Feasibility study:
Implementation of a gigabit Ethernet
controller using an FPGA

Richard Falt

LiTH-ISY-EX-3222
30 april 2003

Feasibility study:
Implementation of a gigabit Ethernet
controller using an FPGA

Examensarbete ufort 1 datorteknik

vid Linkopings Tekniska Hogskola av

Richard Falt

Reg nr: LiTH-ISY-EX-3222

Handledare: Ake Andersson
Examinator: Dake Liu
Linkoping, 30 april 2003

99-08-09/11i

@GS UN% Avdelning, Institution Datum
{- s, Division, department Date
- A
~
M S Computer Engineering 2003-04-30
5% JL \A‘y Department of Electrical Engineering
5 e . o
p”\fos - & Link6ping University
Sprak Rapporttyp ISBN
Language Report category
O Svenska/Swedish O Licentiatavhandling | | ISRN LITH-ISY-EX-3222-2003
¥ Engelska/English ¥ Examensarbete
O C-uppsats
O D-uppsats Serietitel och serienummer ISSN
O Ovrig rapport Title of series, numbering
O O
LiTH-ISY-EX-3222
URL for elektronisk version
http://www.ep.liu.se/exjobb/isy/2003/3222/

Titel

Title Feasibility study:

Implementation of a gigabit Ethernet controller using an FPGA

Forfattare

Author Richard Filt

Sammanfattning

Abstract

Background: Many systems that Enea Epact AB develops for theirs customers communicates
with computers. In order to meet the customers demands on cost effective
solutions, Enea Epact wants to know if it is possible to implement a gigabit
Ethernet controller in an FPGA. The controller shall be designed with the intent to
meet the requirements of IEEE 802.3.

Aim: Find out if it is feasible to implement a gigabit Ethernet controller using an FPGA.
In the meaning of feasible, certain constraints for size, speed and device must be
met.

Method: Get an insight of the standard IEEE 802.3 and make a rough design of a gigabit
Ethernet controller in order to identify parts in the standard that might cause
problem when implemented in an FPGA. Implement the selected parts and
evaluate the results.

Conclusion: It is possible to implement a gigabit Ethernet controller using an FPGA and the
FPGA does not have to be a state-of-the-art device.

Nyckelord

Keywords CRC, Data Link Layer, Ethernet, FPGA, gigabit, GMII, MAC, MDI, MII,

OSI/BR model, RS, PHY, Physical Layer

ABSTRACT

Background: Many systems that Enea Epact AB develops for theirs customers
communicates with computers. In order to meet the customers demands on cost
effective solutions, Enea Epact wants to know if it is possible to implement a
gigabit Ethernet controller in an FPGA. The controller shall be designed with
the intent to meet the requirements of IEEE 802.3.

Aim: Find out if it is feasible to implement a gigabit Ethernet controller using an
FPGA. In the meaning of feasible, certain constraints for size, speed and device
must be met.

Method: Get an insight of the standard IEEE 802.3 and make a rough design of a
gigabit Ethernet controller in order to identify parts in the standard that might
cause problem when implemented in an FPGA. Implement the selected parts and
evaluate the results.

Conclusion: It is possible to implement a gigabit Ethernet controller using an
FPGA and the FPGA does not have to be a state-of-the-art device.

Vi

ABBREVIATIONS

AUI
b

B
CRC
DTE
EDA
FPGA
GMII
IEEE
IP
ISO
LLC
MAC

MDI
MII
OSI/BR
PHY

RS
RTL
TBI
TCP
UDP

Attachment Unit Interface

bit(s)

byte(s), octet(s) of bits

Cyclic Redundancy Checksum

Data Terminal

Electronics Design Automation

Field Programmable Gate Array

Gigabit Media Independent Interface
Institute of Electrical and Electronics Engineers, Incorporated
Internet Protocol or Intellectual Property
International Standardization Organization
Logical Link Control

Media Access Control (sublayer) or an electrical device that
incorporates the MAC, MAC Control and Reconciliation sublayers

Media Dependent Interface
Media Independent Interface
Open System Interconnection/Basic Reference (-model)

Electrical device that incorporates Physical layer except
Reconciliation sublayer

Reconciliation Sublayer
Register Transfer Level

Ten Bit Interface
Transmission Control Protocol

User Datagram Protocol

vil

FLOWCHART SYMBOLS

The following three types of symbols are used in flowcharts:

Function

Procedure

The following three types of symbols are used in state diagrams:

Process
<> Decision
T Delay element

FONTS

e Pascal - This style are used for names (processes, functions, procedures,

variables, constants, types etc.) that refers to the Pascal-like code
in IEEE 802.3

e VHDL - This style are used for names (processes, functions, procedures,
signals, variables, constants, types, block names etc.) that refers
to the VHDL implementation done in this study

e |code | - This style represents code written in VHDL or Pascal

Most of the names used in the VHDL implementation in this study are defined
in the standard IEEE 802.3. E.g. an in standard defined process foo are
implemented as a process called foo but the VHDL implementation may also
incorporate other functionality besides that defined in the standard, thereby this
distinction is made by the use of different styles.

viil

CONTENTS

Chapter 1: Introduction 1
1.1 Background............cooeuiiiiiiiii e 1
L2 AT it 1
1.3 General Description of Approach.........cccceeecvveeveiiiiiniieeciieens 2
1.4 Outline and Reading InStructionscceeevveeecveeesiieeeeiieeeas 2

Chapter 2: Background 3
2.1 Overview of IEEE 802.3 and the OSI/BR Model 3
2.1.1 The ISO OSI/BR Modelccceeruiiiiiieiieniieeie e 3
2.1.2 The IEEE 802 Standards and their relation to OSI................... 4
2.1.3 The IEEE 802.3 Standardcccceevviieeiieiiieeieceieeeee e, 5
2.1.4 The IEEE 802.3 Architectural Model..........c.ccccovevevrrenreennnnnnne. 5
2.2 Referenced Sublayers in IEEE 802.3ccceeeiiiiiiiiieeeiee 7
2.2.1 MAC Service SpecifiCationccccueeerrieeeriiieeeriieeerreeeeeveeens 7
2.2.2 RS Service SpecifiCationccccceecuveeeriieeeriieeeieeeereeeeireeens 9
2.3 Referenced Interfaces in IEEE 802.3ccccvvveiiieniieeeen. 13
2 T E Y 1 OSSPSR 13
2 T2 € 11 1 OSSP 17
2.4 Referenced Protocols in IEEE 802.3cccovveeiiiiniieee. 20
2.4.1 MAC Frame StrucCtureccoevveeeeiieeeniiieeniiee e eeieee e 20
2.4.2 Management Frame Structure..........cccccceeevvviveeeeniciieeeeeneen. 23

Chapter 3: Design Methodology 25
3.1 Requirement ANalysiS.......ccccevevieriieeeiieeiiienieeeieeeieeeseeesvean 26
3.2 Requirement Specification...........ceecvveeerciieeeeiieeeriiee e, 27
3.3 Design Planning..........cccoeecvviieeiiiieeciie e 28
34 Design ENtry ...ooeeiieeciieecee et 28
3.5 RTL Simulationcccceeviiiieiiiieciie e 28
3.6 SYNRESIS ...vviieiiiie e e 29
3.6.1 Choosing Target DeVICEcccueeeevieeeiiieeeiiieeeree e 29
3.6.2 Choosing Synthesize Methodcccoeeeeiiiiiciiieciie e, 30
3.7 Place & ROULE ..c.eeveiiiiiiiiiieceece e 32
3.8 Static TIMing ANalySisccccveeevviieiiiieeeiie e 32
3.9 Gate Level SImulationccceeevieeriiiniieeiieeieeeeeiee e 32
3,10 Validation.....cc.eeevieeiieeiieeieeciee ettt e 32

X

Chapter 4: Implementation 33
4.1 Design Planning...........cccceeeecieeieiiieeeiieeeee e 33
4.1.1 Partitioning of the Standard............cccoeveviiiiiniiieineeee, 33
4.1.2 Precise Design: TXMACcccoooiiiiiiiieeeeeeee e 38
4.1.3 Precise Design: Reconciliation Sublayer (RS)....................... 52
4.1.4 Precise Design: Station Management (STA)........cccceeeuveennnee. 57
4.2 Analysis of Possible Critical Blocks...........cccoeeuvieiiiiniiennns 61
4.2.1 Critical Block: TransmitLinkMgmt.............cccccveeeriierennnnnnee. 62
4.2.2 Critical Block: TXCRC32cvviiiiiiiiieiieeieeeeeeee e 62
4.2.3 Critical Block: BitTranSmitterccccceeevveerveenieenreeeneene, 62
4.3 Design ENtry co.eeeieeiieeeieeeeee et 63
4.3.1 Different Stylescocoevieieieeiieeciieeiie e 63
4.3.2 Implementation Example: BitTransmitterc.cccccuveen.ee. 64
4.4 RTL SImulationcccccoveieiiiieiieeeee e 69
4.5 SYNRESIS ..veiieiiiieeiie e 70
4.5.1 Choosing Target DEVICEcceeevvireerieeeeiieeeiee e 70
4.5.2 Choosing Synthesis Methodccccvveeiiiiiniiieiciee e, 71
4.6 Place & ROULEcccevviiiiiieeee e 71
4.7 Static TIMIng ANalysiS......ccceeeevieeeciiieeiiiie e 72
Chapter S: Results 73
5.1 SHZE e 74
5.2 Performancecoooeeiieiiiiiiiiic e 75
53 Power DiSSIPationc.ceeeecuieeeriiiieeiieeeiee e 76
Chapter 6: Discussion 77
6.1 Reliability and Availability of Obtained Results.................... 77
0.1.1 S1ZE.ueeiiieeeeeee e e 77
6.1.2 Performanceccceeevieeeiiiieciie et 78
6.1.3 Power DISSIPAtioNc.ueeeeeuiiieeiiie e 78
6.2 Comparison with IP core from XilinXcccoeeveeriieniennnnns 79
Chapter 7: Conclusion 81
Chapter 8: Recommendations 83
8.1 Status of WOrkcoocuoiiiiiiii e 83
8.2 Future Work ..o, 83
Chapter 9: Acknowledgements 85

Chapter 10: References 87
Appendix A:Protocols A-1
Appendix B: EDA Software B-1
Appendix C:Signal Table for MAC Sublayer C-1
Appendix D:Power Dissipation D-1

x1

LIST OF FIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

ISO’s seven layers OSI/BR model.cocvveviiiiiieniiiiiiecieeee, 4
Relationship within the family of IEEE 802 standards........................ 4
The LAN standard’s relationship to the OSI/BR model. 5
Service primitives’ and services’ relationships.c.ccceeevvveeriveeennenn. 7
MAC fUNCHONS. .eeeeeiieeiiiee ettt e e e e e e e e e e enes 8
RS services’ and STA’s connections to MII/GMIL................cc......... 10
RS services’ and STA’s connections to MII.ccccoeevvveniiieennnnns 13
RS services’ and STA’s connections to GMIL.ccceeeviieeennnenn. 17
The IEEE 802.3 MAC frame Structure.cccceeevveeeevieeenvieeeveeenns 20
Address field format.ccoeeiieiiiiiiieiece e 21
Management frame StrUCtUIE.ccveeeeviieeiiiiie e e 23
The workflow with addressed tools...........coooveeviiieniiiiiiiiiieeiee 26
TESt DENCH. ..ot 29
Bad design practice when preserve hierarchy is used.c......... 31

Relationship among CSMA/CD processes, procedures and
functions as defined in standard.c.ccooceriiiniiniiiiics 34

Relationship among CSMA/CD processes in the implementation. .. 35

The architecture of the implementation............cccccceeeeeieeeniiieeeeneennns 36
Implementation of MAC sublayer.cccceeeeieeeniiieeeiie e 37
The structure of TXMAC.ooooiiiiieieeeeee et 38
The structure of TxDataEncapsulation...........cccccecveeeecieeenciieeennnenns 39
The symbol for TransmitFrame..........cccccovvieviiieeeciieeeiie e 40
The symbol for TXCRC32.ccocviiiiiiieeeeeeeeee e 41
LFSR implementation of CRC-32..........cccceeeiiiiiniiiieeieeecee e 41
The symbol for ComputePad.cccooeeviiiiiiiiieieeeeeeee e 42
The structure of TxMediaAccesSMEML.......c.cceeveeerieerieeeiiieerieeniieans 42
The symbol for TransmitLinkMgmt...........cccceeeviienciiiniiieeieeieeen. 43
The symbol for Random.c.ccccveeviiiiiiiiiniieiececee e 44
The symbol for BurstTimer.ccoccvveveeiiiiiiiieeeiie e 44
The symbol for Deference.ccoveevvieeeiiieeiiieeeie e 45
The symbol for RealTimeDelay.ccccovvveviiiieiiiiieieeeeeeee 45
The signal pattern of the outputs of RealTimeDelay......................... 45

Xii

Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:

The symbol for BitTranSmitter.ccceeevveerciieeiiieeieeie e 46
The symbol for TXStateReg.cceecvvieiiiieiiieiieee e, 47
The structure of TXBufferPort.cccccoiiiiiiiiiiii 48
The symbol for TxDataFIFO............cccocevviiiiiiie e, 49
The symbol for TXDescFIFO.ccccoiviiiiiiiieeeeeeeeeee, 49
The symbol for TXDesCReg.ccccvvveeiviiiiiiiecee e, 50
The symbol for TXMIG.ccccoviiiiiiiieiieece e 51
The structure of RS.......ccoiiiiiii e, 52
The symbol for PLS DATATCQ. ...ccovvieeeiieeeiieeeeee e 53
The symbol for PLS SIGNALINd........ccceoeiiiiiiiiieiieeceeeeee e, 54
The symbol for PLS DATAINd.cccovviiiiiieeeeee e, 55
The symbol for PLS CARRIERINd.cccceoiiiiiiiiiiiiiieieee, 56
The structure Of STA.oooiiie e 57
The symbol for InDataReg.ccccvveviiieiiiiiiiiiieceee e, 58
The symbol for ClockGenerator.ccocvveeriiieenciee e, 58
The symbol for OutDataMUX.cccceriiiiiieiieeeiee e, 59
The symbol for Controller.ccovveeieieeiieeee e, 60
Insertion of delay elements to overcome latency problems.............. 62
Mealy state machine. Grayed-out register makes it synchronous..... 63
The program flow with grayed out delay elements........................... 65
Flow within each state..........ccceeieiiiiecciiiiceeeee e 66
Hierarchical routing resources for each row/column........................ 70

xiil

LIST OF TABLES

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:

Table 7:
Table &:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:

Permissible encoding of TX EN, TX ER and TXD.........ccccceeeeees 14
Permissible encoding of RX DV, RX ER and RXD 15
Permissible encoding of TX EN, TX ER and TXD.........ccccceeeees 18
Permissible encoding of RX DV, RX ER and RXD 19
Relative cost to fiX an eIrorcooueeiiiiiiiiiiiieieeeeeee e 27

Mapping of PLS service primitives to physical layer signals as

presented to MAC SUDIAYETccvveeeiiieeeiieeeiee e 52
Encoding of the GMII signals TXD, TX EN and TX ER............... 54
Decoding of the MII signals RX DV, RX ER and RXD................. 55
Decoding of the GMII signals RX DV, RX ER and RXD.............. 56
Size of the selected implementationsccceveeeeciieeecieeeecieeeeee. 74
Size of additional implementationsccceeceeeiieeiieenieeniee e, 74
Performance of the selected implementations............ccceeeveerveennnennn 75
Performance of additional implementationscccceeevveerveennnnnn 75
Power dissipation of the selected implementations............cccceeeueee.e. 76
Power dissipation of additional implementationscccceeeueenee. 76

X1V

CHAPTER

a1

Introduction

1.1 Background

This work has been carried out at Enea Epact AB, Link&ping, at the Embedded
Systems department between September 2001 and February 2002. Enea Epact
AB is a consulting company focusing on high-performance systems.

At the Embedded Systems department, some of the systems that have been
developed communicate with computers. In order to meet the demands from the
customers, Enea Epact wants to know if it is possible or not to implement a
gigabit Ethernet controller in an FPGA together with other functions.

1.2 Aim

Is it feasible to implement a gigabit Ethernet controller using an FPGA?
In the meaning of feasible, the following aspects shall be considered:

= Size A golden rule is to never fill the FPGA more than 80% in order to
avoid place & route problems. Besides the Ethernet controller,
there must be sufficient place left to implement another, large
design.

= Speed There must be a speed margin in the range of 10 to 20 %, since
only parts of the controller will be implemented.

= Device The selected FPGA shall be a midsize device, which may belong
to a high performance family of devices. Further, it is required not
to use the highest speed grade available.

In addition, a rough estimation of the power consumption shall be presented.

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

1.3 General Description of Approach

1. Get an insight and common knowledge about the standard IEEE 802.3° and
its associated standards where necessary.

2. Make a design suitable for VHDL implementation of necessary parts in the
standard.

3. Implement these block in VHDL using Renoir from Mentor Graphics.

4. Check their functional behavior by simulation using ModelSim from Model
Technology.

5. Synthesize the blocks using Leonardo from Exemplar Logic. Implement the
design using ISE Alliance and then check the blocks’ size and performance.

6. Collect the results from step 5 and decide whether it’s feasible or not.

7. Estimate the power dissipation.

1.4 OQOutline and Reading Instructions

The next chapter introduces the OSI/BR model, which is a commonly used
model for describing network communication. Also presented here is the
standard IEEE 802.3, which among other techniques describes gigabit Ethernet.

Chapter 3 describes the methodology that was used during this work including
which development tools that was used.

Chapter 4 tells about the implementation and how each step of the methodology
was carried out in practice. An example is given how code written in the Pascal-
like language used in IEEE 802.3 was ported to VHDL.

In chapter 5, the results (size, performance and power dissipation) of the
implementation are presented.

A discussion regarding limitations, what could have been done better etc. and
the conclusions can be found in chapter 6 and 7 respectively.

Recommendations for future work are presented in chapter 8.
Finally, acknowledgements and a reference list are given in chapter 9 and 10.

The reader is expected to possess a basic knowledge about HDL languages such
as VHDL and fundamental digital building blocks.

CHAPTER

2

Background

This chapter presents the standard IEEE 802.3 and a brief summary of the parts
from it that has been used in this study.

In addition, the standard for the OSI/BR model is presented since the
architectural description used in IEEE 802.3 is based upon this model.

2.1 Overview of IEEE 802.3 and the OSI/BR Model

This section will give an introduction to the standard IEEE 802.3 and its
relationship to the architectural model of networking given by the Open System
Interconnection Basic Reference Model, OSI/BR.

2.1.1 The ISO OSI/BR Model

The OSI/BR model is described in the standard ISO/IEC 7498-1:1994. The
purpose with this model is to have a standardized model that gives a common
basis for the development of different standards for system interconnection.

This model, shown in figure 1, consists of seven layers. Since the model is very
adaptable, all layers are optional. Each layer has a dedicated function but
because of its very commonly held structure, not every layer will have a
counterpart in every standard for interconnection.

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

Layer 7 APPLICATION T

Layer 6 PRESENTATION | Higher layers
Layer 5 SESSION

Layer 4 TRANSPORT

Layer 3 NETWORK

Layer 2 DATA LINK I Lower layers
Layer 1 PHYSICAL l

Figure 1: ISO’s seven layers OSI/BR model.

In the IEEE 802.3 standard, the two lowest layers are referenced. These are the
Physical and Data Link layers. The Physical layer describes the medium that the
communication link uses and techniques associated with transmission and
reception over the medium, e.g. which type of modulation that is used. The Data
Link layer describes how the access to the link is managed, e.g. how a client
connection to another client is established.

