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Foreword

The problem of scale pervades both the natural sciences and the vi-
sual arts. The earliest scientific discussions concentrate on visual per-
ception (much like today!) and occur in Euclid’s (¢. 300 B.C.) Optics
and Lucretius’ (c¢. 100-55 B.C.) On the Nature of the Universe. A very
clear account in the spirit of modern “scale-space theory” is presented
by Boscovitz (in 1758), with wide ranging applications to mathemat-
ics, physics and geography. Early applications occur in the cartographic
problem of “generalization”, the central idea being that a map in order
to be useful has to be a “generalized” (coarse grained) representation of
the actual terrain (Miller and Voskuil 1964). Broadening the scope asks
for progressive summarizing. Very much the same problem occurs in the
(realistic) artistic rendering of scenes. Artistic generalization has been
analyzed in surprising detail by John Ruskin (in his Modern Painters),
who even describes some of the more intricate generic “scale-space sin-
gularities” in detail: Where the ancients considered only the merging of
blobs under blurring, Ruskin discusses the case where a blob splits off
another one when the resolution is decreased, a case that has given rise
to confusion even in the modern literature.

It is indeed clear that any physical observation of some extended quan-
tity such as mass density or surface irradiance presupposes a scale-space
setting due to the inherent graininess of nature on the small scale and its
capricious articulation on the large scale. What is the “right scale” does
indeed depend on the problem, i.e., whether one needs to see the forest,
the trees or the leaves. (Of course this list could be extended indefinitely
towards the microscopic as well as the the mesoscopic domains, as has
been done in the popular film Powers of Ten (Morrison and Morrison,
1984)). The physicist almost invariably manages to pick the right scale
for the problem at hand intuitively. However, in many modern applica-
tions the “right scale” need not be obvious at all, and one really needs a
principled mathematical analysis of the scale problem.

In applications such as wvision the front end system has to process
the radiance function blindly (since no meaning resides in the photons
as such) and the problem of finding the right scale becomes especially
acute. This is true for biological and artificial vision systems alike. Here
a principled theory is mandatory and can a priori be expected to yield
important insights and lead to mechanistic models. The modern scale-
space theory has indeed led to an increased understanding of the low level
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operations and novel handles on ways to design algorithms for problems
in machine vision.

In this book the author presents a commendably lucid outline of the
theory of scale-space, the structure of low level operations in a scale-
space setting and algorithmic schemes to use these structures such as to
solve important problems in computer vision. The subjects range from a
mathematical underpinning, over issues in implementation (discrete scale-
space structures) to more open ended algorithmic methods for computer
vision problems. The latter methods seem to me to point a way to a range
of potentially very important applications. This approach will certainly
turn out to be part of the foundations of the theory and practice of
machine vision.

It was about time for somebody to write a monograph on the subject
of scale-space structure and scale-space based methods, and the author
has no doubt performed an excellent service to many in the field of both
artificial and biological vision.

Utrecht, October 4th, 1993 Jan Koenderink



Preface

We perceive objects in the world as having structures both at coarse and
fine scales. A tree, for instance, may appear as having a roughly round
or cylindrical shape when seen from a distance, even though it is built
up from a large number of branches. At a closer look, individual leaves
become visible, and we can observe that the leaves in turn have texture
at an even finer scale.

The fact that objects in the world appear in different ways depending
upon the scale of observation has important implications when analysing
measured data, such as images, with automatic methods. A straightfor-
ward way of exemplifying this is to note that every operation on image
data must be carried out on a window, whose size can range from a single
point to the whole image. The type of information we can get from such
an operation is largely determined by the relation between structures in
the image and the size of the window. Hence, without prior knowledge
about what we are looking for, there is no reason to favour any particular
scale. We should therefore try them all and operate at all window sizes.

These insights are not completely new in computer vision. Multi-scale
representations of images in terms of pyramids were developed already
around 1970. A main motivation then was to achieve computational effi-
ciency by coarse-to-fine strategies. This approach was also supported by
findings in neurophysiology about the primate visual system. However,
it was soon discovered that relating structures from different levels in
the multi-scale representation was far from trivial. Structures at coarse
levels could sometimes not be assigned any direct interpretation, since
they were hard to trace to finer scales. Despite considerable efforts to
develop techniques for matching between scales, a theoretical foundation
was missing.

In 1983, Witkin proposed that scale could be considered as a con-
tinuous parameter, thereby generalizing the existing notion of Gaussian
pyramids. He noted the relation to the diffusion equation and hence found
a well-founded way of relating image structures between different scales.
Koenderink soon furthered the approach, which has been developed into
what we now know as scale-space theory.

Since that work, we have seen the theory develop in many ways, and
also realized that it provides a framework for early visual computations
of a more general nature. The aim of this book is to provide a coherent
overview of this recently developed theory, and to make material, which

iii
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has earlier existed only in terms of research papers, available to a larger
audience. The presentation provides an introduction into the general foun-
dations of the theory and shows how it applies to essential problems in
computer vision such as computation of image features and cues to surface
shape. The subjects range from the mathematical foundation to practical
computational techniques. The power of the methodology is illustrated
by a rich set of examples.

I hope that this work can serve as a useful introduction, reference, and
inspiration for fellow researchers in computer vision and related fields such
as image processing, signal processing in general, photogrammetry, and
medical image analysis. Whereas the book is mainly written in the form
of a research monograph, the level of presentation has been adapted so
that it can be used as a basis for advanced courses in these fields.

The presentation is organized in a logical bottom-up way, following
the ordering of the processing modules in an imagined vision system. It
is, however, not necessary to read the book in such a sequential manner.
Several of the chapters are relatively self-contained, and it should be pos-
sible to read them independently. A guide to the reader describing the
mutual dependencies is given in section 1.7 (page 22). I wish the reader
a pleasant tour into this highly stimulating and challenging subject.

Stockholm, September 1993, Tony Lindeberg



Abstract

The presentation starts with a philosophical discussion about computer
vision in general. The aim is to put the scope of the book into its wider
context, and to emphasize why the notion of scale is crucial when deal-
ing with measured signals, such as image data. An overview of different
approaches to multi-scale representation is presented, and a number of
special properties of scale-space are pointed out.

Then, it is shown how a mathematical theory can be formulated for
describing image structures at different scales. By starting from a set of
axioms imposed on the first stages of processing, it is possible to derive a
set of canonical operators, which turn out to be derivatives of Gaussian
kernels at different scales.

The problem of applying this theory computationally is extensively
treated. A scale-space theory is formulated for discrete signals, and it
demonstrated how this representation can be used as a basis for expressing
a large number of visual operations. Examples are smoothed derivatives
in general, as well as different types of detectors for image features, such
as edges, blobs, and junctions. In fact, the resulting scheme for feature de-
tection induced by the presented theory is very simple, both conceptually
and in terms of practical implementations.

Typically, an object contains structures at many different scales, but
locally it is not unusual that some of these “stand out” and seem to be
more significant than others. A problem that we give special attention to
concerns how to find such locally stable scales, or rather how to gener-
ate hypotheses about interesting structures for further processing. It is
shown how the scale-space theory, based on a representation called the
scale-space primal sketch, allows us to extract regions of interest from an
image without prior information about what the image can be expected
to contain. Such regions, combined with knowledge about the scales at
which they occur constitute qualitative information, which can be used
for guiding and simplifying other low-level processes.

Experiments on different types of real and synthetic images demon-
strate how the suggested approach can be used for different visual tasks,
such as image segmentation, edge detection, junction detection, and focus-
of-attention. This work is complemented by a mathematical treatment
showing how the behaviour of different types of image structures in scale-
space can be analysed theoretically.
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It is also demonstrated how the suggested scale-space framework can
be used for computing direct cues to three-dimensional surface structure,
using in principle only the same types of visual front-end operations that
underlie the computation of image features.

Although the treatment is concerned with the analysis of visual data,
the notion of scale-space representation is of much wider generality and
arises in several contexts where measured data are to be analyzed and
interpreted automatically.
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1

Introduction and overview

In our daily life we use vision as one of our main sources of information
about the outside world. Compared to a sense like hearing, the visual
sense gives a richer description of the world. Compared to a sense like
touch, it allows us to gather information about objects at greater distance
and without affecting the objects themselves physically. Considering the
apparent ease with which we obtain information about the world from the
light that enters our eyes, an intellectual effort is required to appreciate
that this is a non-trivial task.

Computer vision addresses this problem computationally; it deals with
the problem of deriving meaningful and useful information from visual
data. What should be meant by “meaningful and useful information” is,
of course, dependent on the goal of the analysis, that is, the underlying
purpose why we want to make use of visual information and process it
with automatic methods. One reason may be that of machine vision—the
desire to provide machines and robots with visual abilities. Typical tasks
to be solved are object recognition, object manipulation, and visually
guided navigation. The type of information that needs to be computed to
address a problem depends strongly on the task. For example, the problem
of recognizing objects from complex scenes is generally regarded as one
of the more complicated problems in the field, while under certain condi-
tions descriptors like time-to-collision can be computed with comparably
simpler low-level operations. Other common applications of techniques
from computer vision can be found in image processing, where one can
mention image enhancement, visualization and analysis of medical data,
as well as industrial inspection, remote sensing, automated cartography,
data compression, and the design of visual aids, etc.

A more theoretical reason why computer vision is studied is the desire
of understanding mathematical and physical principles underlying the
inference of scene characteristics from brightness data. If insights into
such basic principles can be gained, then they may help us with the
tremendously inspiring challenge of understanding the workings of the
biological visual systems, which accomplish their tasks in a way that is
essential for the survival of most living creatures.
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The problem of understanding vision has interested and puzzled re-
searchers through the centuries. Still, some of the most basic questions
that remain to be answered concern what type of image information is
relevant for accomplishing different tasks, how this information should be
extracted from the sensory data, and how such features can be related
to properties of environment? An indication of the complexity of the vi-
sion problem can be obtained from the fact that the term “vision” has
been very hard to define. Then, what definitions have been stated? To
the question “What does it mean to see?” Marr (1982) answered

. vision is the process of discovering from images what is
present in the world and where it is.

emphasizing that vision is an information-processing task. He also stressed
that the issue of internal representation of information is of utmost im-
portance. Only by representation can information be captured and made
available to decision processes. The purpose of a representation is to make
certain aspects of the information content explicit, that is, immediately
accessible without any need for additional processing.

