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Abstract

With the increased demands for higher resolution and higher quality
video the requirements for larger storage medium and higher bandwidth
has increased as well. One method to cope with these new demands is by
introducing new ways to efficiently compress video. One problem with
this approach is that better compression means higher computational
complexity.

This Master’s thesis presents three methods that are used to inde-
pendently optimize an existing video encoder (using the H.264 codec).
Where previous research has mostly focused on standard and lower reso-
lution video, this thesis focuses on encoding HD-video (High-Definition).
The implemented optimizations work differently, as an example some ap-
proaches makes better use of the computer hardware.

The result of this work is that real-time encoding of HD-video, on a
workstation computer, at minimum of 50 frames per second is achieved
when combining instruction- and thread-level parallelism. Since the min-
imum requirement of real-time encoding is 25-frames it was also investi-
gated how the extra complexity can be used to get better compression
results.

Referat

Optimering av en H.264 videokodare for realtidskonvertering
av HD-video

Dagens O0kande efterfragan pa video som bade dr mer hogupplost men
dven har battre visuell kvalitet, stéller nya krav pa storre lagringsmojlig-
heter och snabbare 6verforingskapacitet. Ett sétt att hantera detta krav
ar att forbattra videokomprimeringen. Problemet med videokomprime-
ring ar dock att den ar tidskravande och for att 6ka komprimeringsgraden
krévs hogre berdkningskomplexitet.

Detta examensarbete visar pa tre olika metoder, som kan anvéndas
oberoende av varandra, for att optimera en befintlig videokomprimera-
re (som anvinder sig av H.264 standarden). D& tidigare forskning till
mesta del arbetat med lagupplost video ligger vikten i denna rapport
pa hogupplost video (sd kallad HD-video). De implementerade optime-
ringarna fokuserar pa olika aspekter, vissa anvdnder hardvaran effektiva-
re, medans andra fokuserar pa balansen mellan komprimeringsgrad och
komplexitet.

Resultatet av arbetet dr att malet med realtidskonverting uppnad-
des, pa en vanlig arbetsdator, vid 50 bilder per sekund nér lagnivaopti-
mering kombinerades med tradparallellisering. Da resultatet ligger Gver
den nedre grénsen for realtidskonvertering pa 25 bilder per sekund, pre-
senteras ocksa hur extra komplexitet bast kan anvindas for att forbattra
komprimeringsgraden.
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Chapter 1

Introduction

1.1 Scenario

Digital image and video compression is about taking raw uncompressed video (as captured by the
camera’s digital sensor) and take advantage of the redundant information both within a single still
image (called a frame) and between previous and following frames. Unlike other types of com-
pression methods, (lossless) video compression algorithms do not result in the same compression
ratio as say compressing a text document.

As a consequence of this, digital video is often compressed using lossy compression algorithms.
In lossy video compression the decompressed (or restored) video will most often not be identical
to the original (raw) footage and will most often have a slight drop in perceived quality. Because
of the fact that (lossy) compressed video takes so much less storage than uncompressed video and
with only a slight reduction in visual quality, almost all of today’s digital video is transmitted in
compressed form.

In some situations it’s a requirement that the video compression works as fast as the video
is created, examples where this occurs exists in live-video broadcasting, video telephony and
conferencing. In these situations it’s important for the sender to be able to quickly compress and
transmit the footage while it’s being recorded. Otherwise large memory or temporary storage
is needed to temporary hold the raw video. In the case of video telephony and conferencing
an additional requirement is to have low latency encoding. Here latency is defined as the time
from when the video is first captured until the compressed version reaches the receiver and the
decompressed footage is displayed. Having a large latency in video telephony makes two-way
communication both unnatural and cumbersome.

1.2 Objective

The goal of this thesis is to attempt to optimize an existing H.264/AVC video encoder in order to
achieve real-time compression of video footage. Since compression times are highly dependent on
video resolution only high-resolution (HD) video sequences are considered in this study.

The actual definition of real-time encoding is not exactly defined and varies depending on
application uses and transport medium. Traditional standard definition content like DVD discs
plays between 25 and 30 frames per second. When it comes to 720p HD-video which is the type
of video used in this study, the playback frame-rate varies. One example of HD-video usage on
the Internet is Youtube which has a frame rate limit of 30 when uploading HD video. A similar
scenario is broadcasting of live TV (HDTV) where 720p resolution is normally played back at 50
frames per second.

This thesis investigates how the encoding complexity (time to encode a video), compression
efficiency (difference in size before and after compression) and quality are affected when optimizing
the video encoder. Even though no specific scenario is targeted in this study, encoding latency is
also considered an important factor when comparing different implementations.



1.3 Approach and restrictions

In order to reach the real-time encoding goal a couple of different implementations strategies are
evaluated. The different types target different aspects of encoding and can be used independently
or together in order to combine the individual speed-ups of each method. The approaches investi-
gated are optimizing cache and memory utilization, using low-level vector instructions, algorithm
changes and parallelization of the encoder. In order to limit the scope of the thesis, the following
list of aspects are not considered in this report.

Constrained Baseline only The H.264 specification has defined several profiles (baseline, main
and high) that allows different level of compression at the cost of greater complexity for both the
encoder and decoder. For this thesis work is done on an encoder supporting the baseline profile
only. By using the other profile levels more complexity is required during encoding which further
increasing the real-time encoding challenge.

Hard deadline encoding Certain types of applications requires encoding to be done at a fixed
rate. For these types of applications frames have a fixed number of milliseconds to be encoded at.
These types of encodings are more suitable for embedded systems which allows for a more stricter
control on its environment, such as operating system scheduling.

Extreme parallelism scaling Since this thesis focuses on real-time encoding for "common”
workstation hardware no work is done on scaling the encoder to large amounts of CPU cores. In
the report the effects of parallelism is investigated on a computer with 8 (logical) CPU cores.

Full high-definition video sequences Full-HD video (1080p), which has more than twice as
many pixels as 720p, also increases the encoding complexity further. Based on targeted hardware
and current encoder performance, it was considered less feasible that this resolution could be
encoded in real-time and it therefore not investigated in this work.

Hardware or graphics chipsets With the goal of performing real-time encoding on worksta-
tion computers exotic hardware chipsets are not considered in this thesis. Even though general-
purpose GPUs are becoming more common in todays computers, it was considered a thesis on its
own to adapt the encoder for this type of hardware.

No high latency (a.k.a pipelining) approaches One scenario where real-time encoding is
used is in video telephony and conferencing. A common aspect of these types of use-cases is that
they also puts constraints on encoding latency. In order to not limit the types of applications that
can benefit from this work, methods that result in higher encoding latency are not investigated.

Only SSE2 vectorizations Again due to the focus on supporting workstation hardware and in
order to not have to develop multiple versions, only the SSE2 instruction set is used for the vector
optimizations. One benefit of using SSE2 is that it’s guaranteed to be supported on all x86-64
CPUs.

1.4 Organization of the report

In Chapter 2 a general background to video compression is given. This is followed by an explanation
of the H.264/AVC codec that is video encoding standard used in this thesis. Finally a brief study
of previous research that has been done on making video encoding faster is presented in section
2.4.

Chapter 3 starts with a presentation of the encoder targeted in this thesis. Its behavior is
analyzed and compared with two other H.264 encoders. This is followed by a technical description
of the proposed code and algorithm changes that has been implemented.



The results of the optimizations are presented in Chapter 4. This chapter analyzes the benefits
and drawbacks of the various optimizations and compares them with each other and to a different
encoder implementation.

Finally conclusions and list of accomplishments are shown in Chapter 4. The chapter is then
ended with some topics that could be investigated in order to increase performance even more.






Chapter 2

Background

This chapter attempts to explain the underlying motivation for video-compression and how it can
be implemented. The list of video encoding techniques does not explain the whole inner workings
of how an encoder operates. Instead it tries to explain the different areas that were targeted as
part of this thesis.

2.1 General video compression

Image and video compression is an area with much ongoing research. New demands for higher
quality and higher resolution video has increased the needs for better compression. One reason is
that bandwidth capacity has not scaled with the new demands for HD-video.

In order to better understand how the data rate increases with different resolution compare
SD-resolution video (720 x 486@24p, which is played on a traditional DVD disc) that requires
210 megabits per second (Mbps) to represent in uncompressed form. Compare this number with
HD-video (1280 x 720@24p) that requires 332 Mbps. When resolution increases to Full HD
(1920 x 1080/60i) uncompressed video requires 932 Mbps which is equivalent to 410 GB per hour
of video[33]. At least today the average user has nowhere near this kind of storage space for
watching a full length movie nor enough bandwidth to stream Full-HD video across Internet in
uncompressed form. A conclusion is therefore that, with the continuing trend towards more higher
resolution and higher quality video, compression is still needed, perhaps more than ever.

The act of compressing video is called encoding and the inverse action of uncompressing is
called decoding. As computers have become faster over the years so has video encoding methods
become more complex in order to get even better compression results. H.264/AVC is today
(2010) one of the latest methods in which very good quality per bit-rate is achieved by requiring
high computational complexity in the encoding process. In many scenarios this trade-off is often
acceptable since encoding is only done once whereas decoding (i.e. playback) can be performed
numerous times.

2.1.1 What is video

As input data the encoder takes a video that consists of a series of digital pictures (known as
frames). When displayed, each frame consists of pixels containing the color information (RGB
color space). What many video standards do is to use the YCrCb (luminance, red chrominance,
blue chrominance) color space instead. This decision has to do with how the human visual system
is less sensitive to color than to luminance (brightness) changes [23]. With the YCrCb color space
different so called samplings are used to control how much information is stored in each frame. A
common format (or pattern) called 4:2:0 states that the red and blue color information is sampled
(recorded) only at each forth (i.e. one every 2x2 block) pixel. This severally reduces the amount
of information that needs to be analyzed and encoded. Since the luminance data contains twice as



much information compared to the color data, most video coding standards use this information
for analyzing how to efficiently compress the frame.

Apart from dividing a video sequence into frames, a frame can further be divided into smaller
parts. One of those are called slices which can contain arbitrary regions of the frame. A feature
of using slices is that they are self containing and independent on other slices in the frame.
This property makes slices useful for dealing with errors (e.g. due to problems with the video
transmission) since an error in one slice is not propagated to the others. A downside of using
slices is that since they are independent, the compression efficiency is slightly degraded. This is
because of two reasons; first redundant information across slice borders cannot be exploited and
secondly because of the extra information required with coding the slice header.

Furthermore a slice is divided into macroblocks, which are the basic units that the encoder
works with. Dividing the frame into macroblocks makes tasks such as motion estimation and
block transformations easier compared to doing these for each individual pixel. The size of a
macroblock varies depending on which video codec is used. This thesis focuses solely on the
H.264 codec, which has defined the macroblock size to be 16x16 pixels large. With the 4:2:0 color
space this means that a macroblock contains 256 luminance, 64 red chrominance and 64 blue
chrominance pixels.

2.1.2 Video quality measurement

The quality of the encoded output (i.e. the compressed video) can be measured both subjective
and objectively. Subjective quality is about how the Human Visual System (HSV) perceive the
decoded output. The objective quality contains all the measurements which can be calculated
automatically using an algorithm. Subjective quality is affected by many different factors, e.g.
different people have different opinions on quality[23], making a subjective comparison both time-
consuming and difficult to evaluate. In this work objective quality algorithms are primarily used
to compare different implementations. Using only subjective measurements to validate the results.
One of the more popular objective quality algorithms are called the Peak Signal-to-Noise Ratio
(PSNR) metric [23]. This is a logarithmic scale that is calculated from the mean square error
between the original and the decoded image, where a higher PSNR value means better quality.

There are also other types of objective quality metrics. According to Richardson[23] some recent
proposals are Structural SIMilarity index (SSIM) and Just Noticeable Difference (JND). When
comparing these metrics with subjective test scores there are reported correlations of between 70%
to 90% between the objective metric and subjective quality score. The reason why PSNR is used
in this work is because of its wide usage and to also be able to compare the results with other
research.

Even though PSNR is widely used it has some drawbacks. One example is that it does not
relate well to subjective quality, for example a blurred images will get a higher PSNR value even
though it’s commonly perceived as of lesser quality. Another issue is that since video quality is
highly dependent on the bit-rate, two bit-streams can only be compared if they have the same
bit-rate. This makes it difficult to compare changes that affect the compression efficiency.

This last problem do have an acceptable solution. To compensate for varying bit-rate both
algorithms (or the methods to compare) are executed four times on the same video sequence but
with different quality settings. The four PSNR values are then plotted on a graph together with
their resulting bit-rate. The output are two values called BDPSNR (Bjgntegaard Delta PSNR)
and BDBR (Bjgntegaard Delta Bit Rate) [7] that reflects the overall quality and bit-rate changes
between the two algorithms.

2.2 H.264/AVC codec

As stated in the title for this thesis, the video encoding standard used is called H.264/AVC
(Advanced Video Coding)[17]. This standard was first approved in 2003 and has been enhanced
over the years to include new features. Compared to previous standards H.264 offers very good
quality per bit-rate at the cost of requiring large computational complexity in the encoding process.
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The standard is probably most known from being used in Blu-ray disc (successor to the DVD disc)
and for streaming HD-video over Internet.

Like many other video coding standards the H.264 specification does not define how an encoder
should operate in order to be compliant. Instead the specification only states how the syntax of
the output (the compressed bit-stream) should look like and how a decoder should interpret it.
Even though the encoding process can be designed relative freely, it often becomes complex due to
the many different steps that has to be considered in order to achieve good compression efficiency.

As a reference the following sections are provided in order to understand what some of the
different tasks, performed by the encoder, are responsible for.

