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ABSTRACT 

In this thesis, the work presented is in relation to consideration to the 
maintenance of a long life cycle embedded system. Various issues can present 
problems for maintaining a long life cycle embedded system, such as 
component obsolescence and IP (intellectual property) portability.  

For products including automotive, avionics, military application etc., 
the desired life cycles for these systems are many times longer than the 
obsolescence cycle for the electronic components used in the systems. The 
maintainability is analyzed in relation to long life cycle embedded systems for 
different design technologies. FPGA platform solutions are proposed in order 
to ease the system maintenance. Different platform cases are evaluated by 
analyzing the essence of each case and the consequences of different risk 
scenarios during system maintenance. This has shown that an FPGA platform 
with a vendor and device independent soft IP has the highest maintainability. 

A mathematic model of obsolescence management for long life cycle 
embedded system maintenance is presented. This model can estimate the 
minimum management costs for the different system architecture and this 
consists of two parts. The first is to generate a graph in Matlab which is in the 
form of state transfer diagram. A segments table is then output from Matlab 
for further optimization. The second part is to find the lowest cost in the state 
transfer diagram, which can be viewed as a transshipment problem. Linear 
programming is used to calculate the minimized management cost and 
schedule, which is solved by Lingo. A simple Controller Area Network (CAN) 
controller system case study is shown in order to apply this model. The model 
is validated by a set of synthetic and experimentally selected values. The 
results provided by this are a minimized management cost and an optimized 
management time schedule. Test experiments of the maintenance cost 
responding to the interest rate and unit cost are implemented. The responses 
from the experiments meet our expectations.  

The reuse of predefined IP can shorten development times and assist 
the designer to meet time-to-market (TTM) requirements. System migration 
between devices is unavoidable, especially when it has a long life cycle 
expectation, so IP portability becomes an important issue for system 
maintenance. An M-JPEG decoder case study is presented in the thesis. The 
lack of any clear separation between computation and communication is 
shown to limit the IP’s portability with respect to different communication 
interfaces. A methodology is proposed to ease the interface modification and 
interface reuse, thus to increase the portability of an IP. Technology and tool 
dependent firmware IP components are also shown to limit the IP portability 
with respect to development tools and FPGA vendors.  
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SAMMANFATTNING 

Denna avhandling beskriver de problem som specifikt kan uppstå vid 
underhåll av produkter med inbyggd elektronik och som har en lång livscykel 
på marknaden. Att de ingående elektroniska komponenterna ej längre finns 
att köpa eller att (Intellectual Property) IP-komponenter ej är portabla är några 
av de problem som kan uppstå. 

Livscykeln för elektroniska produkter inom ex. fordon, flyg eller militär 
industri är oftast många gånger längre än livscykeln för de komponenter som 
ingår. Svårighetsgraden för underhåll av inbyggd elektronik analyseras med 
avseende på olika designteknologier. Programmerbara grindmatriser, FPGA 
förslås vara en kretsteknologi som underlättar underhåll. Olika 
konstruktionsplattformar utvärderas utifrån ett antal riskscenarion och dess 
påföljande konsekvenser. Studien visar att FPGA-teknologin med fabrikat- 
och kretsoberoende mjuka IP-komponenter är den designteknologi som 
resulterar i lägst svårighetsgrad för produktunderhåll.  

En matematisk modell för minimering av kostnader orsakade av 
åtgärder för produktunderhåll presenteras. Modellen väljer och schemalägger 
ett antal underhållsåtgärder under tiden för produktens hela förväntade 
livscykel. På så sätt kan den totala kostnaden för produktens underhåll 
minimeras. Utifrån parametrar så som kostnader för omkonstruktion, 
lagerhållning, ränta och de ingående komponenternas förväntade livscykel 
genereras en tillståndsgraf i Matlab. Linjärprogrammering används därefter 
för att välja den kombination av underhållsåtgärder som ger lägst kostnad. Vi 
kan visa att ett enkelt inbyggt system bestående av en mikroprocessor och en 
periferienhet kan analyseras med den utvecklade modellen. 

Återanvändning av IP-komponenter kan korta utvecklingstider för 
inbyggda elektroniksystem och underlätta för företag att snabbt nå marknader 
med sina produkter. I de fall produkten har en lång livscykel blir det 
oundvikligt att någon gång behöva flytta systemet till en ny typ av krets. IP-
komponenternas portabilitet blir därför en viktig parameter när svårigheter 
för underhåll av en produkt skall analyseras. Brist på tydlig separation mellan 
beskrivning av beräkning och kommunikation begränsar IP-komponenternas 
portabilitet med avseende på val av kommunikationsinterface. En metodologi 
föreslås i syfte att underlätta modifiering av IP-komponenternas 
kommunikationsinterface. Teknologi- och verktygsberoende beskrivningar av 
IP-komponenter är också begränsande för dess portabilitet med avseende på 
utvecklingsverktyg och kretsfabrikat. 
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1 INTRODUCTION 

1.1 EMBEDDED SYSTEM 

The embedding of microprocessors into equipment and consumer 
appliances started before the appearance of the PC (Personal Computer) and this 
process consumes the majority of microprocessors that are made today. In this 
way, embedded microprocessors are more deeply ingrained into everyday life than 
any other electronic circuit. For instance, in a well-equipped car, nearly every 
aspect has some form of electronic control associated with it and thus there is the 
need for a microprocessor within an embedded system. [1] 

1.1.1 Embedded system overview 

An embedded system is a kind of computer system with either one or a few 
dedicated specific functions. It is often embedded as part of a complete device 
including hardware and mechanical parts.  

� An embedded system is controlled by one or more main processing 
cores such as microprocessor or digital signal processors (DSP), 
described in Figure 1-1. Microprocessors come in many different levels 
of sophistication and are usually classified by their word size [2]. 

� An 8-bit microprocessor is designed for low-cost applications. 
� A 16-bit microprocessor is often used for more sophisticated 

applications that may require either longer word lengths or off-
chip I/O and memory. 

� A 32-bit RISC (Reduced Instruction Set Computing) 
microprocessor offers very high performance for computation-
intensive applications. 

� Embedded systems usually contain a memory chip. The memory can be 
either on-chip or off-chip. [3]  

� Internal RAM (Random Access Memory) in a microprocessor is 
for register. 

� Internal ROM (Read Only Memory) is for program 
� External RAM is for the temporary data and stack 
� Internal caches (in some microprocessor) 
� EEPROM (Electrically Erasable Programmable Read-Only 

Memory) or flash memory is for data saving 
� External ROM or PROM (Programmable Read-Only Memory) 

is for software 
� RAM memory buffers at the interface ports 

� Embedded system can communicate via peripherals, e.g. RS-232, 
Ethernet, CAN (Controller Area Network) - bus.  
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� Radio transceiver can be integrated into the system. E.g. RF (Radio 
Frequency) transmitter, Bluetooth transmitter. 

� Analogue ADC (Analog to Digital Convertor) converts an analogue 
signal from a sensor to a digital signal for data processing by the 
embedded system. Also, DAC (Digital to Analog Convertor) can 
convert a digital signal to an analogue signal for the actuator. 

� An embedded system usually contains one or more debug ports for 
system debugging. 

� Human interface such as the TFT (Thin-Film Transistor) monitor, in 
which the keyboard is the communication channel between a human 
and the embedded system. E.g. TFT monitor, keyboard. 

� Others hardware unit such as timers, interrupt handler etc. and are not 
shown in the figure. 

 
 
 
 
 
 
 
 
 
 
 

 
 

A microcontroller (MCU) is a single chip containing a microprocessor, 
memory, timers, interrupt controller, and peripheral for different requirement etc. 
MCU is used in embedded system for automatic control or communication. 

Software is also an important part for embedded system, however in this 
thesis we will focus on hardware part. 

Embedded systems are widely used in commercial electronic, industry 
systems, avionics etc. They can be divided into several application types: 

General purpose system:  
• Functions are similar to those for a PC but in an embedded package. 
• Video game console, set-top boxes, tablet 

Control system: 
• Real-time system 
• Vehicle engines control system, flight control system 

CPU DAC 

Memory 
Radio 

Human 
Interface 

Peripheral 

Sensor Actuator 

Debug 
Port 

ADC 

Figure 1-1. Block diagram of embedded system 
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Signal processing system: 
• Large data stream and significant computation 
• Video decoder, radar 

Communication system: 
• Information switching and transmission 
• Telephone system, network router 

1.1.2 Design goals for an embedded system 

A system design process has several important goals: 

• Function: Mobile phone, Vehicle control etc. 

• Performance: Clock frequency, response time etc. 

• Manufacturing cost: Important for a consumer product to have a 
low retail price. 

• Power consumption: Especially important for handheld devices. 

• TTM: The profitable market life is time limited.  

• Design cost: Development environment and engineering costs. 

• Quality: Reliability, usability etc. 

• Others: Maintainability, security. 

1.2 EMBEDDED SYSTEM HARDWARE PLATFORM 

The hardware architecture of the embedded system can be formed as a bus 
based system, see Fig.1-2. There could be different hardware technology platforms 
for an embedded system, including Application-Specific Integrated Circuit (ASIC), 
Field Programmable Gate Array (FPGA). 

1.2.1 Bus based embedded system 

 
Figure 1-2. System architecture of bus based FPGA system 

Debugger Peripheral CPU RAM 

: 

BUS 



 

4                                                      

In this thesis, the embedded system hardware architecture is considered as a 
bus based system. The bus is the mechanism by which the CPU communicates 
with others devices in the system [2]. The bus forms the backbone of the hardware 
system. One of the major roles of the bus is to provide an interface in relation to the 
memory and other devices. Each component requires interface protocol logic to 
connect to the bus. 

1.2.2 COTS IC hardware platforms 

COTS is short for Commercial Off-The-Shelf, which means products that are 
ready-made and available for sale to the general public. A modern embedded 
system designer would prefer to use COTS IC to implement embedded system, 
such as MCU, DDR-SDRAM etc. These will provide the best performance and 
lowest power consumption since their functions and performance are analyzed 
before their fabrication.  

1.2.3 Programmable hardware platforms 

A programmable logic device or PLD is an electronic component used to 
build reconfigurable digital circuits. A PLD has an undefined function at the time 
of manufacture. The function can be defined and programmed by the user 
(designer) such as FPGA or CPLD (Complex Programmable Logic Device). There 
are several basic process technology types for FPGA including Flash , Anitfuse , 
EEPROM, SRAM. An antifuse based FPGA is one-time programmable, while the 
others are re-programmable. In this thesis, the FPGAs mentioned are those of the 
re-programmable type. 

