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ABSTRACT 

Background: Many systems that Enea Epact AB develops for theirs customers 
communicates with computers. In order to meet the customers demands on cost 
effective solutions, Enea Epact wants to know if it is possible to implement a 
gigabit Ethernet controller in an FPGA. The controller shall be designed with 
the intent to meet the requirements of IEEE 802.3. 
Aim: Find out if it is feasible to implement a gigabit Ethernet controller using an 
FPGA. In the meaning of feasible, certain constraints for size, speed and device 
must be met. 
Method: Get an insight of the standard IEEE 802.3 and make a rough design of a 
gigabit Ethernet controller in order to identify parts in the standard that might 
cause problem when implemented in an FPGA. Implement the selected parts and 
evaluate the results. 
Conclusion: It is possible to implement a gigabit Ethernet controller using an 
FPGA and the FPGA does not have to be a state-of-the-art device. 
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ABBREVIATIONS 

AUI Attachment Unit Interface 
b bit(s) 
B byte(s), octet(s) of bits 
CRC Cyclic Redundancy Checksum 
DTE Data Terminal 
EDA Electronics Design Automation 
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GMII Gigabit Media Independent Interface 
IEEE Institute of Electrical and Electronics Engineers, Incorporated 
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RTL Register Transfer Level 
TBI Ten Bit Interface 
TCP Transmission Control Protocol 
UDP User Datagram Protocol 
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FLOWCHART SYMBOLS 

The following three types of symbols are used in flowcharts: 

Process

Function

Procedure
 

 
The following three types of symbols are used in state diagrams: 

T Delay element

Decision

Process

 
 
 

FONTS 

• Pascal - This style are used for names (processes, functions, procedures, 
    variables, constants, types etc.) that refers to the Pascal-like code 
    in IEEE 802.3 

• VHDL - This style are used for names (processes, functions, procedures, 
    signals, variables, constants, types, block names etc.) that refers 
    to the VHDL implementation done in this study 

•  - This style represents code written in VHDL or Pascal  
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code
st of the names used in the VHDL implementation in this study are defined 
the standard IEEE 802.3. E.g. an in standard defined process foo are 
lemented as a process called foo but the VHDL implementation may also 
rporate other functionality besides that defined in the standard, thereby this 

inction is made by the use of different styles. 
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 CHAPTER 

 1 
 

Introduction 
 

CHAPTER 1: INTRODUCTION  

1.1 Background  
This work has been carried out at Enea Epact AB, Linköping, at the Embedded 
Systems department between September 2001 and February 2002. Enea Epact 
AB is a consulting company focusing on high-performance systems. 
At the Embedded Systems department, some of the systems that have been 
developed communicate with computers. In order to meet the demands from the 
customers, Enea Epact wants to know if it is possible or not to implement a 
gigabit Ethernet controller in an FPGA together with other functions. 

1.2 Aim  
Is it feasible to implement a gigabit Ethernet controller using an FPGA? 
In the meaning of feasible, the following aspects shall be considered: 
� Size A golden rule is to never fill the FPGA more than 80% in order to 

  avoid place & route problems. Besides the Ethernet controller,  
  there must be sufficient place left to implement another, large  
  design. 

� Speed There must be a speed margin in the range of 10 to 20 %, since  
  only parts of the controller will be implemented. 

� Device The selected FPGA shall be a midsize device, which may belong 
  to a high performance family of devices. Further, it is required not 
  to use the highest speed grade available. 

 
In addition, a rough estimation of the power consumption shall be presented. 
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1.3 General Description of Approach  
1. Get an insight and common knowledge about the standard IEEE 802.3 and 

its associated standards where necessary. 
2. Make a design suitable for VHDL implementation of necessary parts in the 

standard. 
3. Implement these block in VHDL using Renoir from Mentor Graphics. 
4. Check their functional behavior by simulation using ModelSim from Model 

Technology. 
5. Synthesize the blocks using Leonardo from Exemplar Logic. Implement the 

design using ISE Alliance and then check the blocks’ size and performance. 
6. Collect the results from step 5 and decide whether it’s feasible or not. 
7. Estimate the power dissipation. 

1.4 Outline and Reading Instructions  
The next chapter introduces the OSI/BR model, which is a commonly used 
model for describing network communication. Also presented here is the 
standard IEEE 802.3, which among other techniques describes gigabit Ethernet. 
Chapter 3 describes the methodology that was used during this work including 
which development tools that was used. 
Chapter 4 tells about the implementation and how each step of the methodology 
was carried out in practice. An example is given how code written in the Pascal-
like language used in IEEE 802.3 was ported to VHDL. 
In chapter 5, the results (size, performance and power dissipation) of the 
implementation are presented. 
A discussion regarding limitations, what could have been done better etc. and 
the conclusions can be found in chapter 6 and 7 respectively. 
Recommendations for future work are presented in chapter 8. 
Finally, acknowledgements and a reference list are given in chapter 9 and 10. 
The reader is expected to possess a basic knowledge about HDL languages such 
as VHDL and fundamental digital building blocks. 
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 2 
 

Background 
 

CHAPTER 2: BACKGROUND  

This chapter presents the standard IEEE 802.3 and a brief summary of the parts 
from it that has been used in this study. 
In addition, the standard for the OSI/BR model is presented since the 
architectural description used in IEEE 802.3 is based upon this model. 

2.1 Overview of IEEE 802.3 and the OSI/BR Model  
This section will give an introduction to the standard IEEE 802.3 and its 
relationship to the architectural model of networking given by the Open System 
Interconnection Basic Reference Model, OSI/BR. 

2.1.1 The ISO OSI/BR Model  
The OSI/BR model is described in the standard ISO/IEC 7498-1:1994. The 
purpose with this model is to have a standardized model that gives a common 
basis for the development of different standards for system interconnection. 
This model, shown in figure 1, consists of seven layers. Since the model is very 
adaptable, all layers are optional. Each layer has a dedicated function but 
because of its very commonly held structure, not every layer will have a 
counterpart in every standard for interconnection. 
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Higher layers

Lower layers

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL
 

Figure 1: ISO’s seven layers OSI/BR model. 

In the IEEE 802.3 standard, the two lowest layers are referenced. These are the 
Physical and Data Link layers. The Physical layer describes the medium that the 
communication link uses and techniques associated with transmission and 
reception over the medium, e.g. which type of modulation that is used. The Data 
Link layer describes how the access to the link is managed, e.g. how a client 
connection to another client is established. 
For orientation, some common protocols and their counterpart to the different 
layers in the OSI/BR model is presented in appendix A. 

2.1.2 The IEEE 802 Standards and their relation to OSI  
IEEE 802 is a family of standards for local and metropolitan area networks 
(LAN and MAN). Their internal relationships and their relation to the OSI/BR 
model is shown in figure 2. The standards apply to the two lowest layers of the 
OSI/BR model (Data Link layer and Physical layer) with the exception of IEEE 
802.10. 
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Figure 2: Relationship within the family of IEEE 802 standards. 
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Chapter 2 – Background 

The standards 802.3-6, 11, 12 and 16 define different medium access 
technologies and their associated media. As an example, 802.3 defines the 
access method using Carrier Sense Multiple Access with Collision Detection 
(CSMA/CD), while e.g. 802.11 defines the access method using Wireless LAN. 