While Marr’s definition captures several important aspects, the active
and goal-oriented nature of vision is only implicit in this formulation.
Clearly, the vision problem is undefined unless related to a task. The
existence proofs of vision provided by nature, the biological vision sys-
tems, are usually not passively registering images of the world. Instead,
biological vision is strongly tied to action, since the visual agent has to
attend to and respond to dynamic changes in the outside world. It is also
well-known in perception psychology that perception of pictures differs
from perception of the three-dimensional world.

These are some of the main arguments behind the active vision method-
ology (Bajscy 1988; Aloimonos et al. 1988; Ballard 1991; Pahlavan et al.
1993), which has received increasing attention during recent years. In this
paradigm, the ability of the vision system to selectively control the image
acquisition process is emphasized. Moreover, the desired behaviour of the
visual agent is put into focus. If the visual system is allowed to acquire
more information in difficult situations, then several problems occurring
in the analysis of given pre-recorded images can be avoided.

A simple example is the problem of too low a resolution. It can be
circumvented by foveating interesting structures, or if necessary, moving
closer to the interesting object. The active approach makes it possible
to acquire additional information about three-dimensional structure from
cues like accommodation distance, vergence angles, etc. An active moving
observer also has the potential of avoiding unfortunate situations like
accidentally aligned structures. It is sometimes argued that accidentally
coinciding structures are very singular cases that never occur in practice,
but in reality such situations turn out to show up rather frequently, when
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taking overview images of moderately complex scenes using cameras with
normal resolution and opening angles.

There have been, and still are, different opinions in the computer
vision community about how a visual system should be constructed. A
long debate concerned the choice between bottom-up and top-down based
reasoning. It has been argued by many authors that a visual system should
be constructed in a modular way with different levels of processing. At
the simplest level of abstraction three layers can be distinguished, usually
denoted low-level, intermediate level, and high-level.

Although a natural implication of the active vision paradigm is that
it may not be as easy to clearly separate out different processing levels as
would be needed for a dogmatic interpretation of such a simple three-layer
description, and although extreme stand points have been taken, such as
“direct pick-up” (Gibson 1979), “labyrinthic design” (Aloimonos 1990), or
“intelligence without representation” (Brooks 1991), one should be careful
of not interpreting the active vision approach as excluding the need for
competence theories, like concerning the computation of early retinotopic
representations such as intrinsic images (Barrow and Tenenbaum 1978).
The need for some kind of early low-level processing and representation for
providing a sparse but rich set of primitives for other processing modules
still remains highly motivated.

This book deals with a basic aspect of early image representation—
the notion of scale. More specifically, the work deals with a certain type of
approach, the use of scale-space representation, for analysing image data
at the very lowest levels in the chain of information processing of a visual
system. The aim is to operate directly on the raw pixel values without
any type of pre-processing. The suggested methodology is intended as a
first confrontation between the reasoning process and the raw image data.
This part of the visual system is usually termed the visual front-end. No
specific assumptions will be made about how higher-level processes are to
operate on the output. Therefore, the approach is applicable to a variety
of reasoning strategies.

Computer vision is a cross-disciplinary field with research method-
ologies from several scientific disciplines such as computer science, math-
ematics, neurophysiology, physics, and psychology. The approach taken
here will be computational.! A theory and a framework will be proposed
for how certain aspects of image information can be represented and anal-
ysed at the earliest processing stages of a machine vision system.

! Although there are neurophysiological and psychophysical evidence for the exis-
tence of processing at multiple scales in biological vision (Campbell and Robson 1977;
(Wilson 1983; Young 1985, 1987; Jones and Palmer 1987), no claims will be made that
the methodology proposed here describes how processing is done in human percep-
tion. The treatment is concerned with what visual information can be extracted by a
computer. When biological vision is discussed, it is mainly as a source of inspiration.
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1.1. Theory of a visual front-end

If we are to construct a machine vision system, the problem can be ad-
dressed in several ways. If the visual task is sufficiently domain specific,
then it may be sufficient to come up with any set of algorithms that per-
forms the given task up to some prescribed tolerance. On the other hand,
if the aim is to construct a flexible system able to solve a large number
of problems using visual information, then it may be advantageous to
aim at a certain degree of generality in the design, so that similar low-
level modules can be shared between several algorithms or processes for
solving different visual tasks. If such modules also are to be constructed
without built-in limitations that would restrict their applicability, then a
natural requirement is that the first stages of processing should make as
few irreversible decisions and be as uncommitted as possible.

This presentation follows the latter strategy. If the vision problem is
approached without strong presumptions about what specific tasks are
to be solved, then a fundamental question concerns what information
should be extracted at the earliest stages, and what kinds of operations are
natural to perform on the data that reach the visual sensor. Is any type of
operation feasible? An axiomatic approach that has been adopted in order
to restrict the space of possibilities is to assume that the very first stages
of processing should be able to function without any direct knowledge
about what can be expected to be in the scene. For an uncommitted
vision system, the scale-space theory states that under certain conditions,
there is a natural choice of first stage operations to perform in a visual
front-end (this notion will be made more precise later). The output from
these operations can then, in turn, be used as input to a large number of
other visual modules. An attractive property of this type of approach is
that it gives a uniform structure on the first stages of computation.

1.2. Goal

The main subject of this book is to give a mathematical description of
such early visual operations. The goal the work aims at is a methodol-
ogy, in which significant structures can be extracted from an image in a
solely bottom-up way, and scale levels can be selected for handling those
structures without any prior information. A short summary in terms of
key words can be expressed as follows:

A ranking of events in order of significance will be suggested based
on wvolumes of certain four-dimensional objects in a scale-space repre-
sentation of the signal. In this scale-space, the scale dimension is treated
as equally important as the spatial and grey-level coordinates. The asso-
ciated eztraction method is based on a systematic parameter variation
principle, where locally stable states are detected and abstractions are
determined from those.



1.3. The nature of the problem 5

It will be exemplified how gqualitative scale and region information ex-
tracted in this way can be used for guiding the focus-of-attention and tun-
ing other early visual processes so as to simplify their tasks. The general
principle is to adapt the low-level processing to the local image structure.
The main theme of the book is to construct a theoretical framework in
which these operations can be formalized.

1.3. The nature of the problem

When given an image as obtained from a standard camera device, say a
digitized video signal or a scanned photograph, all information is encoded
in the pixel values represented as a matrix of numerical data. If this
information is presented to a human observer with the pixel values coded
as grey-level intensities, then the human will usually have no problems in
perceiving and interpreting what the image represents.

However, if the same pattern of grey-level values is coded as decimal
digits, or as a three-dimensional diagram with the grey-level values drawn
as a function of the image coordinates, then the problem is no longer
as easy for biological vision. A person not familiar with the field often
underestimates the difficulties in designing algorithms for interpreting
data on this numerical form. The problem with the matrix representation
of the image is that the information is only implicit in the data.

1.3.1. Ill-posedness

A major subtask of a visual processing system is to extract meaningful
information about the outside world from such a set of pixel values, which
is the result of light measurements from a physical scene. The image data
may either be given beforehand, like in image processing, or have been
acquired by an active system, which has directed its attention towards
some interesting structure. What is meant by meaningful is in turn given
by the task the vision system has to solve.

In principle, this problem of deriving three-dimensional shape infor-
mation about the scene is impossible to solve if stated as a pure mathe-
matical problem. Assume first that a set of grey-level data is given. Then,
there will always be an infinite number of scenes that could have given
rise to the same result. To realize that this is the case, consider for exam-
ple a photograph on a paper, or a slide projected onto a screen. We easily
interpret such brightness distributions on flat surfaces as corresponding
to three-dimensional objects with perceived depth variations.

In an active vision system additional cues may be available, like ac-
commodation depth, vergence, etc. Nevertheless, it is always possible to
present two cameras with (possibly time varying) brightness patterns that
would give the system a completely false impression of the world. There
are two basic reasons to this. The first is that we are not measuring di-
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rect properties of the world, but light emitted from it. The second is
a dimensionality problem; we are trying to analyse a three-dimensional
world using two-dimensional image data.

From this viewpoint the vision problem is ill-posed® in the sense of
Hadamard, since it does not have any unique solution. A rigorous per-
son without plenty of unspoiled optimism would probably take this as
a very good motivation to study some other field of science, where the
prerequisites could be more clearly stated and better suited for formal
analysis. Nevertheless, despite this indeterminacy, the human visual sys-
tem as well as other biological vision systems are capable of coping with
the ill-posedness. Moreover, since vision is generally regarded as the high-
est developed of our senses, one can speculate that there must be some
inherent properties in the image data reaching the retina that make the
visual perception® possible.

1.8.2.  Grouping

A main purpose of the low-level processing modules is to provide a reason-
able set of primitives that can be used for further processing or reasoning
modules. A fundamental problem in this context concerns what points
in the image can be regarded as related to each other and correspond
to objects in the scene, i.e., which pixels in the image can be assumed
to belong together and form meaningful entities. This is the problem of
primitive grouping or perceptual organization. Before any such grouping
operations have been performed, the matrix of grey-level values is, from
the viewpoint of interpretation, in principle only a set of numerical values
laid out on a given discrete grid.

The grouping problem has been extensively studied in psychology,
especially by the Gestaltists (Koftka 1935), as well as in computer vision
(Lowe 1985; Ahuja and Tuceryan 1989), and it seems to be generally
agreed upon that the existence of active grouping processes in human
perception can be regarded as established. Witkin and Tenenbaum (1983)
discuss this property:

People are able to perceive structures in images, apart from
the perception of three-dimensionality, and apart from the
recognition of familiar objects. We impose organization on

2For a mathematical problem to be regarded as well-posed, Hadamard stated three
criteria: (i) a solution should exist, (ii) the solution should be unique, and (iii) the
solution should depend continuously on the input data. A well-posed problem is not
necessarily well-conditioned.