1.3 DEVELOPMENT ENVIRONMENT 

A typical embedded system design environment is shown in Fig.1-3. The 
software and hardware (e.g. FPGA) development is implemented in a PC, known 
as a host system which is illustrated in Fig.1-3. The hardware on which the code 
will finally run is known as the target system. The target system connects to the 
host system via a UART (Universal Asynchronous Receiver/Transmitter), 
debugger or Ethernet etc.  

The main tasks of the host system include: 

• Program hardware for the target (FPGA) 
• Load software programs into the target 
• Start and stop program execution on the target 
• Examine memory and registers on the target 
• Receive debugging information from the target 
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1.4 PROBLEM DESCRIPTION AND MOTIVATION 

Some products are not as capable of adjusting to leading-edge technology as 
others and to catching the development pace of consumer products. For products 
such as automotive, avionics, military application etc., the desired life cycle for 
these systems is significantly longer than the life cycle for the electronic 
components used in the systems. The life cycle in this thesis refers to the product 
field life. It is the time period for which the product is available on the market. 
Component obsolescence problems occur in all systems with a life cycle longer 
than that of one or more of their components. No publication yet offers an 
obsolescence management solution in relation to controlling the system 
maintenance costs.  

The reuse of predefined Intellectual Property (IP) can lead to great success in 
system design and can assist the designer in meeting the TTM requirements. It is 
true that using IPs based FPGA device can mitigate the component obsolescence 
problem. However, the designer will still encounter problems if this is not used 
correctly. The lack of any clear separation between computation and 
communication will limit the IP’s portability with respect to different 
communication interfaces. Technology and tool dependent firmware IP will limit 
the IP’s portability with respect to development tools and FPGA vendors. 

In addition to obsolescence, a system will require re-engineering if its 
requirements change over time or if it becomes necessary to change the 
specifications. The availability of newer and better architectures (processors, 
interconnections and interface blocks) can provide the motivation for a re-
engineering of a product. System migration between devices during the system life 
cycle is unavoidable. 

Based on these considerations, it is important that the IP has a high 
portability in order to maintain a long life cycle embedded system. 

PC 

CPU UART 

Debugger 
Development 

Board 

Host system 
Target system 

Figure 1-3. Typical embedded system design environment 
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In this thesis, the maintenance issues including component obsolescence and 
IP portability etc. are discussed. Suggestions and a mathematic model are 
proposed in order to ease the maintenance problem for a long life cycle embedded 
system. 

1.5 MAIN CONTRIBUTIONS 

In this thesis, maintenance issues regarding to component obsolescence and 
IP portability are analyzed. A mathematic model for component obsolescence 
management is proposed. 

I. Maintenance issues for an embedded system are presented. An 
analysis is conducted in relation to the maintainability of long life 
cycle embedded systems for different design technologies. The 
result shows that an FPGA platform with a vendor and device 
independent soft IP provides the highest maintainability. 

II. A soft IP interface modification methodology for systems on FPGA 
is suggested. The methodology will ease the interface modification 
and interface reuse for an FPGA soft IP. 

III. Maintenance issues associated with the IPs portability for the 
embedded FPGA system are highlighted. The lack of any clear 
separation between computation and communication is shown to 
limit the IP’s portability with respect to different communication 
interfaces. Technology and tool dependent firmware specifications 
within a soft IP are also shown to limit the IP portability with 
respect to development tools and FPGA vendors.  

IV. A mathematic model for a life cycle analysis of the long life cycle 
embedded system maintenance is proposed. This model is able to 
estimate the minimized maintenance cost caused by component 
obsolescence for different system architectures. An optimized 
maintenance schedule will also be provided by the model. It can 
offer maintenance strategy guidance to those designers who 
encounter a components obsolescence problem.                                                                                                                                          

1.6 THESIS OUTLINE 

Chapter 1 provides the introduction, chapter 2 addresses the maintenance 
issues for the embedded system, chapter 3 focuses on the maintainability analysis 
of the CAN controller system, chapter 4 presents a portability analysis of an FPGA 
IP, chapter 5 describes a component obsolescence management model for the long 
life cycle embedded system, chapter 6 concludes the thesis summary while chapter 
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7 presents a publications summary. Papers which are basis for this research work 
are listed at the conclusion part. 
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2 MAINTAINACE ISSUES FOR EMBEDDED SYSTEM 

Modern embedded system designers consider various metrics during the 
design process, including performance, cost, power etc. However, one issue is 
often missing from this list, namely maintainability. Due to the rapid development 
in electronic technology, obsolescence and upgrade are inevitable for the majority 
of embedded systems which may create a variety of problems when maintaining a 
long life cycle system. 

2.1 ELECTRONIC COMPONENT LIFE CYCLE CONCEPTS 

The electronics industry is one of the fastest growing sectors of the world 
economy. Those new electronic components with faster speed, smaller size and 
lower power consumption will quickly dominate the market. Therefore, the 
occasion might arise in which electronic components which are the component 
parts of a product have a shorter life cycle than the actual life cycle of the product.  

Paper [4] described the product life cycle for the following curve: 

Gaussian distributions have been used by the Electronic Industries 
Association (EIA) as their standardized product life cycle (PLC) curve [5]. The 
equation of the life cycle curve is 

�(�) = ��(−(�−	)
/2

)             (1.1) 
 

where �(x) gives values for the sales revenue of the device/technology group (or 
number of units shipped, or the percentage market demand), � is the year, and 
�(x) is defined by the mean 	, which denotes the point in time of the sales-peak of 
the curve and the standard deviation 
. The factor � is the sales peak, the number 
of units shipped, or the percentage demand. 
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Figure 2-1. Standardized life cycle curve for a device/technology group 
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An electronic component life cycle can be divided into several stages: 
introduction, growth, maturity, decline, phase-out and obsolescence, as shown in 
Fig.2-1. A more in-depth explanation can be found in [6].  

A. Introduction Stage 

The introduction stage is the first stage of a product life cycle. The 
production costs are usually high because of the initial incurred design costs and 
low yield, frequent modifications and low or unpredictable production volumes.   

B. Growth Stage 

In the growth stage, the product is accepted by the market. The volume of 
sales increases gradually which brings about a price reduction.  

C. Maturity Stage 

The maturity stage is usually characterized by high-volume sales. 
Competitors with lower production cost may enter the market and thus, at this 
stage, the product will have the lowest costs throughout the entire life cycle.  

D. Decline Stage 

The decline stage indicates both decreasing demand and profit. During the 
decline stage, only a few specialized manufacturers remain in the market.  

E. Phase-out Stage 

During phase-out stage, a manufacturer may set a date for which the 
production of the part will cease. Usually, the manufacturer issues a 
discontinuance notice to customers, provides a last-time buy date, and suggests 
alternative parts or aftermarket manufacturers. 

F. Discontinuance and Obsolescence 

Discontinuance occurs when the manufacturer ceases to produce the 
components. The components may still be available in the market if the production 
line or stocks were bought by an aftermarket source. Obsolescence occurs at a 
technology level, while discontinuance occurs for a part number or manufacturer 
specific level.  

There are some commercial databases containing component lifecycle 
forecast data, such as CAPS Expert from PartMiner [7]. A data mining based 
algorithm [8] is also proposed to improve their predictive capabilities.  
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2.2 OBSOLESCENCE PROBLEM FOR EMBEDDED SYSTEM 

Obsolescence or end of life (EOL) is the final state of a product’s life cycle 
when a vendor will no longer produce, sell and sustain it (i.e. no longer provided 
by the vendor). The growing use of COTS components and equipment increases 
the risk of obsolescence. The reasons for obsolescence could be technological, 
market, planned or environmental etc.  

If a product is not popular in the market and becomes unprofitable, the 
manufacturer then has to commit the facilities and equipment to producing 
another product that results in greater profits. According to Moore’s law, the 
number of transistors on a chip doubles every 18 to 24 months: poor planning with 
regards to parts obsolescence causes companies to spend progressively more in 
order to deal with the effects of aging systems [8]. Intel is relatively famous for its 
rapidly developing technology and the result of this is the rather rapid 
obsolescence of their products. It demonstrates a unique capability for engineering 
major product improvements and releasing these products into the market every 
18 to 24 months. The new product will rapidly dominate the market, based on its 
increased performance, while still maintaining a similar price to that of its 
predecessor. It is possible to divide obsolescence into several types for embedded 
systems: 

� Peripheral interface obsolete: The peripheral interface standard is developing. 
A new standard will rapidly enter the mainstream based on its improved 
specifications. For instance, the USB (Universal Serial Bus) has become the 
most popular peripheral interface standard for consumer products during 
the past few years. The earlier IEEE 1284 parallel interface is no longer able 
to be supported in most devices. Thus, it becomes a possibility that long 
life cycle systems will suffer from the problem of interface mismatch 
because of these modern peripherals. 

� Communication bus obsolete: In this case, the communication bus is 
considered as an on-board or on-chip bus, which is the link between each 
component in the system. For example, it is not possible to support the 
previous Industry Standard Architecture (ISA) bus which is replaced by 
the Peripheral Component Interconnect (PCI) bus. For a hardware 
component, backward compatibility is not always guaranteed unless it 
incorporates an additional hardware bridge between two buses. A System-
on-chip (SOC) design can also suffer from the obsolescence associated with 
the communication bus. For example, the On-chip Peripheral Bus (OPB) 
has been replaced by the Processor Local Bus (PLB) [10] for the Xilinx 
FPGA on-chip bus.  
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� Component obsolete: A component is a product provided by the vendor, 
which for the majority, contains some unique properties and cannot be 
replaced by a product from other vendors. Component obsolescence is a 
severe case since it frequently occurs. Industry experts have estimated that 
over 200 000 components from over 100 manufacturers became obsolete in 
the year 2000 [11].  

� Others: Obsolescence issues such as obsolete development tools and test 
systems etc. must all be faced by designers.  

In the commercial markets, electronics components in consumer electronics 
such as PCs or portable applications, for instance, are updated very rapidly, while 
in automotive, avionics, military application etc., the desired life cycle for these 
systems is many times longer than the obsolescence cycle for the electronic 
components used in the systems. For avionics and defense applications, systems 
face obsolescence even before they enter into service (due to the long design, 
manufacturing and test cycles).  

It is often the case that only a part of the system is actually obsolete or 
requiring modification. Unfortunately, the replacement or modification is usually 
as difficult as designing an entire system because the system has been developed 
as a single entity, with much interdependence between its hardware and software 
[12].  

Obsolete technology impacts on a company in many ways. It impacts their 
costs in conducting their business and hence their profits, as well as their day-to-
day operations. Management must be aware of the impact of technology 
obsolescence on all aspects of their business, and factor this into their decision 
processes [13]. 

2.3 OTHERS MAINTENANCE ISSUES 

The availability of newer and better architectures (processors, 
interconnections and interface blocks) can provide the motivation for the re-
engineering of a product. In the commercial arena, manufacturers must re-engineer 
their products in order to provide those new features required by their customers, 
to incorporate newer technologies and standards, or to reduce costs and increase 
value [14]. 

