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Abstract

The enormous competition in the telecommunications market results in
the necessity of optimized and cost-efficient networks for the operators
and service providers. Tracing users cost-efficiently is one of the major
challenges in the study of location management of wireless cellular net-
works. Tracking Area (TA) is a logical grouping of cells in Long Term
Evolution (LTE) networks. TA manages and represents the location of
User Equipments (UEs). One of the well-known performance consider-
ation is the signaling overhead of tracking area update versus that for
paging. This thesis deals with planning and optimization of tracking
area configuration in LTE networks.

TA design must be revised over time in order to adapt to changes
and trends in UE location and mobility patterns. Re-optimization of the
initial planning subject to different cost budgets is one of the problems
considered in the thesis. By re-optimization, the design is successively
improved by re-assigning some cells to TAs other than their original
ones. To solve the resulting problem, an algorithm based on repeated
local search is developed.

By extending the line of research, the trade-off between the perfor-
mance in terms of overall signaling overhead of the network and the
reconfiguration cost is considered. This trade-off is modeled as a bi-
objective optimization problem to which the solutions are characterized
by pareto-optimality. Solving the problem delivers a host of potential
trade-offs among which the selection can be based on the preferences of
a decision-maker. An integer programming model and a heuristic based
on genetic algorithm are developed for solving the problem in large-scale
networks.

In comparison to earlier generations of cellular networks, LTE sys-
tems allow for a more flexible configuration of TA design by means of
Tracking Area List (TAL). How to utilize this flexibility in applying
TAL to large-scale networks remains unexplored. In this thesis, three
approaches for allocating and assigning TA lists have been presented,
and their performance is compared with each other, as well as with the
standard location management scheme.

Automatic reconfiguration is an important element in LTE. The net-
work continuously collects UE statistics, and the management system
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adapts the network configuration to changes in UE distribution and
demand. In this thesis an evaluation of dynamic configuration of TA
design, including the use of TAL, has been performed and compared to
the static configuration by using a case study.
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Chapter 1

Introduction

There has been an extreme growth in the area of wireless and mobile
communications in the past decades. Having an optimized and efficient
network is one of the most important factors in the fierce competition
among service providers. Long Term Evolution (LTE) is a recent stan-
dard in the mobile network technology. It is initiated to bring mobile
broadband via new technology, new applications and new services to the
wireless cellular network. This results in new architectures and config-
urations. Self-optimizing and self-organizing are the capabilities which
the 3"¢ Generation Partnership Project (3GPP) has standardized for
LTE [7]. By automating the configuration and optimization of cellular
networks, it is possible to lower the cost and the time consumed for
the manual operation. It will also improve network performance and
flexibility [4,5].

Mobility management (MM) is one of the main functions in mobile
networks. It aims to track the user equipments (UEs) and to allow calls,
SMS and other mobile phone services to be delivered to UEs. For any
mobility protocol there are two separate problems to be solved. One
is location management (or sometimes called reachability), which keeps
track of the positions of a UE in the mobile network. The other one is
handover management (or sometimes called session continuity), which
makes it possible for a UE to continue its sessions while moving to
another cell and changing its access point. This thesis focuses on the
location management problems.

Tracing UEs in a mobile network is the key task in location man-
agement. Tracking Area (TA) in LTE is a logical grouping of cells in
a network. TA is almost the same concept as the Location Area (LA)

1



2 Chapter 1 Introduction

in the circuit-switched (CS) domain and the Routing Area (RA) in the
packet-switched (PS) domain in GSM and UMTS [1]. The main function
of the TA is to manage and represent the locations of UEs.

1.1 Scope of the Thesis

The thesis aims to address some TA planning and optimization problems
and concepts in LTE networks. In configuring TAs, a key consideration
is to minimize the total amount of signaling overhead. The overall sig-
naling overhead of a network consists of two terms: update overhead and
paging overhead. In the standard scheme of TA update (TAU) and pag-
ing for tracking a UE, the Mobility Management Entity (MME) records
the TA in which the UE is registered. When a UE moves to a new TA,
there will be a TAU signaling overhead. The paging signaling overhead
happens when the UE is being called. In order to place the call to the
UE, MME broadcasts a paging message in all cells of the UE’s registered
TA.

Consider a TA design that is optimized for a network in the planning
phase. As UE distribution and mobility patterns change over time, the
optimized TA configuration will no longer perform satisfactorily. There-
fore a TA reconfiguration may be required for reducing the signaling
overhead. The present thesis suggests a re-optimization approach for
revising a given TA design. The approach is justified by the fact that
once a TA design is in use, it is not feasible to deploy a green-field design
that significantly differs from the current one.

Reconfiguring TA, such as moving a cell from its original TA to
another, usually requires restarting the cell and consequently results in
service interruption. Thus, there is a trade-off between approaching
minimum signaling overhead and the cost resulted from reconfiguration.
In this study, a bi-objective optimization framework is proposed to solve
the TA reconfiguration problem.

Tracking Area List (TAL) is a scheme introduced in 3GPP Release
8 [2]. In this scheme, instead of assigning one TA to each UE, one UE
can have a list of TAs. The UE receives a TA list from a cell, and keeps
the list, until it moves to a cell that is not included in its list. In LTE
standards, a cell is also able to give different lists to different UEs. The
UE location is known in the MME to at least the accuracy of the TAL
allocated to that UE.

If the information of each individual UE’s movement and calls were
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available to the network, then designing an optimum TAL would become
trivial and it could essentially result in the elimination of signaling over-
head. However, this information is virtually impossible to obtain. The
thesis presents solution approaches and novel analysis to shed light on
TAL allocation and assignment.

In LTE, there is a possibility to change the TAL assigned to each cell
in short time intervals without any cost of service interruption. This is
the main reason to explore the dynamic framework of standard TA and
TAL configurations in LTE systems.

1.2 Contributions

The main contributions of the thesis can be summarized as follows.

1. Formulating the TA re-optimization problem as an integer pro-
gramming model. The formulation aims to optimize the trade-off
between TAU and paging overheads in a network with a budget
constraint on the amount of reconfiguration.

2. Developing a heuristic approach for solving the above trade-off
problem close to optimality, by using a repeated local search algo-
rithm.

3. Developing two solution approaches to deliver the pareto-optimal
solutions of the bi-objective optimization problem. The compu-
tational results of both solution approaches are given for several
real-life large-scale networks of various sizes.

4. Exploiting the concept of TAL in order to improve the performance
of LTE networks and presenting three algorithms to design TAL
for a large-scale network.

5. Exploring the challenges in TAL scheme and suggesting a formu-
lation to calculate the signaling overhead in TAL.

6. A performance comparison of three suggested approaches for as-
signing and allocating TALs for large-scale networks.

7. A comprehensive study of applying a dynamic TA scheme and
comparing its performances with a static scheme.
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1.3 Publications

Most parts of the material presented in this thesis have been previously
appeared in the following publications.

S. Modarres Razavi and D. Yuan, Performance Improvement
of LTE Tracking Area Design: A Re-optimization Approach,
in Proc. of the 6th ACM International Workshop on Mobility
Management and Wireless Access (MobiWac '08), pages 77-
84, 2008.

S. Modarres Razavi, D. Yuan, F. Gunnarsson and J. Moe,
Optimizing the Tradeoff between Signaling and Reconfigu-
ration: A Novel Bi-criteria Solution Approach for Revising
Tracking Area Design, in Proc. of IEEE Vehicular Technol-
ogy Conference (VTC °09-Spring), 2009.

S. Modarres Razavi, D. Yuan, F. Gunnarsson and J. Moe,
Exploiting Tracking Area List for Improving Signaling Over-
head in LTE, in Proc. of Vehicular Technology Conference
(VT'C ’10-Spring), 2010.

S. Modarres Razavi, D. Yuan, F. Gunnarsson and J. Moe,
Dynamic Tracking Area List Configuration and Performance
Evaluation in LTE, in Proc. of Global Communications Con-

ference (GLOBECOM Workshop ’10), 2010.

The bi-objective optimization study has resulted the following jour-
nal submission.

S. Modarres Razavi, D. Yuan, F. Gunnarsson and J. Moe,
Performance and Cost Trade-off in Tracking Area Recon-
figuration: A Pareto-optimization Approach, submitted for
journal publication, 2010.

1.4 Thesis Outline

The rest of the thesis is organized as follows.
In Chapter 2, first some previous works on investigating location
management schemes are reviewed. Second, the standard TA scheme is



1.4 Thesis Outline 5

explained. Third, the signaling overhead formulation used throughout
this work is presented.

Chapter 3 presents the re-optimization approach for revising the TA
design. The service interruption caused by TA reconfiguration is explic-
itly taken into account. The complexity and solution characterization
of the resulting optimization problem are investigated. In this chap-
ter, an algorithm which is able to deliver high-quality solutions in short
computing time is developed.

Chapter 4 proposes the bi-objective optimization framework to solve
the trade-off between the signaling overhead and the cost of TA recon-
figuration. To obtain the pareto-optimal solutions, two different ap-
proaches have been suggested and compared. For performance evalu-
ation, the approaches have been applied to several real-life large-scale
networks.

In Chapter 5, the reader is introduced to the concept of Tracking
Area List in LTE systems. This chapter illustrates the potential of TAL
by clarifying the limitations of the standard TA scheme. The challenge
in applying TAL to a large-scale network is explained.

A formula for calculating the signaling overhead in TAL is proposed
in Chapter 6. The chapter presents three algorithms to design TAL
with the available data at hand, and discusses the pros and cons of each
scheme.

In Chapter 7, the reader is given an approach for generating UE-
traces scenarios. Two methods are presented for calculating the overall
signaling overhead of the UE-traces scenario, which is used for comparing
the standard TA scheme and the three TAL design algorithms suggested
in Chapter 6. A thorough study of the numerical results is presented in
this chapter to compare the suggested algorithms.

After an introduction to the concept of self-organizing networks,
Chapter 8 brings a static and dynamic framework to the STA and TAL
configurations. The performance of both STA and TAL schemes are
studied according to the frameworks.

In Chapter 9, the author draws some conclusions and gives an overview
of possible extensions of the thesis work.
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Chapter 2

Tracking Area

In this chapter, some background and basic materials for tracking area
planning (TAP) are explained. Moreover the signaling overhead formu-
lation under the standard scheme, which is considered throughout the
thesis, is presented.

2.1 Basic Technical Terms

The technical definitions explained in this section are produced by 3GPP
in Release 9 [1]. The following terms are used throughout the thesis and
the author brings them here as a background to the whole study.

e Cell is an area of the radio coverage identified by a base station
identification. A hotspot cell is a cell where many users are densely
located.

¢ MME is the control plane entity which supports many functions
including tracking area list management.

e Location register is a function for storing the location informa-
tion of the users in order for the network to enable the communi-
cation.

e Location Area (LA) is defined as an area in which a user may
move freely without updating the Visitor Location Register (VLR).
The LA is related to the CS domain and is the term used in GSM.
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The CS domain refers to the set of all the core networks and the re-
lated signaling entities offering circuit switched type of connection
for user traffic.

e Routing Area (RA) is defined as an area in which a user, in
certain operation modes, may move freely without updating the
Serving GPRS Support Node (SGSN). The RA is related to the
PS domain and belongs to GPRS and UMTS networks. An RA is
always contained within an LA. The PS domain refers to the set
of all the core networks and the related signaling entities offering
packet switched type of connection for user traffic.

e Tracking Area (TA) is defined as an area in which a user may
move freely without updating the MME. TA is a term used in LTE
networks. The network allocates a list with one or more TAs to
the user. In certain operation modes, the UE may move freely in
all TAs of the list without updating the MME.

2.2 Location Management

There is an extensive amount of literature on location management in
cellular networks (see, for example [11] for an overview). All the prob-
lems related to the LA and RA planning and optimization can be gener-
alized to the study of TA. Throughout this section, the term LA is mostly
used, because it is used in the related references. There are some pro-
posed strategies for location management in the literature. In [11], [19],
and [66], most of these strategies have been reviewed and categorized.
This section tries to summarize the most studied schemes. They can
be categorized in two main sections: location area update schemes and
paging schemes.

2.2.1 Location Area Update Schemes

The Location Area Update (LAU) procedure begins with an update
message from the user over the uplink control channel followed by some
signaling which updates the database. Due to the use of network band-
width and core network communication, for the purpose of modification
of location databases, each LAU is a costly exercise.

There are several different schemes to reduce the number of update
messages from the users. Usually, the LAU schemes are partitioned into
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two categories: static and dynamic. In the static schemes, the LAUs are
triggered based on the topology of the network, while in the dynamic
ones the LAUs are based on the user’s call and mobility patterns. Static
schemes allow efficient implementation and low computational require-
ments as they are independent of user characteristics. Unlike the static
schemes, the dynamic ones usually require the online collection and pro-
cessing of data, which consume significant computing power. However,
the dynamic schemes have a higher level of signaling overhead reduction
compared to static schemes. Thus, for dynamic schemes in order for
the network to support the computation effectively, a careful design is
necessary [11].

Examples of Static Update Schemes

e Always-update: In this scheme, the user updates its location when-
ever it moves into a new cell. The network has a complete knowl-
edge of the user’s location and no paging is required. This scheme
performs well for users with low mobility rates and high call ar-
rival rates. However, this scheme is practically never used, due to
excessive LAUs.

e Never-update: In this scheme, the user never updates its location,
which means that the location update overhead is zero. However it
leads to excessive paging for large-scale networks and also networks
with high call arrival rates. This scheme is practically never used
either.

e Reporting cells: In this scheme, the user updates its location only
when visiting one of the predefined reporting cells. For paging a
user, a search must be conducted around the vicinity of the last
reporting cell from which the user has updated its location [13].
Without considering the movements of users, it is not possible to
assign an optimum arrangement for the reporting cells.

e Forming LA: In this scheme, the user updates its location when-
ever it changes an LA. The paging of a user will occur inside the
LA in which the user is located. This scheme is referred to as
the standard update scheme, and it is the assumed scheme in the
thesis.
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Examples of Dynamic Update Schemes

Selective LA wupdate: In this scheme, the LAU is not performed
every time the user crosses an LA border. The LAU process at
certain LAs can be skipped, as the user might spend a very short
period of time in those LAs [57].

Time-based: In this scheme, the user updates its location at con-
stant time intervals. In order to minimize the number of update
messages, the time interval can be optimized per user [48].

Profile-based: In this scheme, the network maintains a profile for
each user. The profile has a sequential list of the most likely LAs
that the user is located at different time periods. The LAs on the
list are being paged sequentially from the most to the least likely
LA where a user can be found. The profile of each user should be
updated from time to time [53,60].

Movement-based: In this scheme, the user updates its location
after a given number of boundary crossings to other cells in the
network. The boundary-crossing threshold can be optimized per-
user based on its individual movement and call arrival pattern [10].

Distance-based: In this scheme, the user updates its location when
it has moved away a certain distance from the cell where it has last
updated its location. The distance threshold can be optimized per
user based on its individual movement and call arrival pattern [67].

Predictive distance-based: In this scheme, the network determines
the probability density function of the user’s location based on
location and speed reports. The user performs LAU whenever
its distance exceeds the threshold measured from the predicted
location [35].