2.1.3 The IEEE 802.3 Standard  
This standard for LANs employing CSMA/CD as access method supports bit 
rates from 1 Mbps to 1’000 Mbps. The focus in this report is on 1’000 Mbps 
systems using copper cabling as physical medium. 
The first edition of the 802.3 standard was approved by IEEE itself in 1983. 
Since then, new parts have been added and old parts revised. Every change to 
the standard has been given a name, e.g. IEEE 802.3ab. The letters at the end 
refers to a specific clause that was added or a specific revision of the whole 
standard. Since the standard has been rather large, it is not often possible to state 
that a certain product is “IEEE 802.3 compliant”. Instead, the parts of the 
standard that have been implemented is targeted directly, e.g. “IEEE 802.3ab 
compliant”. 

2.1.4 The IEEE 802.3 Architectural Model  
The architecture of IEEE 802.3 corresponds closely to the two lowest layers of 
the OSI/BR model as shown in figure 3. 
 

LLC - LOGICAL LINK CONTROLAPPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

OSI/BR
MODEL
LAYERS

LAN
CSMA/CD
LAYERS

HIGHER LAYERS

MAC CONTROL (OPTIONAL)
MAC - MEDIA ACCESS CONTROL

PLS RS RS RS

PLS PCS PCS
PMA PMA

PMA PMA PMD PMD

MII GMII
AUI

MDI

MII

AUI

MDI MDI MDI
MEDIA MEDIA MEDIA

1 Mbps, 10 Mbps 10 Mbps 100 Mbps 1000 Mbps
MEDIA

 

Figure 3: The LAN standard’s relationship to the OSI/BR model. 
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The Data Link layer in the OSI/BR model is partitioned into three sublayers in 
the architecture in order to obtain maximum flexibility within the family of 
IEEE 802 standards. By doing this, various media access methods are allowed 
since the LLC sublayer is the same for all of them. 
Each sublayer in the architectural model provides a set of services that the 
nearest implemented higher sublayer uses. Service is the gathering name for 
function, procedure and variable that is made public and used by other parts of a 
system but the part providing them. 
A service is described in its most abstract form by a service primitive. There are 
two generic types of primitives, REQUEST and INDICATION. The REQUEST 
primitive is passed from a higher layer to a lower and INDICATION vice versa. 
The REQUEST primitive requests a service to be initiated while the 
INDICATION primitive indicates an event. 
The architecture also defines five important compatibility interfaces (MII, GMII, 
AUI, MDI and, not shown in figure 3, TBI). All interfaces, but MDI, are 
optional and in this study, only MII and GMII are of interest. MII and GMII are 
further explained in sections 2.3.1 and 2.3.2. 
When implemented in hardware the typical solution until today has been to 
implement the Physical layer except Reconciliation sublayer, RS, in one device, 
often referred to as a PHY device, and the Data Link layer together with RS into 
another, often referred to as a MAC device. The MAC device also typically 
incorporates a bus controller suitable for the intended host system, e.g. PCI if 
implemented for use in a PC. Another solution that has become more common is 
to implement both the Data Link layer and the Physical layer together in a single 
device in order to save space, power and cut costs. 
When a two-device constellation is used, the two devices are connected to each 
other via the MII and/or GMII. A benefit with separate MAC and PHY devices 
is that one MAC device can be connected to several PHY devices. By doing that 
the bandwidth can be increased since the links form a single link as seen by the 
LLC sublayer. This type of link is referred to as aggregated link. 
In this work, a PHY device will be used and the FPGA will contain the RS and 
higher sublayers. 
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2.2 Referenced Sublayers in IEEE 802.3  
Two of the sublayers defined in IEEE 802.3 are referenced in this study. It is the 
RS and MAC sublayer. Figure 4 shows the services provided by each sublayer. 
The provider of a service is always the sublayer beneath the arrow. The arrow 
points from the calling sublayer, e.g. the service collisionDetect is provided by 
the RS and indicates to the MAC sublayer when a collision has been detected. 
Another example is the service TransmitBit, also provided by RS, which the 
MAC sublayer uses to request the transmission of frames. 
In figure 4, the optional MAC Control sublayer has been implemented. If this 
sublayer were not to be implemented, the two service primitives denoted 
MA_CONTROL.* would not be present. The direction of the arrows for service 
primitives points upwards if it is of type indication and downwards if it is of 
type request. 
 

MAC Sublayer

Wait
carrierSense

receiveDataValid
ReceiveBit

collisionDetect
transmitting

TransmitBit

MAC Control Sublayer

TransmitFrameReceiveFrame

MAC Client

RS

MA_DATA.indicate
MA_DATA.request MA_CONTROL.request

MA_CONTROL.indicate

 

Figure 4: Service primitives’ and services’ relationships. 

The services for the MAC sublayer and RS are further described in sections 
2.2.1 and 2.2.2 respectively. 

2.2.1 MAC Service Specification  
The MAC sublayer performs the access control for the shared media (i.e. the 
physical cable). Besides the access control it also performs, among other things, 
checksum generation for outgoing frames and checks incoming ones, assemble 
and dissemble frames. 
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MAC

TRANSMIT
DATA

ENCAPSULATION

RECEIVE
DATA

DECAPSULATION

TRANSMIT
MEDIA ACCESS
MANAGEMENT

RECEIVE
MEDIA ACCESS
MANAGEMENT

ACCESS TO MAC CLIENT

ACCESS TO PHYSICAL LAYER

 

Figure 5: MAC functions. 

The services provided by the MAC sublayer allow the MAC client entity to 
exchange LLC data with peer LLC sublayer entities. 
The MAC sublayer is described in several levels of abstraction. The highest 
level is the specification of service primitives, notated as “MA_*” in figure 4. 
These service primitives are translated to services, e.g. the service primitive 
MA_DATA.request is an abstraction of the service TransmitFrame. The services 
provided by the MAC sublayer are presented in sections 2.2.1.1 and 2.2.1.2. 
How the services are obtained is then given by a functional specification of the 
MAC sublayer presented in IEEE 802.3, Clause 4.2.8. This functional 
specification, written in a Pascal-like code, is later used in chapter 4 where the 
implementation of the sublayer is performed. 

2.2.1.1 TransmitFrame  
The MAC client (i.e. MAC Control or LLC sublayer) transmits a frame by 
invoking TransmitFrame (IEEE 802.3, Clause 4.3.2). 
 

function TransmitFrame(  
var destinationParam: AddressValue; 
var sourceParam: AddressValue; 
var lengthOrTypeParam:LengthOrTypeValue; 
var dataParam: DataValue 
): TransmitStatus; 

 
type TransmitStatus = (transmitDisabled, transmitOk, 

excessiveCollisionError, 
lateCollisionErrorStatus); 
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Chapter 2 – Background 

The TransmitFrame operation is synchronous and lasts the entire attempt to 
transmit the whole frame and when finished, it reports success or failure via 
TransmitStatus. 