2.2.1 Frame types

A well proven method to achieve good video compression is to only include the difference between
the current frame and the previous ones. This works by having frames depend on other frames
that have already been compressed (these frames can be either chronologically older or newer).
The frame dependencies form a directed graph that does not contain any cycles.

For this to work it is required that some frames (at least the initial one) can be compressed
without referencing any other frames. These type of frames, called Intra-frames (I-frames), uses
the redundant information within the frame in order to compress it. Most often I-frames does not
achieve the same compression efficiency as frames coded by referencing other frames, called Inter-
frames (P-frames), but this dependents on how well the frame’s content matches the predefined
Intra compression modes. As a result Intra-frames do generally require a larger amount of bits to
compress than Inter-frames are therefore not used as often as Inter-frames [23]. Figure 2.1 shows
the relationship between Intra- and Inter-frames.

Figure 2.1. Inter- and Intra-frame relationship

A restriction of using Intra frames is that each macroblock can only be coded by not referencing
other frames. The opposite does not hold meaning that macroblocks in P-frames can be coded
with either inter- or intra macroblock. This decision is determined by which mode gives the best
compression efficiency (i.e. best quality per bits required) for that specific macroblock.

One reasons why Intra-frames are inserted in the compressed bit-stream is to handle errors
during decoding (e.g. from the transport medium) which would otherwise been continuously
propagated to the next frame when P-frames are used. Another reason is to support seeking
the bit-stream during playback. Without regular I-frames the decoder would have to decode
all previous frames (because of inter frame dependencies) before the requested frame could be
decoded. When using I-frames only the P-frames between the requested frame and the nearest
I-frame needs to be decoded.

As mentioned earlier video compression is lossy (i.e. not completely reversible). One problem
that this can result in is that the encoder’s and decoder’s views of how the frame looks like can
start to drift. This can happened because the decoded frame is not exactly equal to what the
encoder used when compressing the video. The solution is to have the encoder also immediately
decode the image after having compressed it, this so called reconstructed image is then used when
calculating the difference for any following frames. This step adds extra complexity to the encoder
but ensures that both the encoder and decoder uses the same frames as reference.
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2.2.2 Macroblock coding

The two types of methods to code a frame with (inter and intra) affects how the macroblocks
within the frame are compressed. Choosing between intra and inter is only one step in order
to compress a macroblock. Briefly the actual procedure to compress a specific macroblock is as
follows:

1. First the macroblock is predicted to look similar to the original macroblock. This is done
using either inter or intra prediction methods.

2. For each pixel in the 16216 macroblock the difference between the predicted and the original
block is computed. These 256 differences are then what is transmitted in the compressed
bit-stream.

3. Before the 256 difference values are added to the bit-stream they are compressed using a
transform and quantification step. This compression works by using knowledge that the
difference values are most often near zero.

4. The decoder then first predicts the macroblock using same prediction method as the encoder,
then uncompresses the 256 difference values and applies them to the predicted macroblock
in order to get the final image.

Predicting a macroblock using intra mode uses the neighboring pixels of already coded mac-
roblocks. In H.264 frames are coded using the upper-left macroblock first and then continued
row-wise with the macroblock to the right. This means that each macroblock depends on the
neighboring pixels to the left, upper-left, upper and upper-right. The H.264 [17] specification have
stated four modes that allows prediction of 16x16 blocks and nine modes to predicts different 4x4
blocks. Usually predicting a macroblock using 16 4x4 blocks yields a better prediction than one
of the four 16x16 modes but using the 4x4 modes requires higher complexity[23].

On the other hand inter prediction involves dividing the 16216 macroblock into sub-blocks
(from 16216 down to 4z4) and searching previously coded frames for similar matches. Since each
sub-block can match different parts of the reference frame each sub-block is therefore represented
by a unique motion-vector. Finding the motion-vector that gives the best prediction is time
consuming, especially when small block sizes are used. There are many different search algorithms
to use for trading search complexity for slightly less optimal matches.

2.2.3 Transformation and quantization

The goal of the transform step is to take the delta (residual) macroblock and convert it to a format
that is easier to compress. Since a macroblock is 16216 pixels large and the transform works on
4x4 blocks it is applied 16 times for each macroblock.

The H.264 specification has defined the transform based on the famous Discrete Cosine Trans-
form (DCT), but with the main difference that it is simplified to be computationally faster. A
few properties of the transform is that it only works with real numbers and that it is completely
reversible. This is important since the inverse transform is performed by both the encoder and
decoder.

Quantization on the other hand is the main contributor for loss of quality in video compression.
The output of the transform is a sparse 4zx4 matrix containing mostly zeros but also a few numbers
called coefficients. These coefficients are then subject to quantization where they are scaled by a
quantization parameter (QP), which is determined by the encoder. As the QP value increases so
will the coefficients become smaller and the number of zeros increase. Having many zero coefficients
leads to more efficient compression and lower bit-rate for the compressed video. Due of the fact
that the quantified coefficients cannot be completely restored to their original value a higher QP
also means that quality is degraded.
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2.2.4 Rate-distortion optimization

When determining the best mode and sub-block size to code a macroblock with, the encoder
can use a rate-distortion (RD) metric in order to trade between how good the prediction is and
the number of bits required to use it. If used, this RD metric is then often calculated with the
Lagrange cost function, expressed in (2.1).

JrpO = Dssp + AR act (2.1)

Here ) is a function based on the QP value used to quantize the coefficients for each macroblock.
The function is expressed as
A = 0.8522(QP~12)/3, (2.2)

Dgsp is the distortion metric and is calculated using the sum of squared difference (SSD)
functions. The SSD function is used to compare the difference between the original and the
reconstructed macroblock. R4.; represents the cost in number of bits required to encode the
macroblock using a given QP and a specific inter or intra mode.

Calculating SSD on the reconstructed macroblock has a relatively high computational cost
because this involves performing the whole transform and inverse transform process. Since fast
encoding requires low complexity in the encoder, a simplified cost function can be used for calcu-
lating the rate-distortion metric. The H.264 reference encoder has implemented a low complexity
rate-distortion algorithm shown in (2.3).

JSA(T)D = DZS'A(T)D + A,Mvcost (2~3)

In this equation ) is equal to the square root of the normal (QP-dependent) A value. D’SA(T)D
is the SA(T)D (sum of absolute (transformed) differences) value between the original and the
predicted macroblock. The predicted block is calculated differently depending on if intra or inter
prediction is used. At least in the case of inter prediction the computational cost of computing
the predicted block is insignificant compared to calculating the reconstructed block. MV, is the
number of bits required to code all inter motion-vectors in the macroblock.

2.2.5 Deblocking filter

The deblocking filter is performed both by the encoder and decoder after macroblocks have been
decoded (or reconstructed), its goal is to reduce blocking artifacts that occurs as a result of the
compression. The reason for using the filter on the encoder side is that a filtered image gives better
motion compression for future frames. Richardson[23] explains this fact as ”the filtered image is
often a more faithful reproduction of the original frame than a blocky, unfiltered image”.

Running the deblocking filter is only a matter of iterating all the edges between blocks (e.g.
4x4, 8x8 or 16x16 for luma pixels). This is performed both vertically and horizontally with a
"boundary strength” parameter that is calculated depending on what type of edge is currently
being processed. One reason for having a dynamic strength parameter is to try to only remove
artificial edges while preserving edges that existed naturally in the original image.

2.3 Performance optimizations

According Paul Del Vecchio at Intel[32], the first step in optimizing any application for better
performance is determining how to measure it. The type of metric however, depends on which
application is being targeted. As an example a web application might measure number of requested
pages per second whereas a database can count the transaction rate. In this thesis the metric used
is number of coded frames per second.

After a performance metric has been determined the second step is finding a good configuring
and workload to use for stress-testing the application. An important property with the workload
is that it needs to be reproducible, this means that running the program with the same workload
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should give the same or almost the same performance measurement. An other important property
is that the workload should be representative of the normal operating conditions. For this work
a set of video sequences where selected based on the HD-VideoBench[3] benchmark for video
encoders.

The third step is measuring the program before optimization in order to get a good baseline
metric to compare all other measurements with. In the case of video encoding this represents the
encoding throughput taken with the original video encoder.

Finally optimizations are evaluated iteratively by making small changes to the program, mea-
suring the effect, compare it with the baseline measurement. Depending on the outcome of the
comparison either an alternative version is tried or enhancements are made to the existing version
and the iteration restarts.

In this thesis performance optimizations were implemented using two approaches. The first one
uses low-level vector (also called SIMD) instructions and the other one parallelizes the encoder.
Both approaches works by better utilizing all the capabilities offered by the existing computer
hardware. Since both SIMD (single instruction multiple data) and parallelization uses different
aspects of the hardware there are no restrictions on making a program use both types of optimiza-
tions simultaneously.

2.3.1 SIMD extensions

Vectorization, instruction level parallelism (ILP) and single-instruction-multiple-data (SIMD) are
different names for hardware instructions in the processor that allows working with multiple data
elements in parallel. Normally a processor core works by first loading a unit of memory into an
internal register, then performing some work on that memory (e.g. addition or multiplication)
and finally saving the result back into memory. With SIMD instructions the processor can load a
whole segment of memory into a special register and apply the same operation to all elements in
the registry at once.

One type of SIMD instructions is the streaming SIMD extensions (SSE) which allows up to
16 arithmetic operations to be executed simultaneously. Compared to performing the instructions
sequentially this can result in significant speed improvement. In order to add SSE support to a
program there are three different methods that can be used:

1. By using a vectorizing compiler.
2. By writing SIMD instructions as assembly code.

3. By using intrinsic SIMD functions which are written like normal C code.

Writing SIMD assembly instructions gives total freedom to the developer but leaves little room
for the compiler to optimize the code. On the other hand when using a vectorizing compiler the
responsibility is completely moved to the compiler alone, giving the developer no options to affect
the output. Using intrinsic functions is a compromise where assembly instructions are slightly
abstracted, offering the developer freedom to choose which instructions to use. The real benefit is
that since the compiler is responsible for producing the object code it can perform normal code
optimizations e.g. reordering and optimal register allocations.

2.3.2 Multi-core parallelism

Compared to SIMD instructions, thread-level parallelism (TLP) works at a much higher abstrac-
tion level than instruction-level parallelism. Instead of executing individual instructions in parallel,
the same (or different) part(s) of the program can run concurrently using its own processing core
inside the CPU.

Traditional software is most often written sequentially meaning that they can only take ad-
vantage of a single core on the computer. For many years it was most often been the case that the
computers only had a single core so a sequential program did actually take advantage of the whole
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CPU. Today almost all general purpose computers are multi-core meaning that they have separate
execution and arithmetic units that can operate independently of each other. When a sequential
program is run on a multi-core computer only a small fraction of the CPU gets utilized (1/4th on a
four core computer). The current trend in CPU development is towards adding more cores instead
of increasing the frequency (making each core run faster), which makes it even more important to
consider multi-core programming. Without getting into details the major reason for this shift in
architecture is that CPU manufacturers are approaching a limit of how small transistors can be
used. The cause of this limitation is the so called power wall which prevents a single processor
from running faster due to power constrains [22].

Threads are a concept offered by the operating system to take advantage of multi-core hard-
ware. When writing a program, threads offers a way for the developer to perform computations
in parallel. The actual thread execution and assigning of which CPU core to execute each thread
on, is managed by the operating system and transparent to the developer.

2.4 Previous work

Optimizing H.264/AVC encoders and decoders have been a popular research topic for a long time.
One of the most popular optimization techniques is by reducing the computationally complexity of
encoding. One way to do this is by making the encoder take shortcuts by not evaluating all possible
execution paths. Another common topic is by designing new hardware that perform some or all
of the tasks in the encoder more efficiently. By using specific encoder chipsets better memory,
pipelining and power efficiency can be achieved than by using regular hardware[10]. Another
common focus is to target different low- or high-end architectures. Some examples are mobile
devices and multi-core architectures[22], where existing algorithms are adopted to better utilize
hardware traits like power efficiency and parallel execution.

2.4.1 Instruction-level parallelism (ILP)

Different ways of performing general vectorizing for either the encoder and decoder have been
performed by many groups[6, 20, 11, 38, 26]. By performing low level optimizations on intensive
parts the proposed implementations often gain good speed-up, but often never near the theoretical
limit due to complexity of the algorithms defined in the standards [38]. The proposed implemen-
tations often comes without any quality or bit-rate loss, which makes them attractive especially
since they do not require any special hardware [11].

Four different functions performed by the encoder have received special interest because of their
relative high impact on encoding performance. As mentioned above the speedup is not always
great due to the inherent dependencies in the calculation.

Zhou et al. [38] was one of the first to propose vectorizations for the decoder, which performs
tasks in common with the encoder. Modules in common with the encoder that received better
speed-up are the SAD-calculation, Hadamard transform, Sub-pizel search, Integer transform and
quantization and quarter-pizel interpolation. Their work was continued by Chen et al. [11] which
additionally targeted an H.264 encoder and received speed-ups between x1.3 up to x3.6 times
faster for various modules. Lai et al. [20] combined SIMD vectorizations with fast inter mode
selection and were able to speed-up the encoder by a factor of 18 times for low resolution video
sequences with only negligible quality loss. Shengfa et al. [26] targeted the same set of modules as
before and were able to speed-up the encoder to make it twice as fast, making it possible to achieve
real-time encoding for 4CIF (704x576 pixels) video sequences. Azevedo et al[6] and Sihvo[28] have
both attempted vectorization of the deblocking filter which is considered to be one of the most
difficult modules to vectorize, because different execution paths can be taken for each pixel. The
two groups proposes different implementation strategies but neither of them gives any results for
general purpose x86 hardware.
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2.4.2 Thread-level parallelism (TLP)

Parallelization, which is closely related to vectorization, is a topic that can be approached from
many different angles. The H.264/AVC specification puts some limitations on the order which
the different steps have to be computed, meaning that the problem domain is not "embarrassingly
parallel”. As a result of this different parallelization strategies have different costs in terms of
overhead and scaling depending on architecture and input data. Despite these dependencies,
parallelism can still be achieved to some degree.