Lower prices or better circuit technology could offer the opportunity for 
designers to replace the legacy components or even an entire system, so that they 
can reduce costs and increase value. However, it has not proved to be easy to 
enable either migration or replacement to occur within the different technologies 
as this will involve costly hardware and software redesigns.  
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It is a self evident truth that the customer always wants more. 
Manufacturers must re-engineer their products in order to provide new features 
required by the customers, to incorporate newer technologies and standards. 
Exciting new technologies can result in a better form and fit for a specification. 
Functions will require to be changed as will the bugs contained within the system 
and these require that the legacy system has to be re-engineered [14]. This is 
always both costly and time consuming.   

2.4 CONCLUSION 

This chapter has introduced electronic component life cycle concepts. 
Various problems in relation to maintaining a long life cycle embedded system are 
discussed, including obsolescence, function change requirement or technology 
migration etc. A more detailed analysis and a case study will be presented in 
subsequent chapters. 
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3 MAINTAINABILITY ANALYSIS OF CAN CONTROLLER SYSTEMS 

CAN [15] is an industrial bus standard designed to allow microcontrollers 
and devices to communicate with each other. In this section, four types of CAN 
controller systems architecture are described.  The maintainability in relation to 
these experimental systems was to be analyzed.  

3.1 CAN BUS 

The CAN bus was designed for automotive electronics and was first used in 
production cars in 1991. CAN is very widely used in vehicle and other industry 
applications. CAN runs at rate of 1Mb/s over a twisted pair connection of 40m. The 
bus protocol supports multiple masters on the bus. 

The devices that are connected by a CAN network are typically sensors, 
actuators, and other control devices. These devices are not connected directly to the 
bus, but through a host processor and a CAN controller. Each CAN node requires 
a host processor, a CAN controller and a transceiver. 

3.2 DESIGN CASES 

The project started from a CAN controller system used in industrial 
construction machinery. In such a case, cost, performance and power consumption 
are not critical issues. However, this type of long life cycle system requires greater 
consideration in relation to maintainability. 

The microprocessor (or MCU) and the CAN controller are two key 
components for this system. A peripheral of RS-232 is used for sensor reading. 

Two major design platform methods are mentioned, namely the COTS IC 
platform and the FPGA platform. The FPGA system mentioned in this chapter is 
an IP based design system. A wide range of choices exists for the COTS 
microcontrollers and CAN controllers IC from different vendors within the 
marketplace.  

However, for the FPGA platform, the soft microprocessors are divided into 
two categories:  

• Vendor dependent soft microprocessors: Such types of soft 
microprocessors are usually provided by the FPGA vendors, so it is not 
possible to implement them on any other vendor’s devices. E.g. Xilinx 
MicroBlaze and Altera Nios II. 

• Vendor independent soft microprocessors: Unlike the vendor 
dependent soft microprocessors, these have no restrictions and can be 
implemented on any vendors’ devices. E.g. ARM Cortex-M1 and 
OpenRISC from OpenCores. 
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3.2.1 Case 1: COTS IC based CAN controller system 

For the traditional COTS IC CAN controller system, an MCU was 
implemented onto the board. The UART controller and the physical interface 
circuit RS-232 were integrated as one chip for the peripheral interface. A CAN 
controller and its physical interface circuit CAN transceiver were implemented on 
board for the CAN bus protocol. The system board architecture with its relevant 
components can be seen in Fig. 3-1.  

 
3.2.2 Case 2: vendor specific FPGA system 

A vendor specific design case based on the Xilinx Spartan3E FPGA is shown 
in Fig. 3-2. The MicroBlaze [16] is a soft processor core designed for Xilinx FPGAs, 
which can be implemented and configured by Xilinx EDK (Embedded 
Development Kit), as shown in Fig. 3-3. In the system, a MicroBlaze soft processor 
controls the UART lite and XPS-CAN via the PLB. The Xilinx 128-bit PLB v4.6 
provides the bus infrastructure for connecting an optional number of PLB masters 
and slaves into an overall PLB system. It consists of a bus control unit, a watchdog 
timer, separate address, write, and read data path units, as well as an optional 
DCR (Device Control Register) slave interface to provide access to its  

PIC16F876 

Figure 3-1. Block diagram of COTS based CAN controller system 
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Figure 3-2. System architecture of Xilinx specific FPGA system 
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Figure 3-3. Architecture of Microblaze soft microprocessor 

bus error status registers [17]. 

The MicroBlaze Debug Module (MDM) is used for system debugging. The 
development tools, FPGA devices and IPs are all provided by Xilinx. It is a 
relatively simple task to perform system development since the majority of the IPs 
are verified and can be plug-and-play. The whole design and verification process 
can be executed with a Xilinx tool set. The RS-232 (ST3232) and CAN transceiver 
(TJA1050) physical interface circuits are also integrated on board. 

3.2.3 Case 3: vendor and device independent FPGA system 

A vendor and device independent system is a “soft” system which can be 
implemented on any FPGA device. The IP could be open-source licensed or 
provided by third party IP providers.  

Such a case is based on OpenCores soft IPs. The OpenRISC 1200 (OR1200) is 
a 32-bit scalar RISC with Harvard micro-architecture, 5 stage integer pipeline, 
virtual memory support (MMU) and basic DSP capabilities. OR1200 is licensed 
under a GNU Lesser General Public License (LGPL). The processor has already 
been verified as running on many vendors’ devices and can be downloaded free 
and can be modified by any individual. Its architecture is shown in Fig. 3-4. The 
soft microprocessor is described using the Verilog HDL (Hardware Description 
Language). As an open source core, the design is fully public and can be 
downloaded and modified by any individual.  
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Figure 3-4. Architecture of OpenRISC 1200 

The CAN controller system based on the OpenRISC 1200 is shown in Fig. 3-
5. The board structure is the same as in case 2, while the FPGA on-chip architecture 
is different.  

Every IP in the system is open source licensed in addition to being vendor 
and device independent. They communicate with each other via a wishbone bus, 
which is an open source hardware computer bus intended to allow communication 
between the parts of an integrated circuit communicate with each other. The aim is 
to allow the connection of differing cores to each other inside a chip. The Wishbone 
Bus is used by many designs in the OpenCores project. There are two types of 
Wishbone interconnects, namely the shared bus and crossbar switch. A shared bus 
interconnect only allows one master to communicate with one slave at the same 
time, while a crossbar switch may allow N masters to connect to N slaves at the 
same time, according to the number of implemented buses. In this particular 
implementation, shared bus architecture is used, which has similar features to 
those of a PLB bus. A debugger is used for debugging and software downloading. 
Different JTAG (Joint Test Action Group) cables can be used on different vendor 
devices and the entire system can be synthesized by using any synthesis tool. The 
GNU toolchain [18] which is running on a PC, including a compiler, simulator, 
debugger etc, is used to support the C software development as well as system 
debugging.  
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3.2.4 Case 4: mixed FPGA system 

This solution is comprised of a mixture of vendors specifics and an 
OpenCores platform. The board structure is the same as in case 2 and is shown in 
Fig. 3-6. A bridge IP is incorporated between the Xilinx PLB and the OpenCores 
Wishbone bus. The open-source licensed soft IPs, such as the CAN controller and 
the UART, can then be integrated into the system as a peripheral core for the Xilinx 
system. The software application is running on Microblaze microprocessor. All of 
the design and verification processes can be conducted in a Xilinx development 
environment. 

 
 
3.3 PROTOTYPE OF FPGA BASED CAN CONTROLLER SYSTEM 

A simple FPGA-CAN system demonstration is implemented. It works as a 
CAN node with a temperature sensor. The microprocessor, CAN controller and 
UART controller IP are implemented on the FPGA. The experimental system setup 
is described as follow (also marked in Fig. 3-7): 

1. Digilent Nexys2 [19] board with Xilinx Spartan-3E FPGA.  
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Figure 3-6. System architecture of Xilinx and OpenCores mixed 
FPGA system 
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2. The CAN transceiver (TJA1050) in the black box is the interface circuit 
between the CAN protocol controller and the physical bus. It connects to 
FPGA via Pmod ports. 

3. The temperature sensor transmits temperature values through an RS-232 
port on the FPGA board.  

4. Xilinx platform cable USB is used for downloading and debugging. 
5. USB-CAN is the interface controller between the CAN bus and the USB. The 

data then can be transmitted or received by the PC via a USB port. 

 
Figure 3-7. FPGA based CAN controller system prototype 

The UART controller (OpenCores) can receive (interrupt based) the 
temperature data from the temperature sensor via the RS-232. The temperature 
data is then transmitted to the CAN controller (OpenCores). The CAN controller 
transmits the data to the CAN bus via a CAN transceiver (TJA1050). The 
temperature data is received by the USB-CAN and is displayed on the screen by 
the software running on the PC. 
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3.4 RISK ANALYSIS 

 
A risk analysis is taken for all the cases described in section 3.1. A number of 

potential risk scenarios are identified. No probability is attached to the occurrence 
of each risk, but the consequences for the maintenance work are classified and 
evaluated, as shown in Fig. 3-8.  

3.4.1 Risk scenarios 

For the different platform cases presented in section 3.2, the system 
maintainability is evaluated by analyzing several potential risk scenarios. These 
scenarios have been developed according to the general problem issues discussed 
in section 2.2.  

• Microprocessor obsolescence: Microprocessor is the heart of an embedded system. 
If it becomes obsolete, then there could be serious consequences.  

• Peripheral interface obsolescence: A peripheral interface standard can be obsolete. 
The RS-232 interface in the system has the risk of obsolescence, including a 
UART controller chip, the physical interface circuit and connector. 

• Communication bus obsolescence: The communication bus has a connection with 
every component in the system. Its obsolescence will soon lead to the 
obsolescence of all associated components. 

• Better circuit technology migration: Better performance, lower price or being 
friendlier towards the environment would force the system to migrate to a new 
circuit technology.  

• FPGA vendor device migration: Vendor portability is a special issue for the FPGA 
system. For example, if the FPGA vendor stops providing the devices 
(obsolescence), in this situation, the system is forced to migrate from one 
vendor device to another.  

Figure 3-8. Risk analysis for different cases 
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• Function change requirement: For different requirements, add, delete or 
modification of functions are inevitable. For example, some systems might 
require an Ethernet interface for data transportation. 

3.4.2 Consequences 

Some of the consequences with regards to the risk scenarios are classified: 

• Major board redesign: This work is to redesign the board, including replacing or 
adding components, modifying the on-board bus system etc., which is costly 
and time consuming and can almost be equivalent to designing a new board.   

• Minor board redesign: The redesign of a minor part of the board, including 
replacing or adding physical interface circuits, redefining the pins for chips, 
changing the connector etc., which require significantly lower design efforts as 
compared to those associated with a major board redesign. 