TransmitStatus can also take the underlined values, but only if Layer 
Management is implemented. 

2.2.1.2 ReceiveFrame  
The MAC client (i.e. MAC Control or LLC sublayer) accepts to receive a frame 
by invoking ReceiveFrame (IEEE 802.3, Clause 4.3.2). 
 

function ReceiveFrame( 
var destinationParam: AddressValue; 
var sourceParam: AddressValue; 
var lengthOrTypeParam: LengthOrTypeValue; 
var dataParam: DataValue 
): ReceiveStatus; 

 
type ReceiveStatus = (receiveDisabled, receiveOk, 

frameTooLong, frameCheckError, lengthError, 
alignmentError); 

 
The ReceiveFrame operation is synchronous and lasts the entire attempt to 
receive the whole frame and when finished, it reports success or failure via 
ReceiveStatus. 

ReceiveStatus can also take the underlined values, but only if Layer 
Management is implemented. 

2.2.2 RS Service Specification  
The interface through which the MAC sublayer uses the facilities of the Physical 
layer consists of a function, a pair of procedures and four Boolean variables. 
The services that RS provides are defined by the service primitives for the 
Physical Layer Signaling (PLS) sublayer, notated “PLS_*” in figure 6. The RS 
maps these service primitives to electrical signals that form the interfaces MII 
and GMII. 
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MII+GMII Signals

PLS_DATA.request

PLS_SIGNAL.indicate

PLS_DATA.indicate

PLS_DATA_VALID.indicate

PLS_CARRIER.indicate

PLS Service Primitives

carrierSense

receiveDataValid

ReceiveBit

collisionDetect

transmitting
TransmitBit

Wait

PLS Services

TXD<7:4>
TXD<3:0>
TX_EN
TX_ER

COL

RXD<7:4>
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Figure 6: RS services’ and STA’s connections to MII/GMII. 
 

2.2.2.1 carrierSense  
The variable carrierSense signals to the MAC sublayer if there is any 
activity or not on the physical medium. 

 
The variable is set to true immediately upon detection of activity and set to false 
as soon as the activity ceases. The transitions of the variable are not synchronous 
with any of the clocks defined.  

var carrierSense: Boolean; 

The behavior of the variable is only specified for half duplex mode, meaning 
that it shall be omitted in full duplex mode. 

2.2.2.2 receiveDataValid  
The variable receiveDataValid signals to the MAC sublayer if there is data 
being received by the physical layer. 

 
When the variable receiveDataValid is set to true by the physical layer, the 

var receiveDataValid: Boolean; 
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MAC sublayer shall immediately begin receiving the incoming data by using the 
function ReceiveBit. The function will be called repeatedly until 
receiveDataValid becomes false. 

2.2.2.3 collisionDetect 
The variable collisionDetect signals to the MAC sublayer if a collision 
occurs in the physical medium. 

 
The variable collisionDetect remains true during the duration of the 
collision. It can only be true during transmission, not during reception. 

var collisionDetect: Boolean; 

The behavior of the variable is only specified for half duplex mode, meaning 
that it shall be omitted in full duplex mode. 

2.2.2.4 transmitting  
The variable transmitting signals to the Physical sublayer if data is being 
transmitted. 

 
Prior to the first bit of data to be transmitted is passed from the MAC sublayer to 
the Physical layer, transmitting is set to true to inform that a stream of bits 
will be presented via the procedure TransmitBit. 

var transmitting: Boolean; 

When the last bit has been transferred, transmitting is set to false in order to 
indicate the end of the frame. 

2.2.2.5 TransmitBit  
During transmission, the outgoing frame is passed bit by bit to the Physical layer 
by repeated use of the procedure TransmitBit. 

 
Each invocation of the procedure passes one new bit and the duration of the 
operation is one bit time. Prior to the first invocation of the procedure, the 
variable transmitting has to be set to true. 

procedure TransmitBit(var bitParam: PhysicalBit); 

A PhysicalBit, when transmitting, is a bit that can take the values 0, 1, 
extensionBit or extensionErrorBit. An extensionBit is a non-data 
value used for carrier extension and interframe during bursts.  

11 

 



Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA 

An extensionErrorBit is a non-data value used to jam during carrier 
extension. 

2.2.2.6 ReceiveBit  
During reception, the incoming frame is passed bit by bit to MAC sublayer by 
repeated use of the function ReceiveBit. 

 
Each invocation of the function passes one new bit and the duration of the 
operation is one bit time. The function is invoked every time that 
receiveDataValid is set to true.  

function ReceiveBit( ): PhysicalBit; 

A PhysicalBit, when receiving, is a bit that can take the values 0, 1 or 
extensionBit. An extensionBit is a non-data value used for carrier 
extension and interframe during bursts. 

2.2.2.7 Wait  
The procedure Wait waits for a specified number of bit times, which allows the 
MAC sublayer to measure time in units of bit times. 

 
A bit time is the period it would takes to transmit one bit on the physical 
medium, e.g. when sending in 100 Mbps 1 bit time is 10 ns. 

procedure Wait(var bitTimes: Integer); 
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2.3 Referenced Interfaces in IEEE 802.3  
There are totally five electrical interfaces defined within IEEE 802.3. Only two 
of them are relevant for this study and they are MII and GMII. Their location in 
the architecture can be seen in figure 3. 
On many counts, the two interfaces are identical. The difference is the bit width 
of the data signals, and the encoding of the same is extended for GMII. The 
transmit clock signal also differ between MII and GMII. This allows the 
interfaces to be merged together, which often is done in integrated circuits that 
provide both a MII and a GMII interface. 
The MII and GMII interfaces are further describe in sections 2.3.1 and 2.3.2 
respectively, where the latter one only describes the signals in the cases where 
the definition differs from the one for MII. 

2.3.1 MII  
The interface through which the PHY device communicates with higher layers 
at speeds of 10 or 100 Mbps is called MII (fig. 7). 
 

MII Signals

PLS_DATA.request

PLS_SIGNAL.indicate

PLS_DATA.indicate

PLS_DATA_VALID.indicate

PLS_CARRIER.indicate

PLS Service Primitives

carrierSense

receiveDataValid

ReceiveBit

collisionDetect

transmitting
TransmitBit

Wait

PLS Services

TXD<3:0>
TX_EN
TX_ER
TX_CLK

COL

RXD<3:0>
RX_ER
RX_CLK
RX_DV

CRS

MDIO
MDC

RS

STA

 

Figure 7: RS services’ and STA’s connections to MII. 

The grayed boxes in figure 7 indicate domains for which all associated signals 
and services have a specified timing relationship in the standard. There is no 
specified timing relationship between any of the boxes. 
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2.3.1.1 TX_CLK (transmit clock)  
TX_CLK is a continuous clock, sourced by the PHY, that provides the timing 
reference for the transfer of the TXD, TX_EN and TX_ER signals from the RS to 
the PHY. 
The clock will have a frequency equal to one-fourth of the data rate (i.e. 25 MHz 
for 100 Mbps). 