The 2D-wave is a common method where the work is divided per macroblock row of the frame.
After a thread has started executing the first row a second thread starts after a slight delay. This
solves the problem where macroblock depends on the block above and to the left to have been
finished. Figure 2.2 illustrates the dependencies that each macroblock has on its neighbors. It was
concluded by Amit and Pinhas [4] that the 2D-wave has some problems which prevents it from
reaching perfect scalability. The top three reasons were cache misses, synchronization overhead of
the wavefront algorithm and serial code.

MB(0,0) [MB(1,0)  MB(2,0)  MB(3,0) | MB(4,0)

Tl T2 T3 T4 T5
haty t
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Figure 2.2. Macroblock neighbor dependencies

Assigning macroblocks to threads can be done dynamically using queues and calculating which
blocks have all its dependencies calculated. Another way is by statically assigning blocks, in
raster order, to threads as they become available. The latter strategy has the problem that since
blocks take different time, threads will have to spend lots of time synchronizing for blocks to
become ready. For the decoder it was concluded by Alvarez et al. [2] that static scheduling reaches
a maximum speedup of 2.51 when using 8 processors. The authors concluded that although
dynamic scheduling can result in higher overhead it is the preferred method in order to scale to
larger amounts of processors.

The only solution to support more than one hundred CPUs is the 8D-wave proposed by Azevedo
et al. [5]. According to the authors this method achieves the best scaling at the cost of increased
latency as frames are pipelined. Because of the real-time requirements where low latency are
required this method was not evaluated.

The third method is called slice-level parallelism and works by dividing the frame into inde-
pendent units called slices. A downside of using slices is that the compression efficiency is lower
because redundant information between slices cannot be exploited. Rodrigues et al. [25] found
this method to be more efficient than the 2D-wave for up to 32 cores, but notes that good scaling
was also achieved by combining the two methods.
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2.4.3 Motion estimation

Many studies have found inter motion estimation to be one of the most time consuming parts
of encoding. Over the years several different algorithms have been proposed, each with different
trade-offs between complexity and how close the result is to exhaustive search algorithm[9]. Dia-
mond search (DS) by Zhu et al. [39] and the hybrid unsymmetrical-cross multi-hexagon-grid search
(UMHexagonS) algorithm proposed by Chen et al. [12] are often used as reference when compar-
ing new search algorithms. Diamond search offers a very low complexity search method which
offers relative good compression but has the risk of being trapped in a local search minimum. By
stopping the search in a local search minimum you get a prediction that contains more differences
than the prediction at the global search minimum. UMHexagonS tries to solve this problem by
combining different search patterns. This has the effect of better compression efficiency at a higher
cost in complexity. UMHexagonS has also been adopted into the H.264 reference encoder.

2.4.4 Mode selection algorithm

. As mentioned above, the H.264/AVC specification defines many prediction modes. An exhaustive
encoder evaluates all of them in order to find the mode with the best rate-distortion value. Fast
mode selection is a popular group of algorithms where only a subset of inter and intra prediction
modes and sub-block sizes are evaluated in order to find an optimal mode. Although being faster
since not all paths are evaluated there is always a trade-off between complexity reduction and
lower compression efficiency[16].

2.4.5 Real-time encoding

The topic of real-time encoding has received only limited focus in previous research. None of the
different algorithms mentioned above solves the problem of achieving constant encoding rate on
its own. Some authors like Bleakley et al. [18] tries to solve this problem by introducing both a
fast mode selection algorithm which they combine with an algorithm for dynamically controlling
the complexity (i.e. which modes and sub-block sizes are evaluated). The complexity is controlled
both by categorizing each macroblock but also using a time scheduling method. The authors
were able to achieve real-time encoding (at 20 frames per second for QCIF video) with similar
compression efficiency as with the H.264 reference encoder (at 9 fps). The biggest gain was that
encoding throughput were stable even for sequences with varying motion and complexity.
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Chapter 3

Method

This chapter presents the various optimization techniques used to improve the video encoder. In
the order presented the three evaluated optimization approaches are: SIMD optimizations, thread-
level parallelism and encoding algorithm improvements. Before they are presented the behavior
of the targeted encoder is analyzed and compared to with some other video encoders.

3.1 Benchmark input sequences

In order to benchmark the encoder a varied set of four raw video sequences were selected. Three
of the sequences were selected from the HD-VideoBench test suite [3]. This suite is a benchmark
for encoding and decoding of HD-video that, amongst others, defines a set of four video sequences
which are representative for the "HD-video domain”. During initial experiments with this bench-
mark it was discovered that two of the sequences, pedestrian and rush_hour were very similar
in terms of complexity and degree of compression. In order to limit the workload to only four
sequences and also add a sequence typical for video conferencing the rush_hour sequence were
replaced with a recorded videoconferencing called vidyol.

Figure 3.1 shows the selected sequences, which contains different types of motion and varying
levels of detail. This is important to consider since this greatly affects the complexity of the
encoding. More specifically vidyol represents a video conference scenario with fairly little amount
of motion, this sequence is by far the easiest one to compress. Blue sky contains a static scene
with the camera panning over the tree tops. Pedestrian contains people moving by in front of
a static camera. Riverbed shows pebbles and moving water in front of a static camera, this last
sequence is also the most time-consuming to encode because of few similarities between nearby
frames.

(a) vidyol (b) blue_sky (c) pedestrian (d) riverbed

Figure 3.1. Benchmark input sequences

3.2 Analyzing the existing encoder

The main goal of this project was to see if real-time encoding could be achieved on a typical
workstation computer. In order to verify this goal simulations were performed on an Intel Core
2 Duo machine. Performance were both evaluated using built-in hardware monitoring counters
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in the processor and by measuring execution time with varying input video sequences and codec
configuration parameters.

3.2.1 Targeted H.264 encoder and environment

The H.264 encoder studied for this work is a pure C program that is developed internally by Eric-
sson Research!. As of this date it fully conforms to the baseline profile of the H.264 specification.
During this work only x86 versions of the encoder, that have been compiled using both Microsoft’s
Visual C++ compiler and Intel’s® C++ compiler, were used.

All development was done in Microsoft’s Visual Studio development environment. Both de-
velopment and simulations were run on 32-bits versions of Microsoft’s Windows Vista operating
system. The encoder itself requires no third party libraries but for some of the experiments the
following two external libraries were used:

o Boost C++ libraries[24] used for threading support.

o Intel® Cilk™ Plus[13], which is a framework for easily supporting multi-core computers.
During profiling a couple of external tools were used to analyze the encoder’s performance:

e Intel® VTune™ Performance Analyzer, a profiler for measuring program performance.

o Acumem SlowSpotter™[1], which is a memory and cache profiler.

Additionally, for evaluating bit-rate and quality changes, a couple of Python scripts developed
internally by Ericsson Research were used to automate BDPSNR and BDBR calculations.

3.2.2 Hotspot profiling

Intel’s® VTune™ Performance Analyzer was used to analyze the existing encoder implementation.
VTune supports measuring a large amount of events issued by the processor during execution of
the program. After the program has finished, VTune provides different performance ratios derived
from the events. These metrics can be analyzed at both executable, thread and function level,
which makes it very convenient to discover bottlenecks and their impact on overall execution
but also potential hotspots for later optimization. The following list contains the main ratios
investigated and a short description of what they measure:

o Cycles per Retired Instruction (CPI) - A high CPI ratio might mean that instructions
require more processor cycles than they should.

e Cache Miss Impact - A high value can indicate that cache lines are not used effectively
resulting in more time spent with memory access.

e Branch Misprediction Ratio - This value indicates how good the processor is at predicting
branches that are going to be executed.

e Bus Utilization Ratio - Indicates the level of activity between the processor and main
memory. Optimal value depends on type of application, more on this later.

o Translation lookaside buffer (TLB) misses - A high value means that the program is
accessing memory at different locations, causing the virtual memory cache (i.e. the TLB) to
miss.

Ihttp://wuw.ericsson.com
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Analyzing the original encoder implementation was a good opportunity to get familiar with
its architecture. After profiling the application, by using the various test sequences, a few encoder
functions differentiated themselves from the rest of the code. An example of two functions that
spent a large amount of their execution time doing memory read operations is half-pixel interpola-
tion (19.0%) and SATD (18.9%). This was expected as SATD (and SAD) requires reading of large
blocks (at most 16x16) that often crosses cache-line boundaries. Half-pixel interpolation is also
known for being memory intensive, especially vertical filtering that interpolates based on pixels
above and below the current row. Both of these functions were improved using instruction-level
vectorization.

When evaluating the overall encoder performance, VTune indicated good performance. Level
1 and 2 data cache misses were very low (almost all functions had L1 data cache misses lower than
1 % of all memory transactions and Level 2 data cache misses were almost non-existent). Branch
prediction misses varied slightly between functions, but were on average also low. Furthermore,
branch miss-predictions were in the range of 0-5% for all branch instructions executed. The data
bus utilization were around 5% and 10% indicating that memory transfer is not a major bottleneck
in the program.

These results are also in line with Slingerland and Smith[29] and Xu et al. [35] which concludes
that "multimedia applications generate similar or fewer number of data memory references per
instruction” [35] when compared with other types of applications (e.g. technical, financial and
text based). Surprisingly multimedia applications have fewer number of cache miss rate than
other applications and more importantly ”larger input data size does not necessarily result in a
higher cache miss rate”. The authors explains these finding as to be the blocking algorithms used
in multimedia applications. When comparing the TLB (memory access) behavior their conclusion
was that multimedia applications performs equal or better (when comparing with floating point
performance heavy applications).

3.2.3 Comparison to other H.264 encoders

According to Alvarez et al. [3] the two most well-known H.264 encoders are the ”JM Reference
Codec”[27] and the x264[31] open-source encoder. The JM encoder is the reference H.264 imple-
mentation designed by the H.264 standardization bodies for verifying and improving the codec.
It’s useful for experimenting with the new features but exhibits very low performance (in execution
time), since fast execution is not its biggest design goal. x264 on the other hand is an open source
project that has written an H.264 encoder from scratch. It has been optimized in probably all
ways that are possible and constantly continues to improve its performance. According to the
authors some of the optimizations are on motion estimation, SIMD optimizations, and parallel
encoding at slice and frame levels.

x264 uses a smart preset system in which the encoding complexity can be lowered for slightly
reduced compression and quality. Some throughput measurements were performed on a typical
workstation machine (Core 2 Duo at 2.4 GHz) using a recent version (built on the 28 sep. 2010)
of x264 with both assembler optimizations and slice-level parallelism. A HD-video sequence with
low motion can be coded with frame rates between 5 to 80 frames per second and a video sequence
with very high motion can be coded between 1 and 40 frames per second, depending on which
preset is used. This means that x264 is very capable of coding HD-video at real-time.

Except for the varying algorithm complexity real-time encoding is also achieved thanks to
SIMD assembly optimizations and by parallelizing the encoder. Table 3.1 and 3.2 shows the
speed-up of the various optimizations when run on a Core i7 processor (having 4 cores plus hyper-
threading and SSE 4.2 support). These measurements were taken using some the following x264
specific settings: baseline profile, medium preset, no rate-control, hex motion search, no scene-cut,
no trellis and tuning for PSNR.

From both tables it can be seen that the SIMD speed-up is more than four times faster when
run using a single thread. Like-wise the slice parallelism speed-up is almost as good but slightly
lower; especially for low motion sequences which were very fast to encode. Although not shown
here, it is expected that the gain of parallelizing the encoder will outcome the gain of assembly
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Video sequence | SIMD  Slice TLP  Frame TLP | Slice + SIMD  Frame + SIMD

vidyol x4.8 x1.63 x1.64 x8.2 x7.2
blue_ sky x4.6 x1.71 x1.94 x7.9 x8.7
pedestrian x5.0 x1.92 x1.95 x9.1 x9.5
riverbed x4.5 x1.89 x1.95 x8.2 x8.8

Table 3.1. x264 encoder SIMD and Thread-Level Parallelism speed-up (Core 2 Duo)
Video sequence | SIMD  Slice TLP  Frame TLP | Slice + SIMD  Frame + SIMD

vidyol x6.0 x3.1 x4.3 x17.1 x20.5
blue_ sky x5.4 x3.2 x4.4 x16.4 x23.5
pedestrian x5.6 x3.2 x4.3 x17.7 x24.6
riverbed x4.9 x4.0 x4.3 x19.8 x22.3

Table 3.2. x264 encoder SIMD and Thread-Level Parallelism speed-up (Core i7)

x264 targeted encoder
Video sequence Bit-rate PSNR Frame-rate Bit-rate PSNR  Frame-rate
vidyol 961 kb/s 41.94 dB 4.6 fps 886 kb/s 41.38 dB 8.1 fps
blue_ sky 3534 kb/s 41.54 dB 3.0 fps | 3591 kb/s 41.09 dB 5.8 fps
pedestrian 3525 kb/s  41.60 dB 2.7 fps | 4056 kb/s 40.80 dB 5.3 fps
riverbed 20229 kb/s  39.89 dB 1.6 fps | 19911 kb/s 38.82 dB 1.9 fps

Table 3.3. x264 bit-rate and throughput comparison (no optimizations)

optimizations, as the number of cores increases.

Finally for reference, table 3.3 shows a comparison of how both encoders perform using similar
settings (where possible). Although this comparison is difficult to make fairly due to both encoders
having different algorithms it shows some characteristics of the targeted encoder. As an example
we can see that it is about twice as fast in terms of number of coded frames per second (fps) at
the cost of lower quality on all sequences. When comparing the compression efficiency it can be
seen that the vidyo! and riverbed resulted in lower bit-rate whereas the other two have slightly
higher bit-rate.