30f course, experiences and expectations are generally believed to play an important
role in the perception process. However, also that information must be related to the
incoming image data in some way. Moreover, the experiences must have been acquired
(learned) in some way, at least partially based on visual data
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data ... even when we have no idea what it is we are orga-
nizing. What is remarkable is the degree to which such naively
perceived structure survives more or less intact once a seman-
tic context is established: the naive observer often sees essen-
tially the same thing as an expert does. ... It is almost as if
the visual system has some basis for guessing what is impor-
tant without knowing why.

Although the gestalt school of psychology formulated rules as those of
proximity, similarity, closure, continuation, symmetry, and familiarity, we
still have no satisfactory understanding of how these mechanisms operate
from a quantitative point of view.

1.3.3. Operator size

To be able to compute any type of representation from image data, it
is necessary to extract information from it, and hence interact with the
data using some operators. Some of the most fundamental problems in
low-level vision and image analysis concern what operators to use, where
to apply them, and how large they should be. If these problems are not
appropriately addressed, then the task of interpreting the output results
can be very difficult.

Figure 1.1. Illustration of the basic scale problem when computing gradients
as a basis for edge detection. Assume that the dots represent (noisy) grey-level
values along an imagined cross-section of an object boundary, and that the task
is to find the boundary of the object. The lines show the effect of computing
derivative approximations using a central difference operator with varying step
size. Clearly, only a certain interval of step sizes is appropriate for extracting
the major slope of the signal corresponding to the object boundary. Of course,
this slope may also be interpreted as due to noise (or some other phenomena
that should be neglected) if it is a part superimposed onto some coarser-scale
structure (not visible here).
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To illustrate this problem, consider the task of detecting edges. It is
generally argued that this type of image feature represents important in-
formation, since under reasonably general assumptions, edges in an image
can be assumed to correspond to discontinuities in depth, surface orien-
tation, reflectance properties, or illumination phenomena in the scene. A
standard way of extracting edges from an image is by gradient computa-
tion followed by some type of post-processing step, where “high values”
should be separated from “low values,” e.g., by detection of local maxima,
or by thresholding on gradient magnitude.

Consider, for simplicity, the one-dimensional case, and assume that
the gradient is approximated by a central difference operator. More so-
phisticated approaches exist, but they will face similar problems. It is
well-known that the selection of step size leads to a trade-off problem: A
small step size leads to a small truncation error in the discrete approxi-
mation, but the sensitivity to fine-scale perturbations (e.g., noise) might
be severe. Conversely, a large step size will, in general, reduce this sensi-
tivity, but at the cost of an increased truncation error. In the worst case, a
slope of interest can be missed and meaningless results be obtained if the
difference quotient approximating the gradient is formed over a larger
distance than the object considered in the image. See figure 1.1 for an
illustration.

Although we shall here mainly be concerned with static images, the
same kind of problem arises when dealing with image sequences. Similarly,
models based on spatial derivatives ultimately rely on the computation
of derivative approximations from measured data.

1.8.4. Scale

The problem falls back on a basic scale problem, namely that objects in
the world and details in images, only exist as meaningful entities over
limited ranges of scale,* in contrast to certain ideal mathematical entities
like “point,” “line,” “step edge,” or “linear slope,” which appear in the
same way at all scales of observation.

A simple example is the concept of a branch of a tree, which makes
sense only at a scale from, say, a few centimeters to at most a few me-
ters. It is meaningless to discuss the tree concept at the nanometer or

4 An interesting philosophical question in this context concerns whether or not the
scale property should be attributed to the actual physical objects themselves or just to
our subjective way of perceiving and categorizing them. For example, a table made out
of wood certainly has a fine-scale texture with underlying fibral and molecular struc-
tures that we usually suppress when dealing with it for every-day purposes. Obviously,
such finer-scale properties will always be there, but we almost always automatically
disregard them. One may speculate that such a organization at multiple scales may be
one way of simplifying the representation of our extremely complicated environment
into a hierarchical structure to cope with it efficiently.
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the kilometer level. At those scales it is more relevant to talk about the
molecules that form the leaves of the tree, or the forest in which the tree
grows. Similarly, it is only meaningful to talk about a cloud over a certain
range of coarse scales. At finer scales it is more appropriate to talk about
the individual droplets, which in turn consist of water molecules, which
consist of atoms, which consist of protons and electrons etc.

This fact is well-known in the experimental sciences. In physics, the
world is described at several levels of scales, from particle physics and
quantum mechanics at fine scales, through thermodynamics and solid
mechanics dealing with every-day phenomena, to astronomy and relativ-
ity theory at scales much larger than those we are usually dealing with.
The physical description depends strongly on the scale at which the world
is modelled. In biology, the study of animals can only be performed over
a certain range of coarse scales. An organism looks completely different
seen through a microscope when individual cells become visible.

These examples demonstrate that the scale concept is of crucial im-
portance if one aims at describing the structure of the world, or more
specifically the structure of projections of the world to two-dimensional
data sets. As Koenderink (1984) has emphasized, the problem of scale
must be faced in any image situation. The extent of any real-world ob-
ject is determined by two scales, the inner scale and the outer scale. The
outer scale of an object or a feature may be said to correspond to the
(minimum) size of a window that completely contains the object or the
feature, while the inner scale may loosely be said to correspond to the
scale at which substructures of the object or the feature begin to appear.

In a given image, only structures over a certain range of scales can be
observed. This interval is delimited by two scales; the outer scale corre-
sponding to the finite size of the image, and the inner scale given by the
resolution. For a digital image the inner scale is determined by the pixel
size, and for a photographic image by the grain size in the emulsion.

1.8.5. Multi-scale representation

While these qualitative aspects of scale have been well-known for a long
time, the concept of scale has been very hard to formalize into a mathe-
matical theory. It is only during the last few decades that tools have been
developed for handling the scale concept in a formal manner. A driving
force in this development has come from the need for developing robust
algorithms in image processing, computer vision, and other fields related
to automatic signal processing.

A methodology that has been proposed for handling the notion of
scale in measured data is by representing measured signals at multiple
scales. Since, in general, no particular levels of scale can be pre-supposed
without strong a priori knowledge, the only reasonable solution is that
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the visual system must be able to handle image structures at all scales.
The main idea of creating a multi-scale representation of a signal is by
generating a one-parameter family of derived signals, where fine-scale
information is successively suppressed. Then, a mechanism is required
that systematically simplifies the data and removes finer-scale details, or
high-frequency information. This operation, which will be termed scale-
space smoothing, must be available at any level of scale.

coarser levels
of scale

2 < original signal

Figure 1.2. A multi-scale representation of a signal is an ordered set of derived
signals intended to represent the original signal at different levels of scale.

increasing t

\\\ \\

Why should one represent a signal at multiple scales when all information
is anyway in the original data? A major reason for this is to explicitly
represent the multi-scale aspect of real-world data. Another aim is to
suppress and remove unnecessary and disturbing details, such that later
stage processing tasks can be simplified. More technically, the latter mo-
tivation reflects the common need for smoothing as a pre-processing step
to many numerical algorithms as a means of noise suppression.

1.4. Scale-space representation

A methodology proposed by Witkin (1983) and Koenderink (1984) to
obtain such a multi-scale representation of a measured signal is by em-
bedding the signal into a one-parameter family of derived signals, the
scale-space, where the parameter, denoted scale parameter t € R, is
intended to describe the current level of scale.

®R, denotes the set of real non-negative numbers, and Ry \{0} the corresponding
set excluding the zero point.



1.4. Scale-space representation 11

1.4.1.  Scale-space for one-dimensional signals: Gaussian smoothing

Let us briefly review this procedure as it is formulated for one-dimensional
continuous signals: Given a signal f: R — R, the scale-space representa-
tion L: R x Ry — R is defined such that the representation at “zero
scale” is equal® to the original signal

L5 0) = f(), (1.1)

and the representations at coarser scales are given by convolution of the
given signal with Gaussian kernels of successively increasing width

L(- t) =g(5 t)* f. (1.2)

In terms of explicit integrals, the result of the convolution operation ’*’
is written

Lias 1) = /E T g ) fo— O de, (1.3)

=—0o0

where g: R x R, \{0} — R is the (one-dimensional) Gaussian kernel

1 5

T t) = ——e * /2, 1.4

ol 1) = (1.4

Figure 1.3 shows the result of smoothing a one-dimensional signal to

different scales in this way. Notice how this successive smoothing captures

the intuitive notion of fine-scale information being suppressed, and the
signals becoming gradually smoother.

1.4.2. Diffusion formulation of scale-space

In terms of differential equations, the evolution over scales of the scale-
space family L can be described by the (one-dimensional) diffusion equa-
tion

oL =1VL=10,L. (1.5)

In fact, the scale-space representation can equivalently be defined as the
solution to (1.5) with initial condition L(-; 0) = f(-).

This analogy also gives a direct physical interpretation of the smooth-
ing transformation. The scale-space representation L of a signal f can be
understood as the result of letting an initial heat distribution f evolve
over time ¢ in a homogeneous medium. Hence, it can be expected that
fine-scale details will disappear, and images become more diffuse when
the scale parameter increases.

5The notation L(-; 0) = f stands for L(z; 0) = f(z) Yz € RY.
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Figure 1.3. The main idea with a scale-space representation of a signal is to gen-
erate a one-parameter family of derived signals in which the fine-scale informa-
tion is successively suppressed. This figure shows a signal that has been succes-
sively smoothed by convolution Gaussian kernels of increasing width. (Adapted
from Witkin 1983).

space, X

scale, t

Figure 1.4. Schematic three-dimensional illustration of the scale-space repre-
sentation of a one-dimensional signal.
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1.4.3. Definition of scale-space: Non-creation of new structure

For a reader not familiar with the scale-space literature, the task of de-
signing a multi-scale signal representation may at first glance be regarded
as somewhat arbitrary. Would it suffice to carry out just any type of
“smoothing operation”? This is, however, not the case. Of crucial impor-
tance when constructing a scale-space representation is that the trans-
formation from a fine scale to a coarse scale really can be regarded as
a simplification, so that fine-scale features disappear monotonically with
increasing scale. If new artificial structures could be created at coarser
scales, not corresponding to important regions in the finer-scale represen-
tations of the signal, then it would be impossible to determine whether a
feature at a coarse scale corresponded to a simplification of some coarse-
scale structure from the original image, or if it were just an accidental
phenomenon, say an amplification of the noise, created by the smoothing
method—not the data. Therefore, it is of utmost importance that artifacts
are not introduced by the smoothing transformation when going from a
finer to a coarser scale.