2.3.1.2 TX_EN (transmit enable)  
TX_EN is driven by the RS to indicate that nibbles for transmission is presented 
on TXD and transitions synchronously with TX_CLK. TX_EN shall be asserted 
from the first nibble of Preamble through the whole frame and then de-asserted. 

2.3.1.3 TX_ER (transmit coding error)  
TX_ER is driven by the RS to indicate to the PHY that the RS, or any higher 
layer, has encountered problems during transmission and the frame currently 
being transmitted is not correct. TX_ER transitions synchronously to TX_CLK. 

2.3.1.4 TXD (transmit data)  
TXD<3:0> is a bundle of four data signals, where TXD<0> is the least 
significant bit. TXD is driven by the RS and transitions synchronously to 
TX_CLK. For each TX_CLK period in which TX_EN is asserted, TXD is accepted 
for transmission by the PHY. 

Table 1: Permissible encoding of TX_EN, TX_ER and TXD 

TX_EN TX_ER TXD<3:0> Indication 
0 0 0 – F Normal inter-frame 

0 1 0 – F Reserved 

1 0 0 – F Normal data transmission 

1 1 0 – F Transmit error propagation 

 

2.3.1.5 RX_CLK (receive clock)  
RX_CLK is a continuous clock, sourced by the PHY, that provides the timing 
reference for the transfer of the RXD, RX_DV and RX_ER signals from the PHY to 
the RS. 
The clock will have a frequency equal to one-fourth of the data rate (i.e. 25 MHz 
for 100 Mbps). 
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2.3.1.6 RX_DV (receive data valid)  
RX_DV is driven by the PHY to indicate that the PHY is presenting data on 
RXD<3:0> and transitions synchronously with RX_CLK. RX_DV shall be asserted 
continuously from the first recovered nibble (starting no later than SFD) through 
the whole frame and then de-asserted. 

2.3.1.7 RX_ER (receive error)  
RX_ER is driven by the PHY to indicate to the RS that an error was detected 
somewhere in the frame presently being transferred over the MII. RX_ER 
transitions synchronously to RX_CLK. 

2.3.1.8 RXD (receive data)  
RXD<3:0> is a bundle of four data signals, where RXD<0> is the least 
significant bit. RXD is driven by the PHY and transitions synchronously to 
RX_CLK. For each RX_CLK period where RX_DV is asserted, PHY transfers a 
nibble of recovered data bits to the RS. 
During a “Normal data reception”, the service ReceiveBit will transfer a “0” or a 
“1”.  During a “False Carrier indication”, the service ReceiveBit will transfer an 
extensionBit (sec. 2.2.2.6). Table 2 summarizes the permissible encoding of 
RX_DV, RX_ER and RXD. 

Table 2: Permissible encoding of RX_DV, RX_ER and RXD 

RX_DV RX_ER RXD<3:0> Indication 
0 0 0 – F Normal inter-frame 

0 1 0 Normal inter-frame 

0 1 1 – D Reserved 

0 1 E False Carrier indication 

0 1 F Reserved 

1 0 0 – F Normal data reception 

1 1 0 – F Data reception error 

 

2.3.1.9 CRS (carrier sense)  
CRS is driven by the PHY and asserted when there is activity on the medium. In 
other cases, CRS will be de-asserted. The transition of CRS is not required to be 
synchronous with either TX_CLK or RX_CLK. 

The behavior of CRS is unspecified for full duplex operation. 
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2.3.1.10 COL (collision detect)  
COL is driven by the PHY and asserted as long as there is a collision on the 
transmit medium, otherwise COL is de-asserted. The transition of COL is not 
required to be synchronous with either TX_CLK or RX_CLK. 

The behavior of COL is unspecified for full duplex operation. 

2.3.1.11 MDC (management data clock)  
MDC is sourced by the Station Management entity (STA) and used as the timing 
reference for the signal MDIO. Further, MDC is an aperiodic clock signal that has 
no maximum high or low times. This clock is not related to the clocks TX_CLK 
or RX_CLK. 

2.3.1.12 MDIO (management data input/output)  
MDIO is a bidirectional signal between the PHY and the STA. It is used to 
transfer control and status information between the PHY and the STA. Control 
information is driven by the STA synchronously with respect to MDC and is 
sampled synchronously by the PHY. Status information is driven by the PHY 
synchronously with respect to MDC and is sampled synchronously by the STA. 
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2.3.2 GMII  
The interface through which the PHY device communicates with higher layers 
at speeds of 1’000 Mbps is called GMII (fig. 8). 
 

GMII Signals

TXD<7:0>
TX_EN
TX_ER
GTX_CLK

COL

RXD<7:0>
RX_ER
RX_CLK
RX_DV

CRS

MDIO
MDC

PLS_DATA.request

PLS_SIGNAL.indicate

PLS_DATA.indicate

PLS_DATA_VALID.indicate

PLS_CARRIER.indicate

PLS Service Primitives

Wait

carrierSense

receiveDataValid

ReceiveBit

collisionDetect

transmitting
TransmitBit

PLS Services RS

STA

 

Figure 8: RS services’ and STA’s connections to GMII. 

The grayed boxes in figure 8 indicate domains for which all associated signals 
and services have a specified timing relationship in the standard. There is no 
specified timing relationship between any of the boxes. 

2.3.2.1 GTX_CLK (transmit clock)  
GTX_CLK is a continuous clock, sourced by RS, that provides the timing 
reference for the transfer of the TXD, TX_EN and TX_ER signals from RS to the 
PHY. 
The clock will have frequency equal to one-eighth of the data rate (i.e. 125 MHz 
for 1’000 Mbps). 

2.3.2.2 TX_EN (transmit enable)  
(Same behavior as for MII, see section 2.3.1.2) 

2.3.2.3 TX_ER (transmit error)  
(Same behavior as for MII, see section 2.3.1.3) 
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2.3.2.4 TXD (transmit data)  
TXD<7:0> is a bundle of eight data signals, where TXD<0> is the least 
significant bit. TXD is driven by the RS and transitions synchronously to 
GTX_CLK. For each GTX_CLK period in which TX_EN is asserted, TXD is 
accepted for transmission by the PHY. 
During a Normal data transmission, the service TransmitBit will transfer a “0” 
or a “1”.  During a “Carrier Extend” or a “Carrier Extend error”, the service 
TransmitBit will transfer respectively an extensionBit or an 
extensionErrorBit (sec. 2.2.2.5). Table 3 summarizes the permissible 
encoding of TX_EN, TX_ER and TXD. 

Table 3: Permissible encoding of TX_EN, TX_ER and TXD 

TX_EN TX_ER TXD<7:0> Indication 
0 0 00 – FF Normal inter-frame 

0 1 00 – 0E Reserved 

0 1 0F Carrier Extend 

0 1 10 – 1E Reserved 

0 1 1F Carrier Extend Error 

0 1 20 – FF Reserved 

1 0 00 – FF Normal data transmission 

1 1 00 – FF Transmit error propagation 

 

2.3.2.5 RX_CLK (receive clock)  
RX_CLK is a continuous clock, sourced by the PHY, that provides the timing 
reference for the transfer of the RX_DV, RXD and RX_ER signals from the PHY to 
the RS. 
The clock will have frequency equal to one-eighth of the data rate (i.e. 125 MHz 
for 1’000 Mbps). 