For orientation, some common protocols and their counterpart to the different
layers in the OSI/BR model is presented in appendix A.

2.1.2 The IEEE 802 Standards and their relation to OSI

IEEE 802 is a family of standards for local and metropolitan area networks
(LAN and MAN). Their internal relationships and their relation to the OSI/BR
model is shown in figure 2. The standards apply to the two lowest layers of the
OSI/BR model (Data Link layer and Physical layer) with the exception of IEEE
802.10.

802.2 LOGIC LINK

802.1 BRIDGING

802.10 SECURITY

DATA LINK

802.3 || 802.4 || 802.5 || 802.6 || 802.11|| 802.12 || 802.16
MEDIUM || MEDIUM || MEDIUM || MEDIUM || MEDIUM || MEDIUM || MEDIUM
ACCESS || ACCESS || ACCESS || ACCESS || ACCESS || ACCESS || ACCESS

802 OVERVIEW &
ARCHITECTURE
802.1 MANAGEMENT

802.3 8024 802.5 802.6 || 802.11 || 802.12 || 802.16
PHYSICAL PHY- || PHY- || PHY- || PHY- || PHY- || PHY- || PHY-
SICAL || sicaL || sicaL || sicAL || sicAL || sicAL || sicAL

Figure 2: Relationship within the family of IEEE 802 standards.

Chapter 2 — Background

The standards 802.3-6, 11, 12 and 16 define different medium access
technologies and their associated media. As an example, 802.3 defines the
access method using Carrier Sense Multiple Access with Collision Detection
(CSMA/CD), while e.g. 802.11 defines the access method using Wireless LAN.

2.1.3 The IEEE 802.3 Standard

This standard for LANs employing CSMA/CD as access method supports bit
rates from 1 Mbps to 1’000 Mbps. The focus in this report is on 1’000 Mbps
systems using copper cabling as physical medium.

The first edition of the 802.3 standard was approved by IEEE itself in 1983.
Since then, new parts have been added and old parts revised. Every change to
the standard has been given a name, e.g. IEEE 802.3ab. The letters at the end
refers to a specific clause that was added or a specific revision of the whole
standard. Since the standard has been rather large, it is not often possible to state
that a certain product is “IEEE 802.3 compliant”. Instead, the parts of the
standard that have been implemented is targeted directly, e.g. “IEEE 802.3ab
compliant”.

2.1.4 The IEEE 802.3 Architectural Model

The architecture of IEEE 802.3 corresponds closely to the two lowest layers of
the OSI/BR model as shown in figure 3.

OSI/BR LAN
MODEL CSMA/CD
LAYERS LAYERS

HIGHER LAYERS

APPLICATION // LLC - LOGICAL LINK CONTROL
AESENTATION J MAC CONTROL (OPTIONAL)
/ MAC - MEDIA ACCESS CONTROL
SESSION /) PLS || RS I RS I RS
/ T T
TRANSPORT |/ / Mu—EI Mu—EI GMII—EI
/
/
NETWORK /AU | P | PCS PCS
/
oATALNK 1/ 11 AUI—ST T PMA PMA
| PMA H PMA PMD PMD
PHYSICAL MDI | MDI-»‘ | MD|->| | MDI ->i |
§ MEDIA § | MEDIA § | MEDIA § | MEDIA §
1 Mbps, 10 Mbps 10 Mbps 100 Mbps 1000 Mbps

Figure 3: The LAN standard’s relationship to the OSI/BR model.

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

The Data Link layer in the OSI/BR model is partitioned into three sublayers in
the architecture in order to obtain maximum flexibility within the family of
IEEE 802 standards. By doing this, various media access methods are allowed
since the LLC sublayer is the same for all of them.

Each sublayer in the architectural model provides a set of services that the
nearest implemented higher sublayer uses. Service is the gathering name for
function, procedure and variable that is made public and used by other parts of a
system but the part providing them.

A service is described in its most abstract form by a service primitive. There are
two generic types of primitives, REQUEST and INDICATION. The REQUEST
primitive is passed from a higher layer to a lower and INDICATION vice versa.
The REQUEST primitive requests a service to be initiated while the
INDICATION primitive indicates an event.

The architecture also defines five important compatibility interfaces (MII, GMII,
AUI, MDI and, not shown in figure 3, TBI). All interfaces, but MDI, are
optional and in this study, only MII and GMII are of interest. MII and GMII are
further explained in sections 2.3.1 and 2.3.2.

When implemented in hardware the typical solution until today has been to
implement the Physical layer except Reconciliation sublayer, RS, in one device,
often referred to as a PHY device, and the Data Link layer together with RS into
another, often referred to as a MAC device. The MAC device also typically
incorporates a bus controller suitable for the intended host system, e.g. PCI if
implemented for use in a PC. Another solution that has become more common is
to implement both the Data Link layer and the Physical layer together in a single
device in order to save space, power and cut costs.

When a two-device constellation is used, the two devices are connected to each
other via the MII and/or GMII. A benefit with separate MAC and PHY devices
is that one MAC device can be connected to several PHY devices. By doing that
the bandwidth can be increased since the links form a single link as seen by the
LLC sublayer. This type of link is referred to as aggregated link.

In this work, a PHY device will be used and the FPGA will contain the RS and
higher sublayers.

Chapter 2 — Background

2.2 Referenced Sublayers in IEEE 802.3

Two of the sublayers defined in IEEE 802.3 are referenced in this study. It is the
RS and MAC sublayer. Figure 4 shows the services provided by each sublayer.
The provider of a service is always the sublayer beneath the arrow. The arrow
points from the calling sublayer, e.g. the service collisionDetect is provided by
the RS and indicates to the MAC sublayer when a collision has been detected.
Another example is the service TransmitBit, also provided by RS, which the
MAC sublayer uses to request the transmission of frames.

In figure 4, the optional MAC Control sublayer has been implemented. If this
sublayer were not to be implemented, the two service primitives denoted
MA_CONTROL.* would not be present. The direction of the arrows for service
primitives points upwards if it is of type indication and downwards if it is of
type request.

MAC Client
T MA_DATA.request T MA_CONTROL.request
MA_DATA.indicate l MA_CONTROL.indicate l

MAC Control Sublayer

ReceiveFrame TransmitFrame

v v

MAC Sublayer

collisionDetect TransmitBit

4 | I

Wait T receiveDataValid

l carrierSense | ReceiveBit transmitting l
RS

Figure 4: Service primitives’ and services’ relationships.

The services for the MAC sublayer and RS are further described in sections
2.2.1 and 2.2.2 respectively.

2.2.1 MAUC Service Specification

The MAC sublayer performs the access control for the shared media (i.e. the
physical cable). Besides the access control it also performs, among other things,
checksum generation for outgoing frames and checks incoming ones, assemble
and dissemble frames.

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

A
ACCESS TO MAC CLIENT
\ 4
TRANSMIT RECEIVE
DATA DATA
ENCAPSULATION DECAPSULATION
l MAC T
TRANSMIT RECEIVE
MEDIA ACCESS MEDIA ACCESS
MANAGEMENT MANAGEMENT
7'y
ACCESS TO PHYSICAL LAYER
v

Figure 5: MAC functions.

The services provided by the MAC sublayer allow the MAC client entity to
exchange LLC data with peer LLC sublayer entities.

The MAC sublayer is described in several levels of abstraction. The highest
level is the specification of service primitives, notated as “MA_*” in figure 4.
These service primitives are translated to services, e.g. the service primitive
MA_ DATA.request is an abstraction of the service TransmitFrame. The services
provided by the MAC sublayer are presented in sections 2.2.1.1 and 2.2.1.2.

How the services are obtained is then given by a functional specification of the
MAC sublayer presented in IEEE 802.3, Clause 4.2.8. This functional
specification, written in a Pascal-like code, is later used in chapter 4 where the
implementation of the sublayer is performed.

2.2.1.1 TransmitFrame

The MAC client (i.e. MAC Control or LLC sublayer) transmits a frame by
invoking TransmitFrame (IEEE 802.3, Clause 4.3.2).

function TransmitFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam:LengthOrTypeValue;
var dataParam: DataValue
) : TransmitStatus;

type TransmitStatus = (transmitDisabled, transmitOk,
excessiveCollisionError,
lateCollisionErrorStatus);

Chapter 2 — Background

The TransmitFrame operation is synchronous and lasts the entire attempt to
transmit the whole frame and when finished, it reports success or failure via
TransmitStatus.

TransmitStatus can also take the underlined values, but only if Layer
Management is implemented.

2.2.1.2 ReceiveFrame

The MAC client (i.e. MAC Control or LLC sublayer) accepts to receive a frame
by invoking ReceiveFrame (IEEE 802.3, Clause 4.3.2).

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue
) : ReceiveStatus;

type ReceiveStatus = (receiveDisabled, receiveOk,
frameToolLong, frameCheckError, lengthError,
alignmentError) ;

The ReceiveFrame operation is synchronous and lasts the entire attempt to
receive the whole frame and when finished, it reports success or failure via
ReceilveStatus.

ReceiveStatus can also take the underlined values, but only if Layer
Management is implemented.

2.2.2 RS Service Specification

The interface through which the MAC sublayer uses the facilities of the Physical
layer consists of a function, a pair of procedures and four Boolean variables.

The services that RS provides are defined by the service primitives for the
Physical Layer Signaling (PLS) sublayer, notated “PLS_*” in figure 6. The RS
maps these service primitives to electrical signals that form the interfaces MII
and GMII.

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

PLS Service Primitives PLS Services MII+GMII Signals

RS
p TXD<7:4>
» TXD<3:0>
TransmitBit » TX EN
PLS_DATA.request transmittingj » TX_ER
» GTX_CLK
TX_CLK

PLS_SIGNAL.indicate { collisionDetect €4— COL

RXD<7:4>
RXD<3:0>
RX_ER
RX_CLK
PLS_DATA_VALID.indicate receiveDataValid « RX_DV

PLS_DATA. indicate ReceiveBit—p

PLS_CARRIER.indicate { carrierSense <€— CRS

l—b MDIO

» MDC

STA

wait—p[]

Figure 6: RS services” and STA’s connections to MII/GMII.

2.2.2.1 carrierSense

The variable carrierSense signals to the MAC sublayer if there is any
activity or not on the physical medium.

var carrierSense: Boolean;

The variable is set to true immediately upon detection of activity and set to false
as soon as the activity ceases. The transitions of the variable are not synchronous
with any of the clocks defined.

The behavior of the variable is only specified for half duplex mode, meaning
that it shall be omitted in full duplex mode.

2.2.2.2 receiveDataValid

The variable receiveDataValid signals to the MAC sublayer if there is data
being received by the physical layer.

var receiveDataValid: Boolean;

When the variable receiveDataValid is set to true by the physical layer, the
10

Chapter 2 — Background

MAC sublayer shall immediately begin receiving the incoming data by using the
function ReceiveBit. The function will be called repeatedly until
receiveDataValid becomes false.

2.2.2.3 collisionDetect

The variable collisionDetect signals to the MAC sublayer if a collision
occurs in the physical medium.

var collisionDetect: Boolean;

The variable collisionDetect remains true during the duration of the
collision. It can only be true during transmission, not during reception.

The behavior of the variable is only specified for half duplex mode, meaning
that it shall be omitted in full duplex mode.

2.2.2.4 transmitting

The variable transmitting signals to the Physical sublayer if data is being
transmitted.

var transmitting: Boolean;

Prior to the first bit of data to be transmitted is passed from the MAC sublayer to
the Physical layer, transmitting is set to true to inform that a stream of bits
will be presented via the procedure TransmitBit.

When the last bit has been transferred, transmitting is set to false in order to
indicate the end of the frame.

2.2.2.5 TransmitBit

During transmission, the outgoing frame is passed bit by bit to the Physical layer
by repeated use of the procedure TransmitBit.

procedure TransmitBit (var bitParam: PhysicalBit);

Each invocation of the procedure passes one new bit and the duration of the
operation is one bit time. Prior to the first invocation of the procedure, the
variable transmitting has to be set to true.

A PhysicalBit, when transmitting, is a bit that can take the values 0, 1,
extensionBit or extensionErrorBit. An extensionBit is a non-data
value used for carrier extension and interframe during bursts.

11

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

An extensionErrorBit is a non-data value used to jam during carrier
extension.

2.2.2.6 ReceiveBit

During reception, the incoming frame is passed bit by bit to MAC sublayer by
repeated use of the function ReceiveBit.

function ReceiveBit(): PhysicalBit;

Each invocation of the function passes one new bit and the duration of the
operation is one bit time. The function is invoked every time that
receiveDataValid is set to true.

A PhysicalBit, when receiving, is a bit that can take the values 0, 1 or
extensionBit. An extensionBit is a non-data value used for carrier
extension and interframe during bursts.

2.2.2.7 Wait

The procedure Wait waits for a specified number of bit times, which allows the
MAC sublayer to measure time in units of bit times.

procedure Wait (var bitTimes: Integer);

A bit time is the period it would takes to transmit one bit on the physical
medium, e.g. when sending in 100 Mbps 1 bit time is 10 ns.

12

Chapter 2 — Background

2.3 Referenced Interfaces in IEEE 802.3

There are totally five electrical interfaces defined within IEEE 802.3. Only two
of them are relevant for this study and they are MII and GMII. Their location in
the architecture can be seen in figure 3.

On many counts, the two interfaces are identical. The difference is the bit width
of the data signals, and the encoding of the same is extended for GMII. The
transmit clock signal also differ between MII and GMII. This allows the
interfaces to be merged together, which often is done in integrated circuits that
provide both a MII and a GMII interface.

The MII and GMII interfaces are further describe in sections 2.3.1 and 2.3.2
respectively, where the latter one only describes the signals in the cases where
the definition differs from the one for MII.

23.1 MII

The interface through which the PHY device communicates with higher layers
at speeds of 10 or 100 Mbps is called MII (fig. 7).

PLS Service Primitives PLS Services RS MIl Signals
p TXD<3:0>
TransmitBit:I » TX_EN
PLS_DATA request transmitting » TX_ER
TX_CLK
PLS_SIGNAL.indicate { collisionDetect €— COL
RXD<3:0>
PLS_DATA.indicate ReceiveBit—p| RX_ER
RX _CLK
PLS_DATA _VALID.indicate receiveDataValid €— RX_DV
PLS_CARRIER.indicate { carrierSense €¢— CRS

—— STA —
j—b MDIO
» MDC

war—sl |

Figure 7: RS services’ and STA’s connections to MII.

The grayed boxes in figure 7 indicate domains for which all associated signals
and services have a specified timing relationship in the standard. There is no
specified timing relationship between any of the boxes.

13

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

2.3.1.1 TX CLK (transmit clock)

TX CLK 1s a continuous clock, sourced by the PHY, that provides the timing
reference for the transfer of the TXD, TX EN and TX ER signals from the RS to
the PHY.

The clock will have a frequency equal to one-fourth of the data rate (i.e. 25 MHz
for 100 Mbps).

2.3.1.2 TX EN (transmit enable)

TX EN is driven by the RS to indicate that nibbles for transmission is presented
on TXD and transitions synchronously with TX CLK. TX EN shall be asserted
from the first nibble of Preamble through the whole frame and then de-asserted.

2.3.1.3 TX ER (transmit coding error)

TX ER is driven by the RS to indicate to the PHY that the RS, or any higher
layer, has encountered problems during transmission and the frame currently
being transmitted is not correct. TX ER transitions synchronously to TX CLK.

2.3.1.4 TXD (transmit data)

TXD<3:0> 1s a bundle of four data signals, where TXD<0> is the least
significant bit. TXD is driven by the RS and transitions synchronously to
TX CLK. For each TX CLK period in which TX EN is asserted, TXD is accepted
for transmission by the PHY.

Table 1: Permissible encoding of TX EN, TX ER and TXD

TX_EN TX_ER TXD<3:0> Indication
0 0 0-F Normal inter-frame
0 1 0-F Reserved
1 0 0-F Normal data transmission
1 1 0-F Transmit error propagation

2.3.1.5 RX CLK (receive clock)

RX CLK is a continuous clock, sourced by the PHY, that provides the timing
reference for the transfer of the RXD, RX DV and RX ER signals from the PHY to
the RS.

The clock will have a frequency equal to one-fourth of the data rate (i.e. 25 MHz
for 100 Mbps).

14

Chapter 2 — Background

2.3.1.6 RX DYV (receive data valid)

RX DV is driven by the PHY to indicate that the PHY i1s presenting data on
RXD<3: 0> and transitions synchronously with RX CLK. RX DV shall be asserted
continuously from the first recovered nibble (starting no later than SFD) through
the whole frame and then de-asserted.

2.3.1.7 RX ER (receive error)

RX ER is driven by the PHY to indicate to the RS that an error was detected
somewhere in the frame presently being transferred over the MII. RX ER
transitions synchronously to RX CLK.

2.3.1.8 RXD (receive data)

RXD<3:0> is a bundle of four data signals, where RXD<O0> is the least
significant bit. RXD is driven by the PHY and transitions synchronously to
RX CLK. For each RX CLK period where RX DV is asserted, PHY transfers a
nibble of recovered data bits to the RS.

During a “Normal data reception”, the service ReceiveBit will transfer a “0” or a
“1”. During a “False Carrier indication”, the service ReceiveBit will transfer an

extensionBit (sec. 2.2.2.6). Table 2 summarizes the permissible encoding of
RX DV, RX ER and RXD.

Table 2: Permissible encoding of RX DV, RX ER and RXD

RX_ DV RX_ER RXD<3:0> Indication
0 0 0-F Normal inter-frame
0 1 0 Normal inter-frame
0 1 1-D Reserved
0 1 False Carrier indication
0 1 Reserved
1 0 0-F Normal data reception
1 1 0-F Data reception error

2.3.1.9 CRS (carrier sense)

CRS is driven by the PHY and asserted when there is activity on the medium. In
other cases, CRS will be de-asserted. The transition of CRS is not required to be
synchronous with either TX CLK or RX CLK.

The behavior of CRS is unspecified for full duplex operation.

15

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

2.3.1.10 COL (collision detect)

COL is driven by the PHY and asserted as long as there is a collision on the
transmit medium, otherwise COL is de-asserted. The transition of COL is not
required to be synchronous with either TX CLK or RX CLK.

The behavior of COL is unspecified for full duplex operation.

2.3.1.11 MDC (management data clock)

MDC is sourced by the Station Management entity (STA) and used as the timing
reference for the signal MDIO. Further, MDC is an aperiodic clock signal that has
no maximum high or low times. This clock is not related to the clocks TX CLK
or RX CLK.

2.3.1.12 MDIO (management data input/output)

MDIO is a bidirectional signal between the PHY and the STA. It is used to
transfer control and status information between the PHY and the STA. Control
information is driven by the STA synchronously with respect to MDC and is
sampled synchronously by the PHY. Status information is driven by the PHY
synchronously with respect to MDC and is sampled synchronously by the STA.

16

Chapter 2 — Background

23.2 GMII

The interface through which the PHY device communicates with higher layers
at speeds of 1’000 Mbps is called GMII (fig. 8).

PLS Service Primitives PLS Services RS GMII Signals
p TXD<7:0>
TransmitBit » TX_EN
PLS_DATA. t -
S- reques transmittingj » TX_ER
p GTX _CLK
PLS_SIGNAL.indicate { collisionDetect €— COL
RXD<7:0>
PLS_DATA.indicate ReceiveBit—p RX_ER
RX_CLK
PLS_DATA_VALID.indicate receiveDataValid « RX_DV
PLS_CARRIER.indicate { carrierSense €¢— CRS
—— STA ——
j—b MDIO
» MDC

wai—{ |

Figure 8: RS services” and STA’s connections to GMIL

The grayed boxes in figure 8 indicate domains for which all associated signals
and services have a specified timing relationship in the standard. There is no
specified timing relationship between any of the boxes.