2.2.2 Paging Schemes

By paging, the network determines the exact location at cell level of a
specific user. Each step in the attempt of determining the location of a
user is referred to as a polling cycle. During each polling cycle, polling
signals are sent over the downlink control channel to all cells where a
user is likely to be present. All the users listen to the paging message
and only the called user sends a response message back over the uplink
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control channel. During the paging process, radio bandwidth is used.
Therefore, the paging overhead is proportional to the number of polling
cycles, as well as the number of cells being polled in each cycle. In each
polling cycle there is a timeout period, and if the user is not found in
that time frame, another group of cells will be chosen in the next polling
cycle. The maximum paging delay depends on the maximum number of
polling cycles allowed for finding the user. Because the goal is to reduce
the paging overhead, all paging schemes are based on a prediction of
where the user can be located.

Examples of Paging Schemes

e Blanket polling (simultaneous paging): In this scheme, all cells in
the user’s LA are paged simultaneously. This scheme requires no
extra knowledge of user location, and it is the most practical and
used scheme in current networks. It is also called the standard
paging scheme in the thesis.

o Shortest-distance-first: In this scheme, the network pages the user
by starting from the last cell where the user has updated its lo-
cation and moving outward based on the shortest-distance-first
order.

o Sequential paging: In this scheme, the user is paged sequentially
in sub-groups of cells in the LA. The sub-groups are ordered in
their estimated probabilities of having the user located in them.

e Velocity paging: In this scheme, the users are classified based on
their velocities at the moments of location updates. In this case,
the paging area is dynamically generated based on the user’s last
LAU time and velocity class index [63].

Beside the above examples, various sequential paging schemes have
been proposed in [10, 37,39, 53, 55, 64]. Although selective LAU and
paging schemes discussed here and in the previous section reduce the
signaling overhead, their use requires modification of system implemen-
tation and collection of additional user information. Hence, the standard
scheme remains widely used.
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+ Small TA: More TAU, less paging
« Large TA: Less TAU, more paging

Figure 2.1 An illustration of the TAU and paging trade-off.

2.3 TA Design Optimization

Under the standard scheme of TAU and paging, the main design task is
the formation of TAs, with the objective of minimizing the total amount
of signaling overhead. Having TAs of very small size (e.g., one cell per
TA) virtually eliminates paging, but causes excessive TAU, whereas TAs
of too large size give the opposite effect. Thus, the natural objective in
TAP is to reach an optimal balance between TAU and paging signal-
ing. Figure 2.1 illustrates the basic trade-off in TAP. Tcha et al. [62]
applied mathematical programming to this problem. They presented
an integer programming model and a cutting plane algorithm, and re-
ported optimality of a GSM network of 38 cells. Because the problem is
N P-hard, solutions to large networks are typically obtained by heuristic
algorithms, such as insertion and exchange local search [52], simulated
annealing [21], and genetic algorithms [29]. A heuristic based on the
notion of matrix decomposition is presented in [12].

In [56], a host of heuristic algorithms for LA design are evaluated in
terms of optimality and computational effort. In addition to LA design,
the authors of [56] address cell-to-switch assignment for load balancing.
Joint LA design and cell-to-switch assignment, under the assumption
of hexagon-shaped cells, is solved by a greedy algorithm in [15]. A
simulated annealing algorithm for a similar problem is presented in [22].

Multi-layer LA design, where each LA may contain several paging
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areas, is solved by simulated annealing in [50]. The authors of [34] pro-
vide an integer programming model for this problem, and a solution
approach based on a graph-partitioning heuristic. In [65], the author
makes use of the simulation tools developed by the EU MOMENTUM
project [46], originally intended for cell planning, to predict LAU and
paging requests. An integer programming model is used for jointly de-
signing LAs, RAs, and UTRAN registration areas (URAs) in [65].

The thesis follows the standard TAU and paging scheme for loca-
tion management. This means that movement of a UE crossing the TA
boundary leads to a TAU message, and paging is performed simultane-
ously in all cells of the TA to which the UE is currently registered.

2.4 User Equipment States in Mobility Man-
agement

Any device used directly by an end-user to communicate through the
network is called User Equipment (UE) in LTE. Almost the same concept
was previously called Mobile Station (MS) or Mobile Terminal (MT)
in previous generations of cellular networks. UE can be a hand-held
telephone, a laptop computer or any other device equipped with mobile-
broadband adaptor. From a mobility perspective, the UE can be in one
of these three states.

e LTE-Active: The network knows the cell which the UE belongs
to, and UE can transmit and receive data from the network. No
TAU /paging is necessary for active UEs.

o LTE-Idle: The network knows the location of the UE at the gran-
ularity of a few cells (forming a TA). In the idle mode, the UE is
in power-conservation mode and does not inform the network of
each cell change.

e LTE-Detached: In this mode either the UE is powered off or it is in
the transitory state in which the UE is in the process of searching
and registering to the network.

Frequently, the UE will be in the LTE-Idle state, and the MME
knows the TA in which the UE is last registered. Usually, the only
available realistic data from a cellular network are the cell load and cell
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UE Traces Range UE Traces Range

Figure 2.2 Merge and split of TAs.

handovers. Cell load and handover belong to active UEs. Cell load and
handover statistics can be a good estimation of UE’s location and move-
ment, assuming that idle UEs are having the same mobility behavior as
the active ones. Other approaches for estimating the behavior of idle
UEs include network simulation [65] and examining traffic density on
roads across neighboring cells [16]. Although the technical terms cell
load and handover are generally representing the active UEs, in the the-
sis they are considered to represent the distribution and mobility of idle
UEs.

A UE trace is defined as the cell-to-cell movement behavior and the
call arrival pattern of a UE in a specific time period. Having information
related to the UE traces would significantly help in reducing the signaling
overhead and optimizing the TA configuration [69]. From the below
example it can be concluded that even a rough estimation of the UE
traces can be useful in planning and optimizing TAs.

e Example: In Figure 2.2 the range of UE traces movement is known
for the specified area. In the left figure, the UE-traces range sug-
gests that TA1 and TA2 should merge. In the right figure the
separation of UE traces indicates that by splitting the TA into
two smaller TA, the signaling overhead is reduced.
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2.5 Basic Notations and Signaling Overhead Cal-
culation

The set of cells in a network is denoted by N/ = {1,..., N}, and the
set of TAs currently in use is denoted by 7 = {1,...,T}. The vector
t = [t1,...,tn] is used as a general notation of cell-to-TA assignment,
where ¢; is the TA of cell . TA design t can be alternatively represented
by an N x N symmetric and binary matrix S(t); in which element s;;(t)
represents whether or not two cells are in the same TA, i.e.,

0 otherwise.

sis(6) _{ L it =1, (2.1)

Let u; be the total number of UEs in cell ¢ scaled by the time pro-
portion that each UE spends in cell 7. For the same time period, h;; is
the number of UEs moving from cell ¢ to cell j. The values of u; and
hi; can be assessed by cell load and handover statistics of active UEs.
The amount of overhead of one paging and one update are denoted by
P and c", respectively. The exact relationship between ¢ and P de-
pends on the radio resource consumption. Moreover, parameter « is the
call intensity factor/activity factor (i.e., probability that a UE has to be
paged). The total update and paging signaling overhead is defined by
cso(t) and is calculated by Equation (2.2):

cso(t) =D Y (hig(1 — s5(t)) + acPuisi;(t)) (2.2)
1EN JEN j#i
Within the outer parentheses of (2.2), the first term accounts for the
TAU overhead for UEs moving from i to j (if the two cells are not in the
same TA). The second term is the paging overhead introduced in cell j
while paging UEs in cell i (if the two cells are in the same TA).
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Chapter 3
TA Re-optimization

The optimized TA configuration in the planning phase will not perform
satisfyingly after some time period, due to changes in UE distribution
and mobility patterns. For re-optimizing the configuration over time,
it is not practically feasible to deploy a green-field design, as it might
significantly differ from the original configuration. By re-optimization,
the design is successively improved by re-assigning some cells to TAs
other than their current ones.

There are two reasons for applying a re-optimization approach. First,
reconfiguring TAs, such as moving a cell from one TA to another, typ-
ically requires temporarily tearing down the cell and thus service inter-
ruption — a very costly process from the service standpoint. Second, the
benefit of a new, optimized TA design gradually diminishes over time
as UE location and mobility patterns change. Thus, one has to weigh
the performance improvement of some limited time duration against the
cost in terms of service interruption due to reconfiguration. The service
interruption aspect is accounted by bounding the amount of UEs that
are affected by TA reconfiguration. Here, this bound is referred as the
budget.

In this chapter, a re-optimization approach for revising TA design
is presented. The service interruption caused by TA reconfiguration is
explicitly taken into account. The complexity and solution characteriza-
tion of the resulting optimization problem are investigated. Finally, an
algorithm which is able to deliver high-quality solutions in short com-
puting time is developed. The study in this chapter has been previously
published in [41].

17
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3.1 Problem Definition

The most basic and convenient reconfiguration option is used as the
building element of re-optimization: to move a cell from its current TA
to a new one. That is, the output of the re-optimization process consists
of a subset of cells that have changed TAs, and the new TA of each of
these cells. Before discussing the details, it is worth remarking that the
resulting gain of re-optimization, in terms of reduced total paging and
TAU overhead, is a joint effect of the re-assignments, i.e., whether or not
a cell should change TA, and to which TA the cell should move, depend
on the decisions made for other cells.

For TA re-optimization, the TA design currently deployed in the
network is given. This solution is denoted by t°. If the result of re-
optimization is t*, then reconfiguration means to move all cells 4 from ¢!
to t} for which t9 # t;. The reduction of the number of TAs is allowed, it
means that if a TA becomes empty after cell moves, it is simply deleted.
To simplify the presentation, increasing the total number of TAs is not
considered, although the solution algorithm can be easily extended to
include this option.

For every cell, a parameter is defined to represent the cost in service
interruption, if the TA of the cell is changed. For convenience and
without loss of generality, the UE distribution parameter u; is used to
measure the amount of service interruption of cell i. Let d(t,t%) be a
binary vector representing cells that have been assigned new TAs, that
is, d;(t,t") = 1 if and only if t? # ¢;, i € N. Denoting the budget value
by B, the following budget constraint is introduced.

> uidi(t,t°) < B (3.1)

ieN
The TA re-optimization (TAR) problem is formalized below.

[TAR|] Find a TA design t that satisfies the budget constraint (3.1) and
minimizes the total overhead cost cgo(t) as defined in Section 2.2.

Remark 1. A closely related problem, considered in most of the refer-
ences in Chapter 2, is to make a TA design completely from scratch.
Here, this green-field-design problem is referred as tracking area opti-
mization (TAO). The optimum to TAO is a lower bound to the best
achievable performance of TAR. This value will be used as a reference
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in performance evaluation.

3.2 Complexity and Solution Characterization

TAR turns into TAO if the budget constraint is removed. TAO is known
to be N P-hard [62]. Bejerano et al. [14] showed that TAO remains NP-
hard even over a star (i.e., one cell is the only and common neighbor to
all other cells).

The above facts do not prove that TAR is NP-hard. Its complexity
result, assuming (3.1) is non-redundant, is formalized in the following
proposition.

PROPOSITION 1. TAR remains NP-hard when the budget con-
straint (3.1) is non-redundant.

Sketch of a PROOF. Observing that (3.1) is a knapsack constraint, it
can be shown that any instance of the binary knapsack problem can be
transformed to an instance of TAR. In the transformation, every item in
the knapsack problem corresponds to moving a cell from its current TA
to a new one, with the handover values set such that the cell move leads
to an improvement in the total overhead cost. The improvement is equal
to the objective function coefficient of the knapsack instance. Moreover,
no additional improvement is possible other than these moves. Finally,
each of these moves is independent from the others, i.e., the improve-
ment of a move is not affected by any of the other moves. Then the two
instances become equivalent. [

The following proposition provides a solution characterization.

PROPOSITION 2. If there is no budget limit and any number of
TAs is allowed, then a solution is non-optimal if it contains some TA,
of which the cells can be partitioned into two (or more) subsets N7 and
Na, such that there is no handover between the subsets, i.e., h;; = 0 for

all i € Mp andjENQ.

PROOF. Suppose the cells in A7 form a new TA. The TAU overhead
does not increase, because any update due to UE mobility from any cell
in N7 to another TA is present before the new TA is formed, and there
are no UE movements between cells in N7 and A5. The paging overhead
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‘ TA2 7 TA2

(a) Moving any single cell leads to (b) Improvement by moving two cells
higher overhead

Figure 3.1 An example of the dependency between cell moves.

goes down due to TA split. Hence the conclusion. [

What is stated in Proposition 2 is in fact very intuitive from a net-
work planning point of view: Assuming that the amount of handover
hij > 0 if and only if cell ¢ and j are geographically adjacent, then in an
optimal design of TAO, every TA consists of geographically connected
cells. For TAR, the result does not always hold in theory because of the
budget constraint and the limit of using at most T" TAs. Nevertheless,
it tends to be satisfied for practically relevant planning scenarios. This
greatly reduces the computational effort in the repeated local search
algorithm (see Section 3.3).

Although the complexity result of TAR makes use of the knapsack
problem, the former is considerably harder in practice, simply because
the changes in the total signaling overhead due to cell moves are depen-
dent on each other.

e Example: Figure 3.1 illustrates the dependency using a simple
example of two TAs and seven cells. The boundary between the
TAs is shown by the thick lines. All cells have u UEs, and the
amount of handover in both directions together is A for all pairs
of adjacent cells. For simplicity, let ¢* = ¢ = 1, and o = 0.1.
The total signaling overhead of the current TA design is 2h + 3u
(Figure 3.1(a)). Assume h is between 0.4u and 0.6u. It can be
verified that moving any single cell from its TA to the other TA
(including moving cell 1 and making TA 1 empty) results in higher
total overhead. However, there is an improvement if both cells 2
and 4 are moved to TA 1 (Figure 3.1(b)).
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The above example illustrates the phenomenon of local optima. Prob-
lem TAR is further complicated by the budget constraint, because a
collection of cell moves may not be feasible. The solution algorithm
presented in Section 3.3 considers these aspects by allowing for some
non-improving moves, but limiting the amount of budget they may con-
sume.

3.3 A Solution Approach Based on Repeated
Local Search

Solving TAR to optimality may require excessive computational effort
in view of its complexity. In this chapter, a simple but effective heuristic
algorithm is developed using repeated local search to find high-quality
solutions rapidly.

3.3.1 Local Search

The local search algorithm iteratively updates the TA design. In every
iteration, the algorithm considers cells that may be moved in respect of
the remaining budget, and among these cells selects the cell move that
results in the largest improvement. This is repeated until no additional
move of any cell is allowed because of the budget limitation or no further
improvement can be obtained.

In its first run, the initial solution is t°, and the local search behaves
like a greedy algorithm that successively builds up a solution of TAR. In
subsequent runs, solution initialization follows the procedure in Section
3.3.2. The local search algorithm is formalized in Figure 1, in which the
solution given to and returned by the algorithm is denoted by t.
Remark 2. Because t¢ is not necessarily equal to t° when the algorithm
starts, some cells may have been moved from their original TAs in the
initial solution tf. Therefore, in Step 4, which constructs the set of
cells to be considered for move, the budget constraint (3.1) is checked
only if a cell is still in its original TA, as otherwise the corresponding
contribution to the left-hand side of (3.1) is already accounted in b.
For the same reason, in Step 19, b’ decreases (i.e., some of the budget
becomes released) if a cell is moved back to its original TA.