3.2.4 Execution breakdown

Tain Richardson’s [23] illustration of a general H.264 encoder is shown in Figure 3.2. The encoder
can be broken down into two parts, those which can be modified and those which are mandatory.
From looking at the picture parts that can be changed are the ME (motion estimation), MC
(motion compensation), Choose intra prediction and Intra prediction boxes. Parts that cannot
be changed are the remaining boxes: T (residual transformation), Q (quantification), Reorder,
Entropy encode, T-! (inverse transformation), Q* (inverse quantification) and Filter.

Zhou et al. [38] have illustrated in Figure 3.3 (a) how the execution time is spent in an old
version of the JM reference encoder. Lai et al. [20] have done a similar execution breakdown
using a slightly more recent version of the JM encoder as seen in Figure 3.3 (b). Finally Figure 3.4
shows the execution breakdown of running the target encoder with high complexity rate-distortion
settings, Hadamard transform on and CAVLC entropy encoding.

When comparing the three figures it becomes clear that motion estimation is the most time
consuming part in video encoding. This is followed by the deblocking and half-pixel interpolation
filter which takes about 17% of the total execution time. Other similar entries are the SATD
calculation, which takes between 10-12%, Intra prediction that takes around 1% and the Integer
transform that takes around 5-6%.
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3.3 Compiler optimizations

Since optimizing the encoder using code rewrites can be both time consuming and error prone, I
have evaluated the benefits of making the compiler perform all optimizations. For this experiment I
used the Intel®C++ compiler and compared the result with the Microsoft’s Visual C4++ compiler
with maximum code optimization settings on both compilers. Except for applying only code
optimizations, the compiler also supports auto-vectorization and auto-parallelization. The goal of
auto-vectorization is for the compiler to execute normal for-loops using SIMD instructions. The
set of instructions used (e.g. MMX, SSE, SSE2 etc.) can be customized with compiler flags.
The auto-parallelization optimization also targets for-loops but with the goal of running them in
parallel. All burdens of managing the threads required for parallelism is completely managed by
the compiler and fully transparent to the developer.

3.4 Instruction-level parallelism

The goal of using SIMD instructions is to get extra performance that is most often free in terms
of both hardware resources and amount of side-effects of the vectorized function. It should be
noted that not all functions can be changed to use this type of programming. Certain program
characteristics will result in less or no speedup if vectorized, one example is that loading and
saving 128-bit registries to memory requires that the memory is aligned in order to get the best
performance. Without this requirement it could happened that a load is split over two cache lines
requiring two loads to be issued and waited for before finished.

Since not every piece of code can be changed to exploit this type instruction-level parallelism,
only a small (code wise) part of the program is targeted. Vectorization targets were selected both
based on what previous work had been done in the literature and after profiling the application with
different video sequences and varying motion estimation strategies. By running the encoder with
minimal inter and intra motion estimation it was discovered that the biggest bottlenecks where
de-blocking, half-pixel interpolation, residual transformation and block reconstruction (inverse
transform) shown in Figure 3.4.

Half- and quarter-pixel interpolation Compared to previous video coding standards the
H.264 specification allows motion estimation at quarter pixel level, allowing even better cod-
ing efficiency than previously. This is as a two step process that starts by pre-processing the
whole reference frame with half-pixel interpolation and saving the result. Then during coding
a bilinear interpolation filter is performed on-demand when quarter-pixel accuracy is requested.
Pre-computing the half-pixel interpolation saves processing time since it is much slower than bi-
linear interpolation. One implementation by Sohn and Cho [30] strives to minimize the number
of memory access by utilizing the symmetry of the half-pixel interpolation coefficients.

Half-pixel interpolation consists of three steps: calculating horizontal-, vertical- and ”center”
pixels, which is also performed in that order. Figure 3.5 shows the original full pixels (A,B,C,D,...)
together with the horizontal half-pixels (b and s), vertical half-pixels (h and m) and the "center”
pixel (j), the rests are quarter pixels.

Calculating the horizontal half-pixels were attempted by Warrington et al. [34] and is imple-
mented by rearranging the interpolation equation. The normal 6-tap interpolation formula

(E—5%«F+20«G+20«H —5x1+J)+16)/32 (3.1)

is rewritten to be evaluated from left to right as:
((G+H)x4-—F-I)x5+E+J+16)/32 (3.2)
When evaluating the formula each variable contains 8 luminance samples next to each other

(2 bytes per sample is used to avoid loss of information). For horizontal interpolation, samples
are read from left to right until the end of the row. When calculating the vertical pixels eight
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Figure 3.5. Quarter and half-pixels shown together with the original full/integer (gray)
pixels

luminance pixels on each row are read starting from the first row and going down. The j pixel
is calculated using a little different formula, which requires 4 bytes per sample to avoid overflow
making it only possible to calculate 4 pixels in each iteration.

Quarter pixel interpolation is then relatively easy to calculate from the half and full pixel data.

Deblocking filter Deblocking is performed both by the encoder and decoder after a frame is
decompressed, in order to remove errors introduced by the compression. Vectorizing this code has
proved to be challenging since different execution paths can be taken for each 4x4 sub-macroblock.
Deblocking consists of two parts; strength calculation and filtering. Most focus have been made
on the filtering step since this is the most time consuming. Proposed implementations have been
made for the Cell-processor[22] and also for general PCs [11, 28, 34]. The common theme in
all implementations is that the filtering is performed without branches such that all paths are
executed, masks are then used to control which of the results are written to memory.

The only difference between horizontal and vertical filtering is how the edge pixels should be
loaded. Due to the way SSE arithmetic works by requiring two registers for each operand only
horizontal filtering is applicable for vectorization. Vertical filtering is instead implemented by first
loading an 8x8 block into eight registers then transposing the matrix and performing horizontal
filtering on the transposed block. After filtering is done the block is transposed again and written
back to memory.

On problem with vectorizing the filter is that either 6 or 8 different rows of pixels needs to
be loaded for each edge (depending on which strength value is used). For strength 1, 2 and 3
three rows of pixels needs to be loaded above the edge and three rows of pixels below the edge.
For strength 4 this is increased to include four rows above and four rows below the edge. When
using SSE instructions this is problematic since you only have 8 (on x86 architectures) registers
available, leaving no free registers to hold intermediate calculations. The method I finally settled
on performs filtering on eight pixels at once using 1-byte arithmetic, which in theory leaves half
of the register space available for holding temporary values.

Sihvo [28] has listed the different execution branches that should be evaluated based on the
strength parameter and the pixel-level condition flag. Processing eight pixels at once means that
two 4x4 blocks are involved in each iteration. I have found that the best performance was gained by
first determining which branch the two blocks were applicable for and then running those branches
only. For each of the eight pixels so called filtering masks (called cond;, pcond; and gcond; by
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Sihvo) were created and used to merge filtered pixels with pixels that shouldn’t be filtered. Also
an early termination strategy was used to stop processing if all 8 condition flags were zero meaning
that no filtering should be applied to the whole edge. The benefit of early termination is even
greater for vertical filtering where the costly transpose and extra memory stores can potentially
be completely avoided.

Transform and quantification In the reference (JM) encoder the sequential transformation
code, which consists of matrix multiplication, has been replaced with a more efficient multiplica-
tion free algorithm (called the "butterfly expression method”). Since the SSE instructions provides
support for matrix multiplication using the combined multiply and addition instruction (PMAD-
DWD), Zhou et al. [38] proposed a method to vectorize the transform using the original matrix
multiplication method. This approach was then deemed less efficient by Yu et al. [36] which found
that vectorizing the butterfly method achieves better speedup than the multiplication method.

The method I implemented performs transform and quantification on two 4x4 blocks using
2-byte precision. It was also combined with other tasks also required by the encoder such as zig-
zag ordering of the quantified coefficients and calculating the reconstructed blocks by performing
de-quantification and inverse transform. The core transform which consists of both a horizontal
and a vertical step was implemented by doing the vertical transform, transposing the two 4x4
matrices and doing the vertical transform again.

Luminance and chrominance coding Before the transformation step can be performed the
residual data needs to be calculated. This is done by first predicting the macroblock using the
motion vectors (for inter prediction). With the predicted data the residual block can be calculated
as the difference between the predicted data and the original macroblock. The residual data is
then transformed and inverse transformed and the reconstructed block is calculated by applying
the inverse transformed residual data on the original block. The last step ensures that the encoder
and decoder uses the same data as reference.

All these steps have to be performed for both the luma and chroma components. Expect for
the transformation described above, these steps are fairly trivial to vectorize and can be done with
either 8 or 16 elements in parallel. The prediction step is limited by how the macroblock should
be coded, for example in 4x4 inter mode each 4x4 block has its own motion vector so the gain of
vectorizing this is limited since only 4 pixels can be loaded for each row.

SAD, SSD, SATD The abbreviations stands for Sum of Absolute Differences, Sum of Squared
Differences and Sum of Absolute Transformed Differences. They are commonly used in the motion
estimation phase as a measurement to the difference between the original and predicted block.
SAD is (as the name implies) a measurement of the (absolute value) differences between the pixels
in the original and reference frames. Using squared difference instead of absolute gives a better
indication of the prediction error but has the cost of higher computational complexity. The third
method of using SATD has an even higher calculation cost. To calculate this metric the differences
are first transformed using the Hadamard core transform before the sum of the transformed values
are calculated.

Vectorizing all three methods are fairly trivial. The most complex part is the Hadamard
transform, which was mentioned in the transform step above and can be reused here. Also when
calculating the squared differences, care must be taken to use enough byte precision to avoid
overflow.

3.5 Thread-level parallelism

The approach evaluates how the targeted encoder would benefit from parallelization. As already
mentioned in the background, this area has been researched at many different levels. For this
thesis two types of parallelization methods are compared; The first one is the popular 2D-wave
method and the second one is slice-level parallelism.
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3.5.1 Macroblock-level parallelism

There are two types of dependencies within a single frame that limits the effectiveness of paral-
lelism. These two types are:

1. Coded macroblock neighbor dependencies.

2. Macroblock row dependencies.

The first dependency means that each macroblock requires macroblocks to the left, upper-left,
upper-right and directly above to have already been finished coded. This dependency is introduced
by the following functions in H.264: Inter motion vector prediction, intra prediction and mode
decision, half and quarter-pixel interpolation, deblocking filtering, CAVLC entropy coding.

The second type of dependency differs from the previous one in that it can potentially span
multiple rows. This effectively minimizes the possibility of encoding multiple macroblocks in
parallel. It’s introduced by both a skip run counter (mb_ skip_run) and the delta quant parameter
(AQuant). The skip run counter signals how many macroblocks have previously been coded with
SKIP. The delta quantification parameter tells how much the QP have changed since the previous
macroblock. The solution I used to solve this dependency was by forcing macroblocks in the last
column to be coded using a mode that is not SKIP, making mb__skip_ run always be zero for the
first column in each row. Also, since all simulations are done with fixed QP, the AQuant variable
is always zero.

Because of the dependencies on left and upper macroblock neighbors the maximal number of
processors that can be used is described by round((mb_width + 1)/2) [2]. For 720p video this
means that the theoretical limit is 40 cores or threads. Due to limitations at the beginning and
end of the frame where only a few macroblocks can run in parallel the theoretical maximal speedup
for 720p is 21.43. Having more than 40 cores for a normal workstation computer is considered rare
for todays computers (2010) but will definitely be a bottleneck as the number of CPUs quickly
increase. As a comparison the maximum number of threads that can be used for Full HD-video
(1080p) is 60, which is only a slight increase.

There are a couple of drawbacks that impacts the usefulness of macroblock-level parallelism.
The first one is that creating ”dynamic slices” (i.e. slices having a fixed amount of bytes) are
now much more difficult. This means that all slice boundaries needs to be determined before the
start of each frame. The impact of this limitation depends on the application requesting doing
the encoding. An example is video streaming where it may be desirable to have slices of fixed
number of bytes to better utilize network packet sizes. Another limitation is that traditional
sequential rate-control algorithms, where the QP value is changed during the encoding, would not
work because the current number of coded bytes are not known until the whole frame is encoded.

The biggest problem with macroblock-level parallelism is how to assign macroblocks to threads.
This scheduling can be done either statically or dynamically. The biggest difference is whether it is
known before execution which thread a specific macroblock is coded by. Since the previous research
was not clear on which approach suites this problem best I have evaluated both approaches for
this thesis. The two implementation methods below are implemented using static- (Method I) and
dynamic-scheduling (Method II).

Method I: MB-parallelism with threads

In this implementation the Boost library[24] is used for parallelizing the encoder with threads.
Macroblocks are assigned to threads statically meaning that it is known beforehand which thread
a specific macroblock will be coded with. More specifically whole rows are assigned to threads in
round-robin fashion. One idea behind this approach is that having a thread be responsible for a
whole row should lead to better cache utilization and avoid having threads share the same cache
line.

The problem of macroblock dependencies are solved by having a counter for each row that is
updated atomically as the thread progresses. A thread then only needs to check the progress of
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the thread above and compare it with how far its own progress is. Locks and condition variables
are then used to temporary block threads that have to wait for the thread above to finish coding
its macroblock dependencies. Basically before coding each macroblock each threads checks if
Deompleted|t — 1] < DPeompieteald] holds in which case the thread blocks until the above thread signals
its completion. Since each thread only needs to communicate with one other thread the most
efficient method was to have a unique lock and condition object per thread instead of one global
lock shared by all threads.

Pre- and post-process tasks are also performed in parallel. Deblocking of each coded mac-
roblock is performed after each macroblock have been coded, whereas half-pixel interpolation is
performed after the whole row has been completed.