2.3.2.6 RX_DV (receive data valid)  
(Same behavior as for MII, see section 2.3.1.6) 

2.3.2.7 RX_ER (receive error)  
(Same behavior as for MII, see section 2.3.1.7) 
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2.3.2.8 RXD (receive data)  
RXD<7:0> is a bundle of eight data signals, where RXD<0> is the least 
significant bit. RXD is driven by the PHY and transitions synchronously to 
RX_CLK. For each RX_CLK period where RX_DV is asserted, PHY transfers a 
nibble of recovered data bits to the RS. 
During a “Normal data reception”, the service ReceiveBit will transfer a “0” 
or a “1”. During a “False Carrier indication”, a “Carrier Extend” or a “Carrier 
Extend error”, the service ReceiveBit will transfer an extensionBit (sec. 
2.2.2.6). Table 4 summarizes the permissible encoding of RX_DV, RX_ER and 
RXD. 

Table 4: Permissible encoding of RX_DV, RX_ER and RXD 

RX_DV RX_ER RXD<7:0> Indication 
0 0 00 – FF Normal inter-frame 

0 1 00 Normal inter-frame 

0 1 01 – 0D Reserved 

0 1 0E False Carrier indication 

0 1 0F Carrier Extend 

0 1 10 – 1E Reserved 

0 1 1F Carrier Extend error 

0 1 20 – FF Reserved 

1 0 00 – FF Normal data reception 

1 1 00 – FF Data reception error 

 

2.3.2.9 CRS (carrier sense)  
(Same behavior as for MII, see section 2.3.1.9) 

2.3.2.10 COL (collision detect)  
(Same behavior as for MII, see section 2.3.1.10) 

2.3.2.11 MDC (management data clock)  
(Same behavior as for MII, see section 2.3.1.11) 

2.3.2.12 MDIO (management data input/output)  
(Same behavior as for MII, see section 2.3.1.12) 
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2.4 Referenced Protocols in IEEE 802.3  
There are two protocols defined in IEEE 802.3 and both of them are used in this 
project. The first one is the MAC frame structure, which is the frame format 
used for transmission of data over the shared medium. Remember, one of the 
tasks for the MAC sublayer is to assemble the data and build a frame according 
to this structure. 
The other frame structure is used for communication between a MAC and one or 
more connected PHYs. 

2.4.1 MAC Frame Structure  
The MAC frame structure is defined in IEEE 802.3, Clause 3. There exist 
several names for this frame format. One of the most common names is Ethernet 
II, which refers to the MAC frame when type interpretation is used upon the 
Length/Type field. Another common name is Ethernet frame or Ethernet 802.3 
Raw frame. Both these names refer to a MAC frame when length interpretation 
is used upon the Length/Type field. The Length/Type field is further explained 
in sec. 2.4.1.4. Figure 9 shows the MAC frame structure and, depending of the 
value of the Length/Type field, it can be either an Ethernet or an Ethernet II 
frame. 
 

7 B 1 B 6 B 46-1500 B6 B 2 B 4 B

SFD Length/Type

Preamble Destination
Address

Source
Address EXTFCSPADMAC Client

Data

 

Figure 9: The IEEE 802.3 MAC frame structure. 

The fields in the frame are transmitted from left to right. The byte(s) within each 
field are transmitted from left to right. Each byte in the frame, with the 
exception of the FCS, is transmitted with low-order bit first. 
The extension field, EXT, is only needed for 1’000 Mbps half duplex operation. 

2.4.1.1 Preamble field  
The Preamble field is used for synchronization of the receiver with respect to the 
transmitter. 
The preamble pattern is: 
{10101010 10101010 10101010 10101010 10101010 10101010 10101010} 
The bits are transmitted from left to right. 
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2.4.1.2 Start Frame Delimiter (SFD) field  
This field denotes the start of the frame. 
The pattern is: 
{10101011} 
The bits are transmitted from left to right. 

2.4.1.3 Destination and Source Address fields  
The address fields should be 48 bits. IEEE 802 states that one can use either 16- 
or 48-bit addresses but in IEEE 802.3, 16-bit addresses have been excluded. 
 

I/G = ’0’ Individual address
I/G = ’1’ Group address
U/L = ’0’ Globally administered address
U/L = ’1’ Locally administered address

1 b 46 b1 b

I/G U/L MAC Address

 

Figure 10: Address field format. 

The Destination Address (DA) field specifies the station(s) for which the frame 
is intended. While the Source Address (SA) field specifies the station that sends 
the frame. 
If all (48) bits in the DA field are set to ‘1’, a broadcast will be performed. 
The last 46 bits of the address field contains the MAC Address (sometimes 
referred to as the Ethernet Address). The MAC Address is unique for each 
station and the allotment of addresses is managed by the IEEE Registration 
Authority, i.e. a manufacturer of network controllers has to get the MAC 
Addresses directly from IEEE. If two stations on the same network would use 
the same MAC Address, it would cause a collapse of the network. 
Each byte in the Address field shall be transmitted with least significant bit first. 

2.4.1.4 Length/Type field  
This field has two meanings depending of its value. The first byte in the field is 
the most significant one. 
If the value is less than 0x0600 then the field indicates the number of MAC 
Client Data bytes contained in the subsequent data field of the frame (length 
interpretation). 
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If the value is greater than or equal to 0x0600 then the field indicates the type of 
the MAC Client Protocol (type interpretation). 

2.4.1.5 Data and PAD fields  
The data field contains a sequence of n bytes. Full data transparency is provided 
in the sense that any arbitrary sequence of byte values may appear in the data 
field up to a maximum number specified by the implementation of the standard 
that is used. A minimum frame size is required for correct operation and is 
specified by the particular implementation of the standard. 
If necessary, the data field is extended by appending extra bits (that is, a pad) in 
units of bytes after the data field but prior to calculating and appending the FCS. 
The size of the pad, if any, is determined by the size of the data field supplied by 
the MAC client and the minimum frame size and address size parameters of the 
particular implementation. 
The maximum size of the data field is determined by the maximum frame size 
and address size parameters of the particular implementation. 

2.4.1.6 Frame Check Sequence (FCS) field  
The FCS field contains a 32-bit checksum of the frame. The checksum is of the 
type cyclic redundancy check, CRC (in this case, CRC-32). This value is 
computed as a function of the contents of the Source Address, Destination 
Address, Length/Type, Data and PAD fields (that is, all fields except the 
preamble, SFD, FCS and EXT). 
The 32 bits of the CRC value are placed in the FCS field so that the x31 term is 
the left most bit of the first byte, and the x0 term is the right most bit of the last 
byte (the bits of the CRC are thus transmitted in the order x31, x30, …, x1, x0). 