Remark 3. In Step 6, the set 7’ contains candidate TAs to which cell ¢
may be moved. Motivated by Proposition 2, TAs that at present do not
have any cell with positive handover value to cell i are excluded. As a
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Algorithm 1 Local_Search
1 b= Zi:t‘?;&to Us

2: repeat

3 =00 =—;t"=—;

0 N ={ieN:ti#t ort! =) and b° +u; < B}
5. foralliec N do

6: T'={meT:3jeN,ti=mand hy; >0} \ {t{}
7: for all m € 7’ do

8: t' =t th = m;

9: if cso (te) —c¢so(t') > 6* then

10: 5 = cso(th) — cso(t'); i* =iy m* = m;
11: end if

12: end for

13:  end for
14:  if 6* > 0 then

15: if tf. = t). then
16: bt = b+ uye;

17: else

18: if m* = t). then
19: bl = bt — e
20: end if

21: end if

22: tho =m*;

23:  end if

24: until 0* =0
25: return tg;
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result, the size of 7’ is much smaller than T — 1, leading to a significant
speed-up of the algorithm. In theory, excluding TAs in this way may
overlook some possible improvements, whereas in practice there is no
noticeable performance degradation.

3.3.2 Repeated Local Search

Additional improvements can be obtained by applying the local search
algorithm repeatedly using different starting solutions. However, to be
effective, the initial solutions should satisfy two conditions. First, there
must be some slack budget to allow for moving cells from their original
TAs. Second, the initial solution should not be a completely random-
ized one (with a very high total signaling overhead), otherwise no good
solution can be found before the entire budget is consumed. Moreover,
from the structure of TAR, it is expected that good solutions will have
some cell moves in common.

Based on the above observations, an initial solution is constructed as
follows. Let t* be the best solution so far. Cells are partitioned into two
subsets N and N'!, containing cells that remain in the same TA as in
the original design t°, and cells that have been assigned to new TAs by
t*, respectively. A two-step perturbation to t* is applied. Two budget
parameters, B! and B°, with B! < B? < B, are used. In the first step of
perturbation, some randomly chosen cells in N are moved back to their
original TAs in t°, such that the consumed budget becomes less than or
equal to B!, that is, the amount of slack is at least B — B'. Next, some
cells in A0, again chosen randomly, are moved from their TAs to new
ones, until the consumed budget reaches B?. Moving a cell i € N to a
new TA is performed in a greedy manner. That is, the cell is moved to
the TA giving the largest improvement, if such TA exists, otherwise the
cell is moved to the TA such that the increase in overhead is minimal.
This second step of perturbation is aimed at exploring improvements
that come from joint effect of multiple cells (see Section 3.2), although
none of these moves alone results in improvement.

Figure 2 formalizes the repeated local search algorithm. In the first
step, local search is applied to the original TA design t°. Then pertur-
bation combined with local search are performed K times.
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Algorithm 2 Repeated_Local_Search

1: t = Local_Search(t°);
2 t* =t% ¢y = cso(t¥)
3: fork=1: K do

4 th =1t

5o b= Zi:tf;ﬁt? Ui

6: NO={ieN ti=t0h Nt ={ieN tf+#t0}
7. while v’ > B! and N # () do

8: Select randomly a cell i € N';

o: t =19

10: b = bt — Uy s

11: Nt =N {i};
12:  end while
13:  while b < B® and N # ) do

14: Select randomly a cell i € NO with b* + u; < B:;
15: T’:{mET:EIjEN,tgzmandhij>0}\{tf};
16: m* = argmin,,crc([th, ..., t5 1, m, tf+1, D
17: tf = m*;

18: bt =t + uy;

19: NO = NN\ {i};

20:  end while

21:  t = Local_Search(t);
22 if cso(t) < &, then

23: cso = cso(t); t* =t;
24: end if
25: end for

26: return t*;
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3.4 Numerical Results

Here the results of performance evaluation using realistic data repre-
senting a cellular network for the downtown area of Lisbon, provided by
the EU MOMENTUM project [46] is presented. The network consists
of 60 sites and 164 cells. A reference scenario of UE distribution and
mobility is defined by accumulating the cell load and handover statis-
tics in the data set. Figure 3.2 illustrates the network and the reference
scenario. The sites are represented by disks. For every site, its cells are
illustrated by squares. The location of a square in relation to its site
center shows the direction of cell antenna. The darkness of each cell is
set in proportion to accumulated cell load. A link is drawn between two
cells if there is any handover between them, and the amount of handover
is proportional to the thickness of the link.

Two additional scenarios (I and II) are generated by modifying the
cell load and handover statistics. Scenario II has larger deviation from
the reference one than scenario I. Provided that the location and mobility
patterns have evolved from the reference scenario into each of the two
scenarios, the TA re-optimization is conducted. Figure 3.3 illustrates
scenario I in the same format as for the reference scenario. In all three
scenarios, 5% of the UEs are paged in every cell (i.e., « = 0.05). The
overhead of a single update c* is set twice as much as cP.

The reference scenario in Figure 3.2 represents UE location and mo-
bility patterns to which t° is optimal. For this optimization, the model
in [62] and software CPLEX [31] are used. Computing the solution is
time-consuming. In practicing TAR, t° is the design currently in use
and hence this computation is not needed. The resulting TA design t°
is shown in Figure 3.4. There are 44 TAs in the design. In the figure,
two cells are connected by an edge if and only if they are in the same TA.
Thus, TAs are represented by fully connected subsets of cells. One can
observe that, if two cells have a large amount of handover (see Figure
3.2), then they are in the same TA in Figure 3.4.

In addition to t°, the optimal green-field TA designs for scenarios I
and II are also computed and denoted by t*(I) and t*(II), respectively.
The two solutions are attainable only if it is allowed to re-optimize TAs
disregarding the budget constraint. Similar to computing t°, finding
these two solutions is hardly feasible for large-scale networks. For the
Lisbon network, they can be obtained, although the computing time is
long. In order to assess the effectiveness of the algorithm, t*(I) and
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Figure 3.2 An illustration of the reference scenario.

t*(II) are used as bounds on the best achievable performance of TAR.

In the repeated local search algorithm, B! = 0.858, B® = 0.958, and
K =100 are set. The computing time is about 30 seconds on a notebook.
The processor is of type Intel Core 2 Duo and the clock speed is 2.0 GHz.
For each of the scenarios I and II, two budget levels of B, corresponding
to 5% and 15% of the total cell load, ie., B = B'- 3, u; where
B’ = 5% and 15%, are used. For performance evaluation, the algorithm
without budget limitation (B" = 100%) is also run and compared to
t*(I) and t*(II).

The computational results are summarized in Table 3.1. For the two
scenarios, the total overhead values of the initial TA design are shown
in row t°. These values represent the TA performance when the initial
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Figure 3.3 An illustration of scenario I.

TA design t° is kept for the two scenarios. The results of how much
re-optimization improves TA performance for the two budget levels are
also reported (B’ = 5% and B’ = 15%). The last row displays the
optimal solutions with unlimited budget and number of TAs.

From the table, it can be observed that the original TA design t°,
optimized for the reference scenario, is about 20% and 36% away from
optimum for scenarios I and II, respectively. By running local search
once, it is possible to improve t° considerably. An additional amount
of improvement is obtained by repeated local search. The improvement
grows when B’ increases from 5% to 15%; the difference is larger for
scenario II because its UE distribution and mobility patterns deviate
more from the reference scenario. Moreover, for both scenarios, there
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Figure 3.4 TA design t° (optimum of the reference scenario).

Table 3.1 Results of TA re-optimization.

(LS = Local search; RLS = Repeated local search.)

Scenario | Scenario 11
t0 202.68 386.62
LS RLS LS RLS

B'=5% 26152 257.13  386.62  380.03
B'=15% 25756 250.25  376.42  354.96
B'=100% 257.56 245.70  376.42  336.96

t*(1)=243.05 t*(I1)=333.73

is no difference in the solutions of local search for B’ = 15% and B’ =
100%. In other words, local search is not able to improve its solution
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Figure 3.5 Re-optimized TA design for scenario I, B’ = 5%.

further even if more budget is made available, because the algorithm
already reaches a local optimum for B’ = 15%. The results of repeated
local search show its strength of overcoming this issue. The effectiveness
of repeated local search is further demonstrated by the solutions for
B’ = 100%. In this case the algorithm’s performance is very close to
the best achievable — the deviation to optimum is less than 1% for both
scenarios.

Figure 3.5 illustrates the re-optimized TA design for scenario I and
B’ = 5%. In total, 21 cells have changed TAs. These cells are marked in
color (red) in the figure. Comparing the solution to t°, one can see that
re-optimization adapts TA design from the reference scenario (Figure
3.2) to scenario I (Figure 3.3). For example, the cell pointed out by the
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horizontal arrow in Figure 3.5 changed TA, most likely because of the
growth in its UE mobility to another cell. At one site, indicated by the
vertical arrow, the three cells that were in the same TA have been split
into different TAs as a result of fewer numbers of UEs in these cells.

3.5 Conclusions

A re-optimization approach is presented to adapt a given TA design to
changes and trends of UE location and mobility patterns. As a novelty
of the approach, the cost of reconfiguring TAs is accounted by means of
a budget constraint. This is justified by the fact that once a TA design
is in use, adopting a new solution of green-field optimization is typically
not feasible or does not pay off in real networks. The complexity of the
problem is investigated, and a fast algorithm based on repeated local
search is developed. The case study on a realistic network shows that
the algorithm is able to approach high-quality solutions.



Chapter 4

Performance and Cost
Trade-off in TA
Reconfiguration

According to the discussion in the previous chapter, reconfiguring TA
usually requires to restart the cells which are changing TAs, and con-
sequently results in service interruption. In this chapter, a bi-objective
optimization framework is proposed to solve the trade-off between ap-
proaching minimum signaling overhead and the cost resulted from the
reconfiguration.

Unlike mono-objective optimization problems which have unique op-
timal values, in bi-objective problems the solution set is formed by
pareto-optimal (non-dominated) points. An integer programming model
is developed to optimize the overhead by reconfiguration given a specific
cost budget constraint. Applying the proposed model to various bud-
get levels leads to a set of pareto-optimal solutions. Depending on the
number of pareto-optimal solutions, the integer model may have to be
run many times. Solving the integer programming model is very time-
consuming and sometimes infeasible for large networks.

To deal with large-scale networks, a genetic algorithm (GA) em-
bedded with local search (LS) is proposed. The algorithm searches for
pareto-optimal solutions in one single run. In the GA approach, the
concept of dominance in the fitness evaluation is used contrary to the
approaches that use a scalarization function or treat the various ob-
jectives separately. In the GA algorithm, the amount of dominance

31
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explicitly evaluates each solution in terms of pareto-optimality.

The performance of the proposed integer model and GA algorithm
is demonstrated via experiments using three large-scale realistic/real-
life network scenarios. For the first two scenarios, it was possible to
compare the results from the GA algorithm with the ones computed
from the integer model. The last network was only solved by the GA
algorithm since it was too large and not feasible to be solved with the
integer programming model. The results demonstrate the ability of the
approaches to deliver various pareto-optimal solutions, and thus giving
the operator the opportunity of selecting a proper trade-off between the
two objectives. The research presented in this chapter has appeared
in [42,45].

4.1 System Model

Generation of pareto-optimal or non-dominated solutions is the primal
goal in solving bi-objective problems. A solution is called pareto-optimal
if it is not possible to improve a given objective without deteriorating
at least another objective [61]. Clearly it does not make sense to choose
a solution that is not pareto-optimal. A large amount of references for
multi-objective optimization are available in the literature [58,59,61].

The system model considered in this chapter is an extension of the
definitions described in Sections 2.5 and 3.1, with some modifications de-
scribed below. The signaling overhead follows (2.2), and for convenience
it is re-stated below.

cso(t) =D Y ("hig(1 = si5(t)) + acPuisi;(t)) (4.1)

i€EN jEN j#i

The cost of reconfiguration is denoted by cg(t), and it is computed
by (4.2), where t° is the TA design currently deployed in the network.
Equation (4.2) follows the cost definition in the previous chapter.

en(6) = 3 widi(t,19) (42)
ieN
The aim is to observe the trade-off between cgo(t) and cgr(t) of the

design t; thus, the problem is modeled with the following bi-objective
formulation.
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min(cso(t), cr(t)) (4.3)

subject to:
(1 it =ty
sij(t) = {0 otherwise. (4.4)
1 if 10 #£ ¢,
. 0 _ i 19
di(t,t) = { 0 otherwise. (4.5)

4.2 An Integer Programming Model

To solve the bi-objective problem formulated in (4.3)-(4.5), one approach
is to minimize cgo(t) defined in (4.1) for various reconfiguration cost
budgets. In other words, the TA re-optimization problem is solved re-
peatedly for different limits on cr(t). By denoting the budget value
by B, the budget corresponds to the constraint cg(t) < B in a binary
integer programming model. The model has two sets of binary variables:

e 5;; is 1 when ¢ and j are in the same TA and 0 otherwise.

e p;; is 1 when cell i belongs to TA ¢ and 0 otherwise.

min Z Z (Cuhij(l — Sij) + ochuisij) (46)
1€EN JEN j#i
subject to:

S = LVieN (4.7)

teT
pit+pip—1 < s Vi, jeNteT (4.8)
Sij+pit_1 < pjt,Vi,jGN,tGT (49)
Sij + Sjk — Sik < 1,Vi,j,k€N,i7éj7ék (410)
S uill—p) < B (111)

ieN
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In the presented model, constraint (4.7) assures that each cell is
assigned to only one TA. Constraints (4.8) and (4.9) define the matrix
S(t) and the correlation between s;; and p;;. When p; = pj = 1, it
means that ¢ and j are in the same TA ¢, and hence s;; = 1 as imposed
by constraint (4.8). If py = 1 and pj; = 0, then i belongs to TA ¢
while j does not, and therefore s;; = 0 (constraint (4.9)). Constraint
(4.10) ensures that if two cells ¢ and k belong to the same TA as cell j,
they must also be in the same TA. That is, if s;; = s;; = 1, constraint
(4.10) becomes s;; > 1, forcing s;; = 1. Constraint (4.11) bounds the
number of UEs affected by reconfiguration using the budget level. From
the definition of the variable p;, it is clear that pio is one when cell i
belongs to the current TA t? and zero otherwise.

For B = 0, the current t° = [t9,¢3...¢)...¢%] is the only feasible
solution. The signaling overhead of this configuration is likely not opti-
mum, but on the other hand the corresponding cost is zero. This point
is among the pareto-optimal solutions, as one cannot find any solution
with better reconfiguration cost. The other pareto-optimal solutions can
be calculated by giving other values of B.

4.3 Dominance-based Approach

The solution space of the problem, depending on the scale of the net-
work, can be very large as it is a combinatorial bi-objective problem. To
achieve high quality solutions, two aspects should be considered. One is
the convergence to the pareto optimal front, and the other aspect is hav-
ing diversity in the search procedure. In view of this and the complexity
results in Section 3.2, it is motivated to apply meta-heuristics to deal
with this problem for large-scale networks and to deliver the pareto-
optimal solutions in a single run. Multi-objective meta-heuristics can
be classified into four main categories based on their solution evaluation
strategies.

e Scalar approaches transform the problem into a mono-objective
problem. A typical example is the weighted sum method, which
combines the objective functions by non-negative weights and con-
verts them into one objective function [32]. Another example
would be the goal programming method that uses a target value
for each objective function, and the overall goal is to minimize the
deviation from the target values [18].