• Driver redesign: This is the redesigning of the software drivers’ work in order to 
be consistent with hardware changes. 

• Interface modification: Modify the soft IPs’ communication bus interface protocol 
or add an interface converter.  

• Vendor restriction: Vendor restriction is specified for an FPGA platform. It means 
that the FPGA devices can be changed, but this is restricted to the same vendor.  

• Vendor independent: In contrast with vendor restriction, it does not have any 
restriction regarding the vendors. Any vendor device could be used. 

• Major system redesign: It means that there is a whole redesign of the FPGA 
system, including the on-chip hardware and software driver redesign. 

• Minor system redesign: Redesign parts of an FPGA system, including parts of the 
on-chip hardware and software driver redesign.  

3.5 RESULT  

Table 3-1 presents the results of the risk analysis for the design cases defined 
in section 3.1. The following is the explanation of table 3-1 for each of the risk 
scenarios: 

• Microprocessor obsolescence: For a COTS product based platform, if the MCU 
becomes obsolete, the entire system will become obsolete. It results in a major 
board redesign and driver redesign for a new MCU system. While the FPGA 
microprocessor is described as a synthesizable soft code, such a special form 
completely eliminates the risk of microprocessor obsolescence. The legacy IP 
can still be implemented on a recent FPGA device, which can solve the 
component obsolete issue described in section 2.2.1. 

• Peripheral interface obsolescence: The RS-232 serial interface in the system has the 
risk of obsolescence. If the MCU on the COTS platform does not support the 
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new peripheral interface standard, it should be replaced or a new interface 
controller should be integrated together with a physical interface circuit. Both 
situations will lead to a major board redesign. While for the FPGA platform, the 
interface controller can be changed by replacing a soft controller IP on-chip. The 
physical interface circuit (voltage converter etc.) and connector must also be 
changed which is a significantly easier task. A software driver redesign is 
necessary in order to adapt the new interface controller to the system. This will 
ease the peripheral interface obsolete issue of section 2.2.1. 

• Communication bus obsolescence: For the COTS platform, the whole system has to 
be redesigned since every component which is associated with the bus is 
obsolete. The FPGA soft IP does not have any risk of obsolescence, but new IPs 
will face interface mismatch problems with an old communication bus. 
Interface modification is required if the new IPs are integrated into the system, 
which will ease the communication bus obsolescence describe in section 2.2.1. 

• Better circuit technology migration: It is difficult for the COTS IC platform to 
benefit from better circuit technology requiring a major board and driver 
redesign. However, all the “soft” systems on the FPGA proposed in section V 
have the capability of accommodating new technology, only requiring minor 
board redesigns to redefine the pins for the new FPGA chip. However, a 
technology migration with regards to cases 2 and 4 is restricted to using the 
same vendor’s device. Case 3 is the best choice regarding the maintenance issue 
described in section 2.2.2 because of its device independency. 

• FPGA Vendor device migration: Vendor portability is an issue which is only 
relevant for FPGA systems. As has been mentioned previously, case 2 is a 
vendor specific solution and thus it is not possible to migrate it to other 
vendors’ devices. If the vendor ceases to provide the devices, e.g. vendor 
bankruptcy, the only choice is to redesign a whole new system for another 
vendor’s device. There is a better situation associated with case 4 as parts of the 
system are vendor independent and with the assistance of a new bus bridge, 
these parts could be migrated to other vendors’ device. The design effort as 
compared to that for case 2 is significantly lower. For example, the Avalon to 
wishbone bus bridge IP could be used if the system is migrated to the Altera’s 
device. Case 3 is a totally vendor independent system and thus offers the best 
portability from the FPGA platform cases and it would be easy to implement 
the vendor device migration.  

• Function change: The function must be changed for any new function 
requirement or for removing bugs in the current component or system. It is a 
costly task for a COTS platform, because it results in a major board redesign. 
Due to FPGA’s reconfigurabilty, the function in the form of a soft IP can be 
added, deleted or modified on-chip. In some situations, a physical circuit is 
required, such as an Ethernet controller. Some function changes do not even 
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require a board redesign but only a modification on-chip, if the FPGA is 
sufficiently large to accommodate the function, such as a video decoder. 

Table 3-1. Consequences of different risk scenarios 

Risks Consequences 
Case 

1a 2b 3c 4d 

Microprocessor 
obsolescence 

Major board redesign 
Driver redesign 

√ 
√ 

- 
- 

- 
- 

- 
- 

Peripheral interface 
obsolescence 

Major board redesign 
Minor board redesign 
Driver redesign 

√ 
- 
√ 

- 
√ 
√ 

- 
√ 
√ 

- 
√ 
√ 

Communication bus 
obsolescence 

Major board redesign 
Interface modification 

√ 
- 

- 
√ 

- 
√ 

- 
√ 

Better circuit 
technology migration 

Major board redesign 
Minor board redesign 
Driver redesign 
Vendor restriction 
Vendor independent 

√ 
- 
√ 

N/A 
N/A 

- 
√ 
- 
√ 
- 

- 
√ 
- 
- 
√ 

- 
√ 
- 
√ 
- 

FPGA vendor device 
migration 

Major system redesign 
Minor system redesign 
Minor board redesign 

N/A 
N/A 
N/A 

√ 
- 
√ 

- 
- 
√ 

- 
√ 
√ 

Function change 
requirement 

Major board redesign 
Minor board redesign 
Driver redesign 

√ 
- 
√ 

- 
√ 
√ 

- 
√ 
√ 

- 
√ 
√ 

a. COTS IC based CAN controller system   

b. Vendor specific FPGA system 

c. Vendor and device independent FPGA system   

d. Mixed FPGA system 

 
3.6 MAINTAINABILITY FOR DIFFERENT DESIGN CASES 

According to the evaluation in section 3.5, Fig. 3-9 can be used to 
encapsulate the conclusion for the case study.  

Figure 3-9. System maintainability model for different design technologies 
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3.6.1 COTS IC platform 

COTS IC solution has no reconfigurability and portability. The MCU and 
CAN controller are in the fixed hard form provided by the IC providers. The 
platform defines its specific drivers and software applications. After the 
completion and release of the system design, it becomes difficult to make any 
further changes. Therefore, it always requires a major board and driver redesign as 
shown in table 3-1, the implication of which is that this will involve high 
maintenance costs. However, the benefits of the COTS IC are its mature technology 
and market. COTS IC design technology is now the dominant design method for 
an embedded system. Compared to the FPGA platform, it is more attractive with 
respect to higher performance, lower power consumption and cost. 

3.6.2 Software issue for maintainability 

Although software development and related tools are not included in the 
risk analysis, they also represent an unavoidable part in the present day embedded 
systems’ development.  

The software application of an embedded system is usually programmed in 
a high level language (e.g. C), which always contains some processor dependent 
code. Even if it is a non-processor-specific code, the device drivers and device 
management, initialization and locator modules and initial boot-up record data 
require modifications when the hardware changes [20]. The majority of the 
currently available software written for embedded systems is almost 100% target 
dependents. Any change to the hardware requires a change in the software [21]. If 
the microprocessor is replaced by a different one, the software has to be 
consistently modified. The development environment, such as the compiler and 
library, can also be different. Such software modification and environment change 
will result in a system re-verification, which is time consuming. Depending upon 
the volume of the code, a redesign can cost hundreds of man-years of time, much 
of which will be devoted to validation and testing [22]. For this issue, the portable 
code [12] is proposed, which allows compiled software to be executed on any 
platform without change thus reducing the cost of hardware obsolescence.  

Using an embedded operating system can also mitigate the system 
migration problem. For example, embedded Linux brings vendor independence. 
Vendors of all embedded Linux distributions have more or less the same business 
model. The distributions are variations of the same theme. They all have the same 
and common basic components such as Linux kernel, libraries, basic utilities, and 
the like [23].  
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3.6.3 FPGA platform 

The FPGA system is described using a high level language and is 
implemented on a single chip. If sufficient space is reserved on the chip, a system 
function could easily be changed using EDA tools. Sometimes, the function 
requires only small changes of the physical circuit and connectors as thus a minor 
board redesign, as is shown in table 3-1. Thus the embedded system built on the 
FPGA platform is very promising when maintenance issues are taken into 
consideration.  

3.6.3.1 Vender specific system 

Vendor specific design technology is possibly the most widely used on an 
FPGA platform. Provision of the IPs for the system is by the FPGA vendors. IPs, 
such as this, are of reliable quality and it is very easy to integrate them into the 
system. Designers can obtain adequate support and guarantees. The system might 
be portable within the same vendor’s devices. However, such system design 
technology is unable to eliminate the risk that a vendor might cease to provide the 
devices (obsolescence). The reason for using a mixed solution is that it has better 
portability and is associated with the device independent parts. A designer can 
make an effort to integrate the OpenCores parts to other vendors systems by using 
a different bus bridge. Such mixed platforms benefit from vendor specific as well 
as vendor and device independent IPs, which can provide a compromised 
alternative for an embedded system design.  

3.6.3.2 Vendor and device independent system 

The FPGA platform implemented with vendor and device independent soft 
IPs is a preferred solution from the viewpoint of system maintenance, since it can 
solve all the maintenance problem issues described in section 2.2. The whole 
system, including the hardware and software, can be accommodated into any 
vendor device with any technology. The software application and GNU toolchain 
can be used on a new system device when performing the system migration. This 
thus eliminates the risk of device obsolescence from providers and it is also 
possible to benefit from the use of new circuit technology or lower cost hardware. 
Functions can also be modified for specific customer’s requirements. Therefore, 
such a method could be compared to the traditional manner for a COTS IC based 
embedded system design technology and the system on an FPGA, in combination 
with soft IPs has significantly higher maintainability according to the results 
shown in table 3-1.  

It is well known that FPGA’s circuit technology and performance are not 
always growing as fast as a COTS IC component, but this could be tolerated by 
control, monitoring or communication systems, which are manufactured in low 
volumes [24]. Many of these systems do not require the newest state of the art 
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technology and would be in use, preferably, for more than 10 years, such as is the 
case for the CAN controller system.  

The soft IP market is, at present, not sufficiently mature and for this 
OpenCores based platform, the quality of the open source IP is not satisfactory, 
since the designer can obtain very limited guarantee from providers. Because there 
is a lack of intensive verification, our experience is that IPs always contain bugs. 
However, it is to be expected that in the future, the high reliability vendor and 
device independent soft IP could be delivered by third party IP providers. Such IPs 
will become very good resources for designing a long life cycle embedded system.  