2.4.1.7 Extension (EXT) field  
The Extension field follows the FCS field, and it is made up of a sequence of 
extension bits (described in sec. 2.3.2.4 and 2.3.2.8). 
The contents of the Extension field are not included in the FCS computation. 
The Extension field may have a length of greater than zero when sending in half 
duplex mode above 100 Mbps. The length of the Extension field will be zero 
under all other conditions. 
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2.4.2 Management Frame Structure  
Frames transmitted on the MII/GMII Management Interface shall have the frame 
structure shown in figure 11. The order of bit transmission shall be from left to 
right. 
 

PRE ST TAOP PHYAD REGAD DATA

32 b 2 b 2 b 2 b5 b 5 b 16 b

 

Figure 11: Management frame structure. 
 

2.4.2.1 PRE (preamble)  
At the beginning of each transaction, the STA shall send a sequence of 32 
contiguous logic one bits on MDIO in order to establish the synchronization 
with the PHY. 
If every PHY that is connected to the MAC is able to accept frames that are not 
preceded by the preamble, the STA may suppress the generation of it. 

2.4.2.2 ST (start of frame)  
The start of the frame is indicated by a “01” pattern. 

2.4.2.3 OP (operation code)  
When STA shall set a bit in the register of the PHY, a write transaction will be 
carried out, which is indicated by a “10” pattern. When STA whishes to read the 
value in the PHY’s status register, a read transaction is performed, which is 
indicated by a “01” pattern. 

2.4.2.4 PHYAD (PHY Address)  
The PHY Address is five bits, allowing 31 PHYs to be connected to one MAC. 
PHY address zero (“00000”) is a broadcast address that every connected PHY 
shall respond. 

2.4.2.5 REGAD (Register Address)  
The Register Address is five bits, allowing 32 individual registers to be 
addressed within each PHY. The address is transmitted with MSB first. The 
PHY’s registers are defined in IEEE 802.3, Clause 22.2.4. 
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2.4.2.6 TA (turnaround)  
The turnaround is a 2-bit-time spacing between the REGAD field and the DATA 
field. During a write transaction, STA shall drive a logic one bit for the first bit 
time and a logic zero during the second. For a read transaction, both the STA 
and the PHY shall be in high-impedance state during the first bit time. During 
the second bit time, the PHY shall drive a logic zero bit. 

2.4.2.7 DATA (data)  
The data field is 16 bits. The first bit transmitted and received corresponds to bit 
15 of the addressed register. 

2.4.2.8 IDLE (IDLE condition)  
The IDLE condition on MDIO is a high-impedance state. 
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Design Methodology 
 

CHAPTER 3: DESIGN METHODOLOGY  

Design methodology, as concept, can be interpreted in different ways. Some 
might think of it as a specific way of working through the design phase only 
(e.g. the commonly known “top-down” method sometimes used for software 
development). There is also a wider conception where one means the whole 
workflow from idea to a working product. In this chapter, the latter 
interpretation is used. 
The design methodology describes the different actions taken under the 
development process. These actions can be carried out in different ways (and 
with different tools). This chapter describes a design methodology that is rather 
common today and which has been used in this work. The workflow is shown in 
figure 12. The choice of methodology in this study was not done exclusively, 
but the one implied by the selection of tools that were used. 
An important thing to remember about all design methodologies is that the 
methodology shall be a tool in order to make the work easier, it should not 
become an end in itself. 
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Figure 12: The workflow with addressed tools. 
 

3.1 Requirement Analysis  
This is the phase where one decides what the system actually should do. The 
environment surrounding the system is analyzed and the demands on the system 
are identified. The resulting document is written in prose: 

“By mounting the network controller on a sensor, the sensor can 
transmit measurement data in gigabit rate.“ 

Producing the analysis document and specification document is an iterative 
process with many loops in order to cover all aspects of the system. To miss 
something in these first two steps can turn out to be very costly, which can be 
seen in table 1. 
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Table 5: Relative cost to fix an error 

Phase Cost ratio Step (sections) 
Requirements 1 3.1, 3.2 

Design 3 – 6 3.3 

Coding 10 3.4, 3.6, 3.7 

Development testing 15 – 40 3.5, 3.8, 3.9 

Validation 30 – 70 3.10 

Operation 40 – 1000  

 
The figures in table 5 applies to software development but since we are dealing 
with hardware development in terms of programming HDL these figures can be 
considered to be relevant even for this case. One should also know that these 
figures are considered conservative [Boehm 1980]. 

3.2 Requirement Specification  
The specification defines in natural language what the system is supposed to do. 
The difference between this document and the analysis document is that the 
components, actors, services etc. are identified (and named) and the demands on 
each of these parts are condensed from the previous document. During this 
process, missing parts can be analyzed and corrected. System components and 
their associated characteristics are marked in the requirement analysis 
document: 

“By mounting the network controller on a sensor, the sensor can 
transmit measurement data in gigabit rate.“ 

The requirement specification document is then written in the form: 
“The <system component> shall <required characteristic>” 

Using the fragment from the previous section would result in: 
”The network controller shall support gigabit Ethernet.” 

There are both functional and non-functional requirements. 
A functional requirement specifies what the system should do, i.e. its 
functionality and features, of which the line above is an example. 
A non-functional requirement specifies how the functionality is obtained, and 
under which constraints, e.g.: 

”The network controller’s power dissipation shall be less than 4 W.” 
The specification describes all the requirements regarding the system, for 
example standards that the system has to fulfill, timing and power constraints 
and all features it has to possess. 

27 

 



Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA 

The specification document shall not discuss different implementation 
techniques (e.g. “All state machines shall be of type Mealy”) or how to reach the 
solution (e.g. “Use the design entry tool Renoir”). 

3.3 Design Planning  
At this point, the requirement specification is partitioned into functional blocks. 
The functional blocks are further broken down until a complete hierarchy is 
created were the function, interface and constraints of each block is well 
defined. At this stage, one has to choose how to implement state machines, 
memories etc. 
This step in the design flow is very crucial. Making a bad planning can cause 
many problems later. For example: collate similar functions in the same 
functional block, be very careful when crossing clock domain boundaries etc. 
This is the step where the experienced designer takes use of his whole 
knowledge. 

3.4 Design Entry  
There are several ways how to entry the design. In this work HDL Designer 
(former Renoir) from Mentor Graphics has been used which allows the user to 
graphically enter the hierarchy, connect blocks and then enter HDL code in the 
blocks using a text-editor (e.g. Emacs), this method is called block diagram 
entry. HDL Designer can also generate HDL code from state diagrams, flow 
charts and truth tables. 
When the design is completed, the HDL code is compiled, either towards the 
simulator or towards the synthesis tool. 

3.5 RTL Simulation  
First, interesting test cases must be identified and test vectors written describing 
those cases. 
Then a behavioral model is created. This model is the “truth”, in other words 
how the block being tested should behave if it is correct. The behavioral model 
can be automatically generated, e.g. by using Matlab when verifying an 
algorithm. 
The test vectors and the behavioral model together form the so-called test bench. 
Its interface is identical with the block’s being tested but mirrored. The test 
bench is then connected to the block and then compiled together towards the 
simulator. Note that it is only needed to write the interface in HDL, both the test 
vectors and behavioral model can be read from a file, which allows several tests 
to be carried out without the need of re-compiling the design in between. 
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Figure 13: Test bench. 
 