4.4 Genetic Algorithm 35

o (riterion-based approaches which treat the various incommensu-
rable objectives separately, such as the parallel approach [51] and
the lexicographic approach [25]. In the latter, to evaluate a solution
against another, the two objective function vectors are compared
lexicographically.

e Indicator-based approaches which use performance quality indica-
tors as a search guide [68].

e Dominance-based approaches use the concept of dominance in so-
lution evaluation [9].

Among the approaches above, weighted sum is a frequently used
method for solving multi-objective optimization [32]. This approach
is however not used for the problem here for three reasons: First our
problem is a combinatorial bi-objective problem, as the configuration so-
lutions are described by discrete variables. Thus, the number of pareto-
optimal solutions can be exponential in the problem size [23]. Second,
there may exist pareto-optimal solutions which cannot be resulted from
any weighted sum of the objective functions. Third, to obtain a diverse
set of pareto-optimal solutions by the weighted sum approach, multiple
runs of different weight combinations are required. In general, setting
the weights is a difficult task.

A dominance-based approach is used to evaluate the solutions, by
defining a parameter called Preference Value (PV) for each solution t.
PV(t) is the number of other solutions which are dominating solution t.
This means that a solution with PV = 0 is among the pareto-optimal
ones.

e Example: Figure 4.1 shows the PV values for a set of solutions.
Consider the signaling overhead cost cgo(t) and the reconfigura-
tion cost cr(t) as the two objective functions of the problem. In
this figure, there is a point that is dominated by two other solu-
tions, therefore for this point PV = 2. The points with PV = 0
are the pareto-optimal solutions.

4.4 Genetic Algorithm

Genetic Algorithm (GA) [28] embedded with Local Search (LS) [8] is
used. The two reasons for choosing a GA approach are:
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Figure 4.1 An illustration of the PV definition.
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Figure 4.2 Solution vector representation.

1. The encoding of solutions is simple by means of integer-valued
vectors.

2. The desired pareto-optimal solutions form a population of solu-
tions. Thus, a population-based meta-heuristic approach is a rea-
sonable algorithm candidate.

For solution encoding, a fixed length vector of size N is used. The
elements in the vector represent the TA numbers which the cells belong
to. Figure 4.2 illustrates the solution vector representation.

Figure 4.3 summarizes the principle design of the solution algorithm.
In this figure, POPSIZE is the population size considered in GA. The
sizes of the outputs from the crossover and mutation operators are also
equal to POPSIZE. The initial pool is a set of high-quality solutions,
which are considered in the initial phase of the algorithm. Iteration
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Figure 4.3 Principle design in finding pareto-optimal configurations.

Limit is used in the termination criterion for the algorithm. The PV
threshold, which is used to identify the eligible solutions to be selected
for the next population, is denoted by PV-MAX. Note that after some
iterations, the PV of a pareto-optimal solution might change and not
remain zero. In this case, the solution is taken out of the pareto optimal
set. The output of the algorithm is the solutions with PV = 0. More
explanation of each step will be given in the coming sections.

4.4.1 Population Initialization

Generating the first population of a GA plays an important role in ap-
proaching good solutions rapidly. The population must be rich enough
to enable high-quality solutions. In order to set the first population, an
initial pool is generated.

The current TA configuration t°, which is among the pareto-optimal
solutions, is a natural starting point. To create diversity in the initial
pool, the local search algorithm discussed in Section 3.3.1 is applied.
Starting from t°, the local search algorithm iteratively updates the TA
design. In every iteration, the algorithm considers cells that may be
moved, and among these cells selects the cell move that results in the
largest improvement in signaling overhead (cf. the local search algorithm
in Chapter 3). This is repeated, without accounting for the reconfigu-
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Reconfiguration Cost

Signaling Overhead

Figure 4.4 Applying local search to create the initial pool.

ration cost, until no further improvement can be obtained. In Section
3.3.1 the goal was to find the optimum reconfiguration with a budget
limit, while here the goal is to keep all configurations encountered on the
way to the lowest found signaling overhead. The initial pool consists of
all the configuration points visited by the local search algorithm. Figure
4.4 illustrates the local search procedure in obtaining the configuration
points. The dashed arrows represent the possible moves from t” to t"+1,
where n is the iteration counter. The solid arrows show the moves with
largest improvement in the signaling overhead.

From Figure 4.4, it is observable that, while the local search starts
from tY and searches for configuration points with lower signaling over-
head, the reconfiguration cost of those points are successively higher.
The reason is that more cells change configuration compared to the ini-
tial design t°.

All points in the initial pool will be inside the first population. For
generating the rest of the population, the GA algorithm randomly picks
a configuration from the initial pool and perturbs the TA configuration
of 20% of the cells. This is repeated until the population size reaches
POPSIZE. To avoid poor configurations, during the perturbation, a cell
can change TA, only if it is geographically located on the boundary of
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Figure 4.5 The 2-point crossover method in GA.

its TA. This is the case if the cell has at least one neighboring cell with
positive handover and the neighboring cell is currently assigned to a
different TA. In addition, the new TA is picked among the TAs of the
neighboring cells.

4.4.2 Crossover

The role of the crossover operator is to inherit some characteristics of
the two parents to generate the offsprings [61]. The PV values of the
entire population are calculated. In the crossover operator, two parents
are chosen randomly with the preference of having lower PV values.
The elements are swapped between the randomly chosen two points to
make two offsprings. Figure 4.5 explains the 2-point crossover method
applied in this study. It is apparent from the figure that the cells in
each offspring follow one of the parents’ TA assignments, and therefore
the output offsprings from the crossover operator are valid TA design
solutions.

In the GA algorithm, the crossover operation is repeated until the
number of offsprings is equal to POPSIZE. In order to avoid identical
offsprings, first the algorithm makes sure that the chosen parents are
different, and second the two crossover points are chosen with the con-
dition that the two parents differ in at least one position between the
two points.
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4.4.3 Mutation

The mutation operator randomly modifies the elements of TA configu-
ration vectors to promote diversity. A configuration is randomly chosen
from the population with the preference of having low PV to enter the
mutation operator. In the selected configuration, 5% of the elements
are mutated. In the GA algorithm the mutation operation is repeated
in POPSIZE times. Similar to the perturbation procedure described in
Section 4.4.1, the mutation of a cell may take place only if the cell is on
the boundary of its TA, and the TA of that cell can only be changed to
a neighboring TA.

4.4.4 PV Local Search Algorithm

Usually by some simple modifications, the solutions obtained from GA
can be improved. In this study, during each iteration of GA, a PV Local
Search (LS) algorithm is used to further strengthen the GA algorithm.
For each solution given to LS, the algorithm considers moving cells to
other neighbor TAs one by one. Among these moves, the first move
which results in a lower PV value is chosen, as long as the point defined
by the signaling overhead and reconfiguration cost has not been visited
yet. If the LS gets stuck in the situation where no move results in
unvisited point with lower PV, the algorithm moves to an unvisited
point with equal PV. The algorithm stops if all possible moves lead to
visited points or higher PV values. All points visited by LS are stored
and considered as visited in later runs of LS.

The goal of using LS in this stage of GA is to first find new solutions
with lower PV to improve GA performance, and second to look for new
pareto-optimal solutions. The next pool in the GA algorithm consists
of solutions with PV < PV-MAX after the LS.

It is possible to tune the number of points entering the LS by giving
a value to PV-MAX. For example by setting PV-MAX = POPSIZE,
all the points will be considered as an input to LS. PV-MAX is set to
be lower than POPSIZE to save computing effort in case of large-scale
networks.
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Figure 4.6 Quantization of the overhead and the reconfiguration cost.

4.5 Efficiency Improvement

There are two computational bottlenecks in the suggested GA algo-
rithm: First, the PV of a solution is a relative value with respect to
other solutions. Therefore, in order to calculate and update the PV of
each solution, its signaling overhead and cost should be compared to
all other solutions. Second, points that are visited should be stored in
order to avoid being generated repeatedly. Ideally, one would like to
record all the solution points found by the algorithm in all iterations.
On the other hand, this becomes computationally unaffordable, since
the number of accumulated solutions grows rapidly from one iteration
to another. In this section, a method to resolve these bottlenecks is
proposed by quantizing the two objective values.

The quantization of the bi-objective value space approximates the
signaling overhead and the reconfiguration cost by a fixed and large
number of intervals. With this process, the very large set of possible
configuration points is approximated by a grid. Figure 4.6 gives an
illustration of the quantization. Each pixel of the grid represents all
TA configurations which give the signaling overhead and reconfiguration
cost within the value intervals defining that pixel. To practically use this
grid over the signaling overhead and cost axes, the grid is mapped to a
matrix with the same dimensions as the grid size. Two matrices of same
dimension are defined. Each of them will help solving one of the two
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Figure 4.7 An example of the visited and PV matrices.

mentioned bottlenecks.

4.5.1 Visited Matrix

The visited matrix is defined to keep track on value intervals visited
by the algorithm. It is a binary matrix to illustrate whether a grid
element has been so far visited or not. If an element of this matrix is
one, it means that the corresponding point has been already visited by a
solution having signaling overhead and cost within that pixel, otherwise
the value is zero. The upper part of Figure 4.7 shows a small example
of how the visited matrix gets updated while new solutions are found by
the algorithm. Moving from the first matrix to the third (left to right),
in each step one solution is added to the visited matrix by changing one
element from zero to one in each step.

4.5.2 PV Matrix

In order to find out the PV of a solution in constant time, a PV matrix is
defined. This matrix has the same dimension as the visited matrix, and
it is used to calculate the PV of each solution. Each new solution found
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by the algorithm is used to update the PV matrix by increasing all the
dominated elements to the right and up of the corresponding pixel of
the new solution by one. With this method of updating the PV matrix,
it can be concluded that at any time, the value of each element in the
PV matrix represents the number of found solutions which dominate
the solution of the corresponding element. The lower part of Figure 4.7
illustrates a small example of how to update the PV matrix while adding
a new solution. Note that the pareto-optimal solutions are the elements
which are one in the visited matrix and zero in the PV matrix. Thus in
the figure, the elements in the boxes represent pareto-optimal solutions.

4.6 Performance Evaluation

In this section, results of performance evaluation for realistic/real-life
data of three large-scale networks are presented. In real-life networks,
splitting a site into different TAs is not a common practice. Therefore,
although all the discussions before considered cell-level TA assignment,
the evaluation of the three networks is done on the site level, unlike in
Chapter 3. In all scenarios, it is assumed that 5% of the UEs are paged
in every site (« = 0.05). The overhead of a single update c¢* is set ten
times as much as ¢? [33].

For each of the first two networks, a reference scenario of UE distri-
bution and mobility is defined. The scenario contains load and handover
statistics of the network. The initial TA configuration, t°, is optimal for
the reference scenario. Another UE scenario, called scenario I is gener-
ated by modifying the load and the handover statistics. It is considered
that the reference scenario has evolved to scenario I over time. The
aim is to find the pareto-optimal solutions of TA reconfiguration for sce-
nario I. The third network is a real-life case, and t is the configuration
used in the past few years. The suggested algorithm is applied to find
the pareto-optimal solutions for reconfiguring t° for the up-to-date UE
distribution and mobility data.

The integer programming model defined in Section 4.2 has been im-
plemented in the Gurobi optimizer [30]. The solver has been run on a
processor with the clock speed of 2.4 GHz and 7 GB available RAM.
For the first network, the integer programming model delivers all the
exact pareto-optimal solutions. For the second network, some but not
all of the exact pareto-optimal solutions can be calculated by the integer
programming model. Due to the size of the third network and memory
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Table 4.1 Minimum-overhead solutions found by the two approaches.

C O—C
csolt) en(t) et e

Integer Prog. Model 1.1140 x 10° 1.4499 x 10° 31.40%
GA Algorithm 1.1764 x 10° 9.5504 x 10* 27.84%

limitation, the integer programming model cannot be applied in this
case.

The GA algorithm presented in Section 4.4 is implemented in MAT-
LAB. The computations are run on a processor of type Intel Core 2 Duo
with the clock speed of 2.1 GHz. For the three networks, the sizes of the
visited matrix and PV matrix are chosen to deliver a sufficiently high
resolution.

4.6.1 Network 1

The first set of data is from a cellular network of the downtown area
of Lisbon, that is provided by the EU MOMENTUM project [46]. This
network has been used in Chapter 3. The network consists of 60 sites
and 164 cells. The optimum configuration for the reference scenario, t°,
is computed by the model in [62]. There are seven TAs in t°. Figure
4.8 shows the pareto-optimal solutions found for the Lisbon network by
the two approaches. The black dots represent the exact pareto-optimal
solutions found by the integer programming model. There are 25 pareto-
optimal solutions in Figure 4.8, however the model has been run more
than 25 times in order to find these points. The model takes an average
time of about 20 minutes to find a solution for a given cost budget (B).
Therefore, for finding these 25 points by the integer programming model,
about 8 hours and 20 minutes has been spent. The plus signs in Figure
4.8 illustrate the heuristic pareto-optimal solutions obtained by the GA
algorithm with the following parameters: POPSIZE = 100, Iteration
Limit = 10 and PV-MAX = 20. The PV matrix and the visited matrix
are set to a size of 650-by-700, which gives a resolution of 255.18 and
249.83 units in overhead and cost, respectively. The GA computation
took about 1 minute. The observations arrived from this figure are as
follows.

e By successively allowing higher reconfiguration cost, there is a
jump in the improvement of overhead. This shows the importance
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Figure 4.8 Pareto-optimal solutions of Network 1.

of approaching as many pareto-optimal solutions as possible.

e The performance of the GA algorithm is close to optimality. It did
not approach the point with the minimum overhead and highest re-
configuration cost. However, the relative performance difference is
small. Table 4.1 compares the minimum-overhead solutions found
by each approach for the Lisbon network. The overhead improve-
ment of the integer programming model is 5.60% over the GA
algorithm. Note that for achieving this extra improvement, the
reconfiguration cost will increase by 51.81%.

4.6.2 Network 2

The second data set represents a realistic deployment scenario for a
network in one of the capital cities of Europe. The network consists of
75 sites and 225 cells. The optimum design for the reference scenario,
t, has twenty two TAs. Figure 4.9 shows the pareto-optimal solutions
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Figure 4.9 Pareto-optimal solutions of Network 2.

of this network found by the two approaches. The integer programming
model found some but not all of the exact pareto-optimal solutions. It
takes at least 1 hour to find each solution point. When B grows, the time
for finding a solution increases rapidly to 8 hours. Therefore, searching
for exact pareto-optimal solutions for B > 2000 is not computationally
feasible. To get the heuristic pareto-optimal solutions from the GA
algorithm in Figure 4.9, the following parameters are set: POPSIZE =
100, Iteration Limit = 10 and PV-MAX = 20. The PV matrix is set
to a size of 700-by-700, which gives a resolution of 10.55 and 9.59 units
in overhead and cost, respectively. The GA computation took about 10
minutes. Below are the remarks from the figure.

e The shape of the pareto frontier, which is the set of all pareto-
optimal solutions of the signaling overhead and the reconfiguration
cost, differs from that of network 1. The curve in Figure 4.9 is close
to linear, meaning that for obtaining improvement in overhead, the
reconfiguration cost scales up proportionally.



