete integrated circuits using an existing wafer and die. However, the unit cost
will be much higher and only a few species of obsolete components can be
provided.

41

Emulation

A very flexible replacement solution consists of emulating the obsolete
microelectronic parts by means of programmable logic devices such as FPGAs [36].
The approach is particularly appealing as it is a general solution to the
obsolescence problem of digital electronic parts: FPGAs can implement the
behavior of practically any digital component, provided that a suitable model of
the component’s behavior is available [37].

However, this method requires huge engineering design efforts and costs,
including qualification testing and certification to prove that the emulated version
is equivalent to the original hardware in terms of functionality, performance and
signal integrity.

5.2 MAINTENANCE MODEL

A mathematic model is built for maintenance cost analysis caused by
component obsolescence.

Figure 5-1. Maintenance model overview

5.2.1 Overview

An overview of the model is shown in Fig 5-1. Several input parameters
should be given to the model. System life cycle expectation Ls is set at the
beginning. Peak sales value 	p can be estimated. Commercial components database
such as CAPS Expert from PartMiner can be used to obtain the product life cycle
data and status. Ln represents the life cycle of component number n in the system,
which can be obtained from the database. Unit cost, interest rate, safety margin
and holding cost should be provided in order to estimate the LTB cost. The safety
margin determines the extra order quantity percentage which been made in order
to ensure the safety of sales. The holding cost refers to the spare components
storage cost. The redesign cost is related to the component type and component

42

quantity. A multiple components redesign cost is less than the total redesigning
cost for each component.

The model consists of two parts. The first part is to generate a graph in
Matlab. A segments table is then output from Matlab for further optimization.
Linear programming is used to calculate the minimized maintenance cost and
maintenance schedule. More symbol explanations are now provided:

A = {1…N}, index of N components in the system ∈n A, component number in the system ∈ ∈ ∈nʹ {(x, y)|x A, y A, x≠y}, two components number in the system

5.2.2 State transfer diagram

The model contains a graph part which is in the form of state transfer

diagram. At the present time the model has a maximum components quantity

limitation of 2, but it can be expanded to n components in future work. A two

components state transfer diagram is shown in Fig 5-2. Suppose L1<L2. The

following provides the symbols explanation in the diagram:

Pn,s represent a component status. ∈s {0, 1}, 0 represent non-obsolescence, 1 represent obsolescence.

P1,1P2,1

R1R2 L2

L2

R2

L1

R1

R2

②②②② ①①①① ③③③③

⑥⑥⑥⑥ ⑤⑤⑤⑤

R1R2

L1

R1

R1R2

L1

R1

L1

R1

R2 ④④④④

P1,1: Component 1 obsolescence

P2,1: Component 2 obsolescence

P1,0: Component 1 non-obsolescence

P2,0: Component 2 non-obsolescence

Figure 5-2. State transfer diagram

P1,1P2,0

P1,1P2,1 P1,1P2,0

P1,1P2,0
P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,1

P1,0P2,1

P1,1P2,0

P1,1P2,0

P1,1P2,1

P1,0P2,1

P1,1P2,1

P1,1P2,1

43

Each component has two states in the model. P1,1 means component 1

obsoletes while P1,0 means component 1 will not become obsolete in a short period

(non-obsolescence). The same representation is given for component 2 as P2,1 and

P2,0. When one or several components become obsolete, an obsolete solution (e.g.

R1R2 above the arrow) has to be implemented. Once the solution is taken, one state

at the current time point will be transfer to another state on next time point. The

arrow shows the state transfer along the time line.

For example, in the state transfer diagram ① of Fig 5-2, component 1 makes

an LTB (L1) in order to wait until component 2 becomes obsolete (P1,1P2,1). When

both components are obsolete, a redesign involves two components which must be

implemented (R1R2). After redesign, both components restart a new life cycle and

component 2 will become obsolete first (P1,1P2,0) since L1 is smaller. This is similar

for the remainder of the state transfer diagrams and a total of 6 kinds of state

transfer styles are shown in the Fig 5-2. ⑥ is a special case of ④, which denotes the

time interval from state P1,1P2,1 to state P1,1P2,1 is equal to L1.