3.7 CONCLUSION 

A CAN controller system case study is present in this chapter. Various 
potential risks and their consequences for a long life cycle embedded system are 
discussed. It was proposed that an FPGA platform be used to replace the COTS IC 
platform for the system design. Different CAN controller system platforms have 
been evaluated using a number of risk scenarios. The results show that an FPGA 
platform with vendor and device independent soft IP has the highest 
maintainability. 
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4 FPGA IP PORTABILITY ANALYSIS 

In last section, we proposed the use of an FPGA platform implemented with 
vendor and device independent soft IPs. This technique can increase the 
maintainability of an embedded system. In this section, the portability issue for an 
M-JPEG decoder will be analyzed and discussed. 

4.1 INTELLECTUAL PROPERTY 

Due to the rapid development of silicon technology, the capacity and 
performance of FPGAs has improved significantly every year. This allows the 
designers to build more complex SOCs. In a SOC design, a shorter product life 
cycle means a shorter time to profit from sales. It is widely recognized that the 
reuse and sharing of IPs is becoming fundamental to closing the deep sub-micron 
design gap for successful SOC design [25]. The semiconductor IP industry is over 
15 years old but the reuse of IPs still contains many challenges for IP providers, 
system designers, IP business and IP tool developers [26].  

A reusable IP [27] can be a digital IP or an analog/mixed-signal (AMS) IP 
which is in the form of a processor, memory, decoder, mixed-signal converter, etc. 
Digital IP is the most popular form for design reuse in present day industry [28]. 
They are divided into three categories: soft, firm and hard [29]. A soft IP is a 
hardware specification at the register transfer level (RTL) and this specification 
involves synthesizable code written in HDL. It is a more suitable form of digital IP, 
since HDL can be written in a technology-independent manner and synthesized to 
gate level. Its advantages include flexibility, portability and reusability [30]. A firm 
IP is in the form of a parameterized netlist and a hard IP is a technology-specific 
layout. For FPGA system design, the IP usually refers to either a soft or firm IP. 

System designers usually obtain IPs, FPGA devices, library and tools from 
providers. In the majority of cases, they have a very limited knowledge with 
reference to the structural content of the adopted IP, so it must be considered to be 
a black box [30]. If an IP for FPGAs is truly portable, it must easily adapt to 
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different communication interfaces, being portable between different FPGA 
vendors and devices and having no dependencies with regards to the tool set used 
for the system design. This is illustrated in Fig. 4-1. Firm IPs for FPGAs are usually 
more or less technology dependent netlists which are also dependent on the used 
tool set. 

4.2 PROJECT BACKGROUND 

The aim of this work is to implement a real-time video processing system on 
an FPGA platform. The video system receives a video stream from several network 
cameras and manipulates them into a single video stream to be displayed on a 
single monitor. The system will be integrated into an industrial system of 
construction machinery. In order to develop the system, a host development 
computer, an FPGA board, a display monitor and network cameras are required. 
Fig. 4-2 depicts the real-time video processing experimental system. On the FPGA 
a video decoder, VGA controller and a soft microprocessor running Linux 
operating system were implemented. The host computer also acts as the console 
for the target board in relation to monitoring and recording the results through a 
UART interface or a telnet protocol.  

 

4.3 M-JPEG DECODER 

JPEG, or Joint Photographic Experts Group, is a standardized image 
compression mechanism. The lossy compression method takes advantage of the 
visual capabilities of the human eye. This kind of file can be split into two areas, 
namely the headers and the compressed scan data. The headers contain the 
information about the compressed data (size, format and so on) as well as the 
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Figure 4-2. Architecture of the real-time display of multiple video streams 
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quantization tables and Huffman tables. This standard defines many different 
techniques used to compress, decompress and store image data. Whereas an M-
JPEG is an informal name for multimedia formats, only the result of applying a 
JPEG to individual frames of a video sequence is called the M-JPEG. 

M-JPEG compression format uses standard JPEG still images for video 
streaming. These images are displayed and updated at a rate which is sufficient to 
create a video stream. Although this method demands many bandwidths, it 
provides excellent image quality and can provide access to every individual image 
contained in the stream. 

This project implemented an M-JPEG decoder project [31] that was a free 
download from OpenCores [32]. The decoder IP will be integrated into an 
industrial system of construction machinery which has long life cycle expectancy. 
It is used as a test case for the portability analysis described in section 4.4.  

The M-JPEG decoder project was originally developed using ISE/EDK 8.1 on 
the Xilinx Virtex II pro FPGA. Fig. 4-3 shows the architecture of the decoder 
system. Three main blocks are involved: M-JPEG Decoder Function, OPB IPIF and 
VGA Controller&Reorder. The Decoder IP behaves as a master on the OPB enabling 
the decoder to retrieve compressed JPEG data from Memory.  

OPB IPIF is the OPB interface protocol. The M-JPEG Decoder Function 
decodes the compressed JPEG data and outputs the uncompressed RGB data in a 
sequence corresponding to a series of Minimum Coded Units (MCU). This 
uncompressed RGB data is output directly to the VGA Controller&Reorder and 
further as an analog VGA signal to the Monitor.  

The internal data flow of the M-JPEG Decoder Function is further illustrated 
in Fig. 4-4. Compressed data enters the decoder at the Input Buffer and 
decompressed data is output from YCbCr2RGB (YCbCr to RGB color converter). 
Check FF is a function to check the end of image (EOI) marker. 
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Figure 4-3. Block diagram of the decoder project 
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4.4 PORTABILITY ANALYSIS 

This section describes the experimental method used to analyze the 
portability of the M-JPEG decoder IP described in section 4.3. This experiment 
includes all three dimensions shown in Fig. 4-1: Communication, FPGA Vendor 
and Tool/Library. 

The portability was firstly analyzed with respect to the FPGA Vendor and 
Tool/Library. Consideration in this first part will be given to the decomposition of 
the hardware specification into a number of components shown in the data flow 
graph in Fig. 4-4. For each one of these components’ corresponding to a hardware 
specification file, the following will occur: 

• Investigate the type of HDL specification, Firm IP (technology dependent 
netlists), Soft IP (RTL specifications) or Soft&Firm (a mix of soft and firm 
specifications). 

• Attempt to synthesize the hardware specification for Xilinx, Altera and Actel 
FPGA devices to verify whether or not this is possible. 

• Transfer the hardware specification from the Xilinx tool set ISE 8.1 to the ISE 
10.1. Test whether the transferred specification file can be synthesized in the 
ISE 10.1. 

Secondly, the decoder IPs portability will be analyzed with respect to 
Communication. This analysis is to be conducted on the decoder’s hardware 
architecture to determine whether it allows the communication interfaces to be 
easily modified. For an easy change of communication interface, it is important to 
verify that the hardware components are designed with a clear separation between 
communication and computation. 

4.5 ANALYSIS RESULTS 

This section describes the results from the case study described in section 4.4.  
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Table 4-1. Portability analysis with respect to FPGA vendor and tool/library 

Component 
Type of 

specification 

Library 

instantiations 

Portability 

Tool/ 

library 

Ven-

dor 

Input Buffer Firm FIFO - - 
Check FF Soft - √ √ 

Check FF FIFO Firm FIFO - - 

Entropy 
Decoding 

Soft & Firm 
Memory, Shift 
Reg 

- - 

Dequantize Soft & Firm 
Multiplier, Shift 
Reg 

- - 

Dezigzag Soft - √ √ 
IDCT Soft & Firm 2-D DCT - - 
Up Sampling Soft & Firm Block Memory - - 
YCbCr2RGB Soft - √ √ 
Header 
Readout 

Soft - √ √ 

VGA 
Controller & 
Reorder 

Soft & Firm 
Block Memory, 
Digital clock 
manager(DCM) 

- - 

OPB IPIF Soft - √ √ 

4.5.1 Portability with respect to FPGA vendor and tool/library 

Table 4-1 shows the library instantiations (column 3) in addition to a 
portability analysis with respect to Tool/library (column 4) and Vendor (column 5) 
for each component (column 1) in the M-JPEG Decoder IP. Column 2 shows that 
this IP is not a pure soft IP but contains several technology dependent firm IPs 
generated by the Xilinx CORE Generator. A check is made with regards to their 
portability from the Xilinx tool and library set ISE 8.1 to ISE 10.1. These 
components are also synthesized for Altera and Actel devices in order to check 
their portability between vendors. 

4.5.2 Portability with respect to communication interfaces 

The M-JPEG decoder IP shown in Fig. 4-3 has two communication interfaces:  

• Video Input: Compressed data enters the decoder at the Input 

Buffer. See Fig. 4-4. This is an FIFO buffer which connects to the OPB bus 
interface protocol OPB IPIF. See Fig. 4-3.  

• Video Output: Decompressed data is output from the YCbCr2RGB 
and is further written into the input buffer of the VGA Controller&Reorder 
for analog interfacing with the Monitor. 

In accordance with the experimental method specified in section 4.4, there is 
a requirement to analyze whether the two interfaces have a clear separation 
between the communication and computation.  
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• Video Input: This interface has an FIFO, Input Buffer which clearly 
separates the communication specified in OPB IPIF from the computation 
within the Decoder IP. This will allow a system designer to easily exchange 
the OPB bus interface to an arbitrary bus interface. 

• Video Output: This interface outputs uncompressed RGB data in a 
sequence corresponding to a series of MCU blocks.  The sequence of pixels 
carried by the analog video signal must correspond to either the 
progressive video or to the interlaced video. This means that data must be 
reordered from MCU wise to line wise. This reordering is implemented in 
the VGA Controller&Reorder component. If the system designer would like 
to exchange the current VGA interface into High-Definition Multimedia 
Interface (HDMI) or any other arbitrary video interface, the reorder of the 
video data will be missing. This means that the Video Output interface 
cannot be exchanged as easily as the Video input interface. 

4.6 SOFT-IP INTERFACE MODIFICATION METHODOLOGY 

To make efficient reuse of the IP and its interfaces, an interface-based soft IP 
model is introduced. Based on this model, the Soft-IP Interface Modification 
Methodology (SIPIMM) is proposed to ease the communication interface mismatch 
problem. 

4.6.1 IP verification 

When the integrator obtain the IP, it is necessary to know its usage history. 
From a functional point of view, it is valuable to know whether or not the IP has 
been proven in silicon. This detailed information includes in which device or 
configuration it was used and what the success rate was and so on. This is useful 
information which will assist the integrator in avoiding unnecessary detours. 

After this investigation and depending on its outcome, an ambitious 
functional verification of the IP core should be carried out. This step can, for 
example, be particularly important for an open-source IP, which offers very limited 
guarantees. Any test bench or verification methodology from the IP provider will 
ease this work. Otherwise, this task can be very difficult and time consuming, 
especially for configurable IPs.  