4.6 Performance Evaluation 47

N

‘ + GA Algorithm

e

—_ —
~ N
T T
I I

—
\°]
T
|

*Bc%q ,
it
_|_
y 7
+_|:|_+

Reconfiguration Cost
(=)
.OO —_

e
N
T

041 +++ i
_h_+
0.2F ++++ |
0 1 I I I L | | —I_‘+ +
4 5 6 7 8 9 10 11 12 3
Signaling Overhead < 10°

Figure 4.10 Pareto-optimal solutions of Network 3.

e The exact pareto-optimal solutions available from the integer pro-
gramming model indicate that the pareto-optimal solutions found
by the GA algorithm are of very high quality. The GA algorithm
performs very well and time-efficiently for this network.

4.6.3 Network 3

The experiments for the third network use real-life data. The network is
in use in a capital city of Asia. The network consists of 339 sites and 978
cells. The number of defined TAs in the current configuration is six. For
Network 3, the computer memory needed by the solver exceeds what is
available and therefore it is not possible to use the integer programming
model. Figure 4.10 shows the pareto-optimal solutions of this network
obtained by the GA algorithm. The PV and visited matrices are set
to a size of 1200-by-1400, which gives a resolution of 102.96 and 109.20
units in overhead and cost, respectively. It took 2 hours and 20 minutes
for the GA algorithm to find the pareto-optimal solutions in Figure 4.10
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with the following parameters: POPSIZE = 300, Iteration Limit = 3
and PV-MAX = 20. After the third iteration, no new pareto-optimal
solution was found. The observations from this figure are as follows.

e The smooth pareto frontier indicates that the decision-maker has
a large set of available trade-offs between the signaling overhead
and the reconfiguration cost.

e The current TA configuration of the network is far from optimum
in terms of signaling overhead. The pareto-optimal solutions show
that it is possible to decrease the overhead by 64%. Figure 4.11
shows the initial TA design t° of Network 3. Figure 4.12 illustrates
the same network, while the pareto-optimal solution with the low-
est signaling overhead has been chosen. Each specific symbol in
the two figures represents the sites inside one TA. In Figure 4.12,
111 sites have changed TAs in comparison to Figure 4.11. There-
fore, about 32% of the sites in the network are reconfigured. There
are some parts in both figures giving the impression that the TAs
are disjoint. The reason is the existence of highways which make
direct handovers possible between those parts of the city.

4.7 Conclusions

A bi-objective optimization model has been presented for pareto-optimal
solutions for the trade-off between the signaling overhead and the TA
reconfiguration cost. The proposed integer programming model provides
the exact pareto-optimal solutions, and the suggested GA algorithm is
simple in implementation and efficient in performance for large-scale
networks. The experiments on several real-life networks demonstrate
that the characteristic of the pareto frontier varies by network, and that
the proposed GA algorithm provides close-to-optimal solutions for large-
scale networks in feasible time.
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Figure 4.12 A pareto-optimal solution of Network 3.
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Chapter 5

Tracking Area List

Tracking Area List (TAL) is a scheme introduced in 3GPP Release 8 [5].
This scheme allows more flexible TA configuration and is expected to
overcome some of the limitations of the standard TA. Before investigat-
ing the TAL scheme, it is instructive to consider the limitations of the
standard TA scheme, which has been used in the previous chapters. It
has been already suggested in the literature that the TAL scheme can
prevent the frequent updates when a UE keeps hopping between two
or more adjacent cells in different TAs (the so called ping-pong effect).
Second, TAL can solve the problem of high uplink traffic due to simul-
taneous updates of a large number of UEs crossing a TA boundary (the
train scenario) [3,40]. This chapter aims to shed light on the idea of
TAL, which is explored further in the coming chapters. Some of the
discussions presented in this chapter have been published in [43].

5.1 Limitations of Standard TA

In the standard TA scheme, cells/sites are grouped into mutually disjoint
sets, each being a TA. A cell/site belongs to exactly one TA, and each
UE is registered to only one TA. This scheme, which is used so far in
the thesis, has some performance limitations.

5.1.1 Ping-Pong Effect

UEs at the border of neighboring TAs usually move back and forth be-
tween the two or three neighboring TAs (Figure 5.1). This phenomenon
is referred to as the ping-pong-TAU effect. Apart from the mobility

o1
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(a) (b)

Figure 5.1 (a) ping-pong effect, (b) generalized ping-pong effect.

of the UEs, fading of the radio channel can also cause the ping-pong-
TAU effect. The effect causes excessive TAUs and accounts for a non-
negligible portion of the total TAU signaling overhead. In the standard
TAU and paging scheme, no matter how the TAs are designed, the
ping-pong effect exists either between two neighbor TAs, or sometimes
between three neighbor TAs of a corner. The authors in [24] referred
to such kind of ping-pong effect as the generalized ping-pong effect, see
Figure 5.1(b). In general, reducing the ping-pong effect can significantly
improve the performance of a network and therefore has received quite
some attention in the literature [20,24,36]. However, most of the pro-
posed schemes for reducing this effect introduce a large paging overhead.

5.1.2 Massive Mobility Signaling Congestion

If a large number of UEs simultaneously move into a hotspot cell (i.e.,
UEs in a train arriving quickly to a platform [40]), there is a risk of
increased network load caused by excessive TAU from the UEs in a
short period of time. Figure 5.2 shows the TAU storm, when a train
passes a TA border. This is an undesirable situation from the network
standpoint, as it could decrease the quality of service (QoS) in the cell
and may create signaling resource congestion [38].

5.1.3 Symmetry Limitation

For the standard TA scheme, the following implication always exists. If
cell A considers B in the same TA, then cell B also considers A in the
same TA. If cells could have different perspectives towards each other,
then this flexibility may lead to a lower signaling overhead.
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Figure 5.3 A three-cell network.

e Example: Figure 5.3 considers a network of three cells, N' =
{A, B,C}. Ignore cell C for a moment and assume that the net-
work consists of only two cells, A and B. The TA design either
considers these two cells in the same TA, or separates them into
two TAs. Based on (4.1), in the case that A and B are in the same
TA, the signaling overhead is ¢; given in (5.1), and when A and B
are in separate TAs the signaling overhead is ¢ given in (5.2).

1 = ac’(ug +up) (5.1)

Cy = cu(hAB + hBA) (5.2)

Although it is not achievable by the standard TA scheme, let us
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consider a design in which all UEs in A percept that B is in another
TA but all UEs in B assume A is in the same TA. In this situation
the signaling overhead is c3 given in (5.3).

c3 = c"hap + acup (5.3)

In conditions where ¢; —c3 > 0 and ¢ — c3 > 0 hold, corresponding
to acPuy > c*hap and c*hpa > acPup, the third perception (5.3)
leads to lower signaling overhead. Thus when cell A has high cell
load, and there is no or few flow moving from cell A to cell B, and
B has low cell load but high number of moves towards A, there is
a potential to reduce the signaling overhead if the cells can break
the symmetry in their view of TA.

Another implication by the standard TA scheme is transitivity: If

cells A and B are in a same TA, and cells B and C are in a same TA,
then cells A and C must also be in the same TA.

e Example: Consider Figure 5.3 and two TA configurations for this

network. The first configuration puts all three cells in one TA,
which results in matrix S;(t) given in (5.4), and in the second one
A and B are in the same TA, while C forms its own TA. The second
configuration results in matrix So(t). The corresponding signaling
overheads, ¢4 and ¢5 are given in (5.6) and (5.7), respectively.

1 11

Sit)=[ 111 (5.4)
1 11
1 10

Set)=[ 1 1 0 (5.5)
0 1

cqs =2ac?(ua +up + uc) (5.6)

cs = ac’(ua +up) + c“(hac + hca + hpe + hep) (5.7)
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Let us assume that a design represented by matrix S3(t) can be
created disregarding the fact that it is not achievable using the
standard TA scheme. The signaling overhead of matrix Sz(t) is
equal to ¢g in (5.9).

1 10
Sst)=[ 1 1 1 (5.8)
01 1
cg = ac’(us + 2up + uc) + c“(hac + hca) (5.9)

In situations where ¢4 — ¢g > 0 and ¢5 — cg > 0, meaning that
acP(ug+uc) > (hac+hca) and ac?(uptuc) < c“(hpe+hes),
designs (5.4) and (5.5) have higher signaling overhead compared
to design (5.8). This example illustrates that there is a potential
of reducing the signaling overhead if the transitivity condition can
be relaxed.

Generally, in the standard TA scheme, there are three properties of
any S(t) matrix:

e S(t) is a binary matrix, where s;;(t) represents whether or not two
cells are in the same TA.

e S(t) is a symmetric matrix, representing the obvious fact that if
cell ¢ and j are in a same TA, then cell j and i are also in the same

TA.

e S(t) has the transitive property, meaning that whenever cells i and
j are in the same TA, and cells j and k are in the same TA, then
1 and k are also in the same TA.

5.2 Tracking Area List

There were extensive discussions in 3GPP on the preferred TA scheme.
The standard TA scheme, which consists of static non-overlapping TAs,
was used in earlier technologies, such as GSM. However, there are newer
schemes that have the potential of avoiding ping-pong effects, distribut-
ing the TAU load more evenly across cells and reducing the overall TAU
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signaling overhead [47]. Some of the candidate schemes that were dis-
cussed are as follows:

e QOuverlapping TA: In this scheme one cell holds a list of overlapping
TAs and a UE is assigned only to one TA of the cell’s list. The
UE does not perform a TAU while moving to a cell which has the
assigned TA in its list.

o Multiple TAs: In this scheme, a cell belongs to only one TA, but a
UE can be assigned with more than one TA using a list. If one UE
is assigned a list of TAs, the UE does not perform TAUs when it
crosses the boundaries between these TAs. The TAs in this scheme
are non-overlapping.

Introducing the concept of list gives more flexibility to the operators
in their TA management. It should be mentioned that the above schemes
are considered to specifically reduce the signaling overhead resulted from
TAUs, while the problem of paging overhead is considered as a much
less critical issue. The concept of Multiple TAs is currently the more
preferred scheme among the two [49].

In the TAL scheme discussed in the thesis, both UEs and cells are
assigned to a list of non-overlapping TAs. A UE receives a TAL from a
cell, and keeps the list, until it moves to a cell that is not included in
any TA of the list. The UE location is known to the MME to at least
the accuracy of the TAL allocated to that UE.

e Example: In Figure 5.4, TAL1 consists of TA1, TA2, TA3 and
TA4, and TAL2 consists of TA2, TA7 and TA9. By assuming that
the network gives TAL1 to UE2 and TAL2 to UE1l, UE1 will not
have any TAU while moving from TA9 to TA7. UE2 will only
make TAU when passing from TA2 to TA7, because UE2 does not
have TA7 in its TAL. Note that if any of these UEs were paged, the
paging message will be sent to all the cells inside the UE’s TAL.
Therefore, in TAL design giving a proper TAL to each individual
UE can be very beneficial.

Potentially, the TAL scheme is expected to overcome some of the
limitations of the standard TA scheme. For example, TAL can avoid
the ping-pong TAU by including the last visited TA in the assigned
TAL. To overcome the signaling congestion in the train scenario, the
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TALZ
Figure 5.4 An example of TAL.

----------------- > Passing without TAU
—> TAU

Figure 5.5 UEs holding different TALs in one cell.

cells along the railway path can give different TALs to the UEs inside
the train. Because the UEs inside the train are holding different TALs,
not all of them will perform TAU at the same time.
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5.3 Challenges in Applying TAL

By TAL, the UEs in one cell might have different TALSs, depending on
the cells from which the TALs are assigned. This perspective difference
makes the estimation of signaling overhead difficult. Figure 5.5 illus-
trates two UEs in cell ¢ moving towards cell j. The UEs are holding
different TALs which affect the TAU overhead calculation. If cell j is
included in the TAL of cell 4, then no TAU overhead is needed for UEs
having #’s list and moving to cell j. This is the case for UE1 in the
figure. UE2, on the other hand, does TAU because it does not have j in
its list. Similarly, UEs having TALs of other cells, such that the TALs
have ¢ but not j will generate TAU when moving from i to j.

From the above discussion, it can be concluded that in designing
TAL for a network, it is highly valuable to have accurate data traces
of UEs’ movements. Unfortunately, this data is not available or too
expensive to obtain. Also, designing TAL according to traces of UE
mobility patterns will limit the solutions to those specific movement
sequences. If the UEs change their movement behavior, which is quite
probable, the TALs would become inefficient.



Chapter 6

Applying TAL in Cellular
Networks

Although TAL is expected to overcome some of the limitations of the
standard TA scheme, how to apply TAL in large-scale networks remains
unexplored. This chapter proposes a signaling overhead calculation for-
mula, taking the discussion in Section 5.3 into account. Three algorithms
are suggested to utilize TAL in large-scale networks. The advantages and
disadvantages of each of these schemes are explained. This chapter is
based on the work presented in [43,44].

If the information of each individual UE’s movement and calls were
available to the network, then designing an optimum TAL would be-
come trivial and could essentially result in the elimination of signaling
overhead: The network could give a specific, tailored list to each UE in-
cluding all the cells the UE intends to pass before it will be called. This
information, if available at all, is costly to obtain. Moreover, the validity
of the information expires fast, because the UE trace is the history of
the UE’s movement, and the UE’s intention of where and when to move
in future is unknown.

6.1 Signaling Overhead Calculation for TAL

To explore the flexibility of TAL, one can consider a TA as small as a
single cell (i.e., no restriction on a given TA layout). LTE allows a cell
to assign UEs different TALs. Using this possibility is however out of
the scope of the thesis. Here, the assumption is that a cell will give only

99
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one common TAL to all UEs getting updated in that cell. Inevitably,
this will imposes restriction on the performance of TAL.

Note that for the sake of reusing Equation (2.2), the notations s;;(t)
and S(t) are kept. However, for TAL the vector t does not exist and
the TAL assignments can be defined in the form of an N x N matrix.
For TAL, s;j(t) is defined in the thesis as the proportion of UEs in
cell i, who have j in their TAL. Thus, the S(t) matrix would contain
fractional values which are all between 0 and 1. Although the matrix is
not binary any more, Equation (2.2) remains valid. Given a TAL-cell
assignment, there can be several ways to estimate s;;(t). In this section,
first a one-hop calculation is considered, and then the idea is extended
to two hops.

6.1.1 One-hop Calculation

The uncertainty factor in calculating s;;(t) stems from the fact that
UEs in cell 4 may hold TALSs of different cells, in particular those other
than cell 7. To estimate s;;(t) in the one-hop calculation, the impact of
neighbor cells of i are considered. The formula is shown in (6.1). The
denominator shows an estimation of the overall number of UEs in 7. The
second term in the denominator calculates the number of UEs moving to
1 without having updated by cell ¢, while u; estimates the number of UEs
in cell ¢ having the TAL of 7. The numerator estimates the number of
UEs which are probable to have j in their TALs. Parameter [;; is defined
1 if j is in the TAL of ¢ and 0 otherwise. The neighbors of ¢ having ¢ in
their TAL form the @; set. Factor v represents the probability of UEs
entering cell ¢ and having been updated in Q;.

e Example: In Figure 6.1(a) only the impact of neighbor cells of i are
considered, and the orange cells represent the neighbors containing
i in their TAL. If 1,,,; = Ly = 1, then Q; = {n1,na}.

uilij + hnilng
sijt) = — 1 Lncq,niln (6.1)
Ui + 7 D neq, Mmi

The standard TA scheme can be used as a baseline for validating
(6.1). For all n € @, ln; = 1, because Q; is the set of neighbors of i
having 4 in their TAL. Also, for the standard TA scheme all the cells
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(a) (b)

Figure 6.1 Parts of a network involved in estimating s;;(t).

inside one TA are assumed to have the same TAL. If [;; = 1 then by
the transitive relation in the standard TA scheme [,,; = 1 for all n € Q;,
and hence s;;(t) = 1. If [;; = 0 then again due to transitivity l,; = 0
for all n € @, and hence s;;(t) = 0. This gives the logical conclusion
that the parameter v does not play any role in the s;;(t) calculation of
the standard TA scheme and s;;(t) = l;;, for all 4,5 € N.