In order to formulate a full binary tree for the model, the state transfer path

for P1,1P2,1 to P1,1P2,0 is duplicated, shown in Fig 5-3. The path duplication will not

affect the result, but it will make the graph simpler to solve by means of tools.

The full tree graph information will be stored in a segments table generated

by Matlab. The information in the table includes the start node number, end node

number and cost for each state transfer path.

5.2.3 Cost estimation

Two methods are considered for obsolescence management in the model:

• Last-time-buy: This method is to conserve a safety stock of

obsolescence components for a short period of time. LTB is a short

term strategy and it will not renew the component life cycle. The

main purpose is to delay the redesign time until any other

component in the system becomes obsolete. The LTB cost depends

on the sales value, interest rate, unit cost, holding cost and the safety

margin as an uncertainty factor. The LTB order quantity is estimated

R1R2

R1R2

R1R2

Figure 5-3. State transfer path duplication

P1,1P2,1 P1,1P2,0 P1,1P2,1

P1,1P2,0

P1,1P2,0

44

using the demand (D) for a certain period of time. ∆T represents the

time interval between two obsolescence management time points.

D	= � 	�(�)��∆�
� �� = � 	��(�(��)
/!"
)����∆�

� 			(5.1)

The LTB cost consists of:

Safety margin cost: A safety margin (M) of an order should be defined for

component n. M is defined as a percentage of the estimated sales.

#$% 	= & ∗ (∗)$		(5.2)

Interest rate cost: When a company makes an order for a component, the

money spent for the order will generate an extra cost for component n caused by

the interest rate.

#$* 	= (& ∗ (1 + () ∗ , ∗ ∆-) ∗)$		(5.3)	
	

Holding cost: The LTB order quantity is always much larger than the normal

order. A storage cost should be considered. Hn represents the average holding cost

of component n in one unit of time.

#$. 	= /$ ∗ (1 + () ∗ & ∗ ∆-			(5.4)

The total LTB cost can be estimated as:

#$0 = #$
% + #$

* + #$
.

 (5.5)

• Redesign: Redesign is a long term strategy. It could be as easy as an

electrical component replacement or as difficult as a system redesign

including both hardware and software. The redesign cost depends

on the number and type of components.

5.2.4 Linear programming

Linear programming is used to find the minimized total cost for the system

life cycle maintenance.

Finding the lowest cost between the first node and the terminal nodes in the

model can be viewed as a transshipment problem [38]. A ghost node is assumed,

since it makes modeling easier. This node connects to every terminal node which is

located at the system lifecycle terminal time point. The path cost between the ghost

node and the terminal nodes is set to 0. The model can then be viewed as finding

45

the shortest path of sending one unit from the first node to the ghost node, with all

other nodes in the model being transshipment points.

Minimize			77#89�89
9:;

9:<

8:=

8:<

Subject to

7�>? = 1
?

(@ = 1)

7�>? =
?

7�?>
?

	(@ = 2,3… ,CD)

7�?>
?

= 1	(@ = CD + 1)

i,j	are	the	nodes	number	in	the	segments	table.	
k,m	are	the	max	start	and	end	nodes	number		in	the	segments	table.	
Cij	is	the	path	cost	between	node	i	and	node	j	in	the	graph.		
Variable	�>?=1,	if	the	path	from	node	i	to	j	is	chosen	for	shortest	path,	otherwise	0.	

Lingo [39] is a comprehensive modeling language and a set of solvers for

linear, non-linear, and integer programming from Lindo system Inc. The

transshipment model is built and optimized by Lingo. The minimized total

maintenance cost and optimized time schedule output from Lingo are given as the

result.

5.3 CASE STUDY

In this section, a CAN controller industrial system is used as a case study to

validate and analyze the model.

5.3.1 Experimental system

CAN is an industrial bus standard designed to allow microcontrollers and

devices to communicate with each other. This project started from a CAN

controller system used in industrial construction machinery. The basic CAN node

contains an MCU or microprocessor and a CAN controller. In this case, cost,

performance and power consumption are not critical issues. However, this type of

long life cycle system requires greater consideration to be given to maintenance.

For our experimental CAN controller system, an MCU (PIC16F876) was

implemented onto the board. A COTS CAN controller (MCP25020) was

implemented on the board communicates with the MCU via Serial Peripheral

Interface (SPI) bus. The CAN node architecture can be seen in Fig 5-4. For

simplicity, other physical circuits are not considered.