4.6.2 Interface-based soft IP model 

A soft IP core has the possibility of communicating with an external system. 
The on-chip system includes an on-chip bus, other system components or 
peripherals. The core can be an initiator (master) core or a target (slave) core 
depending on the implementation. For the interface-based soft IP model, several 
boundaries inside the core should be clarified, as shown in Fig. 4-5. 
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1)  Isolate the computation logic from the interface logic: The soft IP core can be mainly 
divided into two blocks: computational block and interface block. The 
Computational Block contains the main logic functions of an IP. The Interface Block 
implements all IP communication divided into one or several Interface Protocol 
Cells (IPC) as well as various ports for dataflow, control signals and debug signals. 
The Computational Block has a higher chance of being re-used since the Interface 

Block might be changed frequently due to different system configurations. This 
separation of computation from communication is effective for IP database 
management. It is a suggestion to the IP providers for creating reuse of IP in SOC 
Design [33]. 

2)  Boundaries between functions: Different functions in the Computational Block 
should have clear boundaries (Fcn1 to Fcnm). It might occur that the integrators only 
require parts of the functions of a Computational Block. A reduced Computational 

Block must then be working correctly after the removal of some of the unnecessary 
functions. 

3)  Boundaries between IPCs: When using multiple interfaces, each IPC should be 
independent (IPC1 to IPCn). This also prepares the way for selective reuse in the 
future design. 

4.6.3 Interface modification 

1)  Interface selection: Before designing the Interface Block, the integrator should 
already have conducted sufficient investigation in order to make a decision 
regarding which type of communication interface is the most suitable for the 
design specification. When the core requires multiple interfaces, the Interface Block 
is merely the assembly of different IPCs. IPC can be predefined and reused. This 
method for interface reuse can save a great deal of time since the designer need 
only to change some parameters without compromising the functionality of the IP 
core. 

2)  Interface design:  One or more IPCs might be designed if they are not predefined.  

• IPC design: Computational Block is a set of Dummy Functions in this case. 
See figure Fig 4-6. This set of dummies can be any synthesizable simple 
logic or test vector generator. A simulation of the IP that contains the 
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Dummy Functions and the IPC can be made using a simple test bench. 
Following this, the RTL code can be synthesized and the software 
application can be written. The IP verification can then be implemented in 
the FPGA prototype. Because the aim for the IPC for widespread reuse 
block, the aim in relation to the verification must be for zero-defect.   

• IPCs assembling (multiple interfaces): Iteratively assemble and verify the 
designed or predefined IPCs one by one, until the whole Interface Block is 
verified through simulation and hardware prototyping. A model of an 
assembled Interface Block with Dummy Functions is shown as Fig 4-7.  

3)  Interface mapping: Remove the original Interface Block. Map the output of the 
Computation Block to the input of the newly designed Interface Block. Write a test 
bench to verify the functionality of the complete IP as depicted in Fig. 4-5. 

4.6.4 IP integration 

Synthesize the RTL code. Write the software driver and test the software for 
a functional verification of the IP core. Integrate the entire IP into the system by 
connecting it to a simplified SOC for functional verification. Run the test software 
for the entire system. Evaluate the IP function and performance in order to finalize 
the design. 

4.7 INTERFACES MODIFICATION OF M-JPEG DECODER 

This section describes the work of modifying the M-JPEG decoder’s 
interfaces described in section 4.3 using the proposed methodology SIPIMM. 

4.7.1 IP verification 

Firstly, the functionality of the original decoder IP was verified by 
simulation using the test bench supplied as part of the decoder project. Following 
this, we implemented the original system of the project on our FPGA board. The IP 
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functionality was verified using the original development environment of the 
project.  

4.7.2 Interface-based soft IP model 

The computation and interface boundaries were vague in the original IP 
structure. The VGA Controller (interface protocol) and the Reorder (computational) 
were blended. It represented a low portability and was difficult to migrate to 
another system with different functions and different bus interfaces. In order to 
integrate the core into our system and increase its portability, several modifications 
to its structure were performed. 

For this work, we defined the interface-based soft IP model shown in Fig 4-8. 
The Reorder function was made into a part of the Computational Block and the VGA 
function was removed from the Decoder IP.  The Interface Block contains two IPCs 
for the streaming of both compressed and uncompressed video. There is clearly a 
distinct separation of computation from communication in the developed 
interface-based soft IP model shown in Fig 4-5. 

4.7.3 Interface modification 

1)  Interface selection: According to the investigation and system specification, the 
Fast Simplex Link (FSL) and Native Port Interface (NPI) interfaces were selected to 
replace the OPB and VGA interfaces. The On-Chip System feeds the decoder IP with 
the compressed video through the FSL interface at IPC1. The decoder IP outputs 
data to the system through the NPI interface at IPC2. The NPI interface was 
selected for its low latency and high bandwidth target to memory which is ideal 
for real time video communication. FSL and NPI are custom interfaces and not 
predefined, so the two IPCs must be designed. 

2)  Interface design: The FSL and NPI interfaces were designed in accordance with 
Fig 4-6. The Dummy Function was designed as a clock counter for verification of 
both interfaces. After simulation and prototyping of both FSL and NPI, these 
interfaces were merged into a single interface block in accordance with Fig 4-7.  
The Dummy Functions were now selected as a copy of the input data from the FSL 
to output on the NPI. 

Figure 4-8. Block diagram of complete SOC including the updated decoder IP 
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3)  Interface mapping: The reorder function component was connected to the M-
JPEG decoder component output. The FSL interface was mapped as an input port 
to the decoder function. The NPI interface was mapped as an output port from the 
decoder function. Using a debugger, it was possible to verify an image that was 
decoded in the hardware and written to the system’s memory through the NPI 
output.   

4.7.4 IP integration 

The Decoder IP shown in Fig 4-9 was integrated with a complete SOC 
consisting of a MicroBlaze soft processor core, Memory controller, a TFT controller 
for video displaying and other components not shown in the figure. The MicroBlaze 
processor feeds the Decoder IP with compressed video through the FSL. The 
decoded video is written directly to memory by the decoder through the NPI and 
into the same video memory area as is also read by the TFT controller on the PLB. 
The graphics displaying this SOC were visually verified by running the system on 
a prototyping board. 

4.8 CONCLUSION 

This chapter presents a case study analyzing the portability of an FPGA-
based M-JPEG decoder IP. The use of vendor and tool dependent firmware 
specifications within the M-JPEG decoder is shown to limit the decoder’s 
portability with respect to development tools and FPGA vendors. The lack of any 
clear separation between computation and communication is shown to limit the 
decoder’s portability with respect to different communication interfaces. A 
methodology SIPIMM is proposed to increase the IP’s portability regarding 
communication interface.  

 
 
 
  

M-JPEG 
Decoder 

Reorder 

IPC1 

IPC2 

Interface 
Block 

Computational 
Block 

 

On-Chip 
System 

 

Decoder 
IP 

Figure 4-9.  Interface-based soft IP model for an M-JPEG decoder 
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5 COMPONENT OBSOLESCENCE MANAGEMENT MODEL FOR LONG LIFE 
CYCLE EMBEDDED SYSTEM 

This section discusses the component obsolescence problem and presents a 
mathematic model of obsolescence management for long life cycle embedded 
system maintenance. A simple CAN controller system case study is also shown in 
order to apply this model. 

5.1 EOL SOLUTIONS 

When components arrive at the EOL state, designers usually receive an 
obsolescence notice from the vendor. In this situation, a short term or long term 
strategy should be implemented to solve the obsolescence problem.   

5.1.1 Lifetime buy and Last-Time-Buy 

Lifetime buy is to buy components, which covers the entire system life. Last-
time-buy (LTB) is to cover a short period of time as a short term strategy. [34] 

The lifetime buy and LTB problem have two aspects: 1) demand forecasting, 
and 2) Order quantity determination.  

Organizations that make lifetime buys or LTB of electronic components 
generally have little or no control over the supply chain for the components and 
cannot manufacture the components themselves. These organizations can purchase 
components until the manufacturer discontinues them at which time they must 
place a final order or implement some other mitigation strategy. [34] 

The management strategy associated with lifetime buys of electronic 
components is to determine the number of components to purchase. Lifetime buys 
are risky, as forecasting demand and spares requirements for, potentially, 10-20 
years into the future is not an exact science, especially in today's dynamic 
technology and market atmosphere. However, LTB only considers a short period 
of time to wait until a long time term strategy is taken. LTB is preferred in this 
paper, because it is less risky and easier for an organization to estimate the order 
quantity. 

5.1.2 Redesign 

Redesign is a long term strategy for obsolescence management. According to 
its complexity level, we could divide redesign into several categories: 

Component(s) replacement 

Component(s) replacement is the pin-for-pin replacement of an obsolete 
component(s) with the same function and pin compatible component(s). 
Replacement includes using COTS components, with a modern solid-state 
component in the same package type for a legacy obsolescence component [35]. For 
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example, some physical interface circuit or transmitter can be replaced directly. 
This component replacement process does not require any board redesign. 

Part(s) redesign  

Part(s) redesign is the practice of redesigning parts of or even the whole 
circuit board in the system. The redesigned part(s) contains new circuitry but uses 
a function and interface equivalent to that of the original part(s). There are two 
different design processes for parts redesign:  

One is to replace obsolete components in the circuit with components having 
a similar function in a more advanced technology. For example, the 
microcontroller can be replaced by a new one which has more advanced 
technology and functions. Such replacement may involve board redesign and 
software re-writing. 

The second method is to reverse engineer the part(s). It is not always the 
case that it is possible to find a replacement part in the market. If components with 
similar function do not exist, a reverse engineering should be implemented. This 
process analyzes an obsolete part’s intended function, then redesigns a new part 
and makes it interface so that it is compatible with the system. This method 
assumes that an accurate specification is available or can be created. Engineers 
often find the original documentation incomplete, or even inaccurate. Many 
systems have components whose uses are undocumented, and the original 
designers are no longer available to provide assistance. Accurately extracting 
information from legacy systems is time consuming and costly. The lack of 
available information also drives up the cost of developing test benches and test 
vectors necessary for validating the design. 

System(s) redesign  

Usually, when one part in a system becomes obsolete, other interfacing 
components will also have a high obsolescence risk [35]. Moreover, a system has 
been developed as a single entity, with much interdependence between its 
hardware and software and thus replacement or modification is usually as difficult 
as designing an entire system. [12] Therefore in some cases, a redesign of the whole 
system should be implemented. This process includes redesigning hardware and 
software, which is costly and time consuming. 

5.1.3 Others 

Aftermarket  

There are some aftermarket manufactures that provide a custom assembly of 
obsolete integrated circuits using an existing wafer and die. However, the unit cost 
will be much higher and only a few species of obsolete components can be 
provided. 
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Emulation  

A very flexible replacement solution consists of emulating the obsolete 
microelectronic parts by means of programmable logic devices such as FPGAs [36]. 
The approach is particularly appealing as it is a general solution to the 
obsolescence problem of digital electronic parts: FPGAs can implement the 
behavior of practically any digital component, provided that a suitable model of 
the component’s behavior is available [37].  