From the equation, it is observable that when the TAL of each cell
contains that cell, the values on the diagonal of S(t) is always equal to
one.

6.1.2 Two-hops Calculation

To extend the calculation to two hops, the impact of the neighbors of
neighbors should be also included in the calculation. This may increase
the accuracy of S(t) estimation. In Equation (6.2) two hops are consid-
ered. The denominator is showing an estimation of the overall number
of UEs in i. The overall number of UEs in cell ¢ is estimated by the
sum of cell load of i and the UEs entering ¢ with ¢ in their TAL. The
numerator of (6.2) is giving the number of UEs in i estimated to have j
in their TALs. Parameter [;; is 1 if j is in the TAL of 7 and 0 otherwise.

wili; +m ZnEQi hilng + 72 ZnEQi ZpEQm min(hpn, hni)l
Ui + 71 ZneQi hni + 72 ZnEQi ZpeQm- man(hpn, ;)

sij(t) = P6.2)
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The neighbors of i having ¢ in their TAL form the @; set. Notation
Qi is the set of neighbors of n € (); having both n and 7 in their TALs.
In most of the cases, i € @,;, because as long as the neighborhood
definition is defined in both directions, ¢ is considered as the neighbor of
neighbor of i. While UEs move from the cells in (),; to n and thereafter
to 4, there will be no TAU.

e Example: In Figure 6.1(b) the impact of neighbors of neighbors is
considered. The TAL of orange cells contain ¢ and the connected
cells from the first-hop neighbors containing ¢. By assuming {,,,; =
liny = Inyi = lpiny = lpii = lping = lpgny = lpgi = lumy, = 1
in the figure, one concludes Q; = {ni,n2}, Qn,i = {i,p1}, and
Qnyi = {n1,P1,P3}-

Factor 1 represents the probability of UEs entering cell ¢ having
been updated in @;. Similarly, 7o is the fraction of UEs entering cell ¢
and holding a TAL assigned by some cell in @, ; with n; € @;. The
reason for picking the minimum value between hp, and h,; in the last
term is to avoid overestimating the effects of UEs entering :.

It can be observed from definition (6.2), that:

M+ <1 (6.3)
Y2 <M

The constraints in (6.3) conclude that 5 < 0.5. It should be also
considered that not all combinations would be practically reasonable. As
an example y; = 9 = 0.5 is not a valid assumption, because it represents
that for each cell the impact of the second-hop cells (not including the
cell itself) are as much as the first-hop cells.

6.2 How to Design TAL?

In this section, three algorithms are suggested for designing TAL us-
ing the available data from a cellular network. All the algorithms are
designed based on the objective of improving the overall signaling over-
head.
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Figure 6.2 An example of the dependency between elements of S(t).

6.2.1 TAL Design Independent from UE Traces

For allocating and assigning TAL independent from UE traces, the only
available information is the load of each cell and handover between cell
pairs. In Section 6.1, simple formulas are defined for estimating all s;;(t)
values of the S(t) matrix, considering one or two hops. The definition
of the /;; parameter in the formulas requires a TAL assignment. Thus,
the problem is narrowed down to the challenge of finding a TAL assign-
ment resulting in an estimated S(t) matrix which improves the overall
signaling overhead calculated by Equation (2.2).

Because UEs in one cell can hold different TALs, it is clearly not
possible to set each element of S(t) completely independently from the
other elements. Also, it is already mentioned in Section 6.1 that the
si;(t) values in TAL can be fractional.

e Example: From Figure 6.2 it can be observed that by adding or
omitting j from the TAL of i, not only s;;, but sp,5, Spoj, Sjm,
Sjms and sjm,, may all change in the S(t) matrix.

The following local search algorithm is developed to make the TAL
assignment of each cell considering the effects on the other cells.

Local Search Algorithm

The local search algorithm iteratively updates the TAL assignment of
each cell. The basic operation of the algorithm is to modify the TAL
of one cell at a time, by either deleting or adding one of the elements
in the TAL. Then, depending on how many hops are considered in the
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Algorithm 3 Local Search for TAL Allocation.

1: tal® =¢*
2: tal* =tal’; cho = cso(tal™)
3: repeat
4. 6=0,c% =cso
5. for alli € N do
6: for all j € N do
T: tal' = tal*, A = At
8: if j € tal! then
9: tall = tall\ {j}, Update Aﬁ“ll and s;;
10: for all p € tall do
11: if p € tal’ then
12: Update s;p
13: end if
14: if j € talﬁ, then
15: Update sp;
16: end if
17: end for
18: if cso(tal') < o then
19: tal* = tall7 cso = cso(tal™), Atel” — Amll
20: else
21: tal' = tal”, Atal' — gtal”
22: end if
23: end if
24: if j € Al then
25: tall «— {tal,j}, Update Aﬁ“ll and s;;
26: for all p € tal! do
27: if p € tal} then
28: Update s;p
29: end if
30: if j € tall, then
31: Update sp;
32: end if
33: end for
34: if cso(tall) < ¢5o then
35: tal* = tal’, cso = cso(tal™), Atel” — At“ll
36: else
37: tal' = tal*, A'" = A"
38: end if
39: end if
40: end for
41: end for
42:  0=C%o —cso
43: until §* =0

: return tal'

e
=~
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algorithm, Equation (6.1) or (6.2) is used to estimate the S(t) matrix
which in turn gives the overall signaling overhead. This is repeated until
no additional change results in any improvement.

The local search algorithm is formalized in Algorithm 3, in which the
solution given to and returned by the algorithm is denoted by tal', and
the algorithm considers one-hop calculation. The optimal standard TA
configuration can be used as the starting TAL assignment of the network.
This means that the cells which belong to the same TA are given a list
containing all the cells in the TA. Of course, with this solution, the S(t)
matrix is binary, and by definition it is equal to the matrix obtained
from the condition stated in (2.1).

At line 8, the algorithm checks whether j should be in the TAL of
1 or not. If j belongs to the list of 4, the algorithm removes this cell
at line 9, and if it does not belong to the list of ¢ but it is adjacent to
the TAL of i, the algorithm adds it to the list of ¢ at line 25. All the
neighbor cells to the TAL of i are stored in A!. When j is added or
removed from the TAL of i, row A of the matrix A" is updated by
the algorithm.

According to the discussion in Section 6.2.1 and Figure 6.2, it can
be concluded that by adding/removing only one cell j to/from the TAL
of another cell i, there are three parts in the S(t) matrix which should
be updated, in case of one-hop calculation:

® Sij
e 5, for all p € tal; Ntal;

e s;, for all p € tal; Ntal,

The algorithm changes all these elements of S(t) and calculates the
signaling overhead. If the change results in a lower signaling overhead,
then the change is kept, and if it results in a higher signaling overhead,
the previous configuration is again active. By repeating this procedure
for every (i,j) pair, a modified TAL will be defined for each cell. The
algorithm iterates until no more improvement is possible. Note that the
algorithm is not achieving the optimum TAL design, but rather aim-
ing at an improved configuration which should result in a lower overall
signaling overhead compared to the standard TA scheme.
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Advantages

e The scheme does not require any information regarding the UE
traces. The same input data for designing a standard TA scheme
can also be used here.

e The scheme considers the impact of adding or omitting a cell from
the list of other cells on either one-hop or two-hops cells, therefore
the calculation tends to take care of the challenge explained in
Section 5.3.

Disadvantages

e The algorithm is based on the s;;(t) formulas suggested in (6.1)
and (6.2). Each cell has its own true value of 7. However, in the
formulation the average estimation of this value over the network
is considered. It’s hard to approach a good average estimation
of v, which influences the TAL design and the resulting signaling
overhead. In the two-hops formula, a good estimation of the ratio
between ~; and 7 is also important.

e Applying the algorithm considering two-hops formulation has a
rather high complexity of calculations.

e The starting point in the algorithm has an impact on the final
result. A logical available starting point is to use the optimum
standard TA configuration. This requires to obtain the optimum
standard TA design before starting the algorithm.

6.2.2 An Intuitive Rule of Thumb

The flexibility of TAL comparing to the standard TA scheme is that
S(t) is not necessarily binary nor symmetric. If one considers a network
with only two cells (i.e., cells i and j in Figure 6.1 and ignoring the rest).
There are two choices for designing the TAL of cell i:

1. tali = {Z}
In this case, the signaling overhead resulted from cell i is c*h;;.
This means that all the flow moving from 7 to j should have a
TAU, because j is not included in the TAL of q.
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2. tal; = {i,j}
Here, the signaling overhead resulted from cell ¢ is acPu;, meaning
that if a UE is paged in ¢, there will be paging in cell j, but there
is no TAU for the UEs moving from ¢ to j.

Thus, for minimizing the signaling overhead resulted from cell i, the
following decision can be made:

£ vePus up
lij_{ 1 if aclu; < c'hyj, (6.3)

0 otherwise.

If acPu; < c*hyj, then it is desirable for 4 to include j in its TAL. The
same logic can be applied for designing the TAL of cell j. The principle
is easily generalized to the whole network.

Advantages

e The algorithm is simple and easy to be applied in a large-scale
network. It usually gives a good TAL assignment. That is why it
is called a rule of thumb for designing TAL.

e The scheme does not require any information more than the load
and handover of the cells. It does not even depend on the standard
TA configuration or tuning of any parameter.

e The algorithm has very low computational complexity.

Disadvantages

e The main disadvantage of the algorithm is that it only searches
among the one-hop neighbors of a cell to be included in the TAL
of that cell. Thus, the maximum length of a cell’s TAL is the
number of neighbors of the cell plus one. This limitation becomes
critical if reducing the TAU overhead is prioritized over the paging
overhead (i.e. ¢" > cP).

e In this algorithm, each cell is ”selfishly” optimizing the signaling
overhead according to its own data and does not consider the joint
effect of the other cells’” TALs.
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Figure 6.3 An example of how to collect part of UE traces.

6.2.3 TAL Design based on UE Traces

In the previous two sections, TAL design has been based on the load
and handover of each cell for a time duration. If possible, it would be
desirable to utilize UE traces in designing TAL. With the earlier cellular
technologies, getting the traces of idle UEs was an extremely costly
and unfeasible procedure. However in LTE, there are some possibilities
of collecting a small part of UE traces. One is the existence of UEs
using GPS-featured applications in the network. Another possibility is
to apply the following TAL scheme adjusted inside the network.

Collecting UE traces

In the TAL concept, a cell is able to give different TALs to different
UEs, and with this feature it is feasible to collect a few percentage of
UE traces. If all cells in a network update a specific UE by giving it a
list which only contains the updating cell, then the network can trace
that specific UE. The idea is clarified by the following example.

e Example: All the UEs in Figure 6.3 are assumed to be idle UEs.
UE x and UE y are marked red, which indicates that the traces
of these two UEs will be collected. There are three TAs in this
figure (A, B and C). Let’s consider that TAL1 = {4, C'} and TAL2
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= {A, B}. When each black UE enters a TA which is not included
in its TAL, the UE updates to either TAL1 or TAL2. For the red
UEs, every cell gives TAL of a single cell. Unlike other UEs, UE
x and UE y update when they pass any cell, but not to TALI or
TAL2. The TALs of UE x and UE y always consist of one cell,
which is the current serving cell. Therefore, by all the updates,
the trace 2-7-8 can be collected for UE x and the trace 5-4-6 can
be collected for UE y.

The price of collecting a portion of UE traces is the amount of up-
dates that the selected UEs create. Note that for these selected UEs,
there is no paging overhead.

Optimization Algorithm

In this algorithm, unlike the other two, the load and handover of the
cells are not used. Instead, a portion of UE traces is considered as the
input data. The algorithm goes through these UE traces and considers
whether adding or omitting a cell from the TAL of another cell will po-
tentially improve the overall signaling overhead or not. The algorithm
uses the same basic TAL-modification operation as in Algorithm 3. The
difference is that the collected UE traces are used in signaling overhead
estimation. The result is the optimized TA assignment for the avail-
able UE traces, and the solution can be applied to the entire network.
Of course, by having 100% of the UE traces, a close-to-optimum TAL
assignment for the network could be found.

Advantage
e The scheme explores the tracing possibility admitted by the flexi-
bility of TAL.

Disadvantage

e The network has to trace some UEs at the accuracy of the cell level.
This may cause too much signaling if the sampling percentage is
large.
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Chapter 7

Performance Evaluation of
TAL Schemes

This chapter focuses on a comparative performance evaluation of the
standard TA scheme and the three TAL schemes presented in Chapter
6. Here, the natural questions are: What is the potential of TAL in
comparison to the standard TA scheme? Among all the TAL schemes,
which one results in lowest signaling overhead, and which one is more
practical to be applied in a large-scale network? A carefully designed
evaluation framework is presented to answer these questions.

7.1 Generating UE-traces Scenario

The performance of a TAL scheme is always dependent on the UE traces
inside the network. In order to have a fair comparison between the stan-
dard TA and TAL schemes, one proper way is to apply all the schemes
to the same UE-traces scenario. A UE-traces scenario is a set of UE
traces and call arrivals for a specific time period in a network, matching
the cell load and handover. For one set of cell load and handover data,
there can be uncountable numbers of matching UE-traces scenarios. UE-
traces scenario is dependent on the chosen mobility model including the
amount and speed of each UE’s movement.

Assuming that cell load, handover and the call intensity factor («)
are the available data of the UEs’ mobility behaviors of a network, to
generate a proper UE-traces scenario, the following aspects should be
considered.

71
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e The UE is more probable to exist in cells with higher cell load.
Equation (7.1), where u; is the load of cell 7, estimates the proba-
bility ratio of cell ¢ being the starting cell of a UE in the specified
time period.

Ui

Pstart(i) = W
JjE J

(7.1)

e The UE tends to move to neighbors with high handover value.
Equation (7.2) gives the probability of a UE moving from cell i to
cell j, provided that the UE leaves cell i. The handover between i
and j is defined by h;; and the set of neighbors of cell ¢ is denoted
by Az

h:-
P Pa) — 1]
e ) = T

(7.2)
e Among the UEs inside the UE-traces scenario, o of them are paged
in the specified time period.

In order to store a UE-traces scenario, a scenario matrix is defined.
The number of UEs in the UE-traces scenario is denoted by V and the
time duration under investigation is denoted by 7. Each row of the
matrix represents one UE’s movement during different time intervals of
T. The serving cell of UE v in time interval 7 is stored as the element at
(v, T) of the scenario matrix. The length of each time interval is denoted
by A7, and the dimension of the scenario matrix is defined by V' x %.
If the UE remains in the same cell for some time, the corresponding
elements are identical in the intervals.

e Example: Figure 7.1 illustrates an example of a row in the ma-
trix. The time period T is divided into ten equal time intervals
(T1,...,710). The UE stays in cell 7 for 3A7 and then it moves to
cell j and stays there for 5A7. At 73 the UE makes another move
to cell k and stays there for the rest of the time period.