2.3.2.1 GTX CLK (transmit clock)

GTX CLK is a continuous clock, sourced by RS, that provides the timing
reference for the transfer of the TXD, TX EN and TX ER signals from RS to the
PHY.

The clock will have frequency equal to one-eighth of the data rate (i.e. 125 MHz
for 1’000 Mbps).

2.3.2.2 TX EN (transmit enable)

(Same behavior as for MII, see section 2.3.1.2)

2.3.2.3 TX ER (transmit error)

(Same behavior as for MII, see section 2.3.1.3)

17

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

2.3.2.4 TXD (transmit data)

TXD<7:0> is a bundle of eight data signals, where TXD<O0> is the least
significant bit. TXD is driven by the RS and transitions synchronously to
GTX CLK. For each GTX CLK period in which TX EN is asserted, TXD is
accepted for transmission by the PHY.

During a Normal data transmission, the service TransmitBit will transfer a “0”
or a “1”. During a “Carrier Extend” or a “Carrier Extend error”, the service
TransmitBit will transfer respectively an extensionBit or an
extensionErrorBit (sec. 2.2.2.5). Table 3 summarizes the permissible
encoding of TX EN, TX ER and TXD.

Table 3: Permissible encoding of TX EN, TX ER and TXD

TX_EN TX_ER TXD<7:0> Indication

00 - FF Normal inter-frame
00 - OE Reserved

OF Carrier Extend
10-1E Reserved

1F Carrier Extend Error

20 - FF Reserved

00 - FF Normal data transmission

- a2 O O o o o o]l
IR o TS G G GG O e N |

00-FF Transmit error propagation

2.3.2.5 RX CLK (receive clock)

RX CLK is a continuous clock, sourced by the PHY, that provides the timing
reference for the transfer of the RX DV, RXD and RX_ER signals from the PHY to
the RS.

The clock will have frequency equal to one-eighth of the data rate (i.e. 125 MHz
for 1’000 Mbps).

2.3.2.6 RX DYV (receive data valid)

(Same behavior as for MII, see section 2.3.1.6)

2.3.2.7 RX ER (receive error)

(Same behavior as for MII, see section 2.3.1.7)

18

Chapter 2 — Background

2.3.2.8 RXD (receive data)

RXD<7:0> is a bundle of eight data signals, where RXD<O0> is the least
significant bit. RXD is driven by the PHY and transitions synchronously to
RX CLK. For each RX CLK period where RX DV is asserted, PHY transfers a
nibble of recovered data bits to the RS.

During a “Normal data reception”, the service ReceiveBit will transfer a “0”
or a “1”. During a “False Carrier indication”, a “Carrier Extend” or a “Carrier
Extend error”, the service ReceiveBit will transfer an extensionBit (sec.
2.2.2.6). Table 4 summarizes the permissible encoding of RX DV, RX ER and
RXD.

Table 4: Permissible encoding of RX DV, RX ER and RXD

RX_DV RX_ER RXD<7:0> Indication

20 - FF Reserved

00-FF Normal data reception

0 0 00 - FF Normal inter-frame

0 1 00 Normal inter-frame

0 1 01-0D Reserved

0 1 OE False Carrier indication
0 1 OF Carrier Extend

0 1 10-1E Reserved

0 1 1F Carrier Extend error

0 1

1 0

1 1

00-FF Data reception error

2.3.2.9 CRS (carrier sense)

(Same behavior as for MII, see section 2.3.1.9)

2.3.2.10 COL (collision detect)

(Same behavior as for MII, see section 2.3.1.10)

2.3.2.11 MDC (management data clock)

(Same behavior as for MII, see section 2.3.1.11)

2.3.2.12 MDIO (management data input/output)

(Same behavior as for MII, see section 2.3.1.12)

19

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

2.4 Referenced Protocols in IEEE 802.3

There are two protocols defined in IEEE 802.3 and both of them are used in this
project. The first one is the MAC frame structure, which is the frame format
used for transmission of data over the shared medium. Remember, one of the
tasks for the MAC sublayer is to assemble the data and build a frame according
to this structure.

The other frame structure is used for communication between a MAC and one or
more connected PHYs.

2.4.1 MAC Frame Structure

The MAC frame structure is defined in IEEE 802.3, Clause 3. There exist
several names for this frame format. One of the most common names is Ethernet
II, which refers to the MAC frame when type interpretation is used upon the
Length/Type field. Another common name is Ethernet frame or Ethernet 802.3
Raw frame. Both these names refer to a MAC frame when length interpretation
is used upon the Length/Type field. The Length/Type field is further explained
in sec. 2.4.1.4. Figure 9 shows the MAC frame structure and, depending of the
value of the Length/Type field, it can be either an Ethernet or an Ethernet II
frame.

7B 1B 6B 6B 2B 46-1500 B 4B
Destination Source MAC Client | T :
Preamble Address Address Data ! PAD | FCS EXT |
SFD Length/Type

Figure 9: The IEEE 802.3 MAC frame structure.

The fields in the frame are transmitted from left to right. The byte(s) within each
field are transmitted from left to right. Each byte in the frame, with the
exception of the FCS, is transmitted with low-order bit first.

The extension field, EXT, is only needed for 1’000 Mbps half duplex operation.

2.4.1.1 Preamble field

The Preamble field is used for synchronization of the receiver with respect to the
transmitter.

The preamble pattern is:
{10101010 10101010 10101010 10101010 10101010 10101010 10101010}

The bits are transmitted from left to right.

20

Chapter 2 — Background

2.4.1.2 Start Frame Delimiter (SFD) field
This field denotes the start of the frame.

The pattern is:
{10101011}

The bits are transmitted from left to right.

2.4.1.3 Destination and Source Address fields

The address fields should be 48 bits. IEEE 802 states that one can use either 16-
or 48-bit addresses but in IEEE 802.3, 16-bit addresses have been excluded.

1b 1b 46 b

I/IG U/L MAC Address

I/G =0’ Individual address

I/G =’1" Group address

U/L =’0’ Globally administered address
U/L =’1’ Locally administered address

Figure 10: Address field format.

The Destination Address (DA) field specifies the station(s) for which the frame
is intended. While the Source Address (SA) field specifies the station that sends
the frame.

If all (48) bits in the DA field are set to ‘1°, a broadcast will be performed.

The last 46 bits of the address field contains the MAC Address (sometimes
referred to as the Ethernet Address). The MAC Address is unique for each
station and the allotment of addresses is managed by the IEEE Registration
Authority, i.e. a manufacturer of network controllers has to get the MAC
Addresses directly from IEEE. If two stations on the same network would use
the same MAC Address, it would cause a collapse of the network.

Each byte in the Address field shall be transmitted with least significant bit first.

2.4.1.4 Length/Type field

This field has two meanings depending of its value. The first byte in the field is
the most significant one.

If the value is less than 0x0600 then the field indicates the number of MAC
Client Data bytes contained in the subsequent data field of the frame (length
Interpretation).

21

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

If the value is greater than or equal to 0x0600 then the field indicates the type of
the MAC Client Protocol (type interpretation).

2.4.1.5 Data and PAD fields

The data field contains a sequence of n bytes. Full data transparency is provided
in the sense that any arbitrary sequence of byte values may appear in the data
field up to a maximum number specified by the implementation of the standard
that is used. A minimum frame size is required for correct operation and is
specified by the particular implementation of the standard.

If necessary, the data field is extended by appending extra bits (that is, a pad) in
units of bytes after the data field but prior to calculating and appending the FCS.
The size of the pad, if any, is determined by the size of the data field supplied by
the MAC client and the minimum frame size and address size parameters of the
particular implementation.

The maximum size of the data field is determined by the maximum frame size
and address size parameters of the particular implementation.

2.4.1.6 Frame Check Sequence (FCS) field

The FCS field contains a 32-bit checksum of the frame. The checksum is of the
type cyclic redundancy check, CRC (in this case, CRC-32). This value is
computed as a function of the contents of the Source Address, Destination
Address, Length/Type, Data and PAD fields (that is, all fields except the
preamble, SFD, FCS and EXT).

The 32 bits of the CRC value are placed in the FCS field so that the x*' term is
the left most bit of the first byte, and the x” term is the right most bit of the last

byte (the bits of the CRC are thus transmitted in the order L x* X XO).

2.4.1.7 Extension (EXT) field

The Extension field follows the FCS field, and it is made up of a sequence of
extension bits (described in sec. 2.3.2.4 and 2.3.2.8).

The contents of the Extension field are not included in the FCS computation.

The Extension field may have a length of greater than zero when sending in half
duplex mode above 100 Mbps. The length of the Extension field will be zero
under all other conditions.

22

Chapter 2 — Background

2.4.2 Management Frame Structure

Frames transmitted on the MII/GMII Management Interface shall have the frame
structure shown in figure 11. The order of bit transmission shall be from left to
right.

32b 2b 2b 5b 5b 2b 16 b

PRE ST [OP| PHYAD REGAD | TA DATA

Figure 11: Management frame structure.

2.4.2.1 PRE (preamble)

At the beginning of each transaction, the STA shall send a sequence of 32
contiguous logic one bits on MDIO in order to establish the synchronization
with the PHY.

If every PHY that is connected to the MAC is able to accept frames that are not
preceded by the preamble, the STA may suppress the generation of it.

2.4.2.2 ST (start of frame)
The start of the frame is indicated by a “01” pattern.

2.4.2.3 OP (operation code)

When STA shall set a bit in the register of the PHY, a write transaction will be
carried out, which is indicated by a “10” pattern. When STA whishes to read the
value in the PHY’s status register, a read transaction is performed, which is
indicated by a “01” pattern.

2.4.2.4 PHYAD (PHY Address)

The PHY Address is five bits, allowing 31 PHY's to be connected to one MAC.
PHY address zero (“00000) is a broadcast address that every connected PHY
shall respond.

2.4.2.5 REGAD (Register Address)

The Register Address is five bits, allowing 32 individual registers to be
addressed within each PHY. The address is transmitted with MSB first. The
PHY’s registers are defined in IEEE 802.3, Clause 22.2.4.

23

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

2.4.2.6 TA (turnaround)

The turnaround is a 2-bit-time spacing between the REGAD field and the DATA
field. During a write transaction, STA shall drive a logic one bit for the first bit
time and a logic zero during the second. For a read transaction, both the STA
and the PHY shall be in high-impedance state during the first bit time. During
the second bit time, the PHY shall drive a logic zero bit.

2.4.2.7 DATA (data)

The data field is 16 bits. The first bit transmitted and received corresponds to bit
15 of the addressed register.

2.4.2.8 IDLE (IDLE condition)
The IDLE condition on MDIO is a high-impedance state.

24

CHAPTER

3

Design Methodology

Design methodology, as concept, can be interpreted in different ways. Some
might think of it as a specific way of working through the design phase only
(e.g. the commonly known “top-down” method sometimes used for software
development). There is also a wider conception where one means the whole
workflow from idea to a working product. In this chapter, the latter
interpretation is used.

The design methodology describes the different actions taken under the
development process. These actions can be carried out in different ways (and
with different tools). This chapter describes a design methodology that is rather
common today and which has been used in this work. The workflow is shown in
figure 12. The choice of methodology in this study was not done exclusively,
but the one implied by the selection of tools that were used.

An important thing to remember about all design methodologies is that the
methodology shall be a tool in order to make the work easier, it should not
become an end in itself.

25

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

Requirement

Analysis N/A
Requirement
Specification N/A
Design N/A
Planning

Design

Entry

RTL Simulation

Synthesis

Place & Route

Static Timing
Analysis

Gate Level
Simulation

Validation

-

HDL
Designer

RTL VHDL

ModelSim

Leonardo| EDIF

Spectrum

\ 4
ISE
Alliance

Leonardo

Spectrum \¢———| VHDL & SDF
ModelSim |«

N/A

Figure 12: The workflow with addressed tools.

3.1 Requirement Analysis

This is the phase where one decides what the system actually should do. The
environment surrounding the system is analyzed and the demands on the system
are identified. The resulting document is written in prose:

“By mounting the network controller on a sensor, the sensor can
transmit measurement data in gigabit rate.

Producing the analysis document and specification document is an iterative
process with many loops in order to cover all aspects of the system. To miss
something in these first two steps can turn out to be very costly, which can be
seen in table 1.

26

Chapter 3 — Design Methodology

Table 5: Relative cost to fix an error

Phase Cost ratio Step (sections)
Requirements 1 3.1,3.2

Design 3-6 3.3

Coding 10 3.4,36,3.7
Development testing 15-40 3.5, 3.8, 3.9
Validation 30-70 3.10

Operation 40 -1000

The figures in table 5 applies to software development but since we are dealing
with hardware development in terms of programming HDL these figures can be
considered to be relevant even for this case. One should also know that these
figures are considered conservative [Boehm 1980].

3.2 Requirement Specification

The specification defines in natural language what the system is supposed to do.
The difference between this document and the analysis document is that the
components, actors, services etc. are identified (and named) and the demands on
each of these parts are condensed from the previous document. During this
process, missing parts can be analyzed and corrected. System components and
their associated characteristics are marked in the requirement analysis
document:

“By mounting the network controller on a sensor, the sensor can
transmit measurement data in gigabit rate.

The requirement specification document is then written in the form:
“The <system component> shall <required characteristic>"
Using the fragment from the previous section would result in:
"The network controller shall support gigabit Ethernet.”

There are both functional and non-functional requirements.
A functional requirement specifies what the system should do, i.e. its
functionality and features, of which the line above is an example.

A non-functional requirement specifies how the functionality is obtained, and
under which constraints, e.g.:

“The network controller’s power dissipation shall be less than 4 W.”

The specification describes all the requirements regarding the system, for
example standards that the system has to fulfill, timing and power constraints
and all features it has to possess.

27

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

The specification document shall not discuss different implementation
techniques (e.g. “All state machines shall be of type Mealy”) or how to reach the
solution (e.g. “Use the design entry tool Renoir”).

3.3 Design Planning

At this point, the requirement specification is partitioned into functional blocks.
The functional blocks are further broken down until a complete hierarchy is
created were the function, interface and constraints of each block is well
defined. At this stage, one has to choose how to implement state machines,
memories etc.

This step in the design flow is very crucial. Making a bad planning can cause
many problems later. For example: collate similar functions in the same
functional block, be very careful when crossing clock domain boundaries etc.
This is the step where the experienced designer takes use of his whole
knowledge.

3.4 Design Entry

There are several ways how to entry the design. In this work HDL Designer
(former Renoir) from Mentor Graphics has been used which allows the user to
graphically enter the hierarchy, connect blocks and then enter HDL code in the
blocks using a text-editor (e.g. Emacs), this method is called block diagram
entry. HDL Designer can also generate HDL code from state diagrams, flow
charts and truth tables.

When the design is completed, the HDL code is compiled, either towards the
simulator or towards the synthesis tool.

3.5 RTL Simulation

First, interesting test cases must be identified and test vectors written describing
those cases.

Then a behavioral model is created. This model is the “truth”, in other words
how the block being tested should behave if it is correct. The behavioral model
can be automatically generated, e.g. by using Matlab when verifying an
algorithm.

The test vectors and the behavioral model together form the so-called test bench.
Its interface is identical with the block’s being tested but mirrored. The test
bench is then connected to the block and then compiled together towards the
simulator. Note that it is only needed to write the interface in HDL, both the test
vectors and behavioral model can be read from a file, which allows several tests
to be carried out without the need of re-compiling the design in between.

28

Chapter 3 — Design Methodology

¥ Test bench I

I 1001011 I

! 1000101 [

I Test 1001001100 ! >

: Vectors 0100101101 ; (

| 1001110010 |

I 1100010011 |

I ' Block
:) Under
' ! Test
! |

' |

| 1 |

| Behavioral —h

| Model |

' |

' |

! |

= [

Figure 13: Test bench.

The test bench and its components are illustrated in figure 13 where the “Input
File” represents an external test vector source. The “Output File” stores the
output signals from behavioral model and the block being tested, this in order to
easier discovers differences. A “Report File” can also be a good idea to
generate, which logs messages from the behavioral model such as passed
breakpoints etc.

Before RTL simulation, a functional simulation can be carried out. The
difference between the two is that there is no delay element introduced in the
latter one. When compiling the design for RTL simulation, delay elements are
introduced that are of the same size and based on a typical wire length.

A simulator, in this case ModelSim by Model Technology, then uses the
compiled data. The user both gets a graphical view of all signals and there
transitions and, if certain commands are written in the test bench, textual
messages in the form of warnings or passed breakpoints etc.

3.6 Synthesis

3.6.1 Choosing Target Device

If it has not been done earlier, it is time to choose which FPGA to use. Often it is
hard to predict the size and speed grade needed, to get a feeling of these figures
the simplest way is to synthesize one time using a large and fast device which
gives a hint of the resources needed.

29

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

Besides size and speed other important issues to consider are of both functional
and non-functional nature.

Functional characteristics:
= Hard blocks (e.g. processors, arithmetic units)

= Memory (size and type)

Non-functional characteristics:

= Package (e.g. size, heat-tolerance, BGA)

= Speed (e.g. number of clock drivers, maximum speed, routing resources)
= Size (number of CLBs)

* Number of I/Os

» J/O Signaling (e.g. TTL, LVDS)

= Supply voltage

= Power consumption

= Price

There are also some aspects that one should consider but which are not covered
in above listings, e.g. the fact that a tool perhaps do not support a specific
device. Mostly it is not possible for a company to have all design tools needed in
order to cover all devices. There can also be a good idea to choose a smaller and
slower device in a family of devices with the identical footprint and pinout to
ease possible future upgrades. Support from the manufacturer can be a very
important issue, especially if the device contains, for the developer, new
functionality. If the developer have much experience of a certain device family,
this also can be important to have in mind when selecting device in order to gain
time in the project. Selecting an old device family can result in unnecessary
costs since most manufacturers raise the price for older families when a new one
1s launched. Also, remember the fact that a family is not manufactured forever.
Eventually it will be impossible to get a device, which can cause problem if the
product is going to be manufactured for a long period.

3.6.2 Choosing Synthesize Method

The synthesis step begins within the design entry tool HDL Designer where the
HDL is generated and compiled. In this study the synthesis tool Leonardo
Spectrum from Exemplar Logic has been used. The synthesis tool can be
invoked from the HDL Designer and a pre-optimization is carried out. The user
must decide which device to use, which type of optimization to perform (area or
delay) and whether the hierarchy should be preserved or flattened. There is also
30

Chapter 3 — Design Methodology

a third alternative, “auto”. The “auto” choice leaves the system to decide
whether to preserve or flatten the hierarchy.

It 1s worth mentioning some words regarding the hierarchy options. If a single
block is to be synthesized, this option has of course no impact on the result but
with several blocks and bad design practice (i.e. not registered outputs) it does.
When selecting “flatten” the block borders are removed and the whole design is
treated as one single block. The optimization will not be very good if the design
1s big since the algorithms have difficulties dealing with large designs. Instead
one have to use “preserve hierarchy” where each block will be optimized
individually and then treated as black boxes when combined. This way of
optimizing is much faster than flattening the design.

What about “bad design practice” and “preserve hierarchy”? If the outputs of a
block are not registered but instead consists of logic and then connected to a
second block that has logic on its inputs, the two logic nets will be optimized
separately and later, when it is routed, the timing will be wretched. The resulting
optimization is illustrated in figure 14, where a white cloud illustrates logic
before optimization and a black cloud after optimization.

First block Second block

T | g
(O R

“Firstblock __ Secondblock <Tmax T <Trm

<Tmax < 2*Tmax

Figure 14: Bad and good design practice when preserve hierarchy is used.