The test bench and its components are illustrated in figure 13 where the “Input 
File” represents an external test vector source. The “Output File” stores the 
output signals from behavioral model and the block being tested, this in order to 
easier discovers differences. A “Report File” can also be a good idea to 
generate, which logs messages from the behavioral model such as passed 
breakpoints etc. 
Before RTL simulation, a functional simulation can be carried out. The 
difference between the two is that there is no delay element introduced in the 
latter one. When compiling the design for RTL simulation, delay elements are 
introduced that are of the same size and based on a typical wire length. 
A simulator, in this case ModelSim by Model Technology, then uses the 
compiled data. The user both gets a graphical view of all signals and there 
transitions and, if certain commands are written in the test bench, textual 
messages in the form of warnings or passed breakpoints etc. 

3.6 Synthesis  

3.6.1 Choosing Target Device  
If it has not been done earlier, it is time to choose which FPGA to use. Often it is 
hard to predict the size and speed grade needed, to get a feeling of these figures 
the simplest way is to synthesize one time using a large and fast device which 
gives a hint of the resources needed. 
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Besides size and speed other important issues to consider are of both functional 
and non-functional nature. 
 
Functional characteristics: 
� Hard blocks (e.g. processors, arithmetic units) 
� Memory (size and type) 
 
Non-functional characteristics: 
� Package (e.g. size, heat-tolerance, BGA) 
� Speed (e.g. number of clock drivers, maximum speed, routing resources) 
� Size (number of CLBs) 
� Number of I/Os 
� I/O Signaling (e.g. TTL, LVDS) 
� Supply voltage 
� Power consumption 
� Price 
 
There are also some aspects that one should consider but which are not covered 
in above listings, e.g. the fact that a tool perhaps do not support a specific 
device. Mostly it is not possible for a company to have all design tools needed in 
order to cover all devices. There can also be a good idea to choose a smaller and 
slower device in a family of devices with the identical footprint and pinout to 
ease possible future upgrades. Support from the manufacturer can be a very 
important issue, especially if the device contains, for the developer, new 
functionality. If the developer have much experience of a certain device family, 
this also can be important to have in mind when selecting device in order to gain 
time in the project. Selecting an old device family can result in unnecessary 
costs since most manufacturers raise the price for older families when a new one 
is launched. Also, remember the fact that a family is not manufactured forever. 
Eventually it will be impossible to get a device, which can cause problem if the 
product is going to be manufactured for a long period. 

3.6.2 Choosing Synthesize Method  
The synthesis step begins within the design entry tool HDL Designer where the 
HDL is generated and compiled. In this study the synthesis tool Leonardo 
Spectrum from Exemplar Logic has been used. The synthesis tool can be 
invoked from the HDL Designer and a pre-optimization is carried out. The user 
must decide which device to use, which type of optimization to perform (area or 
delay) and whether the hierarchy should be preserved or flattened. There is also 
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a third alternative, “auto”. The “auto” choice leaves the system to decide 
whether to preserve or flatten the hierarchy. 
It is worth mentioning some words regarding the hierarchy options. If a single 
block is to be synthesized, this option has of course no impact on the result but 
with several blocks and bad design practice (i.e. not registered outputs) it does. 
When selecting “flatten” the block borders are removed and the whole design is 
treated as one single block. The optimization will not be very good if the design 
is big since the algorithms have difficulties dealing with large designs. Instead 
one have to use “preserve hierarchy” where each block will be optimized 
individually and then treated as black boxes when combined. This way of 
optimizing is much faster than flattening the design. 
What about “bad design practice” and “preserve hierarchy”? If the outputs of a 
block are not registered but instead consists of logic and then connected to a 
second block that has logic on its inputs, the two logic nets will be optimized 
separately and later, when it is routed, the timing will be wretched. The resulting 
optimization is illustrated in figure 14, where a white cloud illustrates logic 
before optimization and a black cloud after optimization. 

A D

A D

B C D

B+C DDA

DCBDA

B DC

<Tmax < 2*TmaxFirst block Second block

Second blockFirst block <Tmax < Tmax  

Figure 14: Bad and good design practice when preserve hierarchy is used. 

In the upper case the maximum clock frequency might be halved since the logic 
nets B and C will not be optimized together when preserve hierarchy is used. 
This problem would be avoided if the design was flattened and/or all outputs of 
all blocks were registered. 
Leonardo Spectrum allows the user to set several timing criteria, e.g. false path 
(a signal that does not has to fulfill the timing requirement) and multiple cycle 
path (a signal that has several clock cycles before it has to be stable). These 
options may be very useful when synthesizing a design but has not been used in 
this study. 
The synthesis process is much of a “trial and error” one because of all degrees of 
freedom (selecting device, area/delay optimization, preserve or flatten hierarchy 
etc.). The synthesis tool also estimates the size and performance of the final 
implementation. 
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3.7 Place & Route  
The outcome from the synthesis step is forwarded into the place & route tool 
ISE Alliance. Like in the preceding step, there are several choices how the 
action shall be performed. 
When the place & route step is finished the exact figures of size, performance 
etc. can be found in the generated report files. The figures are very close to 
reality and can differ a lot from the estimations done by the synthesis tool. 

3.8 Static Timing Analysis  
The place & route tool computes the delay and time skew for all paths, which 
gives the maximum possible clock-frequency under worst-case condition. 
If the block does not manage the timing constraints, the failing path can be 
analyzed in the synthesis tool Leonardo Spectrum. To solve the problem either 
the block can be modified or perform the synthesis and Place & route step with 
other preferences and/or constraints. Later versions of ISE Alliance contain a 
“Place & route Assistant” that gives suggestions to improvements when the 
timing constraints are not met. 

3.9 Gate Level Simulation  
This simulation can be carried out after that the synthesized design has gone 
through the place & route step. The test bench from the RTL simulation can be 
re-used. The difference from the earlier RTL simulation is that the average delay 
in the transmission lines is changed to exact figures since the delay in each line 
now is known. 
In practice, a new architecture of the block is generated by the place & route tool 
and then imported into HDL Designer. This result becomes, that one entity is 
described by two architectures, the original architecture written in HDL and the 
one generated from the place & route tool. By selecting the latter architecture 
and then compiling the block towards ModelSim, the gate-level simulation can 
be carried out. 

3.10 Validation  
As was pointed out in section 3.2 (Requirement Specification), all of the 
requirements shall be possible to validate. The validation process takes place in-
board under realistic conditions. 
The functional requirements are validated by comparing the behavior of the 
system with the one specified and with the results from the gate-level 
simulation. 
The non-functional requirements are validated by measurements of e.g. power 
dissipation, supply voltages etc. 
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CHAPTER 4: IMPLEMENTATION  

This chapter describes how each step presented in chapter 3 was carried out in 
this project. 
Since a specific standard is used and the focus is only set on the core function 
(i.e. the MAC), the first two steps in the design methodology were omitted. 
The last two steps, validation and gate level simulation, were also omitted since 
no hardware was used in this work. The preceding step, gate level simulation, 
was not performed since the step turned out to be quite time consuming. 
An extra step was inserted within the Design Planning where an analysis was 
carried out in order to minimize the number of blocks necessary to implement in 
the project. 