46

5.3.2 Model validation experiment

MCU is considered as component 1 and the CAN controller considered as

component 2. The life cycle of MCU is 2 units of time and the CAN controller is 3

units of time. The system life cycle is 7 units of time.

The sales value of the system can be estimated from formula (1). In this case

the mean µ	is equal to 3.5 units of time. The standard deviation	σ is equal to 1 unit

of time. The sales peak p is assumed to be 5,000. The LTB cost can be estimated by

means of formula (6). The interest rate (,) is given as 10%. Safety margin is set to

20%. Holding cost for both components (H1 and H2) is given as 2 for every unit of

time. The cost value is represented by $. The given parameter values are synthetic

and experimentally selected.

Table 5-1. Input parameter

Parameter Value Parameter Value

Ls 7 r 10%

p 5,000 M 20%
L1 2 H1, H2 2
L2 3 #<X 40,000

U1 30 #!X 15,000

U2 10 #<,!X 45,000

5.3.3 Model response analysis

More experiments are implemented in order to analyze the response to

different input parameter values.

Some parameters such as interest rate and, storage cost will affect the LTB

cost for both components. A test of maintenance cost responding to the interest

rate is implemented. The interest rate is supposed to increase from 0 to 100% (100%

should not occur in the real world and it is merely an experiment).

MCU

PIC16F876 MCP25020

S P I

CAN
Controller

Figure 5-4. CAN controller system architecture

47

Another test is to increase the unit cost of the CAN controller (U2) from 10 to

15 and 20, in order to analyze how the maintenance cost is responding to the unit

cost.

5.3.4 Result

The state transfer graph for the whole system life cycle is shown in Fig 5-5.

The lifecycle curves of the system and components are also integrated into the

graph. The curves provide the sales value and lifecycle for the components and

system. In relation to the algorithm, some states nodes will be located at time 8.

Since the system lifecycle is 7, the management work should be ended at time 7.

The nodes at time 8 (dotted circle in Fig 5-5) should be relocated to time 7. The

algorithm for this terminal time point situation is applied in the model. The final

graph then has terminal time points (24 to 31) at time 7. There are 31 total possible

states nodes which exist in the system life cycle.

Matlab is used to generate the graph. The segments table will be output to

Lingo for further optimization.

In this case study, a ghost node 32 is assumed. This node connects to every

terminal node with zero path cost, as shown in Fig 5-6. The model can then be

viewed as finding the shortest path of sending 1 unit from node 1 to node 32. The

transshipment model is then able to be programmed and optimized in Lingo.

48

R1R2

5 6 7 2

11

5

10

1

2

3

4

Time(unit of time) 3 4

R1R2

L1

R1

R1R2

L2

R2

L1

R1

R1R2

R1R2

L2

R2

R1R2

R1R2

R1R2

R1R2

R1R2

R1R2

6

7

8

9

12

13

14

15

16

L2

R2

L1

R1

L1

R1

R1

L1

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

8

L1

R1

R1R2

1

S
a
le
s
 v
a
lu
e
 (
k
 u
n
it
s
)

Component 1: MCU

Component 2: CAN Controller

System

P1,1P2,0

P1,1P2,1

P1,0P2,1

P1,1P2,0

P1,1P2,0

P1,1P2,1

P1,0P2,1

P1,1P2,1

P1,0P2,1

P1,1P2,0

P1,1P2,0

P1,1P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,1

P1,0P2,1

P1,1P2,1

P1,1P2,0

P1,1P2,1

P1,1P2,0

P1,1P2,1

P1,0P2,1

P1,1P2,0

P1,1P2,0

P1,1P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,1

Figure 5-5. CAN controller system state transfer graph generated by Matlab

49

R1R2

5 6 7 2

11

5

10

1

2

3

4

Time (unit of time)3 4

R1R2

L1

R1

R1R2

L2

R2

L1

R1

R1R2

R1R2

L2

R2

R1R

R1R2

R1R2

R1R2

R1R2

R1R2

6

7

8

9

12

13

14

15

16

L2

R2
 L1

R1

L1

R1

R1

L1

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

8

L1

R1

R1R2

1

S
a
le
s
 v
a
lu
e
 (
k
 u
n
it
s
)