However, this method requires huge engineering design efforts and costs, 
including qualification testing and certification to prove that the emulated version 
is equivalent to the original hardware in terms of functionality, performance and 
signal integrity. 

5.2 MAINTENANCE MODEL 

A mathematic model is built for maintenance cost analysis caused by 
component obsolescence. 

Figure 5-1.  Maintenance model overview 

5.2.1 Overview 

An overview of the model is shown in Fig 5-1. Several input parameters 
should be given to the model. System life cycle expectation Ls is set at the 
beginning. Peak sales value 	p can be estimated. Commercial components database 
such as CAPS Expert from PartMiner can be used to obtain the product life cycle 
data and status. Ln represents the life cycle of component number n in the system, 
which can be obtained from the database. Unit cost, interest rate, safety margin 
and holding cost should be provided in order to estimate the LTB cost. The safety 
margin determines the extra order quantity percentage which been made in order 
to ensure the safety of sales. The holding cost refers to the spare components 
storage cost. The redesign cost is related to the component type and component 
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quantity. A multiple components redesign cost is less than the total redesigning 
cost for each component. 

The model consists of two parts. The first part is to generate a graph in 
Matlab. A segments table is then output from Matlab for further optimization. 
Linear programming is used to calculate the minimized maintenance cost and 
maintenance schedule. More symbol explanations are now provided: 

A = {1…N}, index of N components in the system ∈n  A, component number in the system ∈ ∈ ∈nʹ  {(x, y)|x A, y A, x≠y}, two components number in the system  

5.2.2 State transfer diagram 

The model contains a graph part which is in the form of state transfer 

diagram. At the present time the model has a maximum components quantity 

limitation of 2, but it can be expanded to n components in future work.  A two 

components state transfer diagram is shown in Fig 5-2. Suppose L1<L2. The 

following provides the symbols explanation in the diagram: 

Pn,s represent a component status. ∈s  {0, 1}, 0 represent non-obsolescence, 1 represent obsolescence. 

P1,1P2,1 
 

R1R2 L2 

L2 
 

R2 

L1 

R1 

R2  

②②②② ①①①① ③③③③ 

⑥⑥⑥⑥ ⑤⑤⑤⑤ 

R1R2 
 

L1 
 

R1 
 

R1R2 
 

L1 

R1 

L1 

R1 

R2  ④④④④ 

P1,1: Component 1 obsolescence 

P2,1: Component 2 obsolescence 

 

P1,0: Component 1  non-obsolescence  

P2,0: Component 2  non-obsolescence 

 

Figure 5-2.  State transfer diagram 
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Each component has two states in the model. P1,1 means component 1 

obsoletes while P1,0 means component 1 will not become obsolete in a short period 

(non-obsolescence). The same representation is given for component 2 as P2,1 and 

P2,0. When one or several components become obsolete, an obsolete solution (e.g. 

R1R2 above the arrow) has to be implemented. Once the solution is taken, one state 

at the current time point will be transfer to another state on next time point. The 

arrow shows the state transfer along the time line.   

For example, in the state transfer diagram ① of Fig 5-2, component 1 makes 

an LTB (L1) in order to wait until component 2 becomes obsolete (P1,1P2,1). When 

both components are obsolete, a redesign involves two components which must be 

implemented (R1R2). After redesign, both components restart a new life cycle and 

component 2 will become obsolete first (P1,1P2,0) since L1 is smaller. This is similar 

for the remainder of the state transfer diagrams and a total of 6 kinds of state 

transfer styles are shown in the Fig 5-2.  ⑥ is a special case of ④, which denotes the 

time interval from state P1,1P2,1 to state P1,1P2,1 is equal to L1. 

In order to formulate a full binary tree for the model, the state transfer path 

for P1,1P2,1 to P1,1P2,0 is duplicated, shown in Fig 5-3. The path duplication will not 

affect the result, but it will make the graph simpler to solve by means of tools. 

The full tree graph information will be stored in a segments table generated 

by Matlab. The information in the table includes the start node number, end node 

number and cost for each state transfer path. 

5.2.3 Cost estimation 

Two methods are considered for obsolescence management in the model:  

• Last-time-buy: This method is to conserve a safety stock of 

obsolescence components for a short period of time. LTB is a short 

term strategy and it will not renew the component life cycle. The 

main purpose is to delay the redesign time until any other 

component in the system becomes obsolete. The LTB cost depends 

on the sales value, interest rate, unit cost, holding cost and the safety 

margin as an uncertainty factor. The LTB order quantity is estimated 

R1R2 
 

R1R2

 

R1R2 
 

Figure 5-3.  State transfer path duplication 

 

P1,1P2,1 P1,1P2,0 P1,1P2,1

P1,1P2,0

P1,1P2,0
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using the demand (D) for a certain period of time. ∆T represents the 

time interval between two obsolescence management time points. 

D	= � 	�(�)��∆�
� �� = � 	��(�(�� )
/!"
)����∆�

� 			(5.1) 
 

The LTB cost consists of: 

Safety margin cost: A safety margin (M) of an order should be defined for 

component n. M is defined as a percentage of the estimated sales. 

#$% 	= & ∗ ( ∗ )$		(5.2) 
 

Interest rate cost: When a company makes an order for a component, the 

money spent for the order will generate an extra cost for component n caused by 

the interest rate.  

#$* 	= (& ∗ (1 + () ∗ , ∗ ∆-) ∗ )$		(5.3)	
	

Holding cost: The LTB order quantity is always much larger than the normal 

order. A storage cost should be considered. Hn represents the average holding cost 

of component n in one unit of time. 

#$. 	= /$ ∗ (1 + () ∗ & ∗ ∆-			(5.4) 
 

The total LTB cost can be estimated as: 

#$0 = #$
% + #$

* +  #$
.

  (5.5) 

 

• Redesign: Redesign is a long term strategy. It could be as easy as an 

electrical component replacement or as difficult as a system redesign 

including both hardware and software. The redesign cost depends 

on the number and type of components.  

5.2.4 Linear programming 

Linear programming is used to find the minimized total cost for the system 

life cycle maintenance. 

Finding the lowest cost between the first node and the terminal nodes in the 

model can be viewed as a transshipment problem [38]. A ghost node is assumed, 

since it makes modeling easier. This node connects to every terminal node which is 

located at the system lifecycle terminal time point. The path cost between the ghost 

node and the terminal nodes is set to 0. The model can then be viewed as finding 
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the shortest path of sending one unit from the first node to the ghost node, with all 

other nodes in the model being transshipment points.  

Minimize			77#89�89
9:;

9:<

8:=

8:<
 

Subject to 

7�>? = 1
?

(@ = 1) 

7�>? =
?

7�?>
?

	(@ = 2,3… ,CD) 

7�?>
?

= 1	(@ = CD + 1) 

i,j	are	the	nodes	number	in	the	segments	table.	
k,m	are	the	max	start	and	end	nodes	number		in	the	segments	table.	
Cij	is	the	path	cost	between	node	i	and	node	j	in	the	graph.		
Variable	�>?=1,	if	the	path	from	node	i	to	j	is	chosen	for	shortest	path,	otherwise	0.	

Lingo [39] is a comprehensive modeling language and a set of solvers for 

linear, non-linear, and integer programming from Lindo system Inc. The 

transshipment model is built and optimized by Lingo. The minimized total 

maintenance cost and optimized time schedule output from Lingo are given as the 

result. 

5.3 CASE STUDY  

In this section, a CAN controller industrial system is used as a case study to 

validate and analyze the model. 

5.3.1 Experimental system 

CAN is an industrial bus standard designed to allow microcontrollers and 

devices to communicate with each other. This project started from a CAN 

controller system used in industrial construction machinery. The basic CAN node 

contains an MCU or microprocessor and a CAN controller. In this case, cost, 

performance and power consumption are not critical issues. However, this type of 

long life cycle system requires greater consideration to be given to maintenance. 

For our experimental CAN controller system, an MCU (PIC16F876) was 

implemented onto the board. A COTS CAN controller (MCP25020) was 

implemented on the board communicates with the MCU via Serial Peripheral 

Interface (SPI) bus. The CAN node architecture can be seen in Fig 5-4. For 

simplicity, other physical circuits are not considered.  
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5.3.2 Model validation experiment 

MCU is considered as component 1 and the CAN controller considered as 

component 2. The life cycle of MCU is 2 units of time and the CAN controller is 3 

units of time. The system life cycle is 7 units of time.  

The sales value of the system can be estimated from formula (1). In this case 

the mean µ	is equal to 3.5 units of time. The standard deviation	σ is equal to 1 unit 

of time. The sales peak p is assumed to be 5,000. The LTB cost can be estimated by 

means of formula (6). The interest rate (,) is given as 10%. Safety margin is set to 

20%. Holding cost for both components (H1 and H2) is given as 2 for every unit of 

time. The cost value is represented by $.  The given parameter values are synthetic 

and experimentally selected. 

Table 5-1. Input parameter 

Parameter Value Parameter Value 

Ls 7 r 10% 

p 5,000 M 20% 
L1 2 H1, H2 2 
L2 3 #<X 40,000 

U1 30 #!X 15,000 

U2 10 #<,!X  45,000 

 

5.3.3 Model response analysis 

More experiments are implemented in order to analyze the response to 

different input parameter values. 

Some parameters such as interest rate and, storage cost will affect the LTB 

cost for both components. A test of maintenance cost responding to the interest 

rate is implemented. The interest rate is supposed to increase from 0 to 100% (100% 

should not occur in the real world and it is merely an experiment).  

MCU 

PIC16F876 MCP25020 

S  P  I 

CAN 
Controller 

Figure 5-4.  CAN controller system architecture 
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Another test is to increase the unit cost of the CAN controller (U2) from 10 to 

15 and 20, in order to analyze how the maintenance cost is responding to the unit 

cost.    

5.3.4 Result 

The state transfer graph for the whole system life cycle is shown in Fig 5-5. 

The lifecycle curves of the system and components are also integrated into the 

graph. The curves provide the sales value and lifecycle for the components and 

system. In relation to the algorithm, some states nodes will be located at time 8. 

Since the system lifecycle is 7, the management work should be ended at time 7. 

The nodes at time 8 (dotted circle in Fig 5-5) should be relocated to time 7. The 

algorithm for this terminal time point situation is applied in the model. The final 

graph then has terminal time points (24 to 31) at time 7. There are 31 total possible 

states nodes which exist in the system life cycle. 

Matlab is used to generate the graph. The segments table will be output to 

Lingo for further optimization. 