The first column of the matrix is the starting cells of all UEs ran-
domly generated based on Equation (7.1). The cell-to-cell movements
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UE(v)| i i |[i|j|ililili k|k

Figure 7.1 An example of a row in the scenario matrix.

of UEs are randomly generated according to (7.2). Based on the call
intensity factor, |[aV | UEs are randomly chosen to be paged in some
intervals of T'. The call duration for each paging is randomly chosen
based on the rayleigh distribution. During a call, the UE is active and
the network knows the UE’s location at cell level. Thus, there is no
update overhead during a call.

7.2 Aggregating Data from UE-traces Scenario

Because the UE-traces scenario is generated based on the probabilities
given by cell load and handover, the implied cell load and handover
of the UE-traces scenario is not exactly the same as the original data.
Thus, it is required to aggregate the cell load and handover from the
UE-traces scenario.

The cell load wu; is defined as the total number of UEs in cell ¢ scaled
by the time proportions that the UEs spend in cell i. Therefore, the
load of each cell in the network is aggregated by the scaled values of
UEs staying in the cell using all the elements of the scenario matrix.
The aggregated handover value is the number of moves from one cell to
another.

e Example: Considering the example in Figure 7.1 once more, the
aggregated cell load and handover from UE v are: u; = 0.3, u; =
0.5, up, = 0.2, and h;; = 1, hj, = 1 (where % =0.1).

7.3 Calculating the Signaling Overhead

According to the previous section, it is possible to simulate a UE-traces
scenario. The standard TA and TAL schemes can be applied to the
same UE-traces scenario and their performance can be compared to each
other. For most of the schemes, however, the aggregated data in load
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and handover are the input. There are two methods for calculating the
signaling overhead resulted from a TA/TAL scheme for the UE-traces
scenario. Method I, which gives the accurate overall signaling overhead,
directly counts the total numbers of TAUs and pagings in the UE-traces
scenario. Method II, which is merely a metric used for the estimation
of signaling overhead in some of the schemes, calculates the true S(t)
matrix based on the UE-traces scenario and then uses Equation (2.2).

Method I: Simulating UE-Traces Scenario

Considering that each cell has received the TAL of the starting cell, the
TAL of each UE is known in all the time intervals by following the UE
trace. Each time a UE moves from a cell which is not included in the
UE’s TAL, the TAU cost ¢* is added to the overall signaling overhead.
Depending on the length of the holding TAL, denoted by Ly, at the
time of paging, (L — 1) X ¢? is added to the overall signaling overhead.
When the TAL of a UE consists of only the serving cell, the paging
overhead for the UE is zero. Similarly, in longer TALs, the serving cell
should be excluded from the paging overhead. This is why the value
one is reduced from L;, in the paging overhead computation. This
procedure is repeated for all the UEs in the UE-traces scenario. Finally,
the obtained overall signaling overhead is the exact value for that UE-
traces scenario.

Method II: S(t) Matrix

Given the UE-traces scenario and a TAL design, one can calculate the
exact S(t) matrix instead of using any estimation formulas. In the sig-
naling overhead calculation of TAL discussed in Section 6.1, the s;;(t)
element of the S(t) matrix is defined as the ratio of UEs in cell i having
j in their TAL. By having the complete UE-traces scenario of the net-
work, the TAL held by each UE is known, and therefore the true S(t)
matrix can be computed given a TAL solution. The time scaling of the
cell loads in the UE-traces scenario should be again considered in the
si;(t) calculation. Although the true fractional S(t) matrix is computed,
the signaling overhead resulted from this matrix is still an estimation
and does not necessarily match the signaling overhead obtained by the
UE-traces scenario. The reason for considering this method is to study
the accuracy of the signaling overhead computation by Equation (2.2)
for various TAL schemes.
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7.4 Performance Evaluation

The cellular network of the Lisbon downtown area provided by the EU
MOMENTUM project [46] is considered. Ten UE-traces scenarios are
generated resembling one set of data of cell load and handover in one
hour. The number of UEs in all UE-traces scenarios is equal to 25, 000.
The one-hour time period is divided into 60 equal time intervals. Thus,
every time interval is equivalent to 1 minute.

The dimension of the scenario matrices in all ten scenarios is 25, 000 x
60. The parameter « is 0.0167, which means 1.67% of the UEs are paged
in the UE-traces scenarios. The possibility of a UE being called several
times during the one hour time period is also considered. Among the
elements of the scenario matrix, the number of active UEs scaled by the
time proportion is 5% of the total cell load. While a UE is in the active
state, there is no signaling overhead for that UE during the call. The
average length of the call durations is assumed to be 3 minutes.

Based on the discussion in Section 7.2, the cell load and handover
data are aggregated from each UE-traces scenario. The aggregated cell
load and handover are comparable to those in the original data. The
assumptions are that ¢* = 1 and ¢ = 0.1; this ratio is common in
the literature [17,27,33]. The optimum standard TA configuration is
computed by CPLEX [31] using the model in [62] for each UE-traces-
scenario data set. TAL configuration is at the granularity of the cell
level.

The three algorithms presented in Section 6.2 for designing TAL are
implemented in MATLAB. The computations are run on a processor of
type Intel Core 2 Duo with the clock speed of 2.1 GHz.

7.4.1 Standard TA Configuration

The signaling overhead of the standard TA (STA) configuration can
be simply computed from the aggregated cell load and handover. For
comparing the signaling overhead given by method II to the accurate
result of method I in Section 7.3, both methods are applied to the STA
configuration of the ten UE-traces scenarios. The results are presented
in Table 7.1. The values for all UE-traces scenarios are very close to each
other, because all of them are based on the same set of original cell load
and handover data. The paging overheads from method I are slightly
different from the ones from method II. The reason is that method I
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Table 7.1 Signaling overheads of the STA configuration.

Scenario Method I  (exact) Method 1T
No. TAU  Paging  Overall | TAU Paging Overall
1 421 598.7 1019.7 | 421 579.2 1000.2
2 428 549.6 977.6 | 428 560.0 998.0
3 382 607.2 989.2 | 382 602.8 984.8
4 449 498.9 947.9 | 449 508.8 957.8
) 357 622.3 979.3 | 357 632.0 989.0
6 331 616.1 947.1 | 331 618.6 949.6
7 325 622.6 947.6 | 325 618.0 943.0
8 483 494.4 977.4 | 483 490.0 973.0
9 382 620.4 1002.4 | 382 599.0 981.0
10 363 624.9 987.9 | 363 622.6 985.6

considers the actual pagings that have happened in the UE traces, but
method II only accounts that a of the UEs are paged.

7.4.2 Trace-independent TAL Configuration

A TAL configuration (TAL1) based on the algorithm in Section 6.2.1
considering the two-hops calculation is designed for each UE-traces sce-
nario. The algorithm took in average 4 minutes for designing TAL for
one UE-traces scenario. In order to calculate the overall signaling over-
head, both methods are applied. The results are presented in Table 7.2.
The observations from the table can be summarized as follows.

e The overall signaling overhead from the TAL design is 54% to
58% better than the ones obtained from the optimal STA config-
urations.

e The overall signaling overheads from method II are 8% to 16%
lower than the direct computation using all UE traces. It should
be recalled that Algorithm 3 is doing a rather coarse estimation of
the S(t) matrix. Hence, this observation is reasonable.

e The TAL algorithm significantly reduces the TAU overhead in re-
spect to the paging overhead. By the exact evaluation of method
I, the TAU overheads are reduced by 83% to 90% comparing to
the values obtained from the STA configuration.
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Table 7.2 Signaling overheads of TAL1 configuration.
Scenario Method I (exact) Method II

No. TAU  Paging  Overall | TAU Paging Overall
1 71.0 348.8 419.8 | 118.0 252.5 370.5
2 49.0 382.4 431.4 92.0 285.3 377.3
3 64.0 382.4 446.4 88.7 276.9 365.6
4 64.0 340.2 404.2 | 115.9 254.9 370.8
5 48.0 380.2 428.2 65.3 291.8 357.1
6 43.0 372.8 415.8 69.3 292.5 361.8
7 36.0 366.2 402.2 62.2 288.1 350.3
8 49.0 356.5 405.5 90.8 270.0 360.8
9 64.0 381.1 445.1 85.9 284.3 370.2
10 33.0 375.2 408.2 71.5 293.8 365.3

e In method II, each element of the S(t) matrix is representing the
exact ratio of UEs inside a cell having another cell in their TAL.
However, unlike method I which is exact, method II considers the

average behavior of the UEs.

different overhead values from the two methods.

This is the reason for obtaining

7.4.3 TAL Configuration based on Rule of Thumb

A TAL configuration (TAL2) based on the rule of thumb in Section 6.2.2
is designed for each UE-traces scenario. It took around 10 seconds to
design TAL for one UE-traces scenario. Let us use both methods for
signaling overhead calculation and have a comparison. The results of
the overhead values given by the two methods are presented in Table
7.3. The observations from this table and the comparison to Table 7.1

can be summarized as follows.

e The overall signaling overheads from the TAL2 design are 49% to
56% better than the ones of the optimal STA configurations.

e The rule of thumb in designing TAL significantly reduces the pag-
ing overhead in respect to the TAU overhead. By the exact eval-
uation from method I, the paging overheads are reduced 67% to
73% comparing to the values obtained from the STA configuration.
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Table 7.3 Signaling overheads of TAL2 configuration.

Scenario Method I (exact) Method II
No. TAU  Paging  Overall | TAU Paging Overall
1 317 160.0 477.0 | 451.0 176.7 627.7
2 295 162.4 457.4 | 4674 179.4 646.8
3 257 163.6 438.6 | 436.6 180.2 616.8
4 312 162.9 474.9 | 476.6 180.7 657.3
) 274 165.0 439.0 | 4554 182.1 637.5
6 267 163.0 430.0 | 439.7 180.1 619.8
7 285 162.7 447.7 | 438.5 179.5 618.0
8 268 157.1 425.1 | 440.9 176.4 617.3
9 306 162.8 468.8 | 461.1 180.3 641.4
10 306 163.9 469.9 | 4704 181.8 652.2

This is expected because the rule of thumb tends to create small
TALs.

e The overall signaling overheads from method II are 23% to 29%
higher than the ones obtained by method I. The difference between
the signaling overheads from the two methods is mostly due to
the TAU overheads. The reason is that method II considers the
average behavior, whereas method I is exact.

7.4.4 TAL Configuration based on UE Traces

An optimized TAL configuration (TAL3) based on 5% of the overall
number of UE-traces is designed for each UE-traces scenario. It took
around 2 hours for the algorithm to design the TAL for the 1250 UE
traces. For these UEs, the signaling overheads obtained from the STA
configuration and TAL3 are given in Table 7.4. The signaling overheads
are calculated using method I. The significant reduction in the signaling
overheads for the TAL solution shows that TAL3 has a potential in
comparison to the STA scheme.

The last column of Table 7.4 gives the cost of collecting these 1250
UE traces. Recalling the discussion in Section 6.2.3, all these 1250 UEs
are given TALs which only contain the updating cell. Thus, there will
be no paging overhead, and the cost of UE-trace collection is the amount

of TAU.
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Table 7.4 Signaling overheads of TAL3 configuration for 1250 UEs.

Scenario STA TAL3 Cost
No. TAU Paging Overall | TAU Paging Overall | TAU
1 29 29.8 98.8 1 4.2 5.2 | 389
2 25 30.3 55.3 0 5.9 59| 355
3 19 30.1 49.1 1 6.6 7.6 | 359
4 19 34.3 53.3 3 8.0 12.0 | 365
5 13 27.7 40.7 3 4.8 7.8 | 368
6 17 35.3 52.3 4 7.2 11.2 | 351
7 28 28.2 56.2 0 7.1 7.1 | 355
8 25 19.2 44.2 4 5.9 9.9 | 383
9 22 14.5 36.5 1 5.5 6.5 | 355
10 21 33.5 54.5 2 7.0 9.0 | 387

For each scenario, TAL3 is applied to the entire UE-trace data. Let
us use both methods for signaling overhead calculation and have a com-
parison. The results are presented in Table 7.5, and the observations
from this table and Table 7.4 can be summarized as follows.

The overheads given by method I show that except for scenario
8, there is a reduction in the overall signaling overhead. However,
the improvement is much smaller in comparison to the results of
the previous two TAL schemes.

From Table 7.4, it is observable that by having 100% of the UE
traces a high-quality TAL configuration is attainable. However,
the results from Table 7.5 show that for most of these UE-traces
scenarios, an optimized TAL based on 5% of UE traces is not a
convincing design. A higher percentage of UE-traces have to be
considered in order to improve the performance of the scheme.

Considering the very time-consuming process of designing TAL3
for even a small portion of the UEs, and the fact that TAL3 is not
achieving much improvement in the overall signaling overhead, this
scheme is not recommended.

Comparing the amount of improvement in the overall signaling
overhead to the cost of collecting the UE traces, it is apparent
that collecting the UE traces by TAL is not advantageous.
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Table 7.5 Signaling overheads of TAL3 configuration for 25000 UEs.

Scenario Method I (exact) Method II
No. TAU  Paging  Overall | TAU Paging Overall
1 267 611.3 878.3 | 281.3 594.2 875.5
2 282 585.0 867.0 | 296.7 590.0 886.7
3 276 624.7 900.7 | 287.3 609.8 897.1
4 321 521.9 842.9 | 337.1 521.0 858.1
) 294 642.4 936.4 | 300.7 635.0 935.7
6 386 340.2 726.2 | 444.0 479.7 923.7
7 385 469.0 854.0 | 430.5 570.8 1001.3
8 635 375.9 10109 | 672.8 436.9 1109.7
9 315 504.8 819.8 | 350.8 559.0 909.8
10 468 427.7 895.7 | 522.6 534.9 1057.5

7.5 Conclusions

In this chapter, the performance of the three TAL-design approaches
discussed in Chapter 6 are evaluated, and compared to each other and
also to the optimal standard TA scheme. The numerical results from
this study show that generally the TAL schemes can significantly reduce
the signaling overhead compared to the standard TA scheme in a large-
scale network. The first algorithm which designs TAL independent from
UE traces is the most recommended one for large-scale networks. The
rule of thumb is a very fast approach to obtain a good TAL assignment.
However, because it only considers the one-hop neighbors of the TAL
of each cell, the design may not perform well for some scenarios, like in
the train scenario for which it is more reasonable to include more cells
forming paths in the TAL. Another conclusion is that designing TAL
based on UE traces may result in a configuration which only performs
well for the traces collected, and could not be generalized to a large-scale
network.



Chapter 8

A Comparative Study of
Dynamic and Static TAs

Conventionally, TAs are manually configured and the configuration is
static. While network conditions change, this approach is not efficient for
reconfiguring TAs. The static configuration often does not perform very
well in signaling overhead, but it has the advantage of low computational
complexity. In contrast, a dynamic approach that frequently updates
the configurations may achieve better results, while requiring a higher
degree of computational effort [19].

Automatic dynamic configuration is a key aspect for Self-Organizing/
Optimizing Networks (SON). In this chapter, the dynamic and static ap-
proaches are applied to both standard TA and TAL schemes, and their
performance are analyzed and compared to each other. The work pre-
sented here has been partially published in [44].