4.1 Design Planning  
In this planning clearness has been prioritized before reaching an optimal 
design. Clearness has been reached by adopting as much as possible of the 
structure used in the standard. The reason was simply to ease for future readers 
to take use of the conclusions made in this work. If optimal design should be the 
target, there is a risk that the structure of the implementation would differ a lot 
from the one in the standard, which would force the reader to learn two different 
descriptions of the same system. 

4.1.1 Partitioning of the Standard  
The precise definition of the MAC in the standard is written in a Pascal-like 
language. It is therefore necessary to port the Pascal-like code to the HDL 
language (e.g. VHDL). The standard assumes the presence of a nearly infinitely 
fast processor, which can handle parallel processes as well, executing the Pascal 
program. The need of parallelism is the main reason why to use an FPGA since 
it is parallel by nature. 
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Figure 15: Relationship among CSMA/CD processes, procedures 
and functions as defined in standard. 

 
Like VHDL, the Pascal-like language allows the declaration of process, function 
and procedure. A short repetition regarding just mentioned terms in the case of 
VHDL code: 
� Process:    Executed sequentially 

     Processes are executed in parallel. 
� Function:    Executed sequentially 

     Returns one value 
� Procedure: Executed sequentially 

     Returns zero or more values 
     Can change its input arguments 
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Figure 16: Relationship among CSMA/CD processes in the implementation. 
 
When porting, the following rules have been used: 
� Processes in the standard are implemented as processes. 
� Functions in the standard are implemented as processes that are idling until 

called, then executed one time and then returns to idling. 
� Procedures in the standard are implemented by being incorporated in the 

processes and/or functions that take use of it. 
The application of above rules will result in the structure presented in figure 16. 
The original structure in the standard is shown in figure 15. 
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The data path in the standard is bit-oriented but in the implementation, it is byte-
oriented. The reason is simple; since the maximum bit-rate is 1000 Mbps 
choosing a bit-oriented data-path would result in a clock-frequency of 1 GHz, 
instead by choosing byte-oriented data-path the clock-frequency is lowered to 
125 MHz. This is in line with the standards suggestion of implementing the data 
path on bit, byte or word basis [IEEE 802.3, Clause 4.2.2.1.c]. 
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Figure 17: The architecture of the implementation. 

The complete implementation, shown in figure 17, is a direct mapping of the 
OSI/BR model to the implementation. Grayed areas are those that were 
implemented. The PHY ASIC implements the remaining sublayers that were not 
implemented in the FPGA. 
There is no focus on the higher layers since these are not considered difficult to 
implement because the data width can be expanded in order to lower the clock-
frequency. This, however, is not complete true. If the implementation should 
support the commonly used protocol TCP (often referred to as TCP/IP) there 
may be problem, since the protocol stack requires much resources. Instead, TCP 
frames should be forwarded to an external unit for further processing. This 
implementation is done having another often-used protocol in mind, UDP, 
which does not contain a stack like the one used in TCP. 
Beneath the MAC sublayer (when referring to the OSI/BR model), RS is 
located. RS provides the major part of the MII/GMII interface except the 
MII/GMII Management Interface, which is provided by the Station Management 
entity, STA. The blocks RS and STA are the only parts of the Physical layer that 
are implemented in the FPGA. These blocks are further explained in sections 
4.1.3 and 4.1.4 respectively. 
The MAC sublayer consists of five blocks (fig. 18), the transmitter (TxMAC), 
the receiver (RxMAC), the Management Information Base (MIB) and the buffer 
managers TxBufMgr and RxBufMgr. 
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Figure 18: Implementation of MAC sublayer. 

The TxMAC is further explained in sec. 4.1.2. The MIB provides Layer 
Management [IEEE 802.3, Clause 5]. The MIB itself is not a critical part of the 
system and thereby not included in the project. The same yields for the buffer 
managers, which manages the transmit and receive queues. 
The implementation of the MAC sublayer contains three different clock-
domains. TxMAC and RxMAC constitute one domain each and the rest of the 
blocks as well as the management part belong to the same. By having several 
clock-domains, the complexity increases and extra logic has to be inserted in 
order to be able to cross the domains. This is also discussed in sec. 4.1.2.3. 
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4.1.2 Precise Design: TxMAC  

 

Figure 19: The structure of TxMAC. 

The block TxMAC (fig. 19) implements the transmitter, which is defined by the 
service-primitive MA_DATA.request [IEEE 802.3, Clause 2.3.1] and by the 
precise specification [IEEE 802.3, Clause 4.2.8]. 
As can be seen in appendix C the transmit part is the most complex part of the 
whole Ethernet controller because of the great amount of shared signals in 
combination with a high clock-frequency. 
TxMAC consists of four blocks: 
� TxDataEncapsulation collates the framing functionality, i.e. the building of 

the frame. This block is described in sec. 4.1.2.1. 
� TxMediaAccessMgmt collates the Medium Management functionality. This 

block is described in sec. 4.1.2.2. 
� The buffer (TxBufferPort) is needed in order to be able to cross the clock 

domain since TxMAC belongs to the transmitter clock-domain and it 
interfaces towards the system clock-domain. 
This block is described in sec. 4.1.2.3. 

� The block TxMIG generates data for the MIB and updates fields in the 
descriptor register TxDescReg. This block is described in sec. 4.1.2.4. 
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4.1.2.1 TxDataEncapsulation  

 

Figure 20: The structure of TxDataEncapsulation. 

The functionality that shall be provided by the block TxDataEncapsulation  
(fig. 20) is described in IEEE 802.3, Clause 4.2.3.1. This block shall assemble 
the frame from the values provided by the MAC client, check if the frame has to 
be extended by insertion of extra data (i.e. padding) to fulfill the demands of 
minimum frame size and append a 32-bits CRC checksum. 
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4.1.2.1.1 TransmitFrame  
execTransmitFrame

transmitStatus <2:0>
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data <31:0>
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VTCI <15:0>
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initCRC32
calcCRC32
readCRC32
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outgoingFrame <7:0>

outgoingHeader <7:0>

execTransmitLinkMgmt

transitStatusSETok

transmitStatusSETlc

transmitStatusSETec

transmitDataREADof

transmitDataREADoh

currentTransmitBit <10:0>

frameSize <10:0>
padFrame

clk

reset

TransmitFrame

 

Figure 21: The symbol for TransmitFrame. 

If transmission is enabled, TransmitFrame (fig. 21) use the incorporated 
procedure TransmitDataEncap to construct a frame by inserting values such 
as DA, SA, frame size etc. at appropriate places in the byte stream. 
TransmitFrame uses ComputePad to check if it is necessary to pad the frame 
and it uses the process TxCRC32 to compute the frame’s checksum. In the 
contrary what the standard implies, the frame in this implementation is 
constructed “on-the-fly” in order to minimize the need of memory and to 
maximize the throughput in the system. 
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4.1.2.1.2 TxCRC32  
initCRC32
calcCRC32
readCRC32
fcsField <7:0>
outgoingFrame