In this case study, a ghost node 32 is assumed. This node connects to every 

terminal node with zero path cost, as shown in Fig 5-6. The model can then be 

viewed as finding the shortest path of sending 1 unit from node 1 to node 32. The 

transshipment model is then able to be programmed and optimized in Lingo. 
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Figure 5-5.  CAN controller system state transfer graph generated by Matlab 
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The minimized system maintenance cost is estimated as 112.77k$. The 

optimized maintenance schedule is shown in Table 5-2. These results are based on 

the synthetic and experimentally selected parameter values in Table 5-1. 

Table 5-2. Maintenance schedule 

Time 
point 

Variable 
Maintenance 
cost (k$) 

2 R1 40 

3 L2 26.876 

4 R1R2 45
 

6 L1 0.898 

 
An explanation of the maintenance cost VS Time curve: ① No component obsolescence occurs. Maintenance cost will be 0 in this 

period. ② MCU obsolete at time point 2. An MCU redesign will be implemented and 

the cost will be 40k$. (It is supposed that the redesign time is negligible 

when compared to the system life cycle). ③ At time point 3, the CAN controller becomes obsolete. An LTB of a 

peripheral is implemented. The safety margin cost is 9598.504$ in this case 

and it will be generated at the time of making the LTB order. ④ In this period, the holding costs and the interest rate costs cause the 

maintenance cost to be linearly increased. ⑤ Both components are obsolete. A redesign involving two components is 

implemented and the cost is 45k$. 

Figure 5-7.  Maintenance cost VS Time curve 
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⑥ At time point 6, an MCU LTB is implemented. Since the time period is 

almost at the EOL of the system, the order amount will be minimal. The 

LTB cost is 0.9888 k$ in this case. 
 

The maintenance cost responding to the interest rate curve is shown in Fig 5-

8. The maintenance cost will be increased together with the interest rate until it is 

equal to 64.6%. The maintenance cost will remain at a constant value of 1.4*105 

when the interest rate is larger than 64.6%. 

 

From Fig 5-8 and the time schedule output from the model, it was 

determined that the model will prefer an LTB at two time points when the interest 

rate is low. The maintenance cost increases linearly when the interest rate is 

growing from 0 to 64.6%, according to formulae (4) and (6). When the interest rate 

is larger than 64.6%, the model will prefer to implement a redesign instead of an 

LTB, since the LTB cost exceeds the redesign cost. The redesign cost is not affected 

by the interest rate, so the maintenance cost remains constant. 

Another experiment is to increase the unit cost U2 from 10 to 15 and 20. The 

maintenance schedule comparison is presented in Table 5-3. The graph for the 

maintenance cost together with the sales curve is shown in Fig 5-9.   

Table 5-3. Maintenance schedule for different unit price 

Time point U2=10 U2=15 U2=20 

2 R1 R1 L1 

3 L2 L2 R1R2 

4 R1R2 R1R2  

5   R1 

6 L1 L1 L2 

Figure 5-8.  Maintenance cost VS Interest rate curve 
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Table 5-3 shows that the model will change the maintenance schedule when 

U2 is 20. When U2 is increased from 10 to 20, the LTB cost will be higher especially 

when the sales value is high. The increased unit cost will result in an increased 

interest rate cost and, safety margin cost, so the LTB cost will be increased 

according to formula (6). The model then plans to involve the LTB at an earlier 

stage and implements the redesign instead. This occurs when the system has a 

high sales value. Therefore, the total maintenance cost will not increase 

significantly. The implication is that the model will prefer a redesign instead of an 

LTB when the sales value is high, which meets our expectations.  

At the present time the model that has been built contains many 

simplifications and has a limitation of 2 components. The experiment is 

implemented with assumed parameters values. The uncertainties for a real world 

application are also not considered. However, this is an initial step before it is 

expanded and it is verify using real industry statistical data. 

5.4 CONCLUSION 

This chapter discusses the component obsolescence problem and presents a 

mathematic model of obsolescence management for long life cycle embedded 

system maintenance. The model presented in this paper considers redesign and 

LTB as two management methods. This model can estimate the minimized 

management costs for different system architectures. A simple CAN controller 

system case study is shown in order to apply the model. A minimized 

management cost and an optimized management time schedule are given as the 

result. Test experiments of the maintenance cost responding to the interest rate and 

Figure 5-9.  Maintenance cost VS Time comparison curve 
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unit cost are implemented. The responses from the experiments meet our 

expectations.  
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6 THESIS SUMMARY 

The maintainability of a long life cycle embedded system for different design 

technologies has been analyzed. An industrial CAN controller system is used as an 

experimental system, which is implemented using different design technologies, 

generating four different cases. The essence of each case and the consequences 

associated with the different risk scenarios during system maintenance are 

analyzed.  

Various potential risks and their consequences during product maintenance 

work have been discussed. This is of particular relevance for an embedded system 

which has long life cycle expectancy. The proposal was that an FPGA platform 

could be used to replace the COTS IC platform for the system design. Different 

CAN controller system cases have been evaluated using a number of risk 

scenarios.  

The maintenance issue associated with the portability of the IP for the FPGA 

embedded system is highlighted. This has been conducted by means of a case 

study of an FPGA based M-JPEG decoder project from OpenCores. This case study 

analyses the IP’s portability between communication interfaces, development 

environments and FPGA vendors. The analysis of the results from the case study 

allows us to identify the design techniques that offer the highest portability for an 

FPGA based IP. If designers use an IP in an improper way, they will face 

significant difficulties in maintaining a long life cycle FPGA embedded system. 

A methodology for the modification of soft IP interfaces is proposed. This 

methodology is based on the fact that computation is divided into functional units 

which have a distinct separation from communication. The benefit is, clearly, the 

increased communication portability for a soft IP. In addition, the increased reuse 

of design works leads to a reduced work load for the IP integrator. A case study is 

presented to show that this methodology can be efficiently applied to a real-world 

design. There are many essential issues for IP reuse apart from that of an interface 

mismatch. IP design is a mixed topic with technical, financial and legal issues.  

A mathematic model for long life cycle embedded system maintenance is 

presented. The model can estimate system maintenance costs for different 

architectures. This model can find optimized solutions regarding the components 

obsolescence problem. The minimized maintenance cost together with an 

optimized maintenance schedule can be estimated. An industrial CAN controller 

system is used as our experimental system.  
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6.1 CONCLUSION 

The proposed system on FPGA in combination with soft IPs will increase the 

maintainability of a long life cycle embedded system. An FPGA platform with 

vendor and device independent soft IP is the preferred design technology. The 

result of our research could prove to be useful for designers who might be facing 

difficulties in relation to maintaining a long life cycle embedded system. 

It is convenient to use the technology and tool dependent firm IPs generated 

by the FPGA vendor’s design tools for both quick and easy design work. However, 

it is clearly shown in the thesis that this design technique should be avoided if 

portability and maintainability are more important than development time. Clear 

separation between the communication protocols and the IP’s computational parts 

is another well known design technique that leads to higher portability and 

maintainability for an IP component. 

The SIPIMM is proposed to ease the soft IP interface problem. The 

portability and reusability will be increased by using the methodology. 

The presented obsolescence management model can offer maintenance 

strategy guidance to the designers who are faced with components obsolescence, 

although, at the present time, it has been built based on a number of assumptions 

and simplifications.  

6.2 FUTURE WORKS 

The maintainability analysis for a long life cycle embedded system will be 

extended for later PhD thesis work. 

The number of IP components to be analyzed will be extended as well as for 

more FPGA vendors and development tools/library. A deeper analysis in relation 

to a number of issues regarding IP portability will be made. Finally, the idea will 

be refined to provide a more general theory for the IP portability issue. The IP 

interface modification methodology of SIPIMM should be practiced for more soft 

IPs, as well as being extended to the implementation of more vendor devices other 

than Xilinx. 

The plan is to perform experiments with real life industrial statistical data 

and to expand the component quantity to be more generic for the mathematic 

maintenance model. A maintainability evaluation for different system design 

technologies including COTS and FPGA is also planned. 
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7 SUMMARY OF PUBLICATIONS 

7.1 PAPER I 

This paper presents and raises the issues of maintaining an embedded system 

which has a long life cycle. Such issues include obsolescence, function change 

requirement or technology migration etc.  Systems’ maintainability for different 

design technologies are analyzed. Different platform cases are evaluated by 

analyzing the technology of each case and the consequences of different risk 

scenarios during system maintenance. The result shows that the FPGA platform 

with vendor and device independent soft IP has the highest maintainability.  

7.2 PAPER II 

This paper suggests a soft IP interface modification methodology (SIPIMM) for 

systems on FPGA. SIPIMM targets an interface-based soft IP model which is 

introduced to ease the interface modification and interface reuse. The portability 

will be increased accordingly, so this will ease the maintenance issue for a long life 

cycle embedded system. A case study of an open-source IP is presented using 

SIPIMM for system integration.  

7.3 PAPER III 

This paper discusses the use of an FPGA IP to ease the problem of electronic 

components becoming obsolete. System migration between devices is unavoidable, 

especially for long life cycle embedded systems, so IP portability becomes an 

important issue for system maintenance. A case study is shown to analyze the 

portability of an FPGA-based M-JPEG decoder IP. The lack of any clear separation 

between computation and communication is shown to limit the decoder´s 

portability with respect to different communication interfaces. The use of 

technology and tool dependent firmware specifications within the M-JPEG decoder 

is shown to limit the decoder’s portability with respect to development tools and 

FPGA vendors. 

7.4 PAPER IV 

This paper makes a deeper analysis of the component obsolescence problem 

and presents a mathematic model for a lifecycle analysis the long life cycle 

embedded system. This model can estimate the minimum maintenance cost for 

different system architectures. A simple CAN controller system case study is 

shown to apply this model. A minimum maintenance cost and an optimum 

maintenance time schedule are provided as the result.   

7.5 AUTHORS CONTRIBUTIONS 

The exact contributions of the authors of the four central papers in this thesis 

are summarized in Table 7-1.   
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Table 7-1. Authors’ contributions 

Paper 
# 

Main 
authors 

 

Co-authors Contributions 

I XM BT 
NL 

XM :  Analysed the maintenance issues. 
BT :   Supervised the work and help to build risk analysis 
NL :   Supervised the work 

II XM BT 
NL 

XM :  Designed the methodology 
BT :   Supervised the work 
NL :   Supervised the work 

III XM 
 

BT 
NL 
 

XM :  Made analysis and experiment 
BT :   Supervised the work and help to made analysis 
NL :   Supervised the work 

IV XM 
 

BT 
LO 

XM :  Designed the model and implemented experiments 
BT :   Supervised the work and gave suggestions 
LO :   Helped to build linear programming part 

 
1. Xiaozhou Meng (XM) 
2. Benny Thörnberg (BT) 
4. Najeem Lawal (NL) 
5. Leif Olsson (LO) 
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