In the upper case the maximum clock frequency might be halved since the logic
nets B and C will not be optimized together when preserve hierarchy is used.
This problem would be avoided if the design was flattened and/or all outputs of
all blocks were registered.

Leonardo Spectrum allows the user to set several timing criteria, e.g. false path
(a signal that does not has to fulfill the timing requirement) and multiple cycle
path (a signal that has several clock cycles before it has to be stable). These
options may be very useful when synthesizing a design but has not been used in
this study.

The synthesis process is much of a “trial and error” one because of all degrees of
freedom (selecting device, area/delay optimization, preserve or flatten hierarchy
etc.). The synthesis tool also estimates the size and performance of the final
implementation.

31

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

3.7 Place & Route

The outcome from the synthesis step is forwarded into the place & route tool
ISE Alliance. Like in the preceding step, there are several choices how the
action shall be performed.

When the place & route step is finished the exact figures of size, performance
etc. can be found in the generated report files. The figures are very close to
reality and can differ a lot from the estimations done by the synthesis tool.

3.8 Static Timing Analysis

The place & route tool computes the delay and time skew for all paths, which
gives the maximum possible clock-frequency under worst-case condition.

If the block does not manage the timing constraints, the failing path can be
analyzed in the synthesis tool Leonardo Spectrum. To solve the problem either
the block can be modified or perform the synthesis and Place & route step with
other preferences and/or constraints. Later versions of ISE Alliance contain a
“Place & route Assistant” that gives suggestions to improvements when the
timing constraints are not met.

3.9 Gate Level Simulation

This simulation can be carried out after that the synthesized design has gone
through the place & route step. The test bench from the RTL simulation can be
re-used. The difference from the earlier RTL simulation is that the average delay
in the transmission lines is changed to exact figures since the delay in each line
now is known.

In practice, a new architecture of the block is generated by the place & route tool
and then imported into HDL Designer. This result becomes, that one entity is
described by two architectures, the original architecture written in HDL and the
one generated from the place & route tool. By selecting the latter architecture
and then compiling the block towards ModelSim, the gate-level simulation can
be carried out.

3.10 Validation

As was pointed out in section 3.2 (Requirement Specification), all of the
requirements shall be possible to validate. The validation process takes place in-
board under realistic conditions.

The functional requirements are validated by comparing the behavior of the
system with the one specified and with the results from the gate-level
simulation.

The non-functional requirements are validated by measurements of e.g. power
dissipation, supply voltages etc.

32

CHAPTER

4

Implementation

This chapter describes how each step presented in chapter 3 was carried out in
this project.

Since a specific standard is used and the focus is only set on the core function
(i.e. the MAC), the first two steps in the design methodology were omitted.

The last two steps, validation and gate level simulation, were also omitted since
no hardware was used in this work. The preceding step, gate level simulation,
was not performed since the step turned out to be quite time consuming.

An extra step was inserted within the Design Planning where an analysis was
carried out in order to minimize the number of blocks necessary to implement in
the project.

4.1 Design Planning

In this planning clearness has been prioritized before reaching an optimal
design. Clearness has been reached by adopting as much as possible of the
structure used in the standard. The reason was simply to ease for future readers
to take use of the conclusions made in this work. If optimal design should be the
target, there is a risk that the structure of the implementation would differ a lot
from the one in the standard, which would force the reader to learn two different
descriptions of the same system.

4.1.1 Partitioning of the Standard

The precise definition of the MAC in the standard is written in a Pascal-like
language. It is therefore necessary to port the Pascal-like code to the HDL
language (e.g. VHDL). The standard assumes the presence of a nearly infinitely
fast processor, which can handle parallel processes as well, executing the Pascal
program. The need of parallelism is the main reason why to use an FPGA since
it is parallel by nature.

33

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

I
FrameTransmitter MAC CLIENT

]
Y |
TransmitFrame j | ReceiveFrame
| ‘
|
|
|

FRAMING

TransmitDataEncap ReceiveDataDecap

' '

ComputePad CRC32 RecognizeAddress RemovePad

I
Y | v %
TransmitLinkMgmt | ReceiveLinkMgmt
' oo . f

TWatchForCollision 1BackOff MEDIA ACCESS SUBLAYER StartReceive
|
Y |
StartTransmit tRandom CBurstTimer> | MEDIUM
MANAGEMENT
|
(BitTransmitter) | (SetExtendin@ @tReceiveD
* |
“InterFrameSignal StartRealTlmel?elay
Y |
PhysicalSignalEncap RealTimeDelay | PhysicalSignalDecap
y |
tStartJam NextBit| |
| Y
| B | Y vy | Y
TransmitBit Wait PHYSICAL LAYER ReceiveBit
I
TRANSMIT >|< RECEIV

1 Not applicable to full duplex operation
* Applicable only to half duplex operation at > 100 Mb/s

Figure 15: Relationship among CSMA/CD processes, procedures
and functions as defined in standard.

Like VHDL, the Pascal-like language allows the declaration of process, function

and procedure. A short repetition regarding just mentioned terms in the case of
VHDL code:

* Process: Executed sequentially
Processes are executed in parallel.

* Function: Executed sequentially
Returns one value

= Procedure: Executed sequentially
Returns zero or more values
Can change its input arguments

34

Chapter 4 — Implementation

|
FrameTransmitter MAC CLIENT

ReceiveFrame

FRAMING
(ReceiveDataDecap)

ComputePad (CRCSZ > <RecognizeAddress)(RemovePad)
|
I %

(TransmitLinkMgmt > |

MEDIA ACCESS SUBLAYER

< BitTransmitter >

MEDIUM
MANAGEMENT

(SetExtendin@ @tReceive}

RealTimeDelay

y

TransmitBit PHYSICAL LAYER ReceiveBit

TRANSMIT >|< RECEIV
I

1 Not applicable to full duplex operation
* Applicable only to half duplex operation at > 100 Mb/s

Figure 16: Relationship among CSMA/CD processes in the implementation.

When porting, the following rules have been used:
= Processes in the standard are implemented as processes.

* Functions in the standard are implemented as processes that are idling until
called, then executed one time and then returns to idling.

* Procedures in the standard are implemented by being incorporated in the
processes and/or functions that take use of it.

The application of above rules will result in the structure presented in figure 16.
The original structure in the standard is shown in figure 15.

35

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

The data path in the standard is bit-oriented but in the implementation, it is byte-
oriented. The reason is simple; since the maximum bit-rate is 1000 Mbps
choosing a bit-oriented data-path would result in a clock-frequency of 1 GHz,
instead by choosing byte-oriented data-path the clock-frequency is lowered to
125 MHz. This is in line with the standards suggestion of implementing the data
path on bit, byte or word basis [IEEE 802.3, Clause 4.2.2.1.c].

DATA LINK PHYSICAL Ethernet
—=-
L
|
higher "o :
layers in O : S o
the 2|10 || € [2
OSI/BR- Lo | =
1 <
model =
! |
|
I___I
| il
MANAGEMENT X
(/)

Figure 17: The architecture of the implementation.

The complete implementation, shown in figure 17, is a direct mapping of the
OSI/BR model to the implementation. Grayed areas are those that were
implemented. The PHY ASIC implements the remaining sublayers that were not
implemented in the FPGA.

There is no focus on the higher layers since these are not considered difficult to
implement because the data width can be expanded in order to lower the clock-
frequency. This, however, is not complete true. If the implementation should
support the commonly used protocol TCP (often referred to as TCP/IP) there
may be problem, since the protocol stack requires much resources. Instead, TCP
frames should be forwarded to an external unit for further processing. This
implementation is done having another often-used protocol in mind, UDP,
which does not contain a stack like the one used in TCP.

Beneath the MAC sublayer (when referring to the OSI/BR model), RS is
located. RS provides the major part of the MII/GMII interface except the
MII/GMII Management Interface, which is provided by the Station Management
entity, STA. The blocks RS and STA are the only parts of the Physical layer that
are implemented in the FPGA. These blocks are further explained in sections
4.1.3 and 4.1.4 respectively.

The MAC sublayer consists of five blocks (fig. 18), the transmitter (7xMAC),
the receiver (RxMAC), the Management Information Base (MIB) and the buffer
managers TxBufMgr and RxBufMgr.

36

Chapter 4 — Implementation

MAC sublayer

4=Pp| TxBufiMgr [P TxMAC (<P
¢
< 4‘---------'» MiB >

MAC client
Reconciliation
sublayer

<= RxBufMgr @=Pp| RxMAC |=Pp
] |

MANAGEMENT

Figure 18: Implementation of MAC sublayer.

The TxMAC 1is further explained in sec. 4.1.2. The MIB provides Layer
Management [IEEE 802.3, Clause 5]. The MIB itself is not a critical part of the
system and thereby not included in the project. The same yields for the buffer
managers, which manages the transmit and receive queues.

The implementation of the MAC sublayer contains three different clock-
domains. TxMAC and RxMAC constitute one domain each and the rest of the
blocks as well as the management part belong to the same. By having several
clock-domains, the complexity increases and extra logic has to be inserted in
order to be able to cross the domains. This is also discussed in sec. 4.1.2.3.

37

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.1.2 Precise Design: TxMAC

B —— Pe—
»—> <
-4 <
Al e—
TxDataEncapsulation [«
-l TxBufferPort
»—> [+ >
-4 T >
C ———
> <
> [<
— E
>
- TXMIG CE—
b »
O =
- TxMediaAccessMgmt p————=
> p—
: | o [—a
b »
1 —
» -0
»—
» -0 >
» = ® g

Figure 19: The structure of TxMAC.

The block TxMAC (fig. 19) implements the transmitter, which is defined by the
service-primitive MA DATA.request [IEEE 802.3, Clause 2.3.1] and by the

precise specification [IEEE 802.3, Clause 4.2.8].

As can be seen in appendix C the transmit part is the most complex part of the
whole Ethernet controller because of the great amount of shared signals in

combination with a high clock-frequency.
TxMAC consists of four blocks:

» TxDataEncapsulation collates the framing functionality, i.e. the building of
the frame. This block is described in sec. 4.1.2.1.

» TxMediaAccessMgmt collates the Medium Management functionality. This

block is described in sec. 4.1.2.2.

» The buffer (7xBufferPort) is needed in order to be able to cross the clock
domain since TxMAC belongs to the transmitter clock-domain and it
interfaces towards the system clock-domain.

This block is described in sec. 4.1.2.3.

» The block 7xMIG generates data for the MIB and updates fields in the
descriptor register TxDescReg. This block is described in sec. 4.1.2.4.

38

Chapter 4 — Implementation

4.1.2.1 TxDataEncapsulation

»—>

e
-»— TxCRC32
>

1 "I MUX8X2 b

D c— /‘/A

YVYyVY

»—> TransmitFrame

A 4 A A A

ComputePad

v;F
t

Figure 20: The structure of TxDataEncapsulation.

The functionality that shall be provided by the block TxDataEncapsulation
(fig. 20) is described in IEEE 802.3, Clause 4.2.3.1. This block shall assemble
the frame from the values provided by the MAC client, check if the frame has to
be extended by insertion of extra data (i.e. padding) to fulfill the demands of
minimum frame size and append a 32-bits CRC checksum.

39

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.1.2.1.1 TransmitFrame

» execTransmitFrame initCRC32p
calcCRC32)p
«transmitStatus <2:0> readCRC32p
fcsField <7:0> |«
| transmitEnable
» data <31:0>
<qreadDataEn outgoingFrame <7:0>p
outgoingHeader <7:0> p
»size <10:0>
<4qOK_SET execTransmitLinkMgmt p
» SUPCRC TransmitFrame transitStatusSETok |«
4TXA_SET transmitStatusSETIc |«
» VTCI <15:0> transmitStatusSETec |«
» VPKT transmitDataREADof [«
transmitDataREADoh |«
currentTransmitBit <10:0> |«
frameSize <10:0>p
padFrame |«
»clk
> reset

Figure 21: The symbol for TransmitFrame.

If transmission is enabled, TransmitFrame (fig. 21) use the incorporated
procedure TransmitDataEncap to construct a frame by inserting values such
as DA, SA, frame size etc. at appropriate places in the byte stream.

TransmitFrame uses ComputePad to check if it is necessary to pad the frame
and it uses the process TxCRC32 to compute the frame’s checksum. In the
contrary what the standard implies, the frame in this implementation is
constructed “on-the-fly” in order to minimize the need of memory and to
maximize the throughput in the system.

40

Chapter 4 — Implementation

4.1.2.1.2 TxCRC32

»|initCRC32

»| calcCRC32

»|readCRC32

«fcsField <7:0>

»|outgoingFrame <7:0> TxCRC32

»(clk

»{reset

Figure 22: The symbol for TxCRC32.

The TxCRC32 block (fig. 22) computes the 32-bits CRC checksum. The block is
a modified version of the free IP block “IEEE 802.3 Cyclic Redundancy Check”
provided by Xilinx [XAPP209] as a reference design.

The simplest way to compute the CRC value is by using a linear feedback shift-
register (LFSR) as shown in figure 23.

CRCI0] CRC[1] CRC[2] CRC[3] CRC[25] CRC[26]CRC[27] CRC[31]

D Q D Q D QD Qf---PD Q D QrpD QpF---PD Q
> > > > > > > >
Q Q Q Q Q Q Q Q

Figure 23: LFSR implementation of CRC-32.

Using an LFSR is, however, not feasible since the application yields that it
would have to work in 1 GHz. Instead, the CRC value has to be computed in
parallel. This can be done using a state machine, as shown in figure 50, where
the part of the logical net that computes the CRC-value is obtained from the IP
core.

Before the checksum generation begins, the register has to be loaded with ones,
which i1s done by assertion of initCRC32. As soon as calcCRC32 is asserted the
generation of the checksum begins. When calcCRC32 later is de-asserted, the
value in the register is shifted one byte at a time. The inverted value of the
lowest byte is at any time present at the output outgoingFrame.

The input read CRC32 is not used and shall be ignored.

41

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.1.2.1.3 ComputePad

»|frameSize <10:0> currentTransmitBit <10:0>|«
<4qpadFrame

> clk ComputePad

»|reset

Figure 24: The symbol for ComputePad.

If the frame size is less then minimum allowed value, arbitrary data has to be
appended to the frame. The number of bytes that have to be appended, if needed,
is computed by the block ComputePad (fig. 24), which simply compares the
frame size given by the MAC client with the allowed minimum value defined in
the standard [IEEE 802.3, Clause 4.4.2.1, 3 & 4].

4.1.2.2 TxMediaAccessMgmt

—; RealTimeDelay OR =
- Random —" . | L —-
5] Deference | | -
E: | [— k -
) BurstTimer
]
» IR LA2 1 L’ ’_:
- TransmitLinkMgmt TxStateReg BitTransmitter

Figure 25: The structure of TxMediaAccessMgmt.

The function that shall be provided by the block TxMediaAccessMgmt (fig. 25)
is described in IEEE 802.3, Clause 4.2.3.2.

This block shall be able to handle collision detection, collision enforcement (i.e.
jam, back off and retransmission), carrier extension and frame bursting.

42

4.1.2.2.1 TransmitLinkMgmt

Chapter 4 — Implementation

» backOffisZero
» backOff <20:0>

»|extend

P»{execTransmitLinkMgmt

]transmitStatusSetOK
transmitStatusSetEC

transmitStatusSetLC

< deferredSET

<« deferredRES
excessDeferRES

]IateCoIIisionCounthC

<« lateCollisionCountRES

«lateCollisionErrorSET

< lateCollisionErrorRES

»|lateCollisionError

halfDuplex
slotTime <3:0>

reset
clk

TransmitLinkMgmt

transmitting
transmittingSET
collisionDetect

¢
| 4
¢
currentTransmitBitRES1 p-
currentTransmitBit <10:0> [«
¢

burstingRES
burstingSET
bursting

deferring

<
attempts <4:0> |«
attemptsINC:

attemptsRES
<

burstMode

burstStart
burstStartSET
burstStartRES

frameWaitingSET
frameWaitingRES

YV VY VYVvVa

lastTransmitBitReadH
lastTransmitBitReadF p
newCollisionSET p-

transmitSucceedingSET:
transmitSucceedingRES
transmitSucceeding [«

Figure 26: The symbol for TransmitLinkMgmt.

TransmitLinkMgmt (fig. 26) attempts to transmit the frame. In half duplex mode,
it first defers to any passing traffic. When a frame transmission is initiated, the
internal procedure StartTransmit alerts the process BitTransmitter that
transmission is to begin. If a collision occurs, the transmission is aborted and
retransmission is scheduled using a suitable back off interval, which is computed
by the block BackOff. Collisions are detected by the in standard defined

43

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

procedure WatchForCollision, which is incorporated into the block
TransmitLinkMgmt.

4.1.2.2.2 Random

backOff <20:0> attempts <4:0>|«
backOffisZero

»slotTime <3:0> Random

> clk
»{reset

Figure 27: The symbol for Random.

The function Random [IEEE 802.3, Clause 4.2.3.2.5] is implemented as a
process (fig. 27) with the same name. The standard implies that the function, on
request, shall return a uniformly distributed random integer between (and
including) zero and maxBackOff ie. {0, 1, 2, ..., maxBackOff-1}. The
variable maxBackOff can take the values 2', 22, 2°, ..., 2'°.

In the implementation, this functionality is obtained by letting the random
number generator produce a new number every clock cycle in the interval zero
to 2'°-1. The bits are then masked with a vector that is maxBackOf£-1 to obtain
the correct interval. The masking is done in the calling block
TransmitLinkMgmt.

The standard implies that a random number only should be computed when
needed but this gives rise to timing problems since the number then has to be
computed with zero latency. Instead, a number is computed every clock cycle
and ignored if not needed. The drawback with this solution is slightly higher
power consumption.

4.1.2.2.3 BurstTimer

P bursting
<qburstingRES

BurstTimer
»clk
»{reset

Figure 28: The symbol for BurstTimer.

In gigabit half duplex burst mode, the BurstTimer process [I[EEE 802.3,
Clause 4.2.3.2.7], see figure 28, clears the signal bursting when the
burstLimit is reached. In any other modes, this block has no function. The
constant burstLimit is the maximum size of a frame transmitted in this mode.
This type of frame is sometimes referred to as “Jumbo frame”.

44

Chapter 4 — Implementation

4.1.2.2.4 Deference

» interFrameSpacingPart2 transmitting |«

» interFrameSpacingPart1 wasTransmitting [«

»|interFrameSpacing wasTransmittingSET:

< startRealTimeDelay wasTransmittingRES
carrierSense |«

deferringSET

jdeferringRES Deference frameWaiting |«

»{ halfDuplex

»{clk

> reset

Figure 29: The symbol for Deference.

This block implements the Deference process [IEEE 802.3, Clause 4.2.3.2.1],
see figure 29. It continuously computes the proper value of the signal
deferring, which indicates that any pending transmission must wait for the
medium to clear. It assures that the minimum inter frame gap is obtained. When
transmitting in half duplex burst mode, the signal is true throughout the whole
burst and ignored by other parts of the system.

4.1.2.2.5 RealTimeDelay

»{startRealTimeDelay

interFrameSpacing
3 interFrameSpacingPart1

interFrameSpacingPart2 RealTimeDelay
>
>

clk
reset

Figure 30: The symbol for RealTimeDelay.

The block RealTimeDelay (fig. 30) implements the function RealTimeDelay
and the procedure StartRealTimeDelay as a process. The timer is reset by
assertion of the signal startReallTimeDelay. The timer starts counting when
startRealTimeDelay 1is de-asserted. The outputs are then asserted or not
depending of how many microseconds that have elapsed since the recent
invocation (i.e. assertion and de-assertion of startRealTimeDelay) of the timer,
see figure 31.

interFrameSpacing

interFrameSpacingPart1

interFrameSpacingPart2

P time

invocation 2/3 interFrameGap interFrameGap

Figure 31: The signal pattern of the outputs of RealTimeDelay.