Method II: MB-parallelism with tasks

Task parallelism works by dividing the problem into work elements that can be processed inde-
pendently. In this situation of coding a frame in parallel each task represent a single macroblock
that should be encoded. The problem is then reduced to when to create new tasks that can be
executed. Because of the dependencies to macroblock neighbors, as already explained above, a
mechanism is needed to keep track of which macroblock can be processed after the current task
is finished.

The implementation I settled on uses a small table with an entry for each macroblock in the
frame. Each element contains the number of macroblocks that remains to be coded before the
macroblock can be started. After a task has been finished it atomically decrements the value of
the elements to the right in table and the element one row to the left below. If a table entry is
zero after being decremented a new task is spawned for that macroblock. Initially the table is
filled with the value 2 except for the first row and first column in which each macroblock only has
1 dependency, more precisely the neighbor to the left and above respectively.

For implementing the task mechanism I used the Intel® Cilk™ Plus framework. The Cilk Plus
framework is an extension to C and works by creating tasks out of function calls. Each task or
function to be executed in parallel is simply prefixed with the keyword cilk_spawn. In order to
walit for the task to finish the keyword cilk _sync is used as a normal function call. All thread and
task execution management is handled by the framework and transparent to the developer. The
only changes needed are prefixing the function calls with the cilk_spawn and implementing the
dependency table mechanism. Algorithm 1 shows a pseudo-code version of the algorithm.

Algorithm 1 Macroblock-level parallelization with dynamic scheduling (using tasks)

Depl[l..Rows][1..Cols] < 2
Dep[l..Rows][1] + 1
Dep[1][1..Cols] + 1

cilk__spawn MacroblockTask(1, 1)
cilk_sync

procedure MacroblockTask(Row, Col):
call EncodeMacroblock(Row, Col)
decrement Dep|Row][Col + 1]
decrement Dep[Row + 1][Col — 1]

if Dep[Row][Col + 1] = 0 then
cilk__spawn MacroblockTask(Row, Col+1)
end if
if Dep[Row + 1][Col — 1] = 0 then
cilk__spawn MacroblockTask(Row+1, Col-1)
end if
end procedure

28



3.5.2 Slice-level parallelism

Slice based parallelism has also been evaluated before and is considered to scale better than
macroblock parallelism. The main reason for this is that slices are encoded completely independent
of each other, without any communication between threads. If deblocking filter is configured to not
run across slice boundaries, then coding and deblocking can be performed completely in parallel.
The half-pixel interpolation post-process step can also (mostly) be parallelized. This algorithm
uses pixels from up to three rows above and below the current row; therefore six rows at each
slice border are processed sequentially, after each frame has been coded in parallel. Although
the sequential part is relative small compared to the parallel part it grows as the number of
threads/slices increase. It should be noted that this extra filtering can also be parallelized, but
requires an extra synchronization step.

The problem mentioned earlier, with limiting slices based on bit-size, is not an issue here since
each thread can divide its chunk of rows into an arbitrary amount of slices. The problem is instead
slightly different since with increased number of threads the slices becomes smaller. Having more
slices than otherwise needed leads to less compression efficiency and higher overhead. Traditional
rate-control is still somewhat possible. This can for example be implemented by dividing the
frame’s encoding quota by the number of threads having each thread strive to reach its assigned
byte limit. The drawback is that different parts of the image often require different amount of
bytes to code.

Method III: Slice-level parallelism with threads

I’ve implemented slice-level parallelism using the Boost threading library. With the overall design
as follows:

1. Initially all rows in the frame are partitioned into sequential chunks (as equally as possible).

2. In each frame the total number of rows are partitioned into equal sizes based on the number
of threads to use.

3. All threads start encoding their assigned rows.

4. After all rows are encoded threads start deblock and half-pixel interpolate their coded mac-
roblocks.

5. Threads wait for all other threads to finish coding and filtering their slices.
6. Remaining half-pixel rows (at slice boundaries) are filtered sequentially (or in parallel).

7. Repeat for next frame.

Initially a configurable number of threads are spawned during encoder startup. At the start
of each frame threads are initially waiting but then signaled to start encoding their pre-assigned
chunk of rows. During encoding of the frame no synchronization is required between the threads.
When all threads have finished encoding their part of the frame the small post-processing step is
performed followed by the encoding of the next frame.

3.6 Algorithm changes

Two types of algorithms play an important role for achieving good compression efficiency in H.264.
The first one is related to motion estimation and the other one is about macroblock mode selec-
tion. Both types have been extensively studied in the past and several implementations have
been proposed. When implementing both types of algorithms there is always a trade-off between
complexity and the level of compression. As an example a quick motion estimation search will
find a target block that is quite similar to the original block but will require more bits to code
the difference between the original and found macroblock. This is compared with an exhaustive
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search that will compare a larger amount of blocks in order to find one that matches equally good
or better and thus requires less bits to compensate for the difference.

The difference between a fast mode selection algorithm and full rate-distortion evaluation is
that some modes are not investigated when deciding how to code each macroblock. The full rate-
distortion algorithm will calculate a rate-distortion metric for all modes and block sizes available
in the H.264 specification (i.e. 4 16x16 intra modes, 9 4x4 intra modes and 7 inter block sizes). By
trying more intra modes the probability of finding one that matches the original block increases.
Likewise by partitioning the macroblock into smaller sub-blocks the distortion is lower since each
sub-block can be searched independently. The problem of selecting which mode to evaluate is
dependent on the result of the motion estimation algorithm but not vice versa.

What this means is that a fast motion estimation algorithm could also affect the behavior of the
mode selection algorithm (but not the other way around). This is especially true for fast motion
estimation algorithms which have the risk of being trapped in a local minimum. When the search
stops at a local minimum the prediction becomes worse and as a result more bits are required to
compensate for the error. When the inter prediction gets worse the effect is that smaller block
sizes or intra prediction gets used more than would otherwise be needed.

3.6.1 Inter motion estimation

Motion estimation consists of both a full-pixel search which finds the best match among the pixels
in the selected reference frames. Then a quarter-pixel search is done to find the best match
among the (interpolated) sub-pixels that are located between the best full-pixel match and its
four full-pixel neighbors.

The existing full-pixel search algorithm uses a gradient search method that iteratively compares
surrounding pixels and increases the search area each time. This implementation was compared
with the following algorithms:

1. Diamond search (DS) is a classic search algorithm comparing neighbor pixels.
2. Improved Diamond search (IDS) as proposed by Hu et al. [15].
3. Efficient Three-Step Search (E3SS) proposed by Jing and Chau [19].

4. Full-search (F'S) also known as exhaustive search.

Diamond Search This algorithm works very simply by first calculating the SAD value for
the initial start search location (either from origin or from candidate motion vectors). It then
calculates the SAD value for its four neighbor pixels below, above, to the left and right. Finally
the position that had the lowest SAD value amongst the five calculated pixels are selected as the
new search center. This procedure is then repeated until the search center is selected as the best
match meaning that all neighbors resulted in higher SAD values.

Improved Diamond Search This is a variation of diamond search where the best surrounding
pixels two positions away are searched (instead of the direct neighbors as in DS). When the search
loop is finished eight additional SAD calculations are performed on all neighbors surrounding the
best match. Again the lowest SAD is selected as the best match and the search finishes. The
IDS algorithm has the effect that the lowest SAD is found faster for high motion sequences. The
downside is that at minimum 44-8 searches needs to be performed each time making it much slower
than DS for low motion sequences.

Because of this fact I've made two modifications to the original algorithm. First when the search
loop finishes only four neighbor pixels are searched (as in DS) and secondly early termination is
introduced by not performing the last neighbor pixel search when the result of the first search
loop is equal to the predicted motion vector.
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E3SS One problem with the two algorithms above is that they have a risk of falling into a
local minimum trap since they only compare nearby pixels. E3SS is a modification of the popular
three-step search algorithm and tries to solve this problem by initially comparing a large square
search pattern with a small diamond search pattern. If the best match is found in the diamond
search pattern, a normal diamond search is performed until the best match is found. Otherwise
traditional three-step-search is performed based on the best match in the large square search
pattern.

Full-Search By definition FS always finds the global minimum in the search window since it
compares the SAD value of all pixels in the search range. Because of the large number of SAD
calculations needed, the complexity for this method is very high. As a result this algorithm is only
used for reference when comparing the algorithms listed above.

Quarter-pixel search Together with the full-pixel algorithms above a fast sub-pixel motion
estimation algorithm proposed by Lin et al. [21] was also compared with the existing implemen-
tation. The algorithm proposed by Lin et al. uses two important concepts in order to find a good
match. First it reuses the SAD information from neighbor full-pixels which were calculated in
the previous full-pixel search. Secondly it uses an elaborate surface classification scheme with
early-termination in order to determine which partition to search in.

3.6.2 Macroblock mode and partition size selection

The other category of algorithms that plays an important role is the mode selection algorithms.
Being able to exclude some of the modes and sub-block sizes can provide a huge reduction in
complexity. The downside is that lower compression efficiency is often gained when macroblocks
are not coded with their most optimal coding mode or split into smaller sub-blocks.

In this thesis three algorithms that have been proposed in previous research are examined. All
algorithms claim to be fast and have low complexity with acceptable compression efficiency trade-
offs. None of the algorithms have been designed solely for HD-video and for the requirement of very
low complexity required to encode HD-video in real-time. Therefore the following modifications
are applied to all three algorithms in order to further reduce their complexity:

Low complexity RDO As mentioned in the background (section 2.2.4 on page 13) there are
at least two common methods that can be used to evaluate which mode and block size to code
a macroblock with. It was estimated that adding additional modes to evaluate and using high
complexity rate-distortion evaluation would make real-time encoding infeasible with current opti-
mizations and hardware. As a result only low-complexity RD method (as mentioned in equation
2.3 on page 13) is used when testing the three algorithms.

SKIP-prediction A downside of using the low complexity rate-distortion evaluation is that
SKIP prediction becomes problematic. When the SAD of the predicted SKIP block is compared
with the SAD of the best predicted inter block the bit-cost of the motion-vectors makes SKIP
prediction slightly biased. As a consequence of this I concluded that simply comparing the SKIP
SAD is not enough for determining if a block should be coded with the SKIP mode. Instead the
SKIP mode is only evaluated if INTER16216 has been determined to be the best mode for that
macroblock. Furthermore SKIP is also only used if coding the macroblock with INTFER16x16
would result in no coefficients being sent in the compressed bit-stream.

Small inter block-sizes (4x4) An other significant modification is applied regarding the eval-
uation of the INTFER8x4, 428 and 4x4 modes. Since this paper focuses on HD-video inter
prediction modes smaller than 828 are not evaluated. In order to verify this assumption a small
experiment was conducted using the x264 encoder with full rate-distortion evaluation turned on.
In this experiment it was shown that none of the macroblocks in the vidyo! sequence were coded
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using any of the INT ER8x4, 428 and 424 modes. The result of encoding the other sequences was
that between 0.2% to 0.5% of the macroblocks were encoded with any of these modes. Since the
computational cost of the INTER8x4, 4x8 and 4x4 modes are much higher they are considered
less computationally effective and thus not used in the algorithms below.

Algorithm I

The first algorithm is modeled after a paper called "Fast H.264 Mode Decision Using Previously
Coded Information” by Haung et al. [14]. It uses two concepts to ensure that only a few modes are
evaluated in low complex video sequences. The first one is early skip detection that is based on an
adaptive threshold from previously skipped macroblocks. The other one is that each macroblock is
categorized into one of two ”inter mode groups” based on what type neighboring macroblocks have
been coded with. As an example if all neighbors to the left and above have been coded as either
SKIP or INTER16x16 then only the following block sizes are evaluated 16216, 1628, 8x16, 8x8.
The proposed algorithm allows even 8x8 to be skipped if the result of the first three searches
resulted in 16216 being the best match.

Likewise the decision of checking either INT RA4x4 or INT RA16x16 is determined by checking
if any of the neighbors have being coded with INTRA or INTER8z8. In that case INT RA4x4
is evaluated; otherwise INT RA16x16.

Algorithm II

The second algorithm is based on work described in ”"Probability-based coding mode prediction
for H.264/AVC” by Zhao et al. [37]. This algorithm is similar to the previous one in that it
determines which modes to check based on how neighboring modes are coded. The classification
works by ordering all possible INTER modes based on how often they occurs in the neighboring
blocks. For example if all upper macroblocks have been coded using INTER16x16 and the
previous macroblock to the left has been coded using INT E R1628; then evaluation order becomes
INTER16216, INTER1628, SKIP, INTER8x16 and finally INT F R8x8.

According to the authors "because the list has a descending order of probability to be the best,
mode decision could be early terminated when a larger RD cost is obtained”. This means that if
the current mode results in a higher RD cost than the previously calculated mode, the iteration
stops and the previous one is use to code the macroblock.

Algorithm IIT

The third implemented algorithm is based after the mode selection algorithm proposed in "Real-
Time H.264 Video Encoding in Software with Fast Mode Decision and Dynamic Complexity
Control” by Ivanov and Bleakley[18]. This algorithm works by first classifying each macroblock
into one of five classes based on three metrics (SAD, previous RD cost and a "frame difference
metric”). Different modes are then evaluated based on the class that were selected. As an example
in the lowest class only the SKIP RD-cost is determined; similarly, in the second lowest class
INTRA evaluations are also included. Likewise the complexity increases gradually to, for the
highest class, include all inter block sizes and all intra modes.
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Chapter 4

Results and analysis

This chapter starts with explaining how the various optimization approaches were measured. This
is then followed by a review of gains and drawbacks of using the individual optimization techniques
for each of the three optimizations methods. At the end of the chapter the three methods are
compared with each other and their results are combined, in order to reach the goal set at the
start of this project.