How should this property be formalized? When Witkin (1983) intro-
duced the notion of scale-space, he was concerned with one-dimensional
signals. He observed that the number of zero-crossings in the second
derivative decreased monotonically with scale, and took that as a ba-
sic characteristic of the representation. In fact, this property holds for
derivatives of arbitrary order, and also implies that the number of local
extrema in any derivative of the signal cannot increase with scale. From
this viewpoint, convolution with a Gaussian kernel possesses a strong
smoothing property.

nkﬂ . ﬂﬁhﬂﬂ A ﬂ 6@”0””%

Figure 1.5. Since new zero-crossings cannot be created by the diffusion equation
in the one-dimensional case, the trajectories of zero-crossings in scale-space (here,
zero-crossings of the second derivative) form paths across scales that are never
closed from below. (Adapted from Witkin 1983).
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1.4.4. Uniqueness of the Gaussian

Later, when Koenderink (1984) extended the scale-space concept to two-
dimensional signals, he introduced the notion of causality, which means
that new level surfaces must not be created when the scale parameter is
increased. Equivalently, it should always be possible to trace a grey-level
value existing at a certain level of scale to a similar grey-level at any finer
level of scale. By combining causality with the notions of homogeneity
and isotropy, which essentially mean that all spatial points and all scale
levels must be treated in a similar manner, he showed that the scale-space
representation of a two-dimensional signal by necessity must satisfy the
diffusion equation

oL = V’L = % (8,0 + 0yy) L. (1.6)

2

Since convolution with the Gaussian kernel g: R? x R, \{0} = R

1 22N
9(z,y; ) =5 e (a+y7) /2t (1.7)
describes the solution of the diffusion equation at an infinite domain, it
follows that the Gaussian kernel is the unique kernel for generating a
scale-space. This formulation extends to arbitrary dimensions.

Figure 1.6. The causality requirement means that level surfaces in scale-space
must point with their concave side towards finer scales; (a) the reverse situation
(b) must never occur.

A similar result based on slightly different assumptions, was given
by Yuille and Poggio (1986) concerning the zero-crossings of the
Laplacian of the Gaussian. Related formulations have been expressed
by Babaud et al. (1986), and by Hummel (1987).

Another formulation was stated by Lindeberg (1990), who showed
that the property of not introducing new local extrema with in-
creasing scale by necessity lead to the Gaussian kernel if combined
with a semi-group structure on the family of convolution kernels.

Florack et al. (1992) have elegantly shown that the uniqueness of
the Gaussian kernel for scale-space representation can be derived
under weaker conditions, by combining the semi-group structure of
a convolution operation with a uniform scaling property over scales.
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A notable similarity between these (and other) results is that several
different ways of choosing scale-space axioms give rise to the same conclu-
sion. The transformation given by convolution with the Gaussian kernel
possesses a number of special properties, which make it unique. From the
similarities between the different scale-space formulations, it can be re-
garded as well-established that within the class of linear transformations,
the scale-space formulation in terms of the diffusion equation describes
the canonical way to construct a multi-scale image representation.

An extensive review of basic properties about scale-space and related
multi-scale representations is given in chapter 2. Before proceeding to the
next subject, let us consider two every-day analogies concerning the need
for multi-scale representation.

1.4.5. The scale parameter delimits the inner scale of observation

With respect to the notions of inner and outer scale, increasing the scale
parameter in scale-space has the effect of increasing the inner scale of
an observation. To appreciate the usefulness for this type of operation,
consider the well-known printing method called dithering. It is used for
producing impressions of grey-level information when printing images us-
ing only one colour of the ink (typically black). One of the most common
techniques is to produce a pattern of very small black discs of different
size. While the original image usually does not contain such structures, by
averaging this intensity pattern over a local spatial neighbourhood, the
effect will be the impression of a grey-level corresponding to grey-tone
information. In this respect, this printing method makes explicit use of
the multi-scale processing capabilities of our vision system.

1.4.6. Symbolic multi-scale representation

Referring to the analogies with other fields of science, the need for multi-
scale representation is well understood in cartography. Maps are produced
at different degrees of abstraction. A map of the world contains the largest
countries and islands, and possibly, some of the major cities, while towns
and smaller islands appear at first in a map of a country. In a city guide,
the level of abstraction is changed considerably to include streets and
buildings, etc. In other words, maps constitute symbolic multi-scale rep-
resentations of the world around us, although constructed manually and
with very specific purposes in mind.

It is worth noting that an atlas usually contains a set of maps covering
some region of interest. Within each map the outer scale typically scales
in proportion with the inner scale. A single map is, however, usually not
sufficient for us to find our way around the world. We need the ability
to zoom in to structures at different scales; i.e., decrease or increase the
inner scale of the observation according to the type of situation at hand.
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1.5. Philosophies and ideas behind the approach
1.5.1. Making information explicit

The scale-space theory constitutes a well-founded framework for handling
structures at different scales. However, the information in the scale-space
embedding is only implicit in the grey-level values. The smoothed im-
ages in the raw scale-space representation contain no ezplicit information
about the features in them or about the relations between features at
different levels of scale.

One of the main goals of this book is to present such an explicit rep-
resentation called the scale-space primal sketch, and to demonstrate that
it enables extraction of significant image structures in such a way that
the output can be used for guiding later stage processes and simplifying
their tasks. The treatment will be concerned with intensity images, the
grey-level landscape, and the chosen objects will be blobs, that is, bright
regions on dark backgrounds or vice versa. However, the methodology
applies to any bounded function and is therefore useful in many tasks oc-
curring in computer vision, such as the study of level curves and spatial
derivatives in general, depth maps, and histograms, point clustering and
grouping, in one or in several dimensions. Moreover, the underlying prin-
ciples behind its construction are general, and extend to other aspects of
image structure.

1.5.2.  Scale and segmentation

Many methods in computer vision and image analysis implicitly assume
that the problems of scale detection and initial segmentation have already
been solved. Models based on spatial derivatives ultimately rely upon the
computation of derivative approximations, which means that they will
face similar scale problems as were described in the discussion about edge
detection from gradient data in section 1.3.3. Although we shall here be
mainly concerned with static imagery, the same type of problems arise also
when dealing with image data over time. In other words, when computing
derivatives from measured data, we in general always fall back to the basic
scale problem of selecting a filter mask size” for the approximation.

A commonly used technique for improving the results obtained in
computer vision and other fields related to numerical analysis is by pre-
processing the input data with some amount of smoothing or careful
tuning of the operator size or some other parameters. In some situations
the output may depend strongly on these processing steps. In certain
algorithms these tuning parameters can be estimated; in other cases they
are set manually. A robust image analysis method intended to work in an

"Observe that it is not the actual size of the filter mask that is important, but rather
the characteristic length over which the difference approximation is computed.
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autonomous robot situation must, however, be able to make such decisions
automatically. How should this be done? I contend that these problems
are in many situations nothing but disguised scale problems.

Also, to apply a refined mathematical model like a differential equa-
tion or some kind of deformable template, it is necessary to have some
kind of qualitative initial information, e.g., a domain where the differential
equation is (assumed to be) valid, or an initial region for applying the raw
deformable template. Examples can be obtained from many “shape-from-
X” methods, which in general assume that the underlying assumptions
are valid in the image domain the method is applied to. A commonly used
assumption is that of smoothness implying that the region in the image,
to which the model is applied to, must correspond to, say, one physical
object, or one facet of a surface. How should such regions be selected
automatically? Many methods cannot be used unless this non-trivial part
of the problem is solved.

How can we detect appropriate scales and regions of interest when
there is no a priori information available? In other words, how can we
detect the scale of an object and where to search for it before know-
ing what kind of object we are studying and before knowing where it is
located. Clearly, this problem is intractable if stated as a pure mathemat-
ical problem. Nevertheless, it arises implicitly in many kinds of processes
(e.g., dealing with texture, contours etc.), and seems to boil down to an
intractable chicken-or-the-egg problem. The solution of the pre-attentive
recognition problem seems to require the solution of the scale and region
problems and vice versa.

The goal of this presentation is to demonstrate that such pre-attentive
groupings can be performed in a bottom-up manner, and that it is pos-
sible to generate initial hypotheses about regions of interest as well as
to give coarse indications about the scales at which the regions manifest
themselves. The basic tools for the analysis will be scale-space theory, and
a heuristic principle stating that blob-like structures which are stable in
scale-space are likely candidates to correspond to significant structures
in the image. Concerning scale selection, scale levels will be selected that
correspond to local maxima over scales of a measure of blob response
strength. (Precise definitions of these notions will be given later.) It will
be argued that once such scale information is available, and once regions
of interest have been extracted, later stage processing tasks can be sim-
plified. This claim is supported by experiments on edge detection and
classification based on local features.

1.5.3. Detection of image structure

The main features that arise in the (zero-order) scale-space representa-
tion of an image are smooth regions which are brighter or darker than
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the background and stand out from their surroundings. These will be
termed blobs. The purpose of the suggested representation is to make
these blobs explicit as well as their relations across scales. The idea is also
that the representation should reflect the intrinsic shape of the grey-level
landscape—it should not be an effect of some externally chosen criteria
or tuning parameters. The theory should in a bottom-up fashion allow
for a data-driven detection of significant structures, their relations, and
the scales at which they occur. It will, indeed, be experimentally shown
that the proposed representation gives perceptually reasonable results, in
which salient structures are (coarsely) segmented out. Hence, this repre-
sentation can serve as a guide to subsequent, more finely tuned processing,
which requires knowledge about the scales at which structures occur. In
this respect it can serve as a mechanism for focus-of-attention.