45

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.1.2.2.6 BitTransmitter

»{burstStart transmitDataREADoh p
transmitDataREADof p-
»{bursting transmitExtp>
jburstingSET transmitExtErrp
burstingRES transmitComplete p-
transmitting [«
p{currentTransmitBit <10:0> transmittingSET p
currentTransmitBitINC transmittingRES p>
30urrentTransmitBitRES1 collisionDetect |«
currentTransmitBitRES2
» extendError
jextendErrorSET
extendErrorRES
p{frameWaiting

BitTransmitter

»|lastHeaderBit <3:0>
»|lastTransmitBit <10:0>
«lastTransmitBitREAD]

»|newCollision
4 newCollisionRES

p{transmitSucceeding
»| halfDuplex
p slotTime <3:0>

> clk
»{reset

Figure 32: The symbol for BitTransmitter.

The BitTransmitter (fig. 32) process is enabled by the TransmitLinkMgmt
process. The process incorporates four procedures defined in the standard,
PhysicalSignalEncap, NextBit, StartJamand InterFrameSignal.

PhysicalSignalEncap transmits the header, i.e. Preamble (PA) and Start
Frame Delimiter (SFD). When the header has been transmitted without
collisions BitTransmitter transmits the data. Between each transmission of a
byte, the counter NextBit is incremented.

If a collision is detected by the transmitting station during transmission, the
procedure StartJam will be called that will cause the BitTransmitter to send
arbitrary data for sufficient time so all stations on the network will detect the
collision.

46

Chapter 4 — Implementation

When sending in burst mode, InterFrameSignal fills the interval between
two following frames with extension bits.

4.1.2.2.7 TxStateReg

VYVYY
»|deferringRES << < bursting
» deferringSET TR burstingSET_B 4
qdeferring (PN & burstingRES_B |«
£ 85 burstingRES_C |«
<qattempts <4:0> 0= currentTransmitBit <10:0>p
»| attemptsINC FER: currentTransmitBitINC |«
| attemptsRES § currentTransmitBitRES1_B [«
= currentTransmitBitRES2 [«
< burstMode S
» burstModeSET = extendError p-
» burstModeRES © extendErrorSET |«
extendErrorRES |«
<burstStart
P burstStartSET
» burstStartRES
»frameWaitingSET frameWaiting p
»frameWaitingRES TxStateReg
» lastHeaderBitREADhO lastHeaderBit <3:0> p
» lastTransmitBitREADf lastTransmitBit <10:0>p>
»{frameSize <10:0> lastTransmitBitREAD [«
» newCollisionSET newCollision p-
newCollisionRES |«
p transmitSucceedingSET transmitSucceeding p
»{transmitSucceedingRES
> clk
»reset

Figure 33: The symbol for TxStateReg.

The register TxStateReg (fig. 33) holds the signals that are shared within the
TxMAC, see appendix C. The register consists of ordinary D-flip-flops, which
typically have one (or more) set and clear input(s), and an output each.

47

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.1.2.3 TxBufferPort

D == p ot »
D —> < { g | -
-— — p—
-— FIFO511x32 > p—1
b—
P 1D
p— D
O <
O jl<—
l— @
- — p TxDescReg >
D —p| - — e
[— -
- —<

- — l— @
FIFO511x32_2 — e
«— -
«— -
, -

OO [Orf
B> . g e
@ |

Figure 34: The structure of TxBufferPort.

When data is ready for transmission, TxBufferPort (fig. 34) receives a descriptor
from TxBufMgr via TxDataFIFO. When the descriptor is received and stored
into the TxDescReg, the TxDataFIFO is filled with the beginning of the packet
that is to be sent. At this moment, 7xDescReg asserts the signal
execTransmitFrame. When a link has been established the transmitting of the
packet begins and the TxDataFIFO transfers data from TxBufMgr further to
TxDataEncapsulation. When the transmission is finished, or aborted, the
ownership of the descriptor together with updated fields of it is returned to
TxBufMgr via TxDescFIFO. As soon as TxBufMgr returns the ownership, a new
descriptor can be transferred to TxBufferPort to start another transmission.

48

4.1.2.3.1 TxDataFIFO

Chapter 4

— Implementation

| 4
| 4

<4

]

<4

TxData <31:0>

writeEnable

full

almostFull

writeAck

writeErr

clk1

reset1

TxDataFIFO

data <31:0>

readEnable

readDescEnable

empty
almostEmpty
readAck
readErr

clk

>

<

<

:

Figure 35: The symbol for TxDataFIFO.

The TxDataFIFO (fig. 35) is an IP core from Xilinx [XAPP258]. The FIFO uses
two independent clocks, which makes it ideal to use when crossing clock

domains.

The functionality of a FIFO is considered fundamental and not discussed further.

4.1.2.3.2 TxDescFIFO

JTxDesc <31:0>

desc <31:0> |«

writeDescEnable |«
»| readDescEnable
full
almostFull
writeAck
<qempty writeErr
<qalmostEmpty
TxDescFIFO
<qreadAck
readErr
» clk1 clk |«
> reset1

Figure 36.: The symbol for TxDescFIFO.

The FIFO TxDescFIFO (fig. 36) transfers the content of the register TxDescReg
to TxBufMgr. It is identical with TxDataFIFO, but mirrored.

49

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.1.2.3.3 TxDescReg

» data <31:0> execTransmitFramep
<qreadEnable
size <10:0>p
> empty
supCRC >
vtci <15:0>p
vpktp
OK_SET|«
TXA SET|«
jdesc <31:0>
writeDescEn TxDescReg OWN p
| full OWN_RES|«
CRC_SET|«
TD_SET|«
ED _SET|«
OWN_SET|«
EC _SET|«
CCNT_SET <3:0>|«
> clk
»|reset

Figure 37: The symbol for TxDescReg.

The register TxDescReg (fig. 37) holds the transmit descriptor associated with
the packet currently being transmitted.

Before a packet is being transmitted, the descriptor is transferred to the register
via TxDataFIFO and the input data<31:0>. TxDescReg requests new data until
signal empty is asserted.

When the descriptor is received, execTransmitFrame will be asserted which
cause the underlying layers to attempt to transmit the packet.

After the transmission is finished, or aborted, and fields in the descriptor has
been updated, e.g. via ok set, the ownership is returned to 7xBufMgr. By
asserting own_res, not only the ownership is returned but also the transfer of the
content of the register is initiated, i.e. assertion of writeDescEn. The data is
transmitted via the bus desc<31:0>. The signal full reports if the FIFO is full
and the transmission is paused until full is de-asserted.

50

Chapter 4 — Implementation

4.1.2.4 TxMIG

CCNT_SET <3:0>
EC _SET
OWC_SET
ED SET
TD_SET
CRC_SET
OWN_RES
OWN |«
TXMIG transmitStatus <2:0> |«
deferredSET |«
deferredRES |«
excessDeferRES [«
lateCollisionCountINC |«
lateCollisionCountRES |«
»(clk lateCollisionError p
lateCollisionErrorSET |«
»{reset lateCollisionErrorRES [«

Figure 38: The symbol for TxMIG.

This implementation is prepared for providing DTE Layer Management [[EEE
802.3, Clause 5.2.4]. The Layer Management service consists of a set of
counters and actions. The counters together form the Management Information
Base (MIB), which is located in the block MAC. Some of the services provided
by the Layer Management are implemented in the block Management
Information Generator (7xMIG) in the transmitter and in the corresponding
location in the receiver (RxMIG). Other services will be placed in the MIB itself.

TxMIG (fig. 38) monitors different status signals in the transmitter and updates
appropriate counters, either automatically or by the blocks within the
transmitter.

After each transmission, 7xMIG updates the management information in the
MIB and then resets all counters.

The design shown in figure 38 is not complete, since it lacks the interface
towards the MIB.

51

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.1.3 Precise Design: Reconciliation Sublayer (RS)

o

PLS DATAreq

VYV VA VVVVY

l

PLS_SIGNALind

il

)

PLS_DATAind

PLS_CARRIERIind

1

Figure 39: The structure of RS.

The MII and GMII consist of two parts, the RS interface and the station
management interface (provided by STA).

RS (fig. 39) maps the signals provided by the MII and GMII to the PLS service
primitives. Further, RS maps the variables, procedures and functions provided to
the Mac sublayer by the Physical layer to the PLS service primitives. The
mapping of the latter is shown in table 6.

Table 6: Mapping of PLS service primitives to physical layer signals as
presented to MAC sublayer

Variables

ReceiveDataValid PLS_ DATA VALID.indicate
CarrierSense PLS_CARRIER.indicate
Transmitting PLS DATA request
WasTransmitting PLS_ DATA request
CollisionDetect PLS SIGNAL.indicate
Procedures

TransmitBit PLS_DATA.request
Wait N/A

Functions

ReceiveBit PLS DATA. indicate

52

Chapter 4 — Implementation

The variables transmitting and wasTransmitting are controlled by the MAC
sublayer. The signals needed to set and clear these signals are not shown in
figure 39.

The, by Physical layer provided, procedure TransmitBit is implemented by
the signals transmitData<7:0>, transmitExt, transmitExtErr and
transmitDataValid (where transmitDataValid is the signal that performs the
execution of the procedure).

The, by physical layer provided, function ReceiveBit is implemented by the
signals receiveData<7:0>, receiveExt and receiveDataValid (where
receiveDataValid is the signal that performs the execution of the function).

The design of MII and GMII allows the two interfaces to share many of the
signals and the behavior needs only to be slightly modified for a few of them
depending of which interface to provide.

The signals transmitComplete, receiveExtErr are never used and shall be
omitted.

4.1.3.1 PLS DATAreq

»{transmitData <7:0> TXD <7:0>
p transmitExt TX_EN
» transmitExtErr TX _ER
p{transmitComplete GTX_CLK
» transmitDataValid TX_CLK |«

PLS_DATAreq

<qwasTransmitting
»provideGMII

»{clk
» reset

Figure 40: The symbol for PLS DATAreq.

The block PLS DATAreq (fig. 40) provides the Physical layer interface
procedure TransmitBit [IEEE 802.3, Clause 4.3.3], which is the instantiation
of the service primitive PLS DATA.request [IEEE 802.3, Clause 22.2.1.1 (MII)
and 35.2.1.1 (GMID)].

The mapping of PLS DATA. request to MII and GMII is not identical. In order
to obtain the different behavior depending of which type of interface to present,
1.e. MII or GMII, the control signal provideGMII is used.

In MII-mode, the signals transmitExt, transmitExtErr, TX ER and GTX CLK
are not used. While transmitDataValid 1s asserted, transmitData will be stored
in a double-clocked FIFO synchronously to clk. As long as the FIFO is not
empty, 7X EN will be asserted and data read out, four bits at a time, to
TXD<3:0> synchronous to 7X CLK. TX CLK is generated by the PHY.

53

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

In GMII-mode, the signal 7X CLK is not used. While transmitDataValid is
asserted, transmitExtErr, transmitExt and transmitData are read and the values
of the output signals will be as shown in table 7.

Table 7: Encoding of the GMII signals TXD, TX EN and TX ER

transmitExtErr transmitExt transmitData<7:0>| TXD<7:0> TX_EN TX_ER
0 0 00-FF transmitData 1 0
0 1 00 - FF OF 0 1
1 0 00-FF 1F 0 1
1 1 00-FF 1F 0 1

The signals TX EN and 7X ER are not supposed to be asserted at the same time.
When transmitDataValid is not asserted, all outputs will be zero.

The signal transmitComplete is never used and shall be omitted.

4.1.3.2 PLS_SIGNALind

<« collisionDetect COL|«
PLS_SIGANLind

Figure 41: The symbol for PLS SIGNALind.

The block PLS SIGNALind (fig. 41) provides the Physical layer interface
variable collisionDetect [IEEE 802.3, Clause 4.3.3], which is the
instantiation of the service primitive PLS SIGNAL.indicate [IEEE 802.3,
Clause 22.2.1.4 (MII) and 35.2.1.4 (GMII)]

The behavior of the signal COL is identical for both MII and GMII and is
specified in [IEEE 802.3, Clause 22.2.1.4 (MII) and 35.2.1.4 (GMII)].

In the standard, COL is specified to be asynchronous. By reasons explained in
section 4.3.1, it is not wise to allow asynchronous signals. Instead, COL is
sampled with respect to transmit clock domain and renamed to collisionDetect.
This can be done without violating the standard since it does not place any
emphasis on suitability to a particular implementation technology [IEEE 802.3,
Clause 4.2.2].

54

Chapter 4 — Implementation

4.1.3.3 PLS DATAind

receiveData <7:0> RXD <7:0> |«
receiveExt RX _ER|«
receiveExtErr RX_CLK|«
receiveDataValid <1:0> PLS_DATAiInd RX_DV|«
receiveClk

» provideGMII

» reset

Figure 42: The symbol for PLS DATAind.

The block PLS DATAind (fig. 42) provides the Physical layer interface
function ReceiveBit [IEEE 802.3, Clause 4.3.3], which is an instantiation of
the two service primitives PLS DATA.indicate [I[EEE 802.3, Clause 22.2.1.2
(MII) and 35.2.1.2 (GMII)] and PLS DATA VALID.indicate [IEEE 802.3,
Clause 22.2.1.7 (MII) and 35.2.1.7 (GMII)].

Neither the mapping of PLS DATA.indicate nor PLS DATA VALID.indicate
to MII and GMII are identical. In order to obtain the different behavior
depending of which type of interface to present, i.e. MII or GMII, the control
signal provideGMII is used. All MII/GMII signals in this block are synchronous
to RX CLK.

In MII-mode, the signals receiveExt and receiveExtErr are not used. The
decoding of the input signals is presented in table 8.

Table 8: Decoding of the MII signals RX DV, RX ER and RXD

RX_DV RX_ER RXD<3:0> | receiveData<3:0/7:4> receiveDataValid<0/ 1>
0 0 0-F 0 0
0 1 0-F 0 0
1 0 0-F RXD<3:0> 1
1 1 0-F INV (RXD<3:0>) 1

When both RX DV and RX ER are asserted, the RS must ensure that the MAC
sublayer will detect a FrameCheckError, i.e. wrong checksum. This is
obtained by inverting the data as long as the condition persists.

The direct mapping between RX DV and receiveDataValid in MIl-mode is
allowed only if the process BitReceiver is implemented to receive a nibble of
data on each cycle. This is fulfilled by using two signals that corresponds to first
and second nibble in receiveData<7:0>.

In GMII-mode, all signals are used. The decoding of the input signals is
presented in table 9.

55

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

Table 9: Decoding of the GMII signals RX DV, RX ER and RXD

RX_ DV RX_ER RXD<7:0> | receiveData<7:0> receiveDataValid receiveExt
0 0 00 - FF 00 0 0
0 1 00 - OE 00 0 0
0 1 OF OF 1 1
0 1 10 -1E 00 0 0
0 1 1F INV (1F) 1 0
0 1 20-FF 00 0 0
1 0 00 - FF RXD<7:0> 1 0
1 1 00 - FF INV (RXD<7:0>) 1 0

When a “Carrier Extend” is received, i.e. RX DV is de-asserted, RX ER is
asserted and RXD is “OF”, the RS shall notify the MAC sublayer that extension
bits have been received.

When a “Carrier Extend Error” is received, i.e. RX DV is de-asserted, RX ER is
asserted and RXD is “1F”, the RS shall ensure that the MAC sublayer will detect
a FrameCheckError [IEEE 802.3, Clause 35.2.1.5].

When both RX DV and RX ER are asserted RS shall ensure that the MAC
sublayer will detect a FrameCheckError [IEEE 802.3, Clause 35.2.1.5].

The signal receiveExtErr is never used and shall be omitted.

4.1.3.4 PLS CARRIERind

< carrierSense CRS |«
PLS_CARRIERInd

Figure 43: The symbol for PLS CARRIERInd.

The block PLS CARRIERiInd (fig. 43) provides the Physical layer interface
variable carrierSense [IEEE 802.3, Clause 4.3.3], which is an instantiation
of the service primitive PLS CARRIER.indicate [IEEE 802.3, Clause 22.2.1.3
(MII) and 35.2.1.3 (GMID)].

The mapping of PLS CARRIER.indicate to MII and GMII is not identical.
However, which is also is stated in [IEEE 802.3, Clause 22.2.1.3], the mapping
1s carried out in the same way in practice.

The signal CRS is asynchronous and therefore sampled into the transmit clock
domain to avoid timing problems. The actual sampling occurs within the process
Deference, see section 4.1.2.2.4.

56

Chapter 4 — Implementation

4.1.4 Precise Design: Station Management (STA)

L 4 -
» -l
-—I > < E
»—9e e
OutDataMUX InDataReg
- > >
“ > Jv‘ > p——— D>
» >
» g
Controller ClockGenerator
. > >
» -

Figure 44: The structure of STA.

The Station Management entity (STA) (fig. 44) provides the MII/GMII
Management Interface, which is a part of the MII/GMII. The management
interface 1s the same regardless if it is a part of the MII or the GMII.

The management interface [IEEE 802.3, Clause 22.2.4] is a simple, two-wire,
serial interface that connects a management entity and a managed PHY for the
purposes of controlling the PHY and gathering status from the PHY. In addition
to the signals, the interface also defines a frame format and protocol [IEEE
802.3, Clause 22.2.4.5] and a register set in the PHY [IEEE 802.3, Clause
22.2.4, Table 22-6].

The host interface of the STA 1s not covered in the standard, whether the
implemented interface is suitable or not has not been confirmed.

57

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.1.4.1 InDataReg

ngmtDataIn <15:0> MDl |«

»MDO_EN
»MDI_DV

InDataReg

ce
clk
reset

Yvy

Figure 45: The symbol for InDataReg.

The register InDataReg (fig. 45) is managed by the Controller. When MDI DV
is true and MDO_EN is false, the bit present at MDI is shifted into the register.
When the shift-register is full, the data is present in parallel form at the output
mgmtDataln.

MDI is one of the two channels that form the signal MDIO, which is explained
in section 4.1.5.4.

4.1.4.2 ClockGenerator

»|clkGenEn MDC p

ClockGenerator

1 ce2
ce1
> clk

»{reset

Figure 46: The symbol for ClockGenerator.

58

Chapter 4 — Implementation

The ClockGenerator (fig. 46) generates the clock signal MDC. The block also
generates two clock enable signals, cel and ce2. These signals are used by the
other blocks to determine when MDC makes a transition. When the
ClockGenerator 1s disabled, 1.e. c/lkGenEn 1s de-asserted, all outputs of the block
will be de-asserted.

The MII/GMII Management Interface signal MDC [IEEE 802.3, Clause
22.2.2.11] is sourced by the Station Management entity to the PHY as the timing
reference for transfer of information on the MDIO signal. MDC is a non-periodic
signal that has no maximum high or low times. The minimum high and low
times for MDC shall be 160 ns each, and the minimum period for MDC shall be
400 ns (2.5 MHz), regardless of the nominal period of TX CLK and RX CLK.

4.1.4.3 OutDataMUX

»mgmtPhyAd <4:0> MDOp
»{ mgmtRegAd <4:0>
» mgmtDataOut <15:0>
»{ mgmtOP

MDO_En |«

OutDataMUX
cel«

»{clk
- reset bitSelect <4:0> |«

Figure 47: The symbol for OutDataMUX.

The OutDataMUX (fig. 47) builds the management frame and sends the frame in
serialized form via MDO when MDO EN is asserted. The signals mgmtPhyAd,
mgmtRegAd, mgmtDataOut and mgmtOP represents the field values of the
frame.

MDO is one of two channels that form the signal MDIO, which is explained in
section 4.1.5.4.