4.1 Benchmark coding options

The four video sequences used for measuring bit-rate, quality and throughput were previously
explained in Chapter 3. As mentioned then, all sequences are of 720p resolution and sampled at
25 frames per second. When running the performance analysis 300 frames were used and sequences
shorter than this were repeated in order to be 300 frames long.

During encoding the selected coding scheme was I-P-P-P, meaning that the only intra frame
is the first one. All sequences were coded at constant quantization parameter (QP), since the goal
is to measure the encoder and not the rate-control algorithm. Performance measurements were
collected on an Intel Core 2 Duo processor running at 2.40 GHz. In order to measure parallelization
scale-up, measurements were also collected on a Core i7 processor having 4 physical cores with
hyper-threading (in total 8 logical cores). All simulations were run under the Windows Vista
operating system on a 32-bit version of the encoder.
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4.2 Instruction-level parallelism

Instruction-level parallelism (SIMD programming using the SSE2 instruction set) were evaluated
using two different methods, manual and automatic vectorization of the encoder. Both results are
compared with the original version of the encoder. The manual vectorization was implemented
mostly using higher level intrinsic functions and some low-level assembly instructions.

4.2.1 Automatic vectorization

Intel’s automatic vectorization feature works by targeting loops inside the program. More specif-
ically only the inner-most loop (if nested) are considered a vectorization candidate. The result
of the auto vectorization was that out of 550 potential loops only 3.6% was successfully vector-
ized by the compiler. Table 4.1 illustrates the most common reasons why a specific loop was not
vectorized.

30.2% | not inner loop
28.7% | existence of vector dependence
17.0% | low trip count
10.0% | unsupported loop structure
6.6% | loop is not a vectorization candidate
3.6% | unsupported data type
1.5% | vectorization possible but seems inefficient

Table 4.1. Automatic vectorization fail reasons

A compiler settings controlling the ”performance gain threshold” can be changed to control
which loops should be vectorized. At 100% (default value) only vectorizations that are guaranteed
to increase performance are made. When the threshold is decreased more vectorizations are
performed at the risk of lowering the performance. By modifying the threshold parameter it
became clear that only loops of the third type in the table above (low trip count) were vectorized
when the threshold is reduced. At 100% only loops with more than 16 iterations (which is a
common loop count in the encoder) were vectorized (e.g. the following code: for(i=0; i<256;
i++)). When lowering the threshold below 100%, loops with an iteration count not known at
compile time were targeted (e.g. for(y=0 ; y<Height ; y++)). When looking at the generated
assembly code it can be seen that these loops starts with an conditional check so that the vectorized
version is only executed when the loop count is large. Lowering the threshold further resulted in
the loops with 16 iterations to become vectorized. When looking at the generated code it become
clear that this code also performs a check to see if the vectorized or the normal version should be
used. A guess from looking at the generated code is that, since the compiler knows the loop count
for these loops, the check is to see if the memory accessed in the loop is aligned or not.

As seen from the Table 4.2 applying automatic vectorization achieved some additional speed-
up compared to using the Intel compiler without any automatic vectorization. By decreasing the
threshold the number of automatic vectorizations increased from 0.4% to at most 1.2% of all loops
in the program. Despite the small increase in number of vectorizations there were no increase
in execution speed-up. For the widyol sequence the speedup was slightly reduced whereas the
other sequences did experience a slight increase in performance. Although some sequences did
run faster the gains were too small to be noticeable. The major reasons for such a small speed-up
is the small amount of loops that were vectorized. When lowering the vectorization threshold
lower performance was achieved; my guess is because no changes were made for ensuring aligned
memory allocations, which is important in order to get good vectorization performance.

4.2.2 Manual vectorization

Compared to using automatic vectorization, manual vectorization proved to be a great way to
receive some actual speed-up results. A benefit from using vectorization is that the generated bit-
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Sequence ‘ Speed-up with default settings%

vidyol 98.0%
blue_ sky 101.8%
pedestrian 103.1%
riverbed 102.4%

Table 4.2. Automatic vectorization speed-up

Function Actual speed-up | Speed-up from previous research
Quarter-pixel interpolation x1.9

Half-pixel interpolation x3.0 x1.3[26], x2.0[11]

Deblocking (horizontal filtering) x3.3

Deblocking (vertical filtering) x3,0 x1.1[38], x5.62(34]

Integer Transform + Inverse x2.5 x1.3[11], x4.3[38], x4.3[36]

Motion estimation (SAD) x3.4 x2.9[38], x3.5[11], x3.8]26]

SATD x3.3 x2.6(36], x3.7[26]

Table 4.3. Individual component speed-ups results for manual vectorizations

Video sequence ‘ Speed-up  Speed-up (using the Intel compiler) ‘

vidyol 216% 266%
blue__sky 198% 230%
pedestrian 184% 222%
riverbed 136% 135%

Table 4.4. Manual vectorization speed-up result (Core 2 Duo)

stream is equal to what was generated using the non-vectorized encoder. This means that neither
compression efficiency nor quality were affected by introducing vectorization to the program. The
individual speedup of each vectorized function is shown together with speedups that has been
stated in previous research in Table 4.3.

Table 4.4 shows the relative speedup of using the four video sequences. Since the encoding
complexity varies depending on which video sequence is used (and especially the degree of motion)
the vectorization speed-up also varies as a result of this. The best speedup, which was achieved
in a few of the encoding runs, is around twice (200%) as fast when comparing the execution time
with a non-vectorized encoder.

Additionally the speed-up of using the Intel compiler before and after the SIMD optimizations
shown in the third column. All sequences resulted in better speed-up by using the Intel compiler
than by using the Microsoft’s Visual C++ compiler. One likely cause is that, since most of the
vectorizations were written using intrinsics, the Intel compiler does a better job of optimizing this
type of code.

From the chart it is seen that low motion footages receives better speedup than more complex
sequences. The reason for this is that the non-vectorized code starts to take a noticeable amount
of execution time. For example generating the compressed bit-stream using CAVALC entropy
coding is difficult to vectorize.

Figure 4.1 shows how the execution time is spent during encoding of the low motion sequence
vidyol and the high motion sequence riverbed. Both sequences are considered extreme cases of
a fast and slow sequence to encode. In the first figure most of the execution time is spent doing
inter prediction (i.e. motion estimation). This section involves both full- and quarter pixel search
but also high complexity rate distortion evaluation with SATD. The second largest entry is the
deblocking filter which were also successfully vectorized.

In the second figure it is clear that the most time consuming part is intra prediction and
not motion estimation. Intra prediction was not directly vectorized as part of this work; mostly
because each intra prediction mode requires its own SIMD routine, making the implementation
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Figure 4.1. Execution breakdown after applying SSE2 optimizations

time consuming. Another reason is that motion estimation is often the most time consuming part
of the encoder (see the encoder comparison on page 21).

By comparing with the execution profiling done before SIMD optimizations (see Figure 3.4
on page 23), it is clear that both pictures looks mostly the same. Since the whole encoder was
targeted for optimizations and most of the vectorizations received the same speed-up its a good
indication that both figures looks the same. This would otherwise have indicated a good target
for further vectorization.

In more detail, before SIMD optimizations were implemented motion estimation took about
59% (SATD included) of the total execution time, with SIMD optimizations the same part now
takes 53%. The biggest difference is however in the half-pixel interpolation which decreased from
10.5% to 4% of the total execution time. The non-classified parts of the encoder (called "Other”
in the charts) increased, as a result of making the encoder faster, from 5.8% to 20%. This section
includes parts of the encoder which are difficult to vectorize and will become an issue as more
vectorizations are performed or enhanced.
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4.3 Thread-level parallelism

Like the SIMD optimizations, parallelizing the encoder was also evaluated by making the compiler
perform the parallelism automatically and by doing all parallelization work manually.

4.3.1 Automatic parallelization

Automatic parallelization was performed by using the Intel C++ compiler and modifying the
compiler arguments to state that automatic parallelization should be attempted. The compiler
then looks at all the loops in the program and determines if they are suitable for parallel execution.

For the parallelization to be safe the compiler must be sure that the loop has no dependencies
between iterations, this however is not always easy to determine. Since the compiler must be
able to preserve the sequential semantics, it becomes restrictive about parallelizing loops when
dependences are found. As an example when the original encoder implementation was compiled
no auto-parallelization took place (out of 476 potential loops). During compilation the compiler
states if each loop was parallelized or otherwise a short motivation why it was not. Table 4.5
shows the result of performing automatic-parallelization with default settings.

0% | loop was parallelized
62% | loop has existence of parallel dependence
38% | loop has insufficient computational work
< 1% | loop is not a parallelization candidate

Table 4.5. Result from automatic-parallelization with default threshold

From this table it can be seen that most of the loops (62%) are not parallelized because of
dependencies either across loop iterations or by accessing the shared memory. This was in some way
expected since the original code was not written for parallelization in mind. Code optimizations
like loop-unrolling and incrementing array pointers instead of using the loop indexes could not, as
of this date, be optimized by the compiler.

Also from Table 4.5 the third entry (38%) is interesting because this outcome can be tweaked
by compiler settings. The compiler uses an internal cost metric to evaluate the complexity of
all loops the program. If the estimated cost is higher than the cost of parallelizing the loop, it
will be ignored. The compiler offers a method to modify the complexity decision by modifying a
threshold value. By setting a lower threshold value, which spans from 100% to 0%, the compiler
tries to perform parallelization event though performance is not guaranteed to increase. The
default threshold value is 100% which basically means that parallelization is only performed if the
compiler is 100% sure of a performance improvement.

When lowering the compiler threshold from the default value of 100% to 90% the compiler
was able to actually parallelize some of the loops (1.5%). The effect of this change was however
too small to be noticeable (or loops were not used due to settings specified at run-time). With
the extreme settings of lowering the threshold down to 0% as much as 30% of the loops were
parallelized. As can be seen in Table 4.5 the maximum number of loops that could be parallelized
was 38%, but it seems that this number was not reached.

The speed-up from the automatic-parallelization with varying compiler threshold settings were
however all negative. The worst case of having a zero threshold value resulted in an encoder that
took five times longer to encode the same sequence. As the level of parallelism decreased so did
the slowdown (e.g. the encoder was only 3% slower at a threshold of 75%).

OpenMP After this experiment some additional tests were made to evaluate the usefulness of
automatic parallelization with OpenMP[8]. In its most basic form OpenMP is a set of compiler
directives that can be annotated onto the existing code. The directives (or pragmas) are hints to
the compiler how it can run that part of the code in parallel. The compiler is then responsible for
managing the actual parallelism implementation, e.g. life-cycle of threads.
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Figure 4.2. Relative speedup for macroblock parallelism with threads

Because of the many data dependencies related to video encoding, OpenMP could not be
applied directly without making large architectural changes to the implementation. Instead a
small experiment was made by moving the inter prediction logic out of the main coding loop and
into a pre-processor stage. This loop was then annotated with the omp parallel for directive using
additional attributes to control data sharing between threads. It was determined in the profiling
of the encoder that inter prediction can take as much as 50% of the total encoding time so this
should in theory give some good results.

Benchmarking the application on a computer with two cores showed that all video sequences
were encoded in only slightly less time. The best speed-up of 10% was received for the riverbed
sequence, which also contains the highest degree of motion. The worst speed-up were reported by
the blue sky sequence, which were only about 4% faster. The theoretical speed-up of using two
cores with 50% sequential code is 33%, but this was however far from reached. There are several
reasons why the usefulness of this method is limited. First since only a small part of the encoder
were parallelized, the gain of adding more cores is less effective. Secondly because the encoder was
not written with parallelization in mind, there is additional overhead required to ensure safe access
of data-structures. In this experiment the firstprivate OpenMP attribute was used to make each
thread have its own copy of the encoder data structure. Although this prevents race-conditions it
comes at the cost of copying additional memory at the start of each frame.

For at least this type of application, the conclusion of both experiments is that automatic-
parallelization is not beneficial to use and manual parallelization is the way forward.

4.3.2 Manual parallelization

Manual parallelization of the encoder was implemented using two different approaches: macroblock
level parallelism and slice level parallelism. Furthermore I implemented macroblock parallelism
using both low-level operating system threads and using a task abstraction library.

Method I: MB-parallelism with threads

Figure 4.2 shows the speedup of macroblock-level parallelism (implemented using raw threads)
as the number of threads increase. As can be seen from the figure all video sequences scales
roughly equally, but as the number of threads increase so does the variance between the four
sequences as well. The best scaling at eight threads is received by the riverbed sequence. The
reason behind this is that riverbed is also the most time-consuming sequence making the overhead
of the thread communication and the sequential code relatively smaller compared to the work
done by all threads.
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Figure 4.3. Relative speedup for macroblock parallelism with tasks (2 MB/task)

At four threads the best speed-up is 354% (also for riverbed) which should be compared to the
maximum theoretical limit of 400%. When increased to five threads there is a severe overhead
making the whole encoding run slower then with four threads. This is due the way that the
operating system schedules threads. Initially the execution is similar to when run using four
threads, which starts coding four rows in parallel. When the first thread continues on with the
sixth row it has to block because the fifth row has not finished coding its row. This causes overhead
both in terms of extra blocking but also because of extra context switching.

When increasing the number of threads up to eight the maximum speed-up increases to 430%
for riverbed and from 317% (four threads) to 379% for the vidyol sequence. The reason why the
figures are not anywhere near the theoretical speed-up of 800% using eight threads is because the
CPU only has four physical cores and simulates eight cores using hyper-threading. From these
figures its clear that hyper-threading does give a slight increase in performance but those not
result in perfect scaling.