Since the representation tries to capture important image structures
with a small set of primitives, it bears some similarity to the primal sketch
proposed by Marr (1976, 1982), although fewer primitives are used. The
central issue here, however, is to represent explicitly the scales at which
different events occur. In this respect the work addresses problems similar
to those studied by Bischof and Caelli (1988). They tried to parse scale-
space by defining a measure of stability. Their work, however, was focused
on zero-crossings of the Laplacian. Moreover, they overlooked the fact that
the scale parameter must be properly treated when measuring significance
or stability. Here, the behaviour of structures over scale will be analysed
in order to give the basis of such measurements.

Of course, several other representations of the grey-level landscape
have been proposed without relying on scale-space theory. Let us also
note that Lifshitz and Pizer (1990) have studied the behaviour of local
extrema in scale-space. However, we shall defer discussing relations to
other work until the suggested methodology has been described.

1.5.4. Consistency over scales

The idea of scale-space representation of images, suggested by Witkin
(1983) has, in particular, been developed by Koenderink and van Doorn
(1984, 1986, 1992), Babaud et al. (1986), Yuille and Poggio (1986), Hum-
mel (1987), Lindeberg (1990, 1993), and Florack et al. (1992). This work
is intended to serve as a complement addressing computational aspects,
and adding means of making significant structures and scales explicit.
The main idea of the approach is to link similar structures (here blobs)
at different levels of scales in scale-space into higher-order objects (here
four-dimensional objects called scale-space blobs), and to extract signifi-
cant image features based on the appearance and lifetime of the higher-
order objects in scale-space. A basic principle that will be used is that
significant image features must be stable with respect to variations in scale.



1.6. Relations to traditional applied mathematics 19

Another important point within the work is that the scale parameter is
treated as being as equally important as the spatial and grey-level coor-
dinates. This is directly reflected in the fact that the primitives in the
representation are objects having extent not only in space and grey-level,
but also in scale.

1.6. Relations to traditional applied mathematics

In principle, we are to derive information from image data by operating
on it with certain operators. An obvious question to ask is then why this
problem could not be seen as an ordinary standard problem in numerical
analysis and be solved with standard numerical techniques? Let us point
out several reasons as to why the problem is hard.

1.6.1. Modelling, simulation, and inverse problem

Traditional numerical analysis is often concerned with the simulation of
mathematical or physical models (for example, formulated as discrete ap-
proximations to continuous differential equations, which are rather good
descriptions of the underlying reality). The problems are usually well-
defined, the models can often be treated as exact, and the errors involved
in these types of computations are mainly due to discretization and round-
off errors.

In computer vision the situation is different. Given a signal, the task
is to analyse and extract information from it. We are trying to solve an
inverse problem, where the noise level is generally substantially higher®
and the modelling® aspect is still open. With a precise model of the illumi-
nation situation as well as the reflectance properties of the surfaces in the
environment, one could conceive solving for the surface geometry based
on the physical light characteristics. However, it is well-known that this
problem of reconstructing the world is extremely hard, to a large extent
because it is very difficult to formulate an accurate and physically useful
model for the image formation process, but also because such a model
would require much additional a priori knowledge in order to be compu-
tationally tractable. Although further attempts to explore the situation
in more detail are being made (Forsyth and Zissermann 1989; Nayar et

8 A rule of thumb sometimes used in this context is that when derivatives of order
higher than two are computed from raw image data, the amplitude of the amplified
noise will often be of the same order of magnitude as the derivative of the signal or be
even higher.

°The geometry of image formation is quite simple and well understood, but our
knowledge about the complicated physical phenomena (comprising reflections, etc.),
and how to model them from a computational viewpoint, is still rather vague. In addi-
tion, we have the problem of representing the enormous variety of different situations
that can occur in the real world, as well as the question of how cognitive aspects should
be incorporated into the process.
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al. 1990), most shape-from-shading and similar algorithms still rely on
very restrictive simplifying assumptions.

1.6.2. Scale and resolution

Other aspects are those of scale and resolution. In numerical analysis the
accuracy can often be increased by a refinement in the grid sampling. The
selection of a larger grid size is mainly motivated by efficiency reasons,
since exact equations are usually simulated. In computer vision algorithms
the number of grid points used for resolving structures in a given image is
sometimes very low, which makes a difficult problem even more difficult.
This restriction can be relaxed, however, in an active vision situation, as
will be developed in section 11.3.

A more serious problem is that of scale. In most standard numerical
problems the inner scale is zero, which means that the smaller the grid
size that is being used, the higher will be the accuracy in computations
(compare again with the example in section 1.3.3). In easy problems, the
solutions asked for contain variations taking place on essentially a sin-
gle scale. Problems having solutions with variations on different scales
are more complicated and require more advanced algorithms for their so-
lution. Examples can be obtained from computer fluid dynamics, where
turbulence and very thin boundary layers are known to lead to very hard
numerical problems. These fine-scale phenomena cannot always be fully
resolved by discrete approximations, and in fact some type of (sometimes
artificial) smoothing (dissipative terms) is often required. When the fine-
scale phenomena are not properly dealt with, they can interfere with and
disturb the coarse-scale phenomena that usually are the ones of interest
in, for example, design applications. Moreover, the occurrences of discon-
tinuities in the solutions, which are also very frequent in image data, are
known to complicate the situation further.

The idea with scale-space representation is to separate out information
at different scales. Note, that this may be a difficult problem, since in
general, very little or no a priori knowledge can be expected about what
types of structures the visual system is studying, or at what scales they
occur.

1.6.3. Interpreting the results

If an operator is applied all over an image, then it will at best give rea-
sonable answers in those regions in which the underlying assumptions for
the method are valid (provided that the operator size has been appro-
priately tuned). However, the operator also gives false alarms in regions
where the assumptions are not satisfied. One could say that such a uni-
form application of an operator enforces an answer in every point even
though any well-defined answer does not exist. In general, it is hard to
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distinguish from the output of such an operation which responses can be
trusted as correct and which ones should be rejected. Plain thresholding
on the magnitude of the response is usually not sufficient. Therefore, a
conservative strategy is to aim at deriving a sparse set of safe and reliable
cues at the risk of “missing” a few that could be included rather than to
try to compute “every” feature at the risk of including a large number of
false responses. This is the motivation for trying to determine in advance
where to apply'® refined operations.

1.6.4. Approximation and regularization

It is sometimes argued that the main aims of approximation theory have
already been accomplished. Nevertheless, one is confronted with serious
problems when applying this theory to irregular and noisy measurement
data like those obtained from images. Some of the most basic problems
concern how to determine a region in space appropriate for fitting a model
to the data, and how one should tune the associated parameters (such
as the filter weights). An approach that has been extensively used in
computer vision during the last decade is regularization. This technique
has been applied to a variety of reconstruction problems (see Terzopou-
los 1986; Terzopoulos et al. 1987, 1988; Kass et al. 1987; Witkin et al.
1987; Blake and Zisserman 1987; Pentland 1990; Aloimonos and Schul-
mann 1990). The basic methodology is to define a functional, which is
a weighted combination of different error criteria, and then try to com-
pute the function within some restricted space that minimizes it. These
methods often contain a large number of parameters but the theory usu-
ally gives little or no information about how they should be set without
manual intervention, although attempts have been made to learn them
from examples. In addition there is a verification problem, since the algo-
rithm is forced to always find a solution within the given space. How does
one determine whether that function resembles the answer we actually
want (the answer to the original problem)? The solution to a regularized
problem is, in general, not equal to the solution to the original problem,
not even if the input data are exact. To summarize, both these types of
methods require a careful setting of their associated parameters, as well
as the regions in space to which they should be applied.

1.6.5. Principles behind the work

A basic intention behind the approach taken here is to pre-process the
data and to derive context information from it in such a way that the

10This is a problem arising mainly in an initialization phase of a reasoning process.
When a time aspect is present, this problem is simplified, since context knowledge can
be used for predictions about the future. It is generally argued that problems become
easier once the boot-strapping step has been performed.
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output from these types of operations can be well-defined. Although no
claims are made that these problems have been solved, and even though
further complications may appear on the way to the solution, I believe
that the framework to be developed here represents a significant step
toward posing the questions in a context where standard numerical tech-
niques could be readily applied and give useful answers.

1.7. Organization of this book

The book deals with the fundamental problems that are associated with
the use of scale-space analysis in early processing of visual information.
More specifically some of the main questions it addresses are the following:

e How should the scale-space model be implemented computation-
ally? The scale-space theory has been formulated for continuous
signals, while realistic signals are discrete.

e Can the scale-space representation be used for extracting informa-
tion? How should this be done?

e The scale-space representation in itself contains no information about
preferred scales. In fact, without any a priori scale information all
levels of scale must be treated similarly. Is it possible to determine
a sparse set of appropriate scales for further processing?

e How can the scale-space concept interact with and cooperate with
other processing modules?

e What can happen in scale-space? What is the behaviour of structure
in scale-space? How do features evolve under scale-space smoothing?
What types of bifurcation events can take place?

e Can cues to three-dimensional surface shape be computed directly
from visual front-end operations?

The presentation is divided into four parts. We start by considering the
basic theory of scale-space representation. A number of fundamental re-
sults on scale-space and related multi-scale representations are reviewed.
The problem of how to formulate a scale-space theory for discrete signals
is treated, as is the problem of how to compute image features within the
Gaussian derivative framework.

Then, a representation called the scale-space primal sketch is pre-
sented, which is a formal representation of structures at multiple scales
in scale-space aimed at the making information in the scale-space repre-
sentation explicit. The theory behind its construction is analysed, and an
algorithm is presented for computing the representation.
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It is demonstrated how this representation can be integrated with
other visual modules. Qualitative scale and region information extracted
from the scale-space primal sketch can be used for guiding other low-level
processes and simplifying their tasks.

Finally, it is shown how the suggested method for scale selection
can be extended to other aspects of image structure, and how three-
dimensional shape cues can be computed within the Gaussian derivative
framework. Such information can then be used for adapting the shape of
the smoothing kernel, to reduce the shape distorting effects of the scale-
space smoothing, and thus increase the accuracy in the computed surface
orientation estimates.