59

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.1.4.4 Controller

»{mgmtOp mgmtBusy p
» mgmtPre
»{ mgmtRequest bitSelect <4:0> p-
mdo_enp>
mdi_dv
Controller
celd
»{clk
»{reset

Figure 48: The symbol for Controller.

The Controller (fig. 48) manages the communication between the STA and one
or more connected PHYs. The STA is enabled by assertion of mgmtRequest. If
the controller can respond to the request, mgmtBusy is asserted. Assertion of
mgmtRequest when mgmtBusy is asserted is ignored.

The signal mgmtOP determines if the STA shall perform a read or write
transaction. Each frame begins with a preamble. This preamble is not always
needed and can be omitted by de-assertion of mgmtPre. The signal bitSelect is
used by the OutDataMUX to select which bit from which filed to transmit.

MDIO [IEEE 802.3, Clause 22.2.2.12] is a bidirectional signal between the PHY
and the STA. It is used to transfer control information and status between the
PHY and the STA. When MDO EN is asserted, control information is driven by
the STA synchronously with respect to MDC and is sampled synchronously by
the PHY. When MDI DV is true, status information is driven by the PHY
synchronously with respect to MDC and is sampled synchronously by the STA.
MDO EN and MDI DV cannot be true at the same time.

60

Chapter 4 — Implementation

4.2 Analysis of Possible Critical Blocks

Reasons that could vindicate an implementation of a specific block can be:

= Speed:
There are reasons to believe that the block should fail to pass the
delay and timing constraints. Such reason can be a large counter
that will be updated each clock-cycle, a large multiplier, signals
used by many blocks (propagation delay and skew) etc.

= Complexity:
If the block is very complex it can be hard to predict its
performance and behavior.

* Simplify verification:
If the block is simple, meaning little room for mistakes, it can be a
reason to rather implement it to simplify the verification process of
other blocks instead of constructing test vectors that simulates the
block.

= Unspecified interface:
Since the standard do not specify electrical interfaces between each
block, there can be a reason for implementation to achieve a fully
specified electrical interface.

With the reasons stated above and after studies of the Pascal-code and the
interconnection diagrams in appendix C, the following blocks have been
selected for implementation:

®* TransmitLinkMgmt

= CRC32

® BitTransmitter

The motivation for each block selected can be found in section 4.2.1-3.

The block CRC32 will not be shared between the transmitter and receiver since,
which can be read in section 4.2.2, the block will process the data in real-time.
In that case, the transmitter and receiver have to have their own checksum
generator in order to be able to support full duplex communication.

As can be seen in above listing all blocks can be found in the transmitter. This is
not surprising since the transmitter consists of both more blocks and more
signals than the receiver does.

61

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.2.1 Ciritical Block: TransmitLinkMgmt

The implementation of this block will include the, in standard defined, blocks
TransmitLinkMgmt, WatchForCollision, StartTransmit and
BackOff.

As can be seen in appendix C this block involves the counter
currentTransmitBit, which can cause delay problems since it is 11 bits
wide, it may be updated each clock cycle and it is distributed to several other
blocks. The block is also complex since it incorporates much functionality,
which performance and behavior is hard to predict. Further, the interface is not
specified in the standard.

4.2.2 Critical Block: TxCRC32

There are two ways that the checksum can be generated, either it is done before
the transmission begins, either do it “on-the-fly”. The problem with the first
solution is that a buffer is needed to store the frame before the transmission
begins and the delay from the transmission is initiated at higher layers until the
actual transmission begins. The other way to generate the checksum is better but
two factors have to be verified, the throughput and the latency. The critical of
the two is the throughput, but when that is solved, an eventual latency problem
is easily solved by insertion of delay elements in the data path.

—» TxCRC32

L T feeeeeeennes T‘A

Figure 49: Insertion of delay elements to overcome latency problems.

The interface of the block is simple so there is no need to implement any
adjacent block for simplifying the verification.

4.2.3 Ciritical Block: BitTransmitter

The implementation of this block will include the, in standard defined, blocks
BitTransmitter, InterFrameSignal, PhysicalSignalEncap,
StartJamand NextBit.

As can be seen in appendix C this block involves the counter
currentTransmitBit, which can cause delay problems since it is 11 bits
wide, it may be updated each clock cycle and it is distributed to several other
blocks. The block is also complex since it incorporates much functionality,

62

Chapter 4 — Implementation

which performance and behavior is hard to predict. Further, the interface is not
specified in the standard.

4.3 Design Entry

The development environment (i.e. HDL Designer) allows several ways to enter
the design as mentioned in section 3.4. In this project, the block diagram entry
method has been used. There was no crucial factor in the choice of method, but
rather by force of habit of the author.

4.3.1 Different Styles

The implementation is done with synchronous logic. The problems associated
with asynchronous logic (e.g. temperature and voltage dependency, speed
variations through different paths, difficult to verify) outnumber the benefits
(e.g. higher speed, smaller implementations).

One very common construction is the state machine. In this implementation, a
synchronous type of the commonly known Mealy machine has been used
consistently (fig. 50). In the synchronous type, the output signals are stored in a
separate register, which are reloaded at each clock edge. Consequently, if an
output signal is used for feedback it will be duplicated and stored in both
registers.

—— = out

Vv

T N

Figure 50: Mealy state machine. Grayed-out register makes it synchronous.

The difference between the original and the synchronous Mealy machine is that
the outputs in the latter one do not suffer from the glitches that arise in the
logical net. The trade-off is that the synchronous Mealy has a latency of one
clock cycle while the original Mealy machine has no latency in terms of clock
cycles (there will always be some delay).

63

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.3.2 Implementation Example: BitTransmitter

In order to illustrate how the Pascal-like code in the standard IEEE 802.3 was
converted to VHDL the following example is used. The program is not a part of
the standard.

The program consists of a process (Counting) and a procedure (Sum). Further,
there are two input variables (number and countingEnable) and two output
variables (counter and status). All these variables are global and used by other
blocks that are not defined within this example. The variables number and
counter are integers with the range 0 to 255.

type type status = (overflow,idle,ok);
var countingEnable : boolean; {in}
var number : integer; {in}
var counter : integer; {out}
var status : type status; {out}

Declaration of global variables.

process Counting;
var break : boolean;

begin
cycle {outer loop}
counter := 0;
status := idle;
break := false;

while countingEnable and not break do
begin {inner loop}

Sum (number) ;

if counter < 256 then

status := ok

else

begin
status := overflow;
break = true

end

end {inner loop}
end {outer loop}
end; {Counting}

Listing of process Counting.

procedure Sum(var offset: integer);
begin

counter := counter + offset
end; {Sum}

Listing of procedure Sum.

64

Chapter 4 — Implementation

While countingEnable is de-asserted, counter will be zero. Then, while
countingEnable is asserted and counter is less than 256, counter is increased
with the value number until it is 256 or greater. When counter becomes 256 ore
greater, it will be reset but first it will contain a wrong value for one period. This
is indicated by the status variable, which takes the value “overflow”.

At every moment, the status of the process will be reported. The status variable
(status) can take the following three values:

= “idle”, i.e. countingEnable 1s de-asserted
= “ok”, i.e. countingEnable is asserted and counter € [0, 255]

= “overflow”, i.e. countingEnable is asserted and counter is greater than 255

i |

counter :=0
status := idle 50 T

><L

s1 T countingEnable False >

True

H<

counter := counter + number

-

counter < 256 False
True
status := status =
ok overflow

Figure 51: The program flow with grayed out delay elements.

First, which is not illustrated, the procedure(s) is written in line in the code of
the process. Then a flowchart (fig. 51) is created, not including the grayed out
boxes.

The flowchart now consists of three loops. In each of these loops a delay
element must be inserted in order to achieve the correct behavior, otherwise for

65

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

example the value at the input number might be added to counter several times
when it only was intended to be added once. Each delay element, denoted T in
figure 51, is then assigned a state number s0, s1, ...

Then, the flowchart is divided into several flows. Each of theses flows begins at
a delay element and ends at one or more. When the branches in each of these
flows have been studied, some of these might be removed. Such a branch is
when starting in state sO. As can be seen in figure 51, the counter is first reset
and then if countingEnable is asserted it is set to number. Since number always
is less than 256, it is unnecessary to check if counter is less than 256 so the false
branch can be removed. The resulting flows are shown in figure 52.

sO s1

countingEnable —False countingEnable False

True l True
[|

counter := number counter:=0

counter := counter + number |counter :=0

statusI =0k status ;= idle
s1 s0O

counter < 256 —False

True l
A 4

status := status := status :=
ok overflow idle
s1 sO sO

Figure 52: Flow within each state.

The flowchart in figure 52 is then used when creating the VHDL
implementation shown on the following two pages.

First, an entity is declared which describes the interface of the block. Then
comes the architecture body, which describes the behavior of the block.

As stated in section 4.3.1, all state machines in this study is of the type
synchronous Mealy.

66

Chapter 4 — Implementation

library ieee;

use ieee.std logic 1l164.all;
use ieee.std logic unsigned.all;

entity ent Counting is

port (
countingEnable : in
number : in
clk : in
arst n : in
counter : out
status : out

)7
end ent Counting;

std logic;
std logic vector
std logic;
std logic;
std logic vector
std logic vector

(7 downto 0) ;

(7 downto 0) ;
(1 downto 0)

The entity declaration of the block.

The architecture body is shown as a whole in next page.

67

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

architecture arch Counting of ent Counting is
type state type is (s0, sl);
signal state : state type := s0;
constant idle : std logic vector(l downto 0) := "00";
constant ok : std logic vector(l downto 0) := "01";
constant overflow : std logic vector(l downto 0) := "10";

begin
proc Counting: process (clk, arst n)
variable temp:std logic vector (8downto0) :=(others=>'0");
begin
if arst n = '0' then ——asynchronous negative reset
temp := (others => '0');
status <= idle;
state <= s0;
counter <= (others => '0"');
elsif rising edge(clk) then
case state 1is
when s0 =>
if countingEnable = '1l' then
temp := '0'" & number;
status <= ok;
state <= sl; --next state will be sl
else
temp := (others => '0');
status <= idle;
state <= s0; —-—-next state will be s0
end if;
when sl =>
if countingEnable = '1l' then
temp := temp + ('0' & number);
if temp(8) = '0' then -—temp < 256
status <= ok;
state <= sl; --next state will be sl
else -—temp >= 256
status <= overflow;
state <= s0; -—-next state will be s0
end if;
else
temp := (others => '0"'");
status <= idle;
state <= s0; -—-next state will be s0
end if;
end case;
counter <= temp (7 downto 0);
end if;
end process proc_Counting;
end arch Counting;

The architecture body of the block.

68

Chapter 4 — Implementation

4.4 RTL Simulation
The standard [IEEE 802.3, Clause 4.2.2.1:d.2] declares:

“Among processes, no assumptions are made about relative speeds of
execution. This means that each interaction between two processes
shall be structured to work correctly independent of their respective
speeds.”

Since the design consists of several processes, this complicates the verification.
However, the processes in the implementation that were defined as functions in
the standard are easier to verify since the interaction between a function and its
host is clearly specified.

Of the three blocks that were selected in section 4.2 to be implemented, only
BitTransmitter is specified as a process in the standard. Both 7xCRC32 and
TransmitLinkMgmt are specified as functions. However, the functions are not
always easy to verify either. Such an example is TransmitLinkMgmt.

Unlike TxCRC32, TransmitLinkMgmt interacts with several processes, which
makes it hard to tell when the block possesses the correct behavior.

When discussing behavior a distinction can be made between internal and
external behavior. The internal behavior is the easier one to verify:

“If A and B both are true then C is true, otherwise C is false.”

The external behavior in this implementation can be harder to identify. In the
example above, the question arise:

“What latency is allowed between that A and B are true
until C should be set to true?”

Since this aspect is not all-over covered by the standard many assumptions have
been made, which in the final validation step can turn out to be wrong.

For that reason, the focus in this step was set to verify the internal behavior. It is
considered to be possible to change the design in such way that the interaction
can be corrected without that the performance and size of a future and correct
implementation will differ too much from this implementation.

69

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.5 Synthesis

This step covers both the selection of device and the synthesis step itself.

4.5.1 Choosing Target Device

There is no need for any hard blocks except memory, which many FPGAs
provides. The memory is needed by FIFOs, which are used when crossing clock
domains.

Since there is no specific product where this Ethernet controller shall be
implemented, it is hard to identify non-functional characteristics that could
exclude any FPGA. However, the size of the FPGA has to be sufficient to house
the Ethernet controller together with other, future, functions. Another aspect of
which FPGA size to select, is its associated routing resources.

An FPGA usually have two different types of routing resources, hierarchical and
dedicated. The hierarchical routing resources are different types of global and
local resources used for interconnection between blocks. The dedicated
resources are used for distribution of e.g. clock signals.

The different types of hierarchical resources are illustrated in figure 53, which
refers to a Xilinx Virtex-II device [Xilinx ds031].

24 Horizontal Long Lines | | | |

24 Vertical Long Lines
120 Horizontal Hex Lines J my e L T — L :
120 Vertical Hex Lines ; ; 5 | : ; ; ; ; ; : ;
40 Horizontal Double Lines | - : | . :
40 Vertical Double Lines] ;] ;
16 Direct Connections ---------- J -----
(total in all four directions) "—J‘ TT Yy

==

A 4 u Y

Figure 53: Hierarchical routing resources for each row/column.

If there are many signals in the design that have to be distributed to several
blocks, the Long Lines is the ideal routing resource. Nevertheless, this is a
strongly limited resource. The Long Lines covers a whole row or column of

70

Chapter 4 — Implementation

CLBs, meaning that in a large FPGA many blocks will be connected to the same
Long Line. If there are not sufficient amount of Long Lines available, a shorter
type of routing will be used to build long routes. This will lead to a decrease in
performance.

The choice is an FPGA from Xilinx’s Virtex-II family, which is a rather new
family that still grows and that contains both small and large devices with
different hard blocks and speed grades. The speed grade used in this project is -4
(which is the slowest, -6 is currently the fastest). By selecting a “slow” device at
this stage, the opportunity exists to change to a faster device when implementing
a large system where the Ethernet controller is included.

The device XC2V1000-4-ff896 was selected where 1’000 is the number of
thousands of equivalent system gates, -4 is the speed grade, ff stands for flip-
chip fine-pitch ball grid array (BGA) and 896 is the number of pins of which
432 can be used as I/O-pins. The footprint of this device is identical with the
larger devices XC2V1500 and XVC2V2000.

4.5.2 Choosing Synthesis Method

In this study, only parts of the controller will be synthesized. The parts were
synthesized one at time. The parts are quite small in the context of synthesis,
which results in that the performance will not differ much depending of which
optimization target that was used. There are two targets to optimize for as
mentioned in section 3.6.2, area or delay. The results are presented in section 5.1
and 5.2. The other choice whether the design should be flattened or not does not
have any affect since there is only one block at a time that will be synthesized.

The option to assign different timing criteria to different paths has not been
used. Such an example where this option can be used is the signals controlled by
the block Initialize (e.g. the signal extend), which may be multi cycle paths since
they do not change during transmission/reception. This potential of performance
improvement is saved for the future.

4.6 Place & Route

The place & route tool (ISE Alliance) allows the user to have a big influence on
the result. However, in this work the tool has been used with its default settings.
The reason for this is simply that, in the future, when one wants to actually
construct a fully functional Ethernet controller with the use of this work there
should be a good potential of improvement on this stage to compensate the
problems related to a much larger design.

The sizes of the implementations are presented in section 5.1.

71

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

4.7 Static Timing Analysis

The synthesis tool (Leonardo Spectrum) and the place & route tool (ISE
Alliance) together analyze the static behavior of the implementation. The

interest for this study is of course to assure that the timing constraints are
fulfilled.

The results are presented in section 5.2.

72

CHAPTER

R

Results

The results presented in section 5.1 and 5.2 are reported values from the place &
route tool ISE Alliance. The results in section 5.3 are estimated values from
Xilinx’s Virtex-II Power Estimate Worksheet.

Each table in the following sections has two columns of data named O.f.A. and
O.f.D. The values in column O.f.A. corresponds from values obtained when the
design is optimized for minimum area and O.f.D. when the design is optimized
for minimum delay. The choice of optimization target is done in the synthesis
step (i.e. the synthesis tool Leonardo Spectrum).

The target device is XC2V1000-4-f1896, which belongs to Xilinx’s Virtex-II
family. It is a mid-size device with about one million gate equivalents. The
speed grade is —4, which makes it the slowest version available in that family.

73

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

5.1 Size
The target device (XC2V1000-4-f896) has 10°240 LUTs.

Table 10: Size of the selected implementations

Block O.f.A. [LUTs] O.f.D. [LUTs]
TransmitLinkMgmt 227 239
TxCRC32 135 137
BitTransmitter 110 116

Table 11: Size of additional implementations

Block O.f.A. [LUTs] O.f.D. [LUTs]
TransmitFrame 122 131
BurstTimer 37 43
Deference 26 29
Random 31 31
RealTimeDelay 9 11
TxStateReg 39 39

74

Chapter 5 — Results

5.2 Performance

Table 12: Performance of the selected implementations

Block O.f.A. [MHZz] O.f.D. [MHz]
TransmitLinkMgmt 145.5 141.1
TxCRC32 140.1 146.8
BitTransmitter 162.0 164.0

Table 13: Performance of additional implementations

Block O.f.A. [MHz] 0O.f.D. [MHz]
TransmitFrame 126.6 131.9
BurstTimer 155.2 143.8
Deference 212.8 211.7
Random 339.3 301.8
RealTimeDelay 305.8 290.1
TxStateReg 265.2 252.3

75

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

5.3 Power Dissipation

The values entered into the “Xilinx Virtex-II Power Estimate Worksheet” can be
found in appendix D.

Table 14: Power dissipation of the selected implementations

Block O.f.A. [mW] O.f.D. [mW]
TransmitLinkMgmt 14 15
TxCRC32 35 36
BitTransmitter 10 11

Table 15: Power dissipation of additional implementations

Block O.f.A. [mW] O.f.D. [mW]
TransmitFrame 9 9
BurstTimer 3 3
Deference 1 2
Random 11 11
RealTimeDelay 1 1
TxStateReg 4 4

76

CHAPTER

LA

Discussion

In section 6.1, the results presented in chapter 5 will be discussed. In section 6.2
follows a comparison with an IP core released by Xilinx in section 6.2.

6.1 Reliability and Availability of Obtained Results

After the rough estimation of the hardest blocks to implement 7xCRC32,
BitTransmitter and TransmitLinkMgmt were selected. As it turned out, the
TransmitFrame block should has been selected instead of the block
BitTransmitter. However, since much more design effort has been placed on the
latter block the selection might not been wrong.

6.1.1 Size

As table 10 and 11 shows, the difference in area is not big depending of which
optimizations target that has been selected.

By adding the area for all blocks in column O.f.A., the sum is 736 LUTs. If the
whole TxMAC would be implemented the size could be both bigger and smaller.
Bigger since the place and route tool not tends to share slices between different
blocks and some LUTs may be needed for routing. Smaller since some shared
logic may be removed during optimization.

An estimation of the size of the whole controller would be in the range of 3’000
LUTs. The RxMAC is considered slightly smaller than the 7xMAC. The MIB
together with RS would probably be in parity with the size of the TxMAC. The
size of the TxBufMgr and RxBufMgr 1s hard to estimate, much depending of the
size of the buffers and functionality.

A good piece of advice is that never fill an FPGA to more than 80%. Using the
same device as before (XC2V1000) and following the advice gives 80% *
10’240 = 8’192 available LUTs. If the Ethernet controller takes 3’000 LUTs,

77

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

there is room for a design of about 5’200 LUTs, which allows the
implementation of a rather big design.