Component 1: MCU

Component 2: CAN Controller

System

P1,1P2,0

P1,1P2,1

P1,0P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,1

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,1P2,0

P1,0P2,1

P1,0P2,1

P1,0P2,1

P1,0P2,1

Figure 5-6. Final CAN controller system state transfer graph

G

32

50

The minimized system maintenance cost is estimated as 112.77k$. The

optimized maintenance schedule is shown in Table 5-2. These results are based on

the synthetic and experimentally selected parameter values in Table 5-1.

Table 5-2. Maintenance schedule

Time
point

Variable
Maintenance
cost (k$)

2 R1 40

3 L2 26.876

4 R1R2 45

6 L1 0.898

An explanation of the maintenance cost VS Time curve: ① No component obsolescence occurs. Maintenance cost will be 0 in this

period. ② MCU obsolete at time point 2. An MCU redesign will be implemented and

the cost will be 40k$. (It is supposed that the redesign time is negligible

when compared to the system life cycle). ③ At time point 3, the CAN controller becomes obsolete. An LTB of a

peripheral is implemented. The safety margin cost is 9598.504$ in this case

and it will be generated at the time of making the LTB order. ④ In this period, the holding costs and the interest rate costs cause the

maintenance cost to be linearly increased. ⑤ Both components are obsolete. A redesign involving two components is

implemented and the cost is 45k$.

Figure 5-7. Maintenance cost VS Time curve

51

⑥ At time point 6, an MCU LTB is implemented. Since the time period is

almost at the EOL of the system, the order amount will be minimal. The

LTB cost is 0.9888 k$ in this case.

The maintenance cost responding to the interest rate curve is shown in Fig 5-

8. The maintenance cost will be increased together with the interest rate until it is

equal to 64.6%. The maintenance cost will remain at a constant value of 1.4*105

when the interest rate is larger than 64.6%.

From Fig 5-8 and the time schedule output from the model, it was

determined that the model will prefer an LTB at two time points when the interest

rate is low. The maintenance cost increases linearly when the interest rate is

growing from 0 to 64.6%, according to formulae (4) and (6). When the interest rate

is larger than 64.6%, the model will prefer to implement a redesign instead of an

LTB, since the LTB cost exceeds the redesign cost. The redesign cost is not affected

by the interest rate, so the maintenance cost remains constant.

Another experiment is to increase the unit cost U2 from 10 to 15 and 20. The

maintenance schedule comparison is presented in Table 5-3. The graph for the

maintenance cost together with the sales curve is shown in Fig 5-9.

Table 5-3. Maintenance schedule for different unit price

Time point U2=10 U2=15 U2=20

2 R1 R1 L1

3 L2 L2 R1R2

4 R1R2 R1R2

5 R1

6 L1 L1 L2

Figure 5-8. Maintenance cost VS Interest rate curve

52

Table 5-3 shows that the model will change the maintenance schedule when

U2 is 20. When U2 is increased from 10 to 20, the LTB cost will be higher especially

when the sales value is high. The increased unit cost will result in an increased

interest rate cost and, safety margin cost, so the LTB cost will be increased

according to formula (6). The model then plans to involve the LTB at an earlier

stage and implements the redesign instead. This occurs when the system has a

high sales value. Therefore, the total maintenance cost will not increase

significantly. The implication is that the model will prefer a redesign instead of an

LTB when the sales value is high, which meets our expectations.

At the present time the model that has been built contains many

simplifications and has a limitation of 2 components. The experiment is

implemented with assumed parameters values. The uncertainties for a real world

application are also not considered. However, this is an initial step before it is

expanded and it is verify using real industry statistical data.

5.4 CONCLUSION

This chapter discusses the component obsolescence problem and presents a

mathematic model of obsolescence management for long life cycle embedded

system maintenance. The model presented in this paper considers redesign and

LTB as two management methods. This model can estimate the minimized

management costs for different system architectures. A simple CAN controller

system case study is shown in order to apply the model. A minimized

management cost and an optimized management time schedule are given as the

result. Test experiments of the maintenance cost responding to the interest rate and

Figure 5-9. Maintenance cost VS Time comparison curve

53

unit cost are implemented. The responses from the experiments meet our

expectations.