1.7.1. Guide to the reader

As a guide to the reader it should be remarked that it is not neces-
sary to read this book in a sequential manner. While the ordering of the
chapters follows the bottom-up chain of processing levels in an imagined
vision system, the chapters are written so that it should be possible to
read them independently and still get the major ideas without having to
digest the preceding chapters. The following table describes the mutual
dependencies.

Chapter Contents Background
2 Review of multi-scale analysis
3,4 Discrete scale-space theory
5 Computing derivatives in scale-space (3, 4)
6 Feature detection in scale-space (5)
7 The scale-space primal sketch
8 Theoretical analysis of scale-space (7)
9 Algorithm for blob linking 7,8
10 Extracting salient image structures 7
11 Guiding processes with scale-space 7, 10
12 Summary and discussion of chapters 7-11 7-11
13 Scale selection
14 Shape computation 13
15 Non-uniform smoothing (14)

The level of presentation varies depending on the subjects. Some chapters
are highly mathematical, while others are more descriptive. For a reader
who wants to avoid the mathematics at first, I recommend chapters 7,
10, and 11 for getting the basic ideas of the approach. Then, it may be
natural to proceed with chapters 6, 13, and 14, where straightforward
descriptions can be found of how to use the scale-space methodology
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for different types of early visual computations. The basic scale-space
theory underlying these chapters is described in chapters 3-5, which give
a detailed mathematical analysis of scale-space theory for discrete signals,
and chapter 8, which shows how the behaviour of image structures in
scale-space can be analysed.

Now, in the form of a long abstract, a brief overview will be given of
some of the main results presented in each of the different parts.

1.7.2. Part I: Basic scale-space theory

Chapter 2: Review of multi-scale analysis. A summary is given of basic
properties of scale-space and related multi-scale representations, notably,
pyramids, wavelets, and regularization. A number of special properties
of the scale-space representation are listed, and the different multi-scale
approaches are compared.

Chapter 8: One-dimensional discrete scale-space theory. Which convo-
lution kernels share the property of never introducing new local extrema
in a signal? Qualitative properties of such kernels are pointed out, and a
complete classification is given.

These results are then used for showing that there is only one rea-
sonable way to define a scale-space for one-dimensional discrete signals,
namely by discrete convolution with a family of kernels called the dis-
crete analogue of the Gaussian kernel. This scale-space can equivalently
be described as the solution to a semi-discretized version of the diffusion
equation. The conditions that single out this scale-space are essentially
non-creation of local extrema combined with a semi-group assumption
and the existence of a continuous scale parameter. Similar arguments
applied in the continuous case uniquely lead to the Gaussian kernel.

The commonly adapted technique with a sampled Gaussian may lead
to undesirable effects (scale-space violations). This result exemplifies the
fact that properties derived in the continuous case might be violated after
discretization.

Chapter J: Discrete scale-space theory in higher dimensions. The one-
dimensional scale-space theory is generalized to discrete signals of arbi-
trary dimension. The treatment is based upon the assumptions that (i)
the scale-space representation should be defined by convolving the orig-
inal signal with a one-parameter family of symmetric smoothing kernels
possessing a semi-group property, and (ii) local extrema must not be en-
hanced when the scale parameter is increased continuously.

Given these requirements, the scale-space representation must satisfy
a semi-discretized version of the diffusion equation. In a special case the
representation is given by convolution with the one-dimensional discrete
analogue of the Gaussian kernel along each dimension.
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Chapter 5: Computing derivatives in scale-space. It is shown how dis-
crete derivative approximations can be defined so that scale-space prop-
erties hold exactly also in the discrete domain. A family of kernels is
derived which constitute discrete analogues to the continuous Gaussian
derivatives, and possesses an algebraic structure similar to that possessed
by the derivatives of the traditional scale-space representation in the con-
tinuous domain.

The representation has theoretical advantages compared to other dis-
cretizations of scale-space theory in the sense that operators which com-
mute before discretization commute after discretization. Some computa-
tional implications of this are that derivative approximations can be com-
puted directly from smoothed data (without any need for repeating the
smoothing operation), and this will give ezactly the same result as convo-
lution with the corresponding derivative approximation kernel. Moreover,
a number of normalization conditions are automatically satisfied.

Chapter 6: Feature detection in scale-space. The proposed methodology
leads to a conceptually simple scheme of computations for multi-scale low-
level feature extraction, consisting of four basic steps; (i) large support
convolution smoothing, (ii) small support difference computations, (iii)
point operations for computing differential geometric entities, and (iv)
nearest neighbour operations for feature detection.

Applications are given demonstrating how the proposed scheme can
be used for edge detection and junction detection based on derivatives up
to order three.

1.7.8.  Part II: Theory of the scale-space primal sketch

Chapter 7: The scale-space primal sketch. A representation is presented
for making explicit image structures in scale-space as well as the rela-
tions between image structures at different scales. The representation is
based on blobs that are either brighter or darker than the background. At
any scale in scale-space grey-level blobs are defined at that scale. Then,
these grey-level blobs are linked across scales into objects called scale-
space blobs. The relations between these blobs at different scales define a
hierarchical data structure called the scale-space primal sketch, and it is
proposed that the volume of a scale-space blob in scale-space constitutes
a natural measure of blob significance.

To enable comparisons of significance between structures at different
scales, it is necessary to measure significance in such a way that structures
at different scales are treated in a uniform manner. It is shown how a def-
inition of a transformed scale parameter, effective scale, can be expressed
such that it gives intuitive results for both continuous and discrete sig-
nals. The volumes of the grey-level blobs must be transformed in a similar
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manner. That normalization is based on simulation results accumulated
for a set of reference signals.

Chapter 8: Theoretical analysis of scale-space. It is demonstrated how
the behaviour of image structures over scales can be analysed using ele-
mentary techniques from real analysis, singularity theory, and statistics.

The implicit function theorem describes how critical points form tra-
jectories across scales when the scale parameter changes, and gives direct
estimates of their drift velocity. Momentarily, the drift velocity may tend
to infinity. Generically, this occurs in bifurcation situations only.

The qualitative behaviour of critical points at bifurcations is analysed,
and the generic blob events are classified. A set of illustrative examples is
presented, demonstrating how blobs behave in characteristic situations.

Chapter 9: Algorithm for blob linking. An algorithm is described for
computing the scale-space primal sketch. It is based on detection of grey-
level blobs at different levels of scale. On that output data an adaptive
scale sampling algorithm operates and performs the actual linking of the
grey-level blobs into scale-space blobs as well as the registration of the
bifurcations and the blob events.

1.7.4. Part III: Applications of the scale-space primal sketch

Chapter 10: Extracting salient image structures. It is experimentally
demonstrated how the scale-space primal sketch can be used for extracting
significant blob-like structures from image data as well as associated scale
levels for treating those. Such descriptors constitute coarse segmentation
cues, and can serve as regions of interest to other processes.

The treatment is based on two basic assumptions; (i) in the absence of
other evidence, structures, which are significant in scale-space, are likely
to correspond to salient structures in the image, and (ii) in the absence
of other evidence, scale levels can be selected where the blob response
assumes its maximum over scales.

Chapter 11: Guiding processes with scale-space. It is demonstrated how
the qualitative scale and region descriptors extracted by the scale-space
primal sketch can be used for guiding other processes in early vision and
for simplifying their tasks.

An integration experiment with edge detection is presented, where
edges are detected at coarse scales given by scale-space blobs, and then
tracked to finer scales in order to improve the localization. In histogram
analysis, the scale-space primal sketch is used for automatic peak detec-
tion. More generally, such descriptors can be used for guiding the focus-
of-attention of active vision systems. With respect to a test problem of
detecting and classifying junctions, it is demonstrated how the blobs can
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be used for generating regions of interest, and for providing coarse context
information (window sizes) for analysing those.

Finally, it is briefly outlined how the scale-space primal sketch can be
applied to other visual tasks such as texture analysis, perceptual grouping
and matching problems. Experiments on real imagery demonstrate that
the proposed theory gives intuitively reasonable results.

Chapter 12: Summary and discussion of the scale-space primal sketch ap-
proach (chapters 7-11). Basic properties of scale-space representation
and the scale-space primal sketch are pointed out, and relations to previ-
ous work are described. A summary is given of the basic ideas, and a few
alternative approaches are discussed.

1.7.5.  Part IV: Scale selection and shape computation

Chapter 13: Scale selection. A heuristic principle for scale selection is
proposed stating that local extrema over scales of different combinations
of normalized scale invariant derivatives are likely candidates to corre-
spond to interesting structures. The resulting methodology lends itself
naturally to two-stage algorithms; feature detection at coarse scales fol-
lowed by feature localization at finer scales. Support is given by theoreti-
cal considerations and experiments on blob detection, junction detection,
and edge detection.

Chapter 14: Shape computation by scale-space operations. The problem
of scale in shape-from-texture is addressed. The need for (at least) two
scale parameters is emphasized; a local scale describing the amount of
smoothing used for suppressing noise and irrelevant details when com-
puting primitive texture descriptors from image data, and an integration
scale describing the size of the region in space over which the statistics
of the local descriptors is accumulated.

The mechanism for scale selection outlined in chapter 13 is used for
adaptive determination of the two scale parameters in a multi-scale tex-
ture descriptor, the windowed second moment maitriz, which is defined
in terms of Gaussian smoothing, first-order derivatives, and non-linear
pointwise combinations of these. This texture description can then be
combined with various assumptions about surface texture in order to esti-
mate local surface orientation. Two specific assumptions, “weak isotropy”
and “constant area,” are explored in more detail. Experiments on real and
synthetic reference data with known geometry demonstrate the viability
of the approach.
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Chapter 15: Non-uniform smoothing. Various generalizations of linear
and rotationally symmetric Gaussian smoothing are briefly described.