6.1.2 Performance

As can be seen in table 12 and 13, the most critical block 1s TransmitFrame. As
pointed out in the beginning of this chapter, this block was not among the
selected ones and the design effort of this block is minimal meaning that there
surely is room for improvements in the design.

All blocks are implemented using registered outputs, which makes the
performance results usable even in the future. The only factor that can decrease
the performance is how the routing resources are divided among the blocks. This
is not a negligible factor but also, to a certain degree, possible to affect by
writing constraint files for the place & route tool.

As suggested in section 8.2, a lot of performance can be gained by dividing the
current design into three different versions. The controller can be in three
different modes (half duplex, full duplex and full duplex with bursting enabled).
The controller is not allowed, by standard, to change mode in runtime meaning
that it should be possible to have three different versions of the controller in the
ROM, each version corresponding to one mode, and then load a certain version
depending of which mode the controller should operate in. This was a miss in
the current design, which allows changing of mode within one clock cycle. Still,
the controller must be able to change transfer speed (10, 100 or 1’000 Mbps) in
runtime.

In ISE Alliance 5.11, it is possible to add an optional module, Modular Design,
which supports Partial Reconfiguration. With this technique is it possible to
reconfigure a part of the FPGA, while the device continues to run. This seems to
be a very suitable solution in this case.

6.1.3 Power Dissipation

By adding the estimated values for power dissipation in table 14 and 15 for all
blocks in column O.f.A., a sum of 92 mW is obtained. Following a similar line
of reasoning as in section 6.1 where the total area can be estimated to be four
times the area of the transmitter, a power dissipation would be around 370 mW.
Add to this a device quiescent power of 183 mW for the device. Each used pin
on the device can dissipate around 1 mW.

A rough estimation of the total power dissipation for the device would be around
600 mW.

78

Chapter 6 — Discussion

6.2 Comparison with IP core from Xilinx

In April 2002, Xilinx had the initial release of their first IP core for gigabit
Ethernet, DO-DI-1GEMAC.

The key features presented at Xilinx’s web as is of January 29, 2003
(www xilinx.com/systemio/gmac/gmac_desc.htm):

Single-speed half and/or full-duplex 1 Gbps MAC controller

Compliant with IEEE 802.3-2000

Choice of GMII or serial PHY interface options

o 8b GMII interface running 125MHz for 1Gbps bandwidth
- 8b wide interface in both Tx and Rx directions

- Allows direct interfacing between Xilinx FPGAs and industry standard
ASSP PHY devices

o Serial PHY interface integrates PCS/PMA functions for 1.25 Gbps
bandwidth

- Provides a single-chip solutions for I000BASE-X applications
8-bit internal data path and back-end interface
o 125MHz operation

Cut-through operation with minimum buffering for maximum flexibility in
64-bit client bus interfacing

Configured and monitored through an independent microprocessor-neutral
interface

Powerful EtherStats-based statistics gathering

Optional flow control through MAC Control pause frames; symmetrically or
asymmetrically enabled

MDIO interface to managed objects in PHY layer

Optional support of VLAN frames to specification IEEE 802.3ac-1998
Programmable Interframe Gap

Optional support of “jumbo frames” of any length

Available under terms of the SignOnce IP License

There are some differences between the design presented in this study (from
now on referred to as STU in this section) and above IP-core. First of all, with a
few number of modifications the STU is capable of transmitting in both 10, 100
and 1°000 Mbps in comparison with this IP’s single-speed capability.

The STU incorporates only the GMII option. The serial PHY interface is only
needed for communication over optical medium. The two remarks regarding the

79

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

[P-core’s GMII (“bit width” and “direct interfacing”), are already covered by the
fact that the core is IEEE 802.3 compliant.

Like the IP-core, the STU also operates at 125 MHz and uses an 8-bit internal
data path.

The “Cut-through operation...”- and “Configured and monitored...”-features is
not, yet, implemented in the STU since this should be done in higher layers.

The statistics gathering feature for the IP-core is also, but yet not fully,
implemented in the STU.

The flow control should be implemented in the MAC Control sublayer, which is
not within the scoop of this study.

The STU is also capable of handling VLAN-tags as well as the IP-core.

Programmable Interframe Gap is a feature that not has been implemented in the
STU and, at this state, hard to see the need of since the design already capable of
handling pause frames.

Jumbo frames are not supported by the STU.

According to the documentation of the IP-core, the size of it varies between 625
and 1777 slices depending of device and optional features. Translated to LUTs,
this means a size between 1°250 and 3’554 LUTs, which can be compared with
the estimated size of 3’000 LUTs for the STU.

To summarize above comparison, the STU is in parity with Xilinx IP core
regarding functionality, size and choice of platform (Virtex-II).

80

CHAPTER

i

Conclusion

It would be fully possible to implement a gigabit Ethernet controller using an
FPGA. Even though many parts of the controller have not been implemented
and nothing else but the controller has been implemented in the FPGA, it is
beyond reasonable doubt that it should not be possible.

81

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

— This page was intentionally left blank —

82

CHAPTER

8

Recommendations

8.1 Status of Work

At this moment, three out of seven main parts of the system are implemented.
These are the transmission part of the MAC sublayer, RS and STA.

Guidelines for verification do only exist for the highest level, i.e. how a
complete implementation shall react in a number of different situations. This
means that the blocks that have been implemented during this project have not
been possible to verify fully complete. The verification process in this project
has instead focused on the functional behavior of the blocks.

8.2 Future Work

As stated in previous section, four main parts of the complete Ethernet controller
remains to be implemented. These are the receive part of the MAC sublayer, the
transmit and receive buffers and the host interface.

During the development of the blocks that were implemented many discoveries
were made about how the system is intended to work, which made the author to
realize that the partition of the system could have been much better in order to
achieve a simpler design. Some of these observations follow:

= Make a clear division between the data path and the control path when the
frame is assembled in the MAC sublayer. Now, a lot of data is unnecessarily
moved back and forward. By dividing into data and control paths, the timing
is much easier to manage.

= There are three different clock signals present in the MAC sublayer. These
could be generated by the RS. Now, RS only generates the transmit clock for
GMII. By letting RS generates all clock signals used between the MII/GMII
and the MAC client, the design should be easier.

83

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

» There are signals present in the transmit part of the MAC sublayer that are
never used. Some of these signals are identified in section 4.3.

The use of the signal wasTransmitting was not consequent in the standard
IEEE 802.3 year 2000 edition. It was mentioned in the summary of the services
provided by the Physical layer [IEEE 802.3, Clause 4.2.7.4], but then not
declared in the definition of the services [IEEE 802.3, Clause 4.3.3], which the
summary refers. The signal was assumed similar with the signal
transmitting and implemented in that way, which turned out to be wrong.
Later, the year 2002 edition of the standard was released in which this had been
corrected and the variable is now declared as a shared variable within the
transmitter.

84

CHAPTER

9

Acknowledgements

First, I would like to thank my supervisor at Enea Epact, Ake Andersson for
great tutoring and support during the project.

I would also like to thank the staff at the Embedded System Division at Enea

Epact for a nice stay and especially Lars Asplund and Mathias Bergvall for
sharing their great knowledge.

Finally, I would like to thank my examiner at the Computer Engineering
Division within the Department of Electrical Engineering, professor Dake Liu.

85

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

— This page was intentionally left blank —

86

CHAPTER

10

References

[Boehm 1980] Boehm, Barry W. and Wolverton, R. W. (1980). “Software cost
modeling: some lessons learned”, The Journal of Systems and
Software, vol.1, num.3, pp.195-201

[IEEE 802.3] Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specification,
IEEE Std 802.3-2002, IEEE, 2002

[XAPP209] IEEE 802.3 Cyclic Redundancy Check, Xilinx, 2001
[XAPP258] FIFOs Using Virtex-11 Block RAM, Xilinx, 2001
[Xilinx ds031] Virtex-II Platform FPGAs: Detailed Description, Xilinx, 2002

87

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

— This page was intentionally left blank —

88

APPENDIX

Protocols

TdAON d¥4/ISO 3H1L Ol d3addVIN ST000.10¥d 40 NOILOAT3S

—p»{ s9|ge) Jaddewiod
— |exeon [REIIED Od¥] S4N seolAles 9l
(PAdI “dI) (dan)
—p) $ UOISIOA |00030.d juswabeuely
| §1vO 03010)] wesbeieq Z9L/191 dINS MIOMIBN
1oulBU| 198N
—p . S92INIBS
) aa4 dVNS 2208 €5 SNa Kiopeig
sule SuoIssogS
€z JeulL 1SOH
) . | N1V 1z2/02 dld Jajsuel] 9|4
—p suoleolddy
| 1sav 08 dLllH aoM
(9nd1) (doL)
—Pp . 9 UOISIBA |0o0}01d
) Nasl ddd ‘dI1s 1090101 011U0D Ges 18ussn sdnolBsmeN
Joulalu| uolssiwsuel |
) gl 1vD ‘X-S¥ GZ/dOd d1NS/dOd [rew-3
(1) ¥43AV1 (2) ¥43AV1 (€) ¥3AVT () 93AV (G) ¥3AV (9) ¥3IAVT (2) 93AV1
IVOISAHd MNIT V1va MYOMLIAN L1HOdSNVYL NOISS3S NOILVLNISIYd NOILYOI1ddY

A-1

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

— This page was intentionally left blank —

A-2

APPENDIX

EDA Software

The following EDA software have been used throughout the project:

= HDL PD Transition — HDL Designer Series 2001.3 (Mentor Graphics)
Design entry tool

= Leonardo Spectrum LS2001.1b.12 (Exemplar Logic)
Synthesis tool

= [SE Alliance 4.11 (Xilinx)
Implementation and configuration tool

= ModelSim PE 5.5a (Model Technology)
Simulation and verification tool

When estimating the power dissipation the following tool was used:
» Xilinx Virtex-II Power Estimate Worksheet, version 1.05 (Xilinx)

B-1

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

— This page was intentionally left blank —

B-2

APPENDIX

Signal Table for MAC Sublayer

Table begins on next page.

C-1

f a gigabit Ethernet controller using an FPGA

on o

Feasibility study.: Implementat

0104403/
deouzejeqiwsuel]
Hwsuelyeis
Kelp@awiL leayuels
weryeis

1eoisAud
axeN
leubisawel 1s)u|

H#odnoeg

$31Npadoid JWsuel] i OYIN

deougjeub

B ISUe. | Sem
Buipasoongywsues)
J1apesHbulobino
awel4bulobino
uosijjoomau
HoYoegXEW
Jgywsuel yse|
JglepesHjse|

[e30 | auel el
JunooswWel el
Bunepswely
Jo13puBIXe
Buuissep

JgNwsuel [JusLIno
Hejgising
spojpsing

Bunsing
JeunooIsing
sidwape

sa|qeleA Jwsuell O

[zISwel|
Zuedbupedgawel 4iajul
Luedbupedgawel ol

Bupedgawel Jiajul
szIgawel1ll

SJUBJSUOD JIWsuel] i DYIN

2edd0
suoloUNZ UCWWOY :: DVIN

Buiyiou
szl
$31NPa20Id UOWWOD :: DY

xadnayiey
S3|qeleA UoWWOD i OYIN

wN_wx:wEmm b
szig9|qweaid
azigped
anjeAsdA LUl
szIgawelui
swelplleAxew

A
*

¥ || x| [[[+

x[>[x|x|

[[|3 |3 [[3 3¢
[[|3 |3 [[3¢

e

[[|3 |3 [[3 3¢

IE4

I3
I3

= uw:

n|n

)

*

IE4

(7183

*
*
*
*
*

*[x ||| x

* [
*[¥x
*
* (%
*
*[¥%
*[%
*[%
*[x
x|
*[%

=
0| *|x
3]

O]

7]

oo

'*"""'**"*""';/*********

IHEEEREERE

n|x|o|

[4C3EE

IEEERE

IE4

S
=

IE4

/%%/

X X

Ta- - =

IE4

x | x [x [x| x

R

e =

—_—

* [
*[x|
*|x|

IE4
IE4

I3
I3

IE4

Xew
azigadALI0yIBUs|
azIglopeay
az|gawely|
}ig101I3UOISUSIX®
Jiguoisuaixe

Il I
szgssaippe = <] - | -~ -] =] -
S)UBJSUOD UOWWOD :: DVIN
02 520 N 505 oo
o..vnvv o(vov Q«%m o Ovs)
SIS <
£ oY %
& %& o
S
S
S
Qvﬂl

V_E
X[

[[4[4
(4[4

IE4

0@9 o&@:v ovét,v Jv@/m aﬁv

k44
k44
k44
k44
k44
k44
k44
k44
k44
pauieg

LTy
LTy
LTy
LTy
LTy
8Ty
LTy
LTy
k44
k44
LTy
LTy
LTy
LY
LY
LTy
LTy
k44
LY
pauieg

LY
LY
LY
LY
LY
LTy
LTy
LTy
pauleg

LTy
pauieg

oLey
SLTY
pauieg

(Va4
pauieg

LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
LLTY
pauieg

[pun]

uesjoog
uesjoog

IopesH

swely

uesjoog

[yzoL ‘ghiebay)
[sz1IS3Wely ‘| 19bBaju|
[sziSI9pRRY ‘| J19B3YY|

{pzISWe ‘szIgawWelJI8)uiebaju|

[1e3o L swel iyl ‘oliebaju|
uesjoog
uesjoog
uesjoog

[sz1Is8Wely ‘| 19B3YU|
uesjoog
uesjoog
uesjoog

[nwrnsing ‘gliebau

[Hwndwaye ‘liebau|
adA)

z€

[96 ‘vol

[v9 0l

96

96

98659/ -/~

dNEADYD
pauinjal anjea jo adA |

ues|oog
adA)

960%/2LS/2LS
8

14

95

{ezisEIRIUSIIO - 89E ‘O}XEW
95t

4%

0054

8161

o

9

oZISBIeP + Y|

O RENCNEINE]
AaN31x3

uesjoog

ozigped + 8zISeIeQyU;

z€

8
anjep

00104403
deouzejeqiwsuel]
suel | pels
[eayyels
weryeis
deougjeubigieoisAyd

HaxeN

Jeubisawel 1a)u|

HOxoeg

$31npaooid JWsuel] i OYIN

Kepgawi

Bungywsues | sem
Buipasoongyiwsues
J1apesHbuiobino
awel4bulobino

toxommxm:_
wsuel]se|
«_m_wvmwrﬁm_

e30 | owel o)l

JunooswWel 1oyl
Bunepswely

Jo1TpusiXe

Buuissep

Jglwsue) [JusiIno
Heigysing

spojpsing

Bunsing

JeUNooIsINg

sidwane

sa|qelieA Jwsuel] i O

sziswel
Zuedbuoedgawel iUl
| Hedbuoedgawel syl
BuedgawelJ1sul
szIgawel1ell
Jwrpsing
wrgoMoeq
ndwaye
SJUBJSUOD JIWsuel] i DYIN

2edd0
suoouUNy UowWwoy :: DVIN

$3INP320Id UOWWOD :: DYIN

xa[dnayley
S3|qeLEA UOWWOD :: DYIN

swijols

anjeAadA L uiw
szigawel
swelpileAxew
azIgawelJpabbejunxew
azigadA LIoyIBUs|
szigIepesy

szigewel)
JgIoguoIsuSIXe
Jguoisuaixe

szigeIRQIIBID
ozISssalppe
S)UBJSUOD UOWWOD :: DYIN

X1

C-2

Appendix C — Signal Table for MAC Sublayer

‘Z00Z:€°'208 3331 0} S219401 PaUYSQ UWIN|OO Ul SISGUINUUCNISS By

9[qISSA00Y ION = ¥
ajgeoyddy JoN = -

‘s1ahey 1ouB1y Aq peInoaxe s| UogounyaINpacoId SIy| = wed eanoaxg = X
‘Jou Jo apou JigeB! | WojsAs 8y} JoUaYM apIosp 0} pasn aq ueo [eubls syl = & wed pesy= ¥
‘s1ake| 10ybiy Aq paies|o | eubis sy = Z was S= §
“AleAnoadsal sdaiy 0001 / sdaN 00L / sdqy QL speads ay) 0} siajal saneA By = L wed ’s|D= 9o
>
%) 2 <y <y /@7@,& <> o s> <7
' o O S S e & Y
o < €3 L8 e oo S S S
S0 a%o;o) S %o»o < S o,.%eoo <S> %m%?%%ﬁooaeovo,.oo 6%?&%& & o,//oovoo%&% ﬁ.’o?/o,.ooe z \%699 > <> >
umov aaov P o o OS2 vo/,/ A 275 &o& %oo =S ,/co oov (IS SIS
wsopeqal- - -[- - - - el - el - - -] - - B B B O N O) O) O) B B B o B VTS 1s9118J2Q
1s9jasuagiomed|- - |- - - |- - - |m= - - el - |- - |- - - - -~ [-- |- -[F- |-~ -[F-- |- - - |00l - - VTS 189 asuaglale)
Sassad0id Jwsuel] :: Jwbly Joke] 31 N pauyag S9sS9001d Jwisuel] :: Jwbly Joke 310
.
sJayunodyiwsuel [Jubp1ake] - - - X VTS sJayunodwsuel [Jubpake]
sainpasoid jwsuel] :: Jwbp Joke 310 N pauyag S2INpagold Jwsuel] :: Jwbyy 19he7 310
\
S b o B x a8 * x* * * * x * x * B x B x A ves abieiajunod Isljoo3%e|
S * * * X * X * X * X * X * X * X * X * vTs ebieieunod [e119j2QdNISSBOXS
009AISSB0XS | S * * * X 3 X * X 3 X 3 X 3 X * X * X * vTs ebieieunod [0ONISSB0Xd
S101139sUGIaLIED NS X x X x X x X x X x X x ¥ x ¥ x X x ¥ VTS able18uno) S101139sUBGIB1IED
//S183UN09 JoLis Jsuen SN/ £ 101 T T AR //S183Unoo lois Jwisuel YN/
saweluoIs|jooaIBuIS s x | ¢ [* [¢ | ¢ [* [* [* | * [» [* [« [* [*[* [*x]>][*]x [AXA] aBieiaiunod sawel4uoisijoDa|buis
MOP3sRIWsUel] sj8j0 _m S * * * X 3 X * X 3 X 3 X 3 X * X * X * vTs ebieieunod MOPsRIWsuel] s}8j0
S b o B x a8 x a8 x B x b x b x B x B x A ves abieiajunod
MOP3RIWSUEI | SOWEIHISEonNW s X | * [* [* | * [* [* [x| * [* [* [*x [* [* [¥ x> [*][x Tres abieiounon MOPORILISUEI | SOWEIAISEORINW
MOPaRIwsue! | sawesy| s X | * [* [* | * [* [* [x| * [* [* [*x [* [* [¥ x> [*][x Tres sbieelunon MOPaRIWSUEI | SaWely
1 ILpaLIBjep s X | * [* [* | * [* [* [x| * [* [* [*x [* [* [¥ x> [*][x Tres aBieiaiunod SuoISSIWSUBI | Pa1Iojep
sawel-uols| s X | * [* [* | * [* [* [x| * [* [* [*x [* [* [¥ x> [*][x Zyzs ebielieunod Jo [| - ywrpdwene ‘L] Aese
MOPSHIWISUEI | SIWEIHISEOPEoIq s ¥ | [[* | * [* [* [*x | * [* [* [*x [* [* ¥ x> [*x][x Tres abieiouN0n MOPSHILISUEI | SAWIASEOPEoIq
//S191UN0D YWISUBL, OVIN// y] J/$181UN0O Ywsues QYN
] VTS uesjoog (Z wei) pajqeugnwsues
| | | S) Tres uesjoog Jouzu
Bl s W SO TreTs [1 - ywrpdweye ‘ohabayul unoguols|
19J9(]SS90X8 bs |9 o) VTS ueajoog 19J9(]SS90Xd
ig1eep| ¥ (4SO * X x x X x X x X x X x X x X x X x X x X x TS [owiL1aje0xew ‘gliobeju| Jawiyg19jep
paLajep B 5 Tres uesjoog paLiejep
ussguo¥: o x _I« X ¥ * * * X 3 X * X 3 X 3 X 3 X * X * X * vTs uesjoog usaguoisi|iod
ussg o » [x X ¥ * * * X 3 X * X 3 X 3 X 3 X * X * X * vTs uesjoog usagialles
aUo()sa | 9SUSSIBLIED) 5] VTS ueajoog auo()sa | 9sUaSIaLIED
aIn|ie4osuagIialles) 5] VTS ueajoog aIn|ie4asuagalles
sa|qeleA Jlwsuel] :: Jwbpy Jokeq 310 N pauyaq adAL sa|qele) Jwsuel] :: Jwbpy Joke] 310
11101101 T T AT
ablewng X - - vvTS ablewng
e A [x | x | * | x x | x | x X | * | * [*x | * [* [* [* [* | * [*x [* | * [* | *[x TS (r wei) upwoIeke]
Jaunogabieou| X - - X vrTs J18yunogableou|
S2INpadoid uowwo) :: Jwby Jake] 310 N pauyag $91npadoid uowwo) :: Jwby Jeke 310
\
swi ygeuo LvTs [al L s ngeuo
ablexew | R4 [-1 L-2evg ablexew
swiLisjeqxew Bl LvTS [1a] 88V GGl /88T ¥ /88T vT (1 we) swi|ssjeqxew
yoxew (R4} [-] L -v9vC yoxew
sjuejsuo) uowwo :: Jwbly Jokeq] 310 \ pauyaq [3un] anjep sjuejsuo) uowwo :: Jwbly Joke] 310
1A
e X X X €eY Hem
vgnwsver [x [x | x | * | x X | X | X P4 ughwsues|
S2INpadoid Jiwsuel] :: adepaju] Jake] AHd pauyag S2INpadoid Jlwsuel] :: adeuaju| Jake] AHd
=P - -] - - SO] Bl s |8 ceY uesjoog Bumiwsues
- -1 - -1 - - s T s - - - .._l.. i T £EY uesjoog ajequoIs!|j00
- - - - - -l - = - - - - - - - R R R R R [XR2 ueajoog asuagIaLlIed
sa|qeliep Jiwsuel] :: aoepd)u| Joke] AHd pauyaqg adAL sa|qelie/ Jlwsuel] :: aoepd)u| JaKke] AHd
Jepiwsueug) x x x x - |- B B B B B P R e R e R P R e = 8TV Japiwsuel | ig
oouasepea| x | x | ¥ | ¥ | x [N - -[-- - - - B B B O B P R e R e P e 8Ty 20ua19peQ
sswipsing[” x X x x SR - - |- - B B B O B P R e R P P e 8Ty
S9sS9001d Jlwisuel] i1 QYW pauyag S9sS3001d Jlwisuel] 1 QYW
wpurpwsell [x | x | x | % | x — - - X [x44 snjeIgHwsues | I
sweljjwsuel] (x * * X ¥ * * * X * X * X 3 X 3 X 3 X * x |-- - % * 8TV smieigpwsuel] (¢ weu) sweljjwsuel]
fepgawiiead| ¥ | x | x | % | x ~ - - X 8Ty uesjoog AKejpgauwiL feay
wopuey| ¥ X x X x X0 | 8Ty [1 - yoroegxew ‘gliebeiu| wopuey
pedandwos| x | x | x | ¥ | x = X [X44 anjepeIeq pedaindwo)
suonouny Jlwsuel] i OYIAR A A pauyag pauinjal anjena jo adA} suonjoung jlwsuel] :: QYW