54

55

6 THESIS SUMMARY

The maintainability of a long life cycle embedded system for different design

technologies has been analyzed. An industrial CAN controller system is used as an

experimental system, which is implemented using different design technologies,

generating four different cases. The essence of each case and the consequences

associated with the different risk scenarios during system maintenance are

analyzed.

Various potential risks and their consequences during product maintenance

work have been discussed. This is of particular relevance for an embedded system

which has long life cycle expectancy. The proposal was that an FPGA platform

could be used to replace the COTS IC platform for the system design. Different

CAN controller system cases have been evaluated using a number of risk

scenarios.

The maintenance issue associated with the portability of the IP for the FPGA

embedded system is highlighted. This has been conducted by means of a case

study of an FPGA based M-JPEG decoder project from OpenCores. This case study

analyses the IP’s portability between communication interfaces, development

environments and FPGA vendors. The analysis of the results from the case study

allows us to identify the design techniques that offer the highest portability for an

FPGA based IP. If designers use an IP in an improper way, they will face

significant difficulties in maintaining a long life cycle FPGA embedded system.

A methodology for the modification of soft IP interfaces is proposed. This

methodology is based on the fact that computation is divided into functional units

which have a distinct separation from communication. The benefit is, clearly, the

increased communication portability for a soft IP. In addition, the increased reuse

of design works leads to a reduced work load for the IP integrator. A case study is

presented to show that this methodology can be efficiently applied to a real-world

design. There are many essential issues for IP reuse apart from that of an interface

mismatch. IP design is a mixed topic with technical, financial and legal issues.

A mathematic model for long life cycle embedded system maintenance is

presented. The model can estimate system maintenance costs for different

architectures. This model can find optimized solutions regarding the components

obsolescence problem. The minimized maintenance cost together with an

optimized maintenance schedule can be estimated. An industrial CAN controller

system is used as our experimental system.

56

6.1 CONCLUSION

The proposed system on FPGA in combination with soft IPs will increase the

maintainability of a long life cycle embedded system. An FPGA platform with

vendor and device independent soft IP is the preferred design technology. The

result of our research could prove to be useful for designers who might be facing

difficulties in relation to maintaining a long life cycle embedded system.

It is convenient to use the technology and tool dependent firm IPs generated

by the FPGA vendor’s design tools for both quick and easy design work. However,

it is clearly shown in the thesis that this design technique should be avoided if

portability and maintainability are more important than development time. Clear

separation between the communication protocols and the IP’s computational parts

is another well known design technique that leads to higher portability and

maintainability for an IP component.

The SIPIMM is proposed to ease the soft IP interface problem. The

portability and reusability will be increased by using the methodology.

The presented obsolescence management model can offer maintenance

strategy guidance to the designers who are faced with components obsolescence,

although, at the present time, it has been built based on a number of assumptions

and simplifications.

6.2 FUTURE WORKS

The maintainability analysis for a long life cycle embedded system will be

extended for later PhD thesis work.

The number of IP components to be analyzed will be extended as well as for

more FPGA vendors and development tools/library. A deeper analysis in relation

to a number of issues regarding IP portability will be made. Finally, the idea will

be refined to provide a more general theory for the IP portability issue. The IP

interface modification methodology of SIPIMM should be practiced for more soft

IPs, as well as being extended to the implementation of more vendor devices other

than Xilinx.

The plan is to perform experiments with real life industrial statistical data

and to expand the component quantity to be more generic for the mathematic

maintenance model. A maintainability evaluation for different system design

technologies including COTS and FPGA is also planned.

57

7 SUMMARY OF PUBLICATIONS

7.1 PAPER I

This paper presents and raises the issues of maintaining an embedded system

which has a long life cycle. Such issues include obsolescence, function change

requirement or technology migration etc. Systems’ maintainability for different

design technologies are analyzed. Different platform cases are evaluated by

analyzing the technology of each case and the consequences of different risk

scenarios during system maintenance. The result shows that the FPGA platform

with vendor and device independent soft IP has the highest maintainability.