A special approach of performing linear shape adaption in shape-from-
texture is treated in more detail. It is demonstrated how an affine scale-
space representation can be used for defining an image texture descriptor
that possesses useful invariance properties with respect to linear trans-
formations of the image coordinates.
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absolute error, 396
abstraction
from parameter variations, 251,
294
accidental grouping, 184, 312
accommodation
depth from, 298-299
active vision, 2

active analysis of junctions, 285—

300
avoiding boundary effects, 121
adaptive refinement, 185
continuous scale, 82—-83
in blob linking, 232
aerosol images
analysis of, 300-304
affine intensity transformation, 152,
311
affine scale-space, 387-390
interpretation, 389
transformation property, 387
anisotropic diffusion, 59, 383
anisotropic smoothing, 119-120
anisotropy, 355
annihilation
of blob, see blob annihilation
of saddle-extremum pair, 197
aperture of observation, 41, 124
approximation theory, 21
area gradient, 352, 353, 358
autocorrelation function, 217

bandpass pyramid, 37-38, 55
base-level
definition, 168
of grey-level blob, 167
registration 1-D, 227
registration 2-D, 231
bifurcation, 172, 173, 185, 198
multiple blob responses, 258
set, 196
bifurcation events

415

Index

blobs, 201-204
critical points, 194-200
binomial kernel, 6668, 8082
separable 2-D case, 117
blob
requirements of, 165
blob annihilation, 172
definition, 202
extended neighbourhood search,
238
registration of, 241
weak candidate, 237
blob creation, 172
definition, 202
example, 203
extended neighbourhood search,
238
registration of, 241
weak candidate, 237
blob detection, 159, 325-327, 371-
374
experiments, 174, 252-256, 259—
270, 282, 295, 301-306
methods, 310-311
scheme for, 252
blob events, 172, 173
complex, 239
for blob linking, 232
generic types, 172, 202-204
scale determination, 243
strong conditions, 237
weak conditions, 236
blob linking, 172, 177, 232242
basic algorithm, 240242
blob merge, 172
definition, 202
registration of, 242
strong candidate, 237
weak candidate, 237
blob split, 172
definition, 202
example, 203
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registration of, 242

strong candidate, 238

weak candidate, 237
blob-blob matching, 233-234
blob-edge matching, 273-277
blob-extremum matching, 234-236
blob-initiated edge focusing, 277-281
bright blob, 166, 167, 170

relation to dark blob, 169

cascade smoothing, 42, 46, 125, 128—
132, 145
Fourier domain, 42
causality, 14, 47, 103, 106
central limit theorem, 53
characteristic length, 16, 32, 178
descriptor, 40
circulant matrix, 71
clustering, see grouping
colour segmentation, 282-285
commutative properties, 46, 47
affine scale-space, 388
feature detectors, 153
scale-space derivatives, 125-138
comparison
derivative approximations, 145
scale-space vs. pyramid, 58
conductivity, 120, 383
connected-component-labelling, 229,
230
consistent derivative approximation,
129, 145
continuous scale parameter, 82-83
contrast
of grey-level blob, 168
significance measure, 177
convolution matrix
circulant, 71
eigenvectors, eigenvalues, 72, 74
minors, 79
no real eigenvalues, 69, 70
covariance matrix, 40, 221, 354
creation
of blob, see blob creation
of new extrema
example, 101-103
of saddle-extremum pair, 197
cross operator, 105
cubic spline, 57

Index

curvature blob, 292-297
curvature of level curve, 151, 158—
160, 291-293

in non-linear diffusion, 384
curve

multi-scale representation, 59
cusp singularity, 195

in scale-space, 210-212

dark blob, 169, 170
relation to bright blob, 169
data compression, 38
decreasing amplitude, 309-310, 318
deep structure, 187
delimiting saddle point, 201
definition, 168
illustration, 167
importance in bifurcations, 172
registration of, 230
delta function, 86, 136
density gradient, 352
density in scale-space
of local extrema, 217-226
depth-from-focus, see accomodation
derivative approximation, 8, 16, 123—
148
discrete scale-space properties
necessity, 132
sufficiency, 132
implementation, 397
in feature detection, 154, 158
scale-space properties transfer,
119
difference of Gaussians, 53, 138
difference of offset Gaussians, 55
difference operator, 123, 127
1-D, 133
2-D, 133
backward, 139
commutes with scale-space smooth-
ing, 128
second order, 133
sensitivity to step length, 8, 124
differentiability, 106
from scale-space axioms, 107, 131
infinite in scale-space, 45
differential geometric descriptor, 126,
149-161
scheme for computation, 136



Index

differential invariant, 149-152
differential singularities, 152-153
differential singularity
drift velocity in scale-space, 214—
217
diffuse L-junction, 329
diffuse step edge, 138, 329, 339
diffusion equation, 11
discretization, 61, 100
N-D, 43
necessity for scale-space, 48
semi-discretized, 94-97, 128
N-D, 118
diffusion polynomials, 398
dimensional analysis, 49
dimensionless coordinate, 46
direct computation, 135, 349
directional derivative, 139
directional derivatives, 150-151
discrete analogue of Gaussian
definition, 86
derivative approximation, 145
filter coefficient generation, 396
Fourier transform, 87
kernel graphs, 139
properties, 86
separable case N-D, 115
truncation, 396
uniqueness, 84—86
variance, 87
discrete iterations, 116
discrete scale-space, 61-122
spatial isotropy, 117
finite domain, 120
Fourier transform, 112
generating function, 112
grids types, 121
necessity, 109-111
separability, 114-115
sufficiency, 111-112
unimodality, 114
uniqueness, 85
discrete scale-space kernel, 96
classification, 79-82
definition, 63
properties, 65-75
distribution theory, 45
double asymmetric step edge, 340
double blob link
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strong candidate, 238
drift velocity
critical point, 190, 213
curved edge, 216
differential singularities, 214-217
in blob linking, 243
junction, 215
parabolic curve, 217
straight edge, 190
unbounded in scale-space, 191
zero-crossing of Laplacian, 217
dynamic shape, 187

eccentricity, 54
edge definition, 153-155
discrete sub-pixel interpolation,
154-155
edge detection, 7, 1563-158, 161, 162,
272-282, 339-343
discrete modelling, 138
regularization, 57
edge focusing, 272-273, 277281
effective grey-level blob volume
definition, 184
effective scale, 180-182
continuous signals, 219-220
continuous vs. discrete, 223-225
discrete signals, 220-223
equal contribution
condition in pyramid, 35
equi-ripple design, 36
Expand, 37
explicit information, 2, 16
extrema
density in scale-space, 181-182,
217-226
extremum path, 47
definition, 192

fast Fourier transform, 397
feature detection, 149-162
scheme for, 145, 161
filter size
pyramid, 36
scale-space, 395
finite domain, 120
first moment vector, 40
five-point operator, 105
fixation, 295-297
fixed readout capacity, 54
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focus-of-attention

guidance, 281-282, 285295
fold singularity, 195

in scale-space, 206-210
foreshortening effect, 351
Forstner operator, 332-334
Fourier spectrum

self-similar, 346
Fourier transform

definition, 42

discrete Gaussian, 87

discrete scale-space 2-D, 113

non-uniform Gaussian, 390

of Gaussian, 51

pyramid, 37

unimodality 2-D, 114
foveation

definition, 286

simulated, 291

Gabor function, 55, 59
Gaussian blob, 340, 385
Gaussian derivative, 126
kernel graphs, 139
Gaussian derivatives
biological vision, 54
Gaussian kernel, 11, 39
discrete, see discrete analogue
of Gaussian
integrated, see integrated Gaus-
sian kernel
N-D, 39

non-uniform, see non-uniform Gaus-

sian kernel
Pélya frequency function, 89
sampled, see sampled Gaussian
kernel
special properties, 40-53
uniqueness, 47-52
gaze transformation, 353
generalized binomial kernel, see bi-
nomial kernel
generalized function, 124
generating function
characterization of discrete scale-
space kernel, 79
definition, 67
discrete scale-space 2-D, 113
root of, 68

Index

generic signal, 167
discrete definition, 228
geometric coincidence, 273-276
grey-level blob, 166-169
contrast, 168
definition, 166-168
detection algorithm, 227-232
detection invariants, 229-230
experiments, 174-177
in scale-space, 171-177
properties, 169
relation Laplacian blob, 311
grey-level blob tree, 170-171
computation, 232
grey-level blob volume
definition, 168
transformed, 183-184
variation over scales, 183
grid types, 121
grouping, 6-7, 17, 165, 184, 250, 258,
306-313
guide to reader, 23-28
guiding visual processes, 271-306

Hadamard, 6

harmonic oscillator, 52

head-eye system, 285, 294

heat distribution, 43

Hermite function, 52

Hermite polynomial, 51
histogram, 287

histogram classification, 282-285
homogeneity, 14, 47

hypothesis generation, 256, 281, 285
hysteresis thresholding, 162

ideal low-pass filter, 36, 99
ill-posed problem, 56, 57
implementing scale-space smoothing,
395-397

implicit function theorem, 189
infinite differentiability, 45
infinitesimal generator, 107
infinitesimal scale-space generator

definition, 109
infinitesimal smoothing, 80
inner scale

of image, 182

interference, 182
of object, 9



Index

of observation, 15
integrated Gaussian

derivative, 145
integrated Gaussian kernel, 97-98
integration scale

definition, 359-360

selection, 366
inverse problem, 19
iso-intensity linking, 309-310
isotropic pattern, 362
isotropy, 14, 47

junction classification, 285-300
basic scheme, 287289
context information, 289
experiments, 295-297
scale problem, 289
junction detection, 158, 287, 291-293,
328-339
composed scheme, 337-339
junction types, 288

Laplacian operator, 169
discrete correspondences, 104
Laplacian pyramid, 37
large support diffusion smoothing,
350
large support smoothing, 148
level curve curvature, 159, 160, see
curvature of level curve
level curve interpolation, 154-155
level surface, 47
non-creation, 47
lifetime
in scale-space, 173, 174, 177
linear illumination gradient, 55
linear increase of receptive field size,
54
linearity, 40, 49, 63, 84, 90, 106
linking across scales, 18, 172, 177
iso-intensity vs. feature points,
309
local extrema, 159
non-creation, 47, 48, 63
local scale
definition, 359-360
selection, 366
locality, 106
localization
blob boundary improvement, 276