Method II: MB-parallelism with tasks

Macroblock-level parallelism was additionally implemented using the Cilk Plus task library. Figure
4.3 shows the speedup as the number of worker threads assigned to the library increases. When
comparing the speed-up at four and eight threads to the parallelism implementation using raw
threads it can be seen that the threaded version do receive better speed-up for all video sequences
and with all numbers of threads. This was to be expected as the library introduces overhead in
terms of managing task scheduling but also because nearby macroblocks are not guaranteed to be
coded by the same thread which hinders good cache locality.

In order to measure the overhead of the Cilk Plus method, the execution time spent in the
encoder, the Cilk Plus library and in operating system calls were measured using 4 and 8 threads.
The result from this experiment was that both parallelization implementations spends about the
same amount of time in the encoder. The biggest difference was in the calls to the Cilk Plus
library which took between 5% (4 threads) and 10% (8 threads) of the total execution time. Since
these calls are not made in the version using raw threads, this overhead should be categorized as
relative high.

An other difference when comparing the two figures is the scaling behavior of the four video
sequences. Whereas the riverbed sequence continues to scale with increased number of threads all
the other three sequences becomes slower as part of setting a larger worker thread pool.

One major reason why there were negative scaling for the fastest sequences is because of the
configurable setting that controls how many macroblocks are encoded per task. This setting, which
has no optimal value, depends on how time-consuming the sequence is to encode but also on how
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Figure 4.5. Relative speedup for slice parallelism (with threads)

many threads are used. By making each task only responsible to encode a single macroblock,
the overhead of task management becomes noticeable for fast sequences (as can be seen in the
figure). On the other hand by making each task responsible for encoding multiple macroblocks,
the parallelization is hindered as it takes longer time before there are enough tasks to keep all
threads occupied.

Figure 4.4 shows how the optimal task-size varies with the number of threads. With four
worker threads the best speed-up was received with using 3 macroblocks in each task. When the
number of threads increased to eight the best speed-up was measured when using a task size of 1
macroblock per task, except riverbed which was more optimal to run with 2 macroblocks per task.

Method III: Slice-parallelism with threads

The third parallelism method was using raw threads to implemented slice-level parallelism. Figure
4.5 shows the speedup of this method as the number of threads increase. As can be seen by looking
at the figure, the scaling of the four video sequences are almost identical. The reason for this is
that since there is no communication between threads, it matters less if the work done by each
thread is either short or long; yet the riverbed sequence has slightly better scaling at 8 threads.
This is most likely explained by the overhead of synchronizing all threads at the end of each frame,
which becomes relatively smaller with more time-consuming sequences.

At four threads the speed-up of the riverbed sequence is 325% and at 8 threads it has increased
to 414%. Even with slice-level parallelism, which does not have any locking, there is a gap to the
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theoretical speed-up at four threads of 400%. There are a couple of reasons for this. First there is
still a small amount of sequential code which cannot be parallelized. This code is about preparing
the internal data-structures at the beginning of each frame. In the case of slice-level parallelism
there is also an extra sequential step related to the half-pixel interpolation of the slice borders.
Since this can only be performed when all slices have been coded, it’s performed as a sequential
post-process step when all threads have completed their work. As the number of threads/slices
increases so does the amount of sequential code as well.

Since having the sequential code grow as more threads are used is really bad for scaling, 1
also investigated if this sequential post-processing would benefit from also being parallelized. The
results were that all sequences took longer time to encode using four threads or less. Even when
using 8 threads only two of the sequences become noticeable faster by parallelizing this section.
The reason why parallelizing this code is not immediately useful is that its very short (only 6
pixel-rows per slice border). Also because there is a synchronization penalty in having threads
wait for all other to finish. It is however expected that performing this post-process step in parallel
would be beneficial when more than 8 threads are used.

4.3.3 Parallelization overhead

Both types of manual parallelization strategies (slice- or macroblock-level) incurs different types
of overhead, which affects the compression efficiency.

As previously explained, macroblock-level parallelism has a fixed overhead that is required to
solve the skipped macroblock counter dependency. This dependency was circumvented by coding
the last macroblock using the normal rate-distortion algorithm expect that skip-prediction is not
evaluated (and therefore never taken). The result of this is a slightly higher bit-rate since a
macroblock coded with SKIP requires (almost) no bytes to code. In CAVLC entropy coding each
non SKIP macroblock signals how many macroblocks were previously coded using SKIP, meaning
that SKIP blocks do incur a small bit-rate cost. Table 4.6 shows the overhead of macroblock-level
parallelism.

sequence ‘ BD-Rate BD-PSNR

vidyol 3.13% -0.11

blue_sky | 0.52% -0.02
pedestrian | 0.07% 0.0
riverbed 0.02% 0.0

Table 4.6. Macroblock-level parallelism overhead

Compared to macroblock level parallelism the overhead for slice-level parallelism increases with
the number of threads. As mentioned earlier, the main reason is that more bits are required to
compensate for the error introduced by worse prediction. Table 4.7 shows the affect on PSNR and
bit-rate when varying the amount of threads (i.e. number of slices). From this table it can be seen
that the overhead at four threads is mostly higher than compared to macroblock-level parallelism.
At eight threads the bit-rate overhead is more than twice as high for the vidyo! sequence and
more than 70 times larger for pedestrian.

4 threads 8 threads
sequence | BD-Rate BD-PSNR | BD-Rate BD-PSNR
vidyol 3.0% -0.10 7.0 -0.23
blue_ sky 1.8% -0.08 4.0 -0.18
pedestrian 2.8% -0.14 5.0 -0.24
riverbed 0.7% -0.04 1.4 -0.08

Table 4.7. Slice-level parallelism overhead
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Figure 4.6. Parallelization speed-up comparison (riverbed)

4.3.4 Summary of the parallelization optimizations

Figure 4.6 shows the three parallelization methods side-by-side for each number of threads encoding
the riverbed sequence. The slice-level parallelism curve is based on the best results from running
with parallel and with sequential post-processing of the slice boundaries. Likewise the Cilk Plus
curve is based on the best speed-ups of running with 1,2,3 and 4 macroblocks per task.

From this graph it is clear that macroblock-level parallelization using raw threads receives the
best scaling both at four and eight threads. At four threads there is little difference between the
other methods in terms of speed-up. At eight threads both macroblock-level parallelism using
threads and slice-level parallelism scales much better than the Cilk Plus method.

In the figure the scaling of x264, using slice based thread-level parallelism (TLP), has also been
added as a reference. At four threads the scaling seems to be equal to the implemented slice-level
parallelism. When the number of threads increases up to eight the difference starts to increase.
From the figure it is clear that x264 scales slightly worse than the implemented method.

An interesting side-note is that Cilk Plus method scales much better then the other methods
using five threads. This is probably due to the more efficient assigning of tasks than the two threads
methods. Likewise the slice-based parallelism method scales slightly better than macroblock-
parallelism (with threads) at five threads. The most likely reason for this is more favorable
data-partitioning with five slices than with four (45 macroblock rows is equally divided by 5 but
not by 4).
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4.4 Encoding algorithm improvements

Two different types of encoding algorithms were evaluated as part of this thesis. The first one is
about how to perform fast motion estimation, which is used during inter prediction. The other
one is about doing fast prediction mode and block size selection in order to quickly determining
how to encode each macroblock.

4.4.1 Inter motion estimation

All motion estimation algorithms were evaluated using low complexity rate-distortion optimization
(RDO). Additionally the number of evaluated modes and sizes were reduced to only compare
INTER 16x16, INTRA 16x16 and SKIP. Additionally for this comparison only one reference frame
was used, Hadamard transform (for RDO-calculation) was turned off, CAVLC entropy coding was
used and assembly optimizations turned off.

Table 4.8 shows the result of comparing the compression and quality of all full-pixel motion
estimation algorithms with exhaustive search (using a search window of 32 pixels). Full Search
compares by definition the whole search window meaning that 1024 search points are compared.
Unless otherwise specified the search window for the implemented algorithms are either unbounded
or not applicable. Bit-rate and quality changes are evaluated using the BDPSNR (Bjgntegaard
Delta PSNR) and BDBR (Bjgntegaard Delta Bit Rate) metrics, as explained in section 2.1.2. Since
Full Search is between 80-90% slower than all the other search algorithms, all execution time results
are relative to the Gradient search algorithm making it easier to compare the complexity cost.

As expected when looking at Table 4.8 the difference is more noticeable with video-sequences
containing a higher degree of motion. The E3SS algorithm is the one closest to Full-search in
terms of compression efficiency and quality, it’s also the one with the highest complexity. In the
other end of the spectrum we have the Diamond search algorithm which has the lowest complexity
and also gets the worst result, especially for high motion sequences (i.e. riverbed). The most
surprising result is on the pedestrian sequence where the Improved Diamond method resulted in
faster execution than Gradient search even though it on average searched more points. One expla-
nation is of side effects such as more coding of skip blocks and coding fewer residual coefficients
as a result of a better search.

Additionally a sub-pixel motion estimation algorithm, which assumes that a full-pixel search
has been performed (i.e. the SAD value is remembered) for the neighboring full-pixels, is also
evaluated. This algorithm is compared with a sub-pixel search method (called Pointwise Qpel)
that compares all half- and quarter-pixels surrounding the best full-pixel match. This algorithm
can terminate early depending on if the SAD value found is higher or lower than the best match,
so its not a true exhaustive quarter-pixel search.

Table 4.9 compares the original pointwise quarter pixel search algorithm with the search algo-

Method BDRATE (%) BDPSNR (dB) | # Search Points  ATime (%)
vidyo1
Gradient search 5.39 -0.18 5.8 0%
Diamond search 5.17 -0.17 5.7 -0.5%
Improved Diamond 4.30 -0.14 9.8 0.7%
E3SS 2.43 -0.08 14.1 1.5%
pedestrian
Gradient search 9.59 -0.44 9.7 0%
Diamond search 8.62 -0.40 6.1 -3.5%
Improved Diamond 5.17 -0.24 13.4 -1.5%
E3SS 2.96 -0.14 19.7 1.3%
riverbed
Gradient search 5.12 -0.26 16.6 0%
Diamond search 5.33 -0.27 10.2 -2.0%
Improved Diamond 3.55 -0.18 19.0 1.9%
E3SS 2.04 -0.10 29.6 6.0%

Table 4.8. Full-pixel motion estimation algorithms
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Method BD-RATE (%) BD-PSNR (dB) # Search Points
vidyol
Gradient + Pointwise Qpel 0.00 0.00 9.46
Dia + Pointwise QPel -0.21 0.01 8.76
Imp. Dia + Pointwise QPel -1.04 0.04 9.02
Dia + [21] 1.74 -0.06 9.25
Imp. Dia + [21] -0.28 0.01 8.9
pedestrian
Gradient + Pointwise Qpel 0.00 0.00 15.07
Dia + Pointwise QPel -0.87 0.04 13.14
Imp. Dia + Pointwise QPel -4.08 0.2 14.01
Dia + [21] 1.05 -0.05 12.33
Imp. Dia + [21] -2.57 0.13 13.03
riverbed
Gradient + Pointwise Qpel 0.00 0.00 23.72
Dia + Pointwise QPel 0.20 -0.01 21.16
Imp. Dia + Pointwise QPel -1.50 0.08 21.36
Dia + [21] 3.07 -0.16 16.69
Imp. Dia + [21] 1.05 -0.06 17.84

Table 4.9. Sub-pixel motion estimation algorithms

rithm proposed by Lin et al[21]. Both algorithms are evaluated using the two diamond full-pixel
search algorithms presented above. All four combinations are then relative to the original search
algorithm which consists of the gradient full pixel search and the pointwise QPel search.

From the table it is clear that the algorithm proposed by Lin et al. do offers an implementation
with lower computational cost. This reduction comes however with the drawback of slightly worse
compression efficiency (on average 2 percentage points lower) when comparing Lin et al’s search
algorithm with pointwise search algorithm. The biggest difference lies in the complexity where
the algorithm by Lin et al. requires on average 10% less search points than the point-wise search.

Although some good results were seen with the algorithm proposed by Lin et al., especially in
combination with the improved diamond search method, this sub-pixel algorithm were not used
in any further evaluations of the encoder.

4.4.2 Mode selection algorithms

The goal of evaluating the mode selection algorithm was to see if evaluating more modes would be
worth the extra complexity, but also if any of the algorithms proved more effective on HD-video.
The three algorithms (described on page 31) are all examples of fast mode selection algorithms that
uses different techniques to select prediction modes to evaluate. All algorithms are implemented
using the low complexity rate-distortion method mentioned earlier (see page 13). The reason for
this choice was that the additional complexity of evaluating more modes and also performing full
rate-distortion calculation would make real-time encoding with the current optimizations difficult
to achieve.

All algorithms were evaluated considering compression, quality, and complexity differences.
Instead of comparing the result with an algorithm that evaluates all methods using full rate-
distortion, the algorithms are compared to a more simplistic reference algorithm implemented as
follows: The algorithm (called Ref 1) compares the rate-distortion value of INTER16216 (and
SKIP using the method mentioned earlier) with INT RA16x16 prediction (only the DC prediction
mode) using the low complexity rate distortion method (equation 2.3).

Furthermore all simulations were performed using one reference frame, CAVLC entropy coding
and assembly optimizations turned off. To (somehow) compensate for using the low-complexity
rate-distortion method all three methods were run with Hadamard transform (SATD) turned on
(but not during full-pixel search).