7.2 PAPER II

This paper suggests a soft IP interface modification methodology (SIPIMM) for

systems on FPGA. SIPIMM targets an interface-based soft IP model which is

introduced to ease the interface modification and interface reuse. The portability

will be increased accordingly, so this will ease the maintenance issue for a long life

cycle embedded system. A case study of an open-source IP is presented using

SIPIMM for system integration.

7.3 PAPER III

This paper discusses the use of an FPGA IP to ease the problem of electronic

components becoming obsolete. System migration between devices is unavoidable,

especially for long life cycle embedded systems, so IP portability becomes an

important issue for system maintenance. A case study is shown to analyze the

portability of an FPGA-based M-JPEG decoder IP. The lack of any clear separation

between computation and communication is shown to limit the decoder´s

portability with respect to different communication interfaces. The use of

technology and tool dependent firmware specifications within the M-JPEG decoder

is shown to limit the decoder’s portability with respect to development tools and

FPGA vendors.

7.4 PAPER IV

This paper makes a deeper analysis of the component obsolescence problem

and presents a mathematic model for a lifecycle analysis the long life cycle

embedded system. This model can estimate the minimum maintenance cost for

different system architectures. A simple CAN controller system case study is

shown to apply this model. A minimum maintenance cost and an optimum

maintenance time schedule are provided as the result.

7.5 AUTHORS CONTRIBUTIONS

The exact contributions of the authors of the four central papers in this thesis

are summarized in Table 7-1.

58

Table 7-1. Authors’ contributions

Paper

Main
authors

Co-authors Contributions

I XM BT
NL

XM : Analysed the maintenance issues.
BT : Supervised the work and help to build risk analysis
NL : Supervised the work

II XM BT
NL

XM : Designed the methodology
BT : Supervised the work
NL : Supervised the work

III XM

BT
NL

XM : Made analysis and experiment
BT : Supervised the work and help to made analysis
NL : Supervised the work

IV XM

BT
LO

XM : Designed the model and implemented experiments
BT : Supervised the work and gave suggestions
LO : Helped to build linear programming part

1. Xiaozhou Meng (XM)
2. Benny Thörnberg (BT)
4. Najeem Lawal (NL)
5. Leif Olsson (LO)

59

8 REFERENCES

[1] Steve Heath, Embedded Systems Design, 2nd edition, Elsevier Science. 2003

[2] Wayne Wolf, Computers as components: principles of embedded computing system

design. 2nd edition, Morgan Kaufmann publishers. 2008.

[3] Raj Kamal “Embedded Systems: Architecture, Programming, and Design” McGraw-

Hill, 2008.

[4] Solomon R., Sandborn P.A., Pecht M.G., “Electronic Part Life Cycle Concepts and

Obsolescence Forecasting”, IEEE Transactions on Components and Packaging

Technologies, Vol: 23, 2000.

[5] Product Life Cycle Data Model, American Standard ANSI/EIA-724, Sept. 19, 1997.

[6] M.G. Pecht, D. Das, “Electronic part life cycle” IEEE Transactions on Components and

Packaging Technologies, Mar 2000, pp. 190 - 192.

[7] PartMiner WorldWide Inc., https://www.partminer.com/

[8] P.A. Sandborn, F. Mauro, R. Knox, "A Data Mining Based Approach to Electronic Part

Obsolescence Forecasting" IEEE Transactions on Components and Packaging

Technologies, Sept. 2007, pp. 397 - 401

[9] P. Sandborn, “Trapped on Technology’s Edge,” IEEE Spectrum, 2008, pp. 42–58.

[10] PLB v3.4 and OPB to PLB v4.6 System and Core Migration User Guide.

http://www.xilinx.com/support/documentation/sw_manuals/edk10_mg_ug.pdf

[11] “ElectronicsTalk,” Aug. 19, 2003. http://www.electronicstalk.com/news/tex/tex489.html,

Texas Instruments. Obsolescence Policy Gains Period of Grace.

[12] N. Audsley, I. Bate, A. Grigg, “Portable code: reducing the cost of obsolescence in

embedded systems,” Computing & Control Engineering Journal, 1999, pp. 98–104.

[13] J. Schmidt, E.F. Hitt, “Technology obsolescence (TO) impact on future costs” 17th

AIAA/IEEE/SAE Digital Avionics Systems Conference, 1998. Pp. A33 - 1-7 vol.1.