C-3

f a gigabit Ethernet controller using an FPGA

on o

Feasibility study.: Implementat

awi]ygauo.

ablexew

awi] Jajexew

poxew
sjuejsuo) uowwoy :: Jwby 19ke7 310

Hgeneosy| x

SUOIOUN 4 SAI90SY :: 90BWAYU| Jake] AHd

|eABIEJONIS03)
S3|qeLIEA AI909Y i1 0ep3U| 19AET AHd

UIPUSIXTIOS

JanisoaxIg
$9553001d 9AI909Y :: IVIN

pedanoway

*| %

*

*[x

x| %

ssaippyaziubooay

deoageleganieoay

XX

EINLIEENELEN]
suolouUN4 9AIR03Y :: OVIN

deoa(leubigeoisAud

| |[x| K

* || x|

*

[| [x

[[[+

*
x
*x

X
anposypeIS[¥
X

JWBPBIUITONIB09Y
$2INPa20id dAI993Y i1 OVIN

x|

x| % [%

*
x*
*

4[4

Buipasoonganieoai| -

azigaweljbuiwooul[x

*

x

*|n|n|x
4[4
»

o
*|n
3]
o

swel4buiwooul|” - - |9

%

x
*

paysiuiowey[” x

>OuUoIsus)Xe.

%

%

o[x

Buipuaxa| -

)

Olojo| |o|ojo

sygsseoxa| -

Wbuaxepspasoxal -

FHEBERE

JaneoayNga|qeus

*
x*

x
*

x

X
JgoNI0uaLINO [¥
X

q
S9|qeLIEA 9AI909Y i1 DVIN

[ZE1) IS

suopoun4 uowwoy :: VI

Buiyou

* ||

x|

*x

x| % [%

*
x*

»|n|n
OlO]O]

FHEERRERERGEEE

x
*

x

*
*|[x| x|
*

*
*

x| %[%

$21Npa001d UOWWOD :: DY

xednayey| -
S9|qelEA UOWWOD i OVIN

awijors| -

*|[x!

*|[x!

I3

szigpys|” -

azigxyaidbelb[-

I3

aziga|queaid| -

azigped|[-

anepadAuw| -

szISoWeIuIW
swelpleAXew
azIgawel pabbejunxew

I3

IERES

azigadALioybus|[-

szigiepeay[-

szigawey[-

I3
%

IEEBE

Jgiouguoisualxe[-

yguoisuape| -

puapa[-

szigeyep[-

14

ozigon| -

szigejequalp
szigssaippe

SJUBJSUOD UOWWOD :: IVIN

<

o
oav/
%a»o/o

<
&vxwu@r >
2

2>

S

o

PSS
oM @G‘rlr
B

%

<S

2> o
oo%v

O
5

O

5

%
<>
)

o%so

D
4
0

a,w%v ,vo
onwov/sa %@%Geoo
o
)

LvTs
[4A]
LvTs
LvTs
paulag

eey
pauleq

34
pauyeq

6TV
6TV
pauleq

62TV
62TV
62TV
6TV
pauyeq

62TV
62TV
6TV
pauleq

€LTY
6Ty
€LTY
€LTY
6Ty
€LTY
6Ty
€LTY
€LTY
€LTY
€LTY
6Ty
6Ty
6Ty
paulag

oLy
pauyeq

oLy
SLTY
pauyeq

[WEA4
pauyeq

LLTY
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTy
LLTY
pauyeqg

[1a) 1
[-] L-2e
[1a] 88V G5 /88T ¥Z /88T ¥T
[-] L-v9T
[3un] anjep

1glevisAud
pauinjal anjen jo adA |

uesjoog
adAL

aneaeleq
uesjoog

SNjeISaNIR0eY
SNJeISaNIR0eY

pauinjal anjea jo adA}

uesjoog
SNJeISaNIR00Y
uesjoog

uesjoog

[‘okisBey
awely

uesjoog

uesjoog

uesjoog

[2 ‘OhaBayuy
uesjoog

uesjoog

[ozigawely ‘| J18bau|
1gleoIsud

adAL

NEADHD
pauinjal anjea jo adA}

uesjoog
adAL

[1a] 960V /LG /2LS
g

[g] 4
[a] 9
lq] {ezisErRQILI0 - gOE ‘OPxEw
[-] 9€G1
[a] 4%
] 0054
[g] 8151
ol
79
la] SZISEIEP + byl
[-] HYO¥Y3 aNILX3
[-] [e\EINE]
[-1 ueajoog
[a] szigped + szISeleIU
[a] 43

[a] 8y
[wun] anjep

awiygauo
ablexew

(1L weu) owiLIsjeQxew
poxew

sjuejsuo) uowwo :: Jwbly Joke] 310

Jganieoay
SUOHOUN 4 SAI903Y :: 90BMAYU| Jake] AHd

PlleABIEgaAIR0a)
SO|qELIE/\ DA1909Y :: 90BUS}U| J9Ae] AHd

UIPUSIXTIES
1aNB00YNG
$9559001d DAY 11 OVIN

pedanoway
ssaippyaziubooay

deoaelegani®oay

(b wei) awelan0ay
suopouN4 aA1993Y :: OVIN

deoa(leubigeoisAud
aAIR0YLEIS
JWBNNUITOAIR0SY
$2INpadoId dAIR93Y 11 OV

yibuapiieA

snjels

Buinisoal
Buipasconganzoal
szISawelJBuiwooul
awel4buiwooul
paysiuljewely
SOuoIsus)Xe
Buipua)xa
S)igssaoxe
yibusTxepspasoXe
1aAIR0aYlIgoIqeUD
1Ig9AIR0YIUBLIND

q
S3|qeLEA SAI909Y 11 OVIN

[43e)-e)
suojouUN4 UOWWOD i YN

Buiyiou
(r wei) azijenu|
$2INpadoId UoWWO) 1 OV

xa[dnqyey
s3|qele) uowwo) :: YN

(L wei) awiLjols
sz15pIs

azIgxyaidbe | b

azige|queaid

azigped

anjeAadA) uiw

szISaWeIuI

awelpIeAXew

azIgaweljpabbejunxew

ezisadAL10yIbUS|

ozISI9pERY

szIgowWe)

JigloL3uoIsua)xe

JiguoIsuL)xe

(¢ weu) puajxe
szIgelEp

0zI5010

szIgelRqIUBID

ozIgssaIppe

SJUBJSUOD UOWWOD i1 DYIN

X

C4

Appendix C — Signal Table for MAC Sublayer

'Z00Z:€'208 33| 0} SeI8j0) PAUS(Q UWNIOO Ul SISGUINUUON0SS BYL 9[qISSA00Y ION = ¥
ajgeoyddy JoN = -
‘slake| Jaybiy Aq paynosxe S| uonounyeinpadold iyl = wad anoexg = X
Jou Jo 3pouwl iqeBIB Ul S| WaISAS SU) JaYIBYM BpIosp 0} Pash aq Ueo [eubis SIyL = £ wad pesy= ¥
‘s1ake| 10ybiy Aq paies|o | eubis sy = Z was S= §
“AleAnoadsal sdaiy 0001 / sdaN 00L / sdqy QL speads ay) 0} siajal saneA By = L wed ’s|D= 9o
£
o'
/coﬁv 01@)
e SEES S
S ! S O
a.vawo &2 S 7S SIS
1 X 55 8 o
wovccé 99009 < O/@oo ouo&;x&a» 'v%@ %7&9 svoova % Anﬂ/oO@/@O vwov/o
T S S I L L~

S9sSaIppYaz! ues|oog $9SSa.IpPYRZIUD0OS HILBNIoART

suoyouNny dAIROSY : pauinjas anjea jo adA | suooun4 aARoaY :: JwB Jake 310
sI9)UN0DaNIR0 YW\ Iake] VTS SI9)UN0DANIBORYIWB|NI9AET
Sa1npadold aA1RdRY :: Jwb|y Jeke] 310 NN N N T ///%7/////% pauyaq sainpadoid aA1R0ay 1 Jwb|y Jehe] 310
MOPaAIBoaYsaWE] Jiseonnw ¥ x ¥ x ¥ * * * B x A VTS abieieunoy MOPaAIe0aysaWel fjseonnw
SOP3AIBOSYSAWEI)SEOPEOIq £VTS abieielunoy MOP2AIR0aYSAWEL}SEOPEOIq
//S13)UN0D SSBIPPE BAIB0BI DVIN// T Y //S18)UNOD SSBIPPE BAIB0R1 DVIN//
plelJyibuaabueyjomo £VTS able18uno) pleIdyibuatabueyomo
slol1gyibusebueyul £VTS able18uno) slougyibusebueyul
s101136u0700 | Bl £YTS abieieunoy sio136uoT00 | swely
1011380 Dowely £YTS abieieunoy slolgeousnbagsoayOewely
slouguawubie b * B VTS abieieunoy slouguawubie
//S193UN02 10112 BAIRIRI DN/ A T TIINNNY //S18)UN02 o118 8AIRIRI YN/
HOP3aNI209YS}R)00 Y B x A VTS abieieunoy MOPaAI209Ys}e100
MOPaAovYsaWely £VTS abieielunoy MOPaARoaYsaWely
//S12)UN0D BAI1B081 OVIN//] J/S1B)UN0D BAI9031 DVIN//
pajqeuzaneoal [] EH| uesjoog (Z wei) pajqeuzanieoal
saigeneA an0ay ::jwBW Jafe1 3.gR TR B EEE R R paunag 2dAL saiqene andoay : JWBW 1afeT 310
. 1 =

ebleuwng
(¥ weu) azileniupwbpake]

J18yunonabieou|
sa1npaoold uowwo) :: bl 19Ae 310 N = T T peusea s31npaoo1d uowwo :: Jwbly 19ke 310
. . ' ! I

C-5

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

— This page was intentionally left blank —

C-6

APPENDIX

D

Power Dissipation

CLB Logic Power

Total el UlatEz! Amount
Frequenc Total Number of Number of|[Number of| Average of VCCint
Name (,3“_'2) Y| Number of Flio/Flo Shift Select Toggle Routin Subtotal
CLB Slices| ' "P'"'OP | Register | RAM | Rate % 91 (mw)
or Latches LUTs LUTs Used
TransmitLinkMgmt 125 125 37 0 0 12% Medium 14
TXCRC32 125 69 33 0 0 55% Medium 35
BitTransmitter 125 58 12 0 0 12% High 10
TransmitFrame 125 70 38 0 0 12% Medium 9
BurstTimer 125 20 23 0 0 12% Medium 3
Deference 125 15 9 0 0 12% Medium 1
Random 125 21 27 0 0 55% Medium 11
RealTimeDelay 125 8 7 0 0 12% Medium 1
TxStateReg 125 31 36 0 0 12% Medium 4
Total 92

D-1

Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA

— This page was intentionally left blank —

D-2

‘o“\ji “y
LINKOPING UNIVERSITY :’Qf
ELECTRONIC PRESS %, 5 £
uNwY

Pa svenska

Detta dokument halls tillgédngligt pd Internet — eller dess framtida ersdttare —
under en ldngre tid fran publiceringsdatum under forutséttning att inga extra-
ordindra omstdndigheter uppstér.

Tillgdng till dokumentet innebér tillstdnd for var och en att ldsa, ladda ner,
skriva ut enstaka kopior for enskilt bruk och att anvéinda det of6rdndrat for
ickekommersiell forskning och for undervisning. Overforing av upphovsritten
vid en senare tidpunkt kan inte upphéva detta tillstind. All annan anvdndning av
dokumentet krdaver upphovsmannens medgivande. For att garantera dktheten,
sdakerheten och tillgidngligheten finns det 10sningar av teknisk och administrativ
art.

Upphovsmannens ideella ritt innefattar rétt att bli nimnd som upphovsman 1
den omfattning som god sed krdver vid anvindning av dokumentet pa ovan
beskrivna sitt samt skydd mot att dokumentet dndras eller presenteras 1 sddan
form eller 1 sddant sammanhang som ér krinkande f6r upphovsmannens litterdra
eller konstnirliga anseende eller egenart.

For ytterligare information om Link&ping University Electronic Press se
forlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Link&ping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Richard Falt

http://www.ep.liu.se/

	INTRODUCTION
	Background
	Aim
	General Description of Approach
	Outline and Reading Instructions

	BACKGROUND
	Overview of IEEE 802.3 and the OSI/BR Model
	The ISO OSI/BR Model
	The IEEE 802 Standards and their relation to OSI
	The IEEE 802.3 Standard
	The IEEE 802.3 Architectural Model

	Referenced Sublayers in IEEE 802.3
	MAC Service Specification
	TransmitFrame
	ReceiveFrame

	RS Service Specification
	carrierSense
	receiveDataValid
	collisionDetect
	transmitting
	TransmitBit
	ReceiveBit
	Wait

	Referenced Interfaces in IEEE 802.3
	MII
	TX_CLK (transmit clock)
	TX_EN (transmit enable)
	TX_ER (transmit coding error)
	TXD (transmit data)
	RX_CLK (receive clock)
	RX_DV (receive data valid)
	RX_ER (receive error)
	RXD (receive data)
	CRS (carrier sense)
	COL (collision detect)
	MDC (management data clock)
	MDIO (management data input/output)

	GMII
	GTX_CLK (transmit clock)
	TX_EN (transmit enable)
	TX_ER (transmit error)
	TXD (transmit data)
	RX_CLK (receive clock)
	RX_DV (receive data valid)
	RX_ER (receive error)
	RXD (receive data)
	CRS (carrier sense)
	COL (collision detect)
	MDC (management data clock)
	MDIO (management data input/output)

	Referenced Protocols in IEEE 802.3
	MAC Frame Structure
	Preamble field
	Start Frame Delimiter (SFD) field
	Destination and Source Address fields
	Length/Type field
	Data and PAD fields
	Frame Check Sequence (FCS) field
	Extension (EXT) field

	Management Frame Structure
	PRE (preamble)
	ST (start of frame)
	OP (operation code)
	PHYAD (PHY Address)
	REGAD (Register Address)
	TA (turnaround)
	DATA (data)
	IDLE (IDLE condition)

	DESIGN METHODOLOGY
	Requirement Analysis
	Requirement Specification
	Design Planning
	Design Entry
	RTL Simulation
	Synthesis
	Choosing Target Device
	Choosing Synthesize Method

	Place & Route
	Static Timing Analysis
	Gate Level Simulation
	Validation

	IMPLEMENTATION
	Design Planning
	Partitioning of the Standard
	Precise Design: TxMAC
	TxDataEncapsulation
	TransmitFrame
	TxCRC32
	ComputePad

	TxMediaAccessMgmt
	TransmitLinkMgmt
	Random
	BurstTimer
	Deference
	RealTimeDelay
	BitTransmitter
	TxStateReg

	TxBufferPort
	TxDataFIFO
	TxDescFIFO
	TxDescReg

	TxMIG

	Precise Design: Reconciliation Sublayer (RS)
	PLS_DATAreq
	PLS_SIGNALind
	PLS_DATAind
	PLS_CARRIERind

	Precise Design: Station Management (STA)
	InDataReg
	ClockGenerator
	OutDataMUX
	Controller

	Analysis of Possible Critical Blocks
	Critical Block: TransmitLinkMgmt
	Critical Block: TxCRC32
	Critical Block: BitTransmitter

	Design Entry
	Different Styles
	Implementation Example: BitTransmitter

	RTL Simulation
	Synthesis
	Choosing Target Device
	Choosing Synthesis Method

	Place & Route
	Static Timing Analysis

	RESULTS
	Size
	Performance
	Power Dissipation

	DISCUSSION
	Reliability and Availability of Obtained Results
	Size
	Performance
	Power Dissipation

	Comparison with IP core from Xilinx

	CONCLUSION
	RECOMMENDATIONS
	Status of Work
	Future Work

	ACKNOWLEDGEMENTS
	REFERENCES
	PROTOCOLS
	EDA SOFTWARE
	SIGNAL TABLE FOR MAC SUBLAYER
	POWER DISSIPATION