The result of the comparison is shown in table 4.10. For most of the sequences the evaluated
algorithms resulted in better compression efficiency compared to the reference algorithm. One
exception is the blue sky sequence where all algorithms resulted in higher bit-rate. This was
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Method BDBR (%) BDPSNR (dB) # SADs/Modes ATime (%)
vidyo1
Ref 1 0 0 2.1 0
Algoritm 1 -0.09 0.02 5.1 +73%
Algoritm 2 0.34 0.00 5.1 +76%
Algoritm 3 -1.15 0.05 2.9 +24%
blue__sky
Ref 1 0 0 2.3 0
Algoritm 1 2.99 -0.11 5.2 +83%
Algoritm 2 2.58 -0.10 5.0 +79%
Algoritm 3 15.19 -0.67 3.1 +46%
pedestrian
Ref 1 0 0 2.3 0
Algoritm 1 -8.05 0.44 5.0 +90%
Algoritm 2 -11.13 0.59 5.1 +82%
Algoritm 3 -4.28 0.22 3.1 +51%
riverbed

Ref 1 0 0 2.0 0
Algoritm 1 -12.41 0.71 5.9 +117%
Algoritm 2 -13.55 0.78 5.2 +81%
Algoritm 3 -8.15 0.45 34 +66%

Table 4.10. Fast mode selection algorithms with low complexity RDO

especially true for Algorithm 3 which performs especially poor. The main reason for this seems to
be the macroblock classification scheme that uses static constants which, according to Ivanov and
Bleakley[18], were not modeled after high resolution video. This unexpected increase in bit-rate
is a major disadvantage of using these algorithms under the mentioned setup.

In the vidyol sequence there are a little or no differences in the produced output compared
to the reference algorithm. This is to be expected as compression efficiency is mainly dominated
by the number of SKIP blocks used and because all algorithms uses the same skip method (as
explained in section 3.6.2).

Overall the results of this evaluation are mixed, for higher motion sequences (pedestrian and
riverbed) better compression was achieved. For all sequences there is severe increase in complexity
compared to the reference algorithm, because some sequences results in questionable results makes
this approach less valuable.

When comparing the algorithms with each other the one with the best compression efficiency
seems to be Algorithm 2; although this algorithm do not have the lowest complexity cost it seems
to behave between Algorithm 1 and Algorithm 3 when measuring the execution time.

As the result of evaluating more modes using low complexity rate-distortion gave both good
and bad results, a second experiment using high-complexity rate-distortion was performed. In
this experiment the reference algorithm was updated to use the high complexity RD method as
mentioned in equation 2.1. Additionally the gains of enabling Hadamard transform in the low
complexity RD evaluation (using SATD) case was also included in the comparison.

Table 4.11 shows the result of this evaluation. Some interesting points are that only using
SATD or High RDO alone gives mixed results. Again the blue_ sky sequence seems to be difficult
to encode efficiently. As seen in the previous table the bit-rate increases instead of decreases
even though the complexity is higher. Furthermore using SATD instead of SAD gives a slight
improvement in both compression and quality, especially for higher motion sequences (pedestrian
and riverbed). The best results are however achieved by combining SATD with high complexity
rate-distortion. When using this method the problems with the blue sky sequence are gone and
good compression and quality is achieved for all sequences. The biggest downside is the severely
increased complexity in the encoding process.

Finally when comparing the two tables there are some interesting differences. By using the
combined SATD and High RDO method on the reference algorithm results in better compression
efficiency and quality then the mode selection algorithms for all sequences. This is surprising
since the Ref 1 algorithm evaluates fewer modes than the implemented mode selection algorithms.
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Method BDBR (%) BDPSNR (dB) # SADs/Modes ATime (%)
vidyol
Ref 1 0 0 2.1 0
Ref 1 4+ SATD 0.7 -0.02 2.2 +25%
Ref 1 + High RDO -3.2 0.11 4.0 +40%
Ref 1 (Combined) 17 0.06 4.0 +72%
blue__sky
Ref 1 0 0 2.3 0
Ref 1 + SATD 0.7 -0.03 2.3 +26%
Ref 1 + High RDO 12.5 -0.61 4.0 +40%
Ref 1 (Combined) -0.3 0.02 4.0 +70%
pedestrian
Ref 1 0 0 2.3 0
Ref 1 + SATD -2.5 0.13 2.3 +26%
Ref 1 + High RDO -11.6 0.58 3.9 +37%
Ref 1 (Combined) -13.6 0.7 3.9 +71%
riverbed

Ref 1 0 0 2.0 0
Ref 1 + SATD -7.2 0.39 2.0 +26%
Ref 1 4+ High RDO -19.1 1.18 3.4 +47%
Ref 1 (Combined) -19.6 1.25 3.4 +79%

Table 4.11. Reference mode selection with higher complexity

Even though the complexity has increased the execution time is lower than Algorithm 2 which
were considered the best one.

The conclusion is therefore that in order to get additional compression and quality, high com-
plexity rate-distortion should be considered before evaluating additional modes.
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4.5 Method comparison

Table 4.12 and Table 4.13 shows the individual speed-up of the instruction-level parallelism (SIMD)
and the two thread-level parallelization methods. As can be seen from the parallelization summary
(on page 42), macroblock parallelism and slice parallelism scales almost equally well at eight core
on the riverbed sequence. When comparing with the rest of the sequences it becomes clear that
slice-level parallelism scales slightly better for all other sequences. The reason for this is that
slice-parallelism is implemented using a lock free algorithm whereas macroblock-parallelism do
experience lock contention for low motion sequences. This means that as the encoder becomes
faster (using either SIMD or algorithm optimizations) so does the cost of using locks starts increase.

Furthermore the speed-up of combining SIMD optimizations with parallelism are also shown
in the two tables. The theoretical speed-ups of combining the two methods are not shown, but
can be calculated by multiplying the SIMD speed-up with the parallelism value. By comparing
the (measured) combined speed-ups with the theoretical it becomes clear that for the most time-
consuming sequences (riverbed and pedestrian), the theoretical and measured speed-ups are almost
identical. For the widyol sequences both combined speed-ups are about 30% lower than the
theoretical values (which are x4.39 and x4.22 on the Core 2 Duo computer).

When comparing the speed-up with the result for the open source encoder x264 (see Table 3.1 on
page 22) it becomes clear that x264 gets most of its speed-up from its assembly optimizations. This
should be compared with the targeted encoder that benefits more from the thread parallelization
(on the Core i7 computer). There are two major reasons for this; firstly only the SSE2 instructions
set is used in this work, whereas x264 have implemented support for up to SSE 4.2. The other
reason is that only a small part of the encoder were vectorized as part of this thesis whereas x264
have had extensive tuning for years. Interestingly the target encoder received greater parallelism
scaling than the x264 encoder when run without any assembler optimization. More studies using
a higher number of cores needs to take place in order to determine if this difference changes as
the number of cores increases.

Video sequence ‘ SIMD  Slice TLP MB TLP ‘ Slice + SIMD MB + SIMD

vidyol x2.44 x1.80 x1.73 x4.1 x3.9
blue_ sky x2.12 x1.86 x1.67 x3.7 x3.4
pedestrian x1.99 x1.79 x1.62 x3.9 x3.3
riverbed x1.39 x1.80 x1.79 x2.4 x2.5

Table 4.12. Target encoder speedup with SIMD and Thread-Level Parallelism (Core 2 Duo)

Video sequence ‘ SIMD  Slice TLP MB TLP ‘ Slice + SIMD MB + SIMD

vidyol x3.19 x3.76 x3.72 x12.4 x11.3
blue_ sky x2.78 x3.92 x3.78 x11.1 x10.3
pedestrian x2.40 x3.81 x3.93 x9.4 x9.2
riverbed x1.53 x4.14 x4.21 x6.5 x6.7

Table 4.13. Target encoder speedup with SIMD and Thread-Level Parallelism (Core i7)

Table 4.14 shows the encoding throughput both before and after applying both the SIMD
optimizations with slice-level parallelism optimizations. This table contains a rough number on
the encoding throughput in terms of number of coded frames per second running on the Core 2 Duo
workstation machine. This value was derived as the mean of running the encoder (300 frames)
multiple times and varying the quantization parameter (QP) and using either 1 or 2 reference
frames. More specifically the reference algorithm was used with Hadamard transform turned off
and the low complexity rate-distortion method (equation 2.3).

As stated in the beginning of this thesis, the goal of real-time encoding varies depending on
application requirements and uses. By using the lower requirement of 25 frames per second we
can see that all sequences are possible to code in real-time. Additionally the first three sequences
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Original encoder Optimized encoder
Video sequence | Mean throughput Std deviation | Mean throughput Std deviation
vidyol 15.3 fps +0.3 fps 67.8 fps +3.3 fps
blue_ sky 13.2 fps +0.6 fps 52.0 fps +6.0 fps
pedestrian 13.0 fps +0.5 fps 50.4 fps +3.7 fps
riverbed 9.7 fps +0.9 fps 31.0 fps +4.1 fps

Table 4.14. Encoder throughput after applying all optimizations (Core 2 Duo)

can be coded at 50 frames per second, which a common frame rate used in HD-TV. Because of
slight variations in the throughput only the vidyol sequence is guaranteed to not drop below this
limit.

This paper has also investigated the best way to add extra complexity in order to get better
compression efficiency. Based on the throughput numbers above the extra complexity could be
added to stay above the 25 frames per second limit. From the encoding algorithm evaluation
section, it was concluded that modifying the rate-distortion method was the most efficient way
to drastically increase the video compression and quality. This method to give the best results
in terms of amount of increased complexity. Even though more complex motion estimation al-
gorithms and evaluating more coding modes gave better result, those should only be considered
after switching to high complexity rate distortion.

The throughput after applying this change is seen in Table 4.15. It can be observed that the
goal of 25 frames per second is achieved for the first three sequences (again riverbed is very difficult
to encode fast due to high motion). The affects on compression and quality seen in the last two
columns is copied from the results in Table 4.11 on page 46.

Video sequence | Mean throughput Std deviation | BD-Rate [%] BD-PSNR [dB]

vidyol 34.4 fps +2.3 -1.7 0.06
blue_sky 28.5 fps +3.2 -0.3 0.02
pedestrian 27.2 fps +2.4 -13.6 0.7
riverbed 16.1 fps +2.5 -19.6 1.25

Table 4.15. Optimized encoder throughput with high complexity rate-distortion (Core 2
Duo)
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Chapter 5

Conclusions

In this Master’s thesis two different strategies for optimizing an H.264 video encoder were ad-
dressed. It was shown that both instruction-level vectorizations and thread-level parallelism were
good methods to increase performance of the targeted encoder. Furthermore it was shown that
by combining these two methods the combined speed-up were very close to the theoretical (multi-
plied) value. One a Core 2 Duo workstation computer an execution speed improvement of between
300% to 400% were achieved for most of the tested sequences.

With the implemented optimizations the initial goal of real-time video encoding were achieved
using low complexity encoder settings for all tested video sequences. Furthermore it was shown
how extra complexity could be best added, in order to increase the encoder’s compression efficiency.
The proposed changes offered up to 18% improvement on compression, while still maintaining the
soft real-time encoding goal on most of the evaluated sequences.

5.1 Summary of accomplishments

e Optimized the encoder using low-level SIMD (SSE2) instructions; increasing performance to
be about twice as fast.

e Compared four fast motion estimation algorithms and listed their different gains and draw-
backs. Introduced an earlier-termination condition to one of the algorithm, which severally
reduced complexity while still maintaining good search results.

e Concluded that using low complexity rate-distortion can only increase compression efficiency
and quality to a certain degree. Even when performing extensive evaluations of modes and
block sizes. Showed that complexity is better spent by performing high complexity rate-
distortion.

o Parallelized the encoder using three different methods. Concluded that best scaling were
achieved for slice-level parallelism, but because of negative effects on compression showed
that macroblock-parallelism is a good replacement.

5.2 Possible directions for future work

In this report I've presented a few different methods that can be used to make video encoding run
faster. Due to limited scope of this thesis, a number of topics still remains to be investigated how
they affect the encoding performance. The following list contains some areas which would likely
increase the performance even more.

Using a richer SSE instruction set A large part of the encoder was rewritten using vector-
ization instructions. For this thesis only the SSE2 instruction set was used but later editions (e.g.
SSE3 and SSE4) contains even more instructions. It is likely that these new instructions could
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replace a substantial part of the SSE2 code and thus be written using less instructions leading to
increased performance.

Multi-core scaling The goal of this thesis was to target normal workstation hardware meaning
that extreme parallelism scaling was not investigated. In order to evaluate the thread communi-
cation cost of macroblock parallelization more studies using a larger amount of cores are needed.
As stated in previous research parallelism methods that target a single frame will experience lower
speed-up as the number of cores increases. It’s expected that in order for the encoder to receive
good scaling in the future, a multiple frame parallelism approach is most likely needed.

Strict deadline encoding In this thesis no focus was made on encoding with strict real-time
constrains, meaning that a fixed frame rate must be ensured. For real-time applications like e.g.
live-video broadcasting, delivering video at a constant frame-rate is a requirement. Future work
in this area would involve analyzing how an encoder could be updated to spend a fixed amount
of time encoding a frame in order to reach a strict deadline.

Dynamic complexity control By better understanding the compression and complexity trade-
of, the encoder can modify its settings at runtime to meet real-time encoding requirements. This
requires an analysis of the effects (i.e. compression, quality and complexity changes) of specific
functions in the encoder. Two example of such a functions are how to perform the rate-distortion
evaluations and type of distortion metric (SAD, SSD and SATD). By turning these features on or
off at run-time an encoder would be better able to compensate for varying amount of complexity
in the video, resulting in a more stable frame-rate.

Parallelization friendly rate-control Macroblock-level parallelism and (to some extent) slice
level parallelism makes traditional rate-control algorithms difficult to implement. One reason lies
in the difficulty to estimate the bit-rate during encoding of the frame. This is because threads
do not know the cost of previously coded macroblocks, which may or may not have been coded
already. New types of rate-control algorithms, that take parallelism into account, needs to be
investigated.
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