[14] V. K. Madisetti, “Reegineering digital systems,” IEEE Design & Test of Computers,

1999, pp. 15–16.

[15] CAN Specification version 2.0, 1991, Robert Bosch GmbH,

http://www.semiconductors.bosch.de/media/pdf/canliteratur/can2spec.pdf

[16] MicroBlaze Processor Reference Guide,

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/mb_ref_guide.pdf

[17] LogiCORE IP Processor Local Bus (PLB) v4.6 (v1.05a),

http://www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf

[18] OpenRISC GNU toolchains, http://opencores.org/openrisc,gnu_toolchain

[19] Digilent Nexys™2 Spartan-3E FPGA Board,

http://digilent.org/Products/Detail.cfm?Prod=NEXYS2

[20] Raj Kamal, Embedded Systems: Architecture, Programming, and Design. McGraw-Hill

publisher, 1st edition, 2008.

[21] S.E.-D.A. Khalil, A.M. Wahba, “Usage of run-time re-configuration for system porting

in automotive applications” 4th International Design and Test Workshop (IDT), Nov.

2009. pp. 1 - 6

[22] K. Parnell, "Driver assistance systems - real time processing solutions” Proceedings of

IEEE Intelligent Vehicles Symposium, June 2003, pp. 547 – 551.

[23] P.Raghavan, Amol Lad, Sriram Neelakandan, Embedded Linux System Design and

Development, Auerbach Publications, 2006, page 7

60

[24] J. Torresen, T.A. Lovland., "Parts Obsolescence Challenges for the Electronics Industry,"

IEEE Design and Diagnostics of Electronic Circuits and Systems, 2007. pp 1.

[25] N. Bray, "Designing for the IP supermarket" Fall VIUF Workshop, Oct 1999. pp. 8 - 13

[26] D. D. Gajski, et al., "Essential issues for IP reuse," Asia and South Pacific Design

Automation Conference. Yokohama, 2000, pp. 37-42,.

[27] D. K. Kim, K. W. Kwon, J. C. Choi, C. D. Lee, "Reusable intellectual property cores in PC

data protection ASIC design," The First IEEE Asia Pacific Conference on ASICs. Seoul,

1999, pp. 278-281.

[28] A. Vorg, M. Radetzki, W. Rosenstiel, "Measurement of IP qualification costs and

benefits," Proceedings of Design, Automation and Test in Europe Conference and

Exhibition. 2004, vol. 2, pp. 996-1001.

[29] M. Keating, P. Bricaud, Reuse Methodology Manual: For System-on-a-Chip Designs,

3rd ed., MA:Kluwer, Boston, 2002.

[30] R. Saleh et al, "System-on-Chip: Reuse and Integration," Proceedings of the IEEE. 2006,

vol.94, pp. 1050-1069

[31] (M)JPEG Decoder, http://www.opencores.org/project,mjpeg-decoder

[32] OpenCores, http://www.opencores.org

[33] P.J. Bricaud, "IP reuse creation for system-on-a-chip design" Proceedings of the IEEE

Custom Integrated Circuits,May 1999, pp. 395 – 401

[34] D. Feng, P. Singh, P. Sandborn, “Lifetime Buy Optimization to Minimize Lifecycle Cost”

Proceedings of the 2007 Aging Aircraft Conference, Apr 2007

[35] R.C.Stogdill, "Dealing with obsolete parts" IEEE Design & Test of Computers, Aug 2002,

pp. 17 – 25.

[36] L. Anghel, et al. “Preliminary Validation of an Approach Dealing with Processor

obsolescence” Proceedings of 18th IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems, Dec 2003, pp. 493 - 500.

[37] F. Abate, M. Violante, "Coping with obsolescence of processor cores in critical

applications" IEEE International Symposium on Defect and Fault Tolerance of VLSI

Systems, Oct. 2008. pp. 24 – 32

[38] Wayne L. Winston, Operations Research: Applications and Algorithm, 4th ed. Duxbury

Press, 2003.

[39] Anon, Lingo, The Modeling Language and Optimiser, Lindo Systems Inc., Chicago,

USA , 2003.