8.1 Self-Organizing Networks

Although the concept of automated reconfiguration is not new in cellular
networks and there are already extensive uses of automated processes
in performance engineering, introducing a higher level of automation
remains one of the key topics in cellular communications. In Releases
8 and 9, 3GPP is standardizing self-optimizing and self-organizing ca-
pabilities for LTE. This is a continuation of the natural evolution of
automation in cellular networks by extending the scope deeper into the
network for LTE [6]. SON techniques aim at doing both planning and

81
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reconfiguration in a semi-autonomous fashion.

Until now, cellular operators have been using an off-line approach to
configure TAs. Due to the complexity of TA reconfiguration, the oper-
ators mostly decide about the TA of each cell at the time of network
deployment, and changes are made only in case of extreme performance
degradations. In SON, the network continuously collects UE statistics
and monitors performance indicators, and there is a potential of improv-
ing the TA designs or the TALSs in short time intervals without any cost
in terms of service interruption [54].

8.2 The Performance Evaluation Framework

The performance evaluation framework in this chapter consists of three
parts: One is to compare static and dynamic TAs for the standard TA
(STA) scheme. The other one is to compare static and dynamic TALs,
and the last part is to compare the STA scheme to the TAL scheme
within the static and dynamic frameworks. In the static framework, one
static STA or TAL configuration is applied and evaluated for the entire
evaluation period 7. The period T is divided into equal time intervals.
In the dynamic framework, the STAs or TALSs are reconfigured for each
time interval of T

In this chapter, for the sake of simplicity, the rule of thumb is the
chosen scheme in configuring TALs. To design an optimum STA config-
uration and a TAL design based on rule of thumb presented in Section
6.2.2, the only required data are the cell loads and handovers. In or-
der to analyze the behavior of each scheme in the static and dynamic
frameworks, it is assumed that one set of data is given for each time
interval.

In this section, acronyms in signaling overhead evaluation are intro-
duced and explained. Table 8.1 defines the acronyms, which are used
for compactness.

e ISO-DSTA is the ideal value one could achieve by the STA scheme.
It represents the signaling overhead of applying the STA design
made for data of time interval 7 and re-evaluate it for the same in-
terval. The unreal assumption here is the possibilty of getting back
in time and applying the optimum design to the same data which
is only available by the end of the time interval. Because there is a
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Table 8.1 Acronyms used for various signaling overhead results.

ISO-DSTA | Ideal Signaling Overhead of Dynamic Standard TA
PSO-DTAL | Potential Signaling Overhead of Dynamic TAL
ASO-DSTA | Actual Signaling Overhead of Dynamic Standard TA
ASO-DTAL | Actual Signaling Overhead of Dynamic TAL
SO-SSTA Signaling Overhead of Static Standard TA

SO-STAL Signaling Overhead of Static TAL

reconfiguration in each time interval, the acronym belongs to the
dynamic framework.

e PSO-DTAL is the minimum potential value one can achieve by
the TAL obtained from the rule of thumb. PSO-DTAL represents
the signaling overhead of applying the TAL design made for data
of time interval 7 to the same data. It is similar to ISO-DSTA.
However as the rule of thumb is not reaching the exact optimal
signaling overhead for TAL, the word ”ideal” is replaced by ”po-
tential”. Because there is a reconfiguration in each time interval,
the acronym belongs to the dynamic framework.

e ASO-DSTA and ASO-DTAL represent the signaling overhead of
applying the design made for data of time interval 7 to the data
of time interval 7 + 1. These schemes are practically feasible and
result in the ”actual” signaling overhead. However, the optimum
design based on the history of UEs’ behaviors might not perform
well in the next time interval. Because there is a reconfiguration in
each time interval, the acronyms belong to the dynamic framework.

e SO-SSTA and SO-STAL represent the signaling overhead of apply-
ing the configuration designed for the average data of the entire
period T to all time intervals. Because there is no reconfiguration,
these acronyms belong to the static framework.

8.3 A Case Study

The same network of Lisbon down-town area considered in the previous
chapters is used in this study. The network consists of 60 sites and 164
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Table 8.2 Static and dynamic STA comparison.

Total TAU  Total Paging Overall
ISO-DSTA  1.7607 x 10* 1.3780 x 10* 3.1387 x 10*
ASO-DSTA 2.0062 x 10* 1.3740 x 10* 3.3788 x 104
SO-SSTA 1.9114 x 10*  1.3931 x 10* 3.3045 x 104

cells. As putting the cells of one site in different TAs is not typical, the
performance evaluation has been done based on sites.

The time period is the 24 hours of one day and each time interval is
15 minutes. A predefined set of UE location and mobility pattern that
varies over the day has been used. The UE activities are very low during
the night and higher during the day with two peaks at the beginning and
the end of the office hours. This gives varying cell loads and handovers
over the 96 time periods, each being 15 minutes.

The cost ratio of a single update over a single paging (c*/cP) is set
to be 10. The call intensity factor « is assumed to be 0.05.

8.3.1 A Comparison of Static and Dynamic STA

For each set of data, the optimum STA configuration is computed by
CPLEX [31] using the model in [62]. The optimum design for time
interval 7 is first applied to the data set of 7 to get ISO-DSTA, and then
to the data set of 7+ 1 to obtain ASO-DSTA. Equation (2.2) is used for
calculating the signaling overhead.

For static STA, the evaluation takes the average of cell load and
handover of all the data sets of the entire day, and an optimum STA
configuration is designed based on the average data. This is used as a
static TA configuration. Figure 8.1 illustrates all three signaling over-
heads of the STA scheme for all time intervals of the day. The curves
in this figure show that the performance of static and dynamic STA
schemes are very close. Also, ASO-DSTA is only slightly higher than
ISO-DSTA. This means that there is a correlation between the data of
the adjacent time intervals.

The total signaling overheads of the 24-hours time period are given
in Table 8.2. The results in the table show that ASO-DSTA is actually
slightly higher than SO-SSTA. This suggests that while applying the
STA scheme to a network, a static STA is sufficient and close to opti-
mum. This is a valuable observation, because under the STA scheme,
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Table 8.3 Static and dynamic TAL comparison.

Total TAU  Total Paging Overall
PSO-DTAL 1.2782 x 10* 7.5795 x 103  2.0362 x 10*
ASO-DTAL 1.6234 x 10* 7.5567 x 103  2.3805 x 10*
SO-STAL 2.7412 x 10*  5.3835 x 103 3.2796 x 10*

reconfiguration is currently a costly exercise (not considering SON).

8.3.2 A Comparison of Static and Dynamic TAL

For each time interval, a TAL configuration based on the rule of thumb
presented in Section 6.2.2 is derived. The TAL design derived for time
interval 7 is first applied to the data set of 7 to get PSO-DTAL, and then
to the data set of 7+ 1 to obtain ASO-DTAL. Equation (6.2) is used for
computing the signaling overheads, with y; = 0.75 and v = 0.15.

A static TAL configuration based on the average data of cell load
and handover of the entire time period T is applied to all the data sets,
and the corresponding SO-STAL is computed.

Figure 8.2 illustrates signaling overheads of the static and dynamic
TAL configurations. For the dynamic configuration, the ASO-DTAL
curve is slightly higher than PSO-DTAL. Again it shows that the data
has a correlation between the adjacent time intervals. Another observa-
tion from the figure is that in most of the time intervals the signaling
overhead of the static TAL is significantly higher than the signaling
overheads of the dynamic TAL.

The total signaling overheads are given in Table 8.3. From the results
in the table, it can be seen that the total actual signaling overhead of
the dynamic TAL is 27.4% lower than the total signaling overhead of
the static TAL. Note that in SON, reconfiguration is a cost free process
in terms of service interruption. Thus, the dynamic framework is highly
recommended for the TAL scheme.

8.3.3 A Comparison of STA and TAL

This section compares the performance of STA and TAL schemes in
the static and dynamic frameworks. Figure 8.3 compares ISO-DSTA
to ASO-DTAL. The graphs show that except for the very low traffic
hours (midnight to 6am), the signaling overhead of the dynamic TAL is
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considerably lower than the ideal performance of the dynamic STA.
Figure 8.4 illustrates the signaling overhead of static STA and TAL
configurations. The figure shows that for the static framework, there is
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Table 8.4 Signaling overhead comparison of STA and TAL.

Total Overhead STA TAL Improvement
I/PSO-D 3.1387 x 10*  2.0362 x 10* 35.1%
ASO-D 3.3788 x 10*  2.3805 x 104 29.6%
SO-S 3.3045 x 10*  3.2796 x 10* 0.8%

no definite conclusion about the preference of STA or TAL. There are
some time intervals in which TAL is performing better, and for the other
time intervals TAL is performing worse.

Table 8.4 gives the total signaling overheads of each configuration
in the static and dynamic frameworks. The second column of the ta-
ble gives the signaling overheads of STA and the third column presents
the signaling overheads of TAL. According to the values in the table,
for both static and dynamic frameworks, TAL has an improved perfor-
mance compared to the STA scheme. The overall signaling overheads
are improved by 29.6% and 0.8% by TAL compared to STA for the dy-
namic and static frameworks, respectively. The graphs and the numeri-
cal results show that for the dynamic framework, TAL has a significant
improvement in comparison to the STA scheme, while in the static case
the improvement is not significant.

8.3.4 Justification of the Evaluation

The numerical results obtained in Chapter 7 showed that the signaling
overhead computed by method II is more than 20% higher than the ones
obtained by method I, in the case of rule-of-thumb TAL design. Recall
that method I is accurate. Thus, it can be expected that generally the
results presented here are over-estimations, and the true values can be
lower than these.

Until now all results and figures for TAL are obtained by using
v = 0.75 and 2 = 0.15. To have a better perspective towards the
performance of TAL, the S(t) matrix is calculated for all combinations
of v1 = [0,1] and 2 = [0,0.5] by a step size of 0.1 with the constraints
in (6.3).

Figure 8.5 shows the distribution of the dynamic TAL overhead for
all combinations of y; and 5. It can be seen that the maximum is
2.4778 % 10*, which is still 26.8% better than the corresponding value of
the STA scheme.
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ASO-DTAL

SO-STAL

Figure 8.6 SO-STAL based on various combinations of v and ~s.

Figure 8.6 is the same type of graph as Figure 8.5, only this time the
total overhead of static TAL is considered. The maximum overhead in
this figure is at point 7; = v2 = 0.5 and it is equal to 3.5757 x 10*, which
is 8.2% higher than the corresponding overhead of the STA scheme. This
figure shows again that static TAL in some situations may not be as
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Figure 8.7 Signaling overhead comparison of dynamic STA and TAL
for one-week data.

efficient as the STA scheme.

8.3.5 Addition Performance Comparison

Another set of experiments has been conducted for the Lisbon network
with the time frame of one entire week. The traffic is assumed to vary
over different times of each day and different days of the week (especially
when comparing weekdays to weekends). The time interval is one hour,
which is a more practical value to be used in a large-scale network.

Figure 8.7 illustrates the signaling overhead of the STA and TAL
schemes for the dynamic framework, and Table 8.5 gives the correspond-
ing ideal/potential and actual signaling overheads of the STA and TAL
schemes. The numerical results in the table and the curves in Figure
8.7 show that for the dynamic framework, TAL performs clearly better
than what can be ideally obtained by the STA scheme. This comparison
indicates the potential of TAL in SON.
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Table 8.5 Performance comparison on one-week data.

Total TAU  Total Paging Overall
ISO-DSTA  1.0956 x 10° 8.2412 x 10* 1.9197 x 10°
ASO-DSTA 1.1702 x 10° 8.2670 x 10* 1.9963 x 10°
PSO-DTAL 7.5623 x 10* 4.8676 x 10* 1.2430 x 10°
ASO-DTAL 8.6208 x 10* 4.8254 x 10* 1.3452 x 10°

8.4 Conclusions

In this chapter, the performance of STA and TAL schemes are examined
under time-vary data within the static and dynamic frameworks. The
results illustrate that by dynamic TAL, the performance of the network
is significantly improved by reconfiguration. Another conclusion follows
from the study of the static framework using averaged data: Unlike the
STA scheme that performs close to optimal in the static framework with
short time intervals, TAL works best if dynamic and frequent reconfig-
urations are applied for the whole time duration. Fortunately, this is
possible due to the automatic reconfiguration feature in LTE. The nu-
merical results from the one-week-data experiment demonstrate that
dynamic TAL improves the performance of the network in the long run.
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Chapter 9

Conclusions and Future
Research

The thesis work has dealt with three themes. The first theme is TA de-
sign re-optimization considering a budget cost, and finding the pareto-
optimal solutions for the trade-off between the signaling overhead and
the reconfiguration cost (Chapters 3-4). Although these problems have
been studied in the TA context, the results can be generalized to the
study of LA and RA optimization. The second theme deals with the
TAL scheme and its potentials compared to the standard TA scheme
(Chapters 5-7). TAL is still a rather unexplored area, and it requires
more investigation. The thesis gives some insight into the performance
of TAL. The third theme is the dynamic framework explored in Chapter
8. LTE supports SON, which is one of the visions in future network man-
agement. The thesis examined the standard TA scheme and TAL under
a dynamic evaluation framework, in order to investigate the aptness of
the schemes for SON.

9.1 Conclusions

The work presented in the thesis justifies the benefit of tracking area
planning and optimization for improving the performance in cellular
networks. There are also some detailed conclusions from each specific
theme studied in the thesis.

Once a TA design is in use, adopting a new solution of green-field
optimization does not typically pay off in real networks. The repeated-
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local-search algorithm which is developed to solve the re-optimization
problem in the thesis is able to approach high-quality solutions. The
novelty of the approach is the consideration of the reconfiguration-cost
budget.

Before applying any reconfiguration, a decision maker can be pro-
vided by a set of pareto-optimal solutions representing potential trade-
offs between the signaling overhead and the reconfiguration cost. The
proposed integer programming model provides the exact pareto-optimal
solutions, and the suggested GA algorithm gives close to optimal solu-
tions for large-scale networks in short time.

The signaling overhead obtained from the TAL assigned by the pre-
sented local-search algorithm is half of the signaling overhead resulted
from the optimal standard TA scheme. The rule of thumb in the thesis
is a very simple and quick approach for assigning a reasonably good TAL
for a large-scale network.

TAL works best when a dynamic frequent reconfiguration is applied.
For the standard TA scheme, the difference between the dynamic and
static TA is not significant, as long as there is not a major change in the
mobility behavior of the UEs.

9.2 Suggestions for Future Works

There are still many open problems in the study of TA management
of cellular networks. Some related topics deserving further research are
summarized below.

In the thesis, the TAL scheme has been only examined for the im-
provement of the overall signaling overhead. Exploring the scheme by
considering other parameters, such as load balancing, forms a future line
of research.

The re-optimization problem explored in the thesis for the standard
TA scheme can be extended to the TAL scheme. Even though in the
TAL scheme the problem of service interruption in reconfiguration is
solved, from the network standpoint it is still more suitable to avoid
major changes between two consecutive configurations. Hence, another
extension is to introduce a ”change budget” in reconfiguring the TAL in
each time interval of the dynamic framework.

In the performance evaluation of the static and dynamic frameworks,
the aggregated data is based on short and equal-length time intervals.
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Due to the effort required for data collection, it is of relevance to evalu-
ate the overall signaling overheads resulted from considering data with
higher level of aggregation.

Additional experimental analysis on larger networks and various
topologies can give more insights into the performance of the proposed
algorithms. Another topic is the investigation of alternative and better
optimization algorithms, especially for the TAL scheme. One example
can be to extend the idea of rule of thumb to neighbors other than the
first-hop ones in order to overcome the existing limitation.
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