419

conflict with detection, 272
low-pass pyramid, 35

Markov process, 43
matching
blob-blob, 233, 293
blob-edge, 273, 276
blob-extremum, 234
proximity, 276
Voronoi, 274, 276
mathematical morphology, 59
maximum
region-based, 228
semi-weak, 228
strong, 228
weak, 104, 228
maximum principle, 44, 104, 119
non-linear diffusion, 384
merge
of blobs, see blob merge
Miller’s algorithm, 396
minimum, see maximum
minor, 76
mirror symmetry, 106
modified Bessel function, 85
generating function, 86
recurrence relation, 95
monotonic intensity transformation,
151
Morse function, 167, 195
multi-grid methods, 38
multi-index notation, 45
multi-scale representation, 9-10, 62
curve, 59
linear, 31-60
multiple blob responses, 258, 284, 313

N-jet representation, 51
algebraic properties, 125
basic filters, 139
computation of, 135

nearest-neighbour processing, 161

neighbourhood, 104, 119

nested hierarchy
of level curves, 232, 311

neurophysiology, 3, 54

nine-point operator, 118

noise sensitivity, 177

non-creation
of extrema, 63
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of level curves, 103
of level surfaces, 47
of local extrema, 47, 48
of structure, 13
of zero-crossings, 47, 48, 63
non-enhancement
of local extrema, 44, 106, 128
non-enhancement of local extrema,
46
non-generic signal, 63
discrete definition, 228
non-linear diffusion, 59, 383-385
non-maximum suppression, 153, 273
non-uniform Gaussian kernel, 387
Fourier transform, 390
interpretation, 389
transformation property, 388
non-uniform smoothing, 383-393
normal distribution, 53
normalization, 48, 84, 90, 106
coordinates in scale-space, 250
discrete analogue of Gaussian,
136
discrete derivative approxima-
tions, 136
pyramid, 35
normalized anisotropy, 355
behaviour over scales, 366
normalized coordinate, 46, 319
normalized derivative, 46, 319
discrete implementation, 345-346
interpretation, 345-346
normalized differential entity
scaling property, 321
normalized scale-space extremum
definition, 324
invariance property, 391
scaling property, 325
numerical analysis, 19

object detection, 306
operator size, 7
organization of this book, 22
outer scale

of image, 182

interference, 182

of object, 9

oversampled pyramid, 38

parabolic differential equation, 53

Index

parameter variation, see transforma-
tional invariance
peak detection, 282
perceptual organization, 6, see group-
ing
perspective projection
basic effects, 351-352
camera geometry, 352-353
Pi-theorem, 50
Plancherel’s relation, 346
point measurement, 41
pointwise non-linear combinations, 148,
350
Pélya frequency function, 57
classification, 88
definition, 88
integrated, 97
sampled, 92
semi-group, 90
Pélya frequency sequence, 57
classification, 79
definition, 78
normalized, 78
semi-group, 85
polygon approximation, 59
position effect, 351
positivity, 99, 106
in Fourier domain, 68-74
in spatial domain, 65—66
pyramid, 35
pre-scale-space family
derivative approximation kernels,
129
pre-scale-space property, 108
pre-scale-space representation, 107
derivative approximation, 130
differentiability, 107-108
primal sketch, 18, 307
primitive smoothing transformations
classification, 80
processing cone, 32
proximity matching, 274
pyramid, 33-38, 82
derivative approximation, 135
fixed scale sampling, 122
generation, 34, 53
oversampled, 38
properties, 38

quad-tree, 32-33



Index

reaction-diffusion equation, 59
reader’s guide, 23-28
receptive field, 54
recognition cone, 32
reconstruction
from bandpass pyramid, 38, 55
from zero-crossings, 60
of world, 19
recursive filtering, 80, 100
Reduce, 35
refinement, 83
continuous scale, 82
limit on depth, 239
local, 243
scale, 239
region of interest, 17, 289, 307
generation, 256
importance of, 271-272
regularization, 21, 57
and diffusion, 383
property of scale-space, 45
regularizing
property of scale-space, 57
relational tree, 170, 171, 232
relative error, 397
relative integration scale, 369
relative invariant, 152
reordering, 173, 174
repeated averaging, 61, 67
limit case, 97
representation, 2
resolution, 20, 32
retina, 54
review
multi-scale representations, 31—
60
non-linear diffusion, 383-384
shape-from-texture, 350-353
total positivity, 76-79
rotational invariance
differential singularities, 153
scale-space primal sketch, 311
rotational symmetry, 52, 106
discrete scale-space
derivative approximation, 135
scale-space axiom, 49

saddle path
definition, 192

421

shared and non-shared, 201
sampled Gaussian
derivative, 137, 145
kernel, 137
sampled Gaussian kernel, 91-94
scale, 89, 20
in early vision, 16-17
scale invariance, 49
necessity from, 49-52
scale parameter, 10, 62
continuous, 84
scale problem
in early vision, 271
scale selection, 16, 317-348
assumption, 249
basic problem, 271, 285
blob detection, 325-327
edge detection, 339342
edge localization, 342-343
guiding processes, 256
heuristic principle, 320-325
junction detection, 296, 328—-332
junction localization, 332-337
parameter variations, 251
properties, 257
shape-from-texture, 360-363
scale-space, 10-15, 39—46
affine, 387-390
arbitrary dimensions, 39
behaviour of structures, 187-226
continuous signals, 39, 88-91
derivative approximation, 123—
148
discrete, see discrete scale-space
discrete scale parameter, 82
implementation of, 395-397
infinite differentiability, 125
numerical approximations, 91—
98
separability, 43
special properties, 40-53
uniqueness, 47-53
scale-space axioms, 47-52, 103—-104
cascade smoothing property, 129
continuity, 107, 130
linear shift-invariant smoothing,
129
linearity, 90
list of, 106, 130



422

normalization, 90
semi-group, 90, 106
shift-invariance, 90
symmetry, 130
scale-space blob, 172-173
definition, 193
representative scale, 249
spatial representative, 250
scale-space blob tree, 173
scale-space blob volume
computation of, 242-243
definition, 194
normalization, 312-313
normalized, 194
significance measure, 177, 249
scale-space derivative, 45, 124-127
scale-space kernel, 63
scale-space lifetime, 173, 177
measurement, 178-182
significance measure, 177, 250
scale-space primal sketch, 16, 165—
185
algorithm, 227-246
computation, 252
data structure, 185, 244-246
detecting image structures, 249—
270
invariance properties, 311-312
motivation, 165
summary, 307-314
scale-space property, 132
derivative approximations, 127
scale-space representation, 108
scaling effect, 351
scaling invariance
differential singularities, 153
scale-space primal sketch, 311
scaling property
of scale-space, 44
Schrédinger equation, 52
Schwartz distribution theory, 124
second moment matrix, 40
composed method, 365
definition, 354
eigenvalues and eigenvectors, 355
interpretation, 354-356
junction detection, 333
linear transformations, 356-357
multi-scale, 359

Index

non-uniform smoothing, 391
transformation property, 391
visualization, 358
segmentation, 16—-17, 250, 256
basic problem, 271
histogram-based, 282
selective mechanism, 162
self-similarity, 49
semi-group, 41, 84, 90, 126
canonical, 49
discrete scale-space, 106
infinitesimal generator, 107
property of Gaussian, 41
scale-space axiom, 48, 49
violation, 92
separability, 43, 52, 114-116
Gaussian kernel, 43
scale-space axiom, 49
separable discrete scale-space
derivative approximation, 134
shape adapted smoothing
shape-from-texture, 385-387, 392—
393
shape distortion, 54
junction detection, 293
non-uniform smoothing, 383, 385
shape-from-texture, 363—364
shape-from-texture, 304, 349-382
affine invariance, 392-393
composed method, 374
experiments, 368-371, 376-379
problem, 350
shape adapted smoothing, 385—
387, 392-393
shift-invariance, 40, 49, 63, 84, 90
sign change, 76
sign-regularity, 77
signature
blob detection, 323
edge detection, 341
edge localization, 343
junction detection, 329
junction localization, 335
scale-space, 323
shape-from-texture, 366
significance
measure, 174, 177-184
ranking, 249, 250
singularity
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in scale-space, 197-200
singularity detection, 161
singularity set, 152, 196

in one-parameter family, 197
skew invariance, 159
slant, 353
small support derivative computa-

tions, 148, 350
smoothing, 20, 64
smoothing filter, 54
smoothing, examples, 39
spatial extent

significance measure, 177
spectral density, 218

self-similar, 219
split

of blob, see blob split
steerable filters, 139
strong continuity, 108
structure, 47, 49, 63, 250
sub-pixel edge detection, 154—-155
subsampling, 32, 34
support region

of grey-level blob, 167

definition, 168

of scale-space blob, 194
symmetry

pyramid, 35

texel grouping scale, 375
texture analysis, 304, see shape-from-
texture
texture gradient, 350, 351, 353
Thom’s classification theorem, 195
three-kernels
scale-space properties, 74-75
three-point operator, 105
tilt direction
definition, 353
Toeplitz matrix, 69-71, 78
top point, 60, 188
total positivity, 76, 78, 88
transformational invariance, 251, 307—
308
junction detection, 286
translational invariance, 106
differential singularities, 153
scale-space primal sketch, 311
truncation
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error in approximation, 8
of Gaussian kernel, 395
two-stage scale selection, 337

uncertainty relation, 52, 53
edge detection, 272
uncommitted visual system, 54, 385
unidirectional pattern, 362
uniform rescaling, 150, 153, 311, 388
unimodality, 36, 65, 82, 99, 106
Fourier transform 2-D, 114
in Fourier domain, 68-74
in spatial domain, 65-66
pyramid, 35
uniqueness
of Gaussian, 14-15, 47-53

variance, 87

variation-diminishing, 76-78, 88, 89

vision, 1-3

visual cortex, 54

visual front-end, 3, 4, 31, 54, 106,
130, 148

Voronoi diagram

for matching, 274

wavelet representation, 55, 58, 60
weak isotropy, 357-358

weighted average, 41

well-posed problem, 6, 56

white noise, 182, 219

zero-crossing path, 47
Z€ero-Ccrossings
non-creation, 47, 48, 63
of Laplacian, 159
drift velocity, 217
edge localization, 161
information content, 59
non-creation, 103
related to extrema, 212-213
related to grey-level blobs, 169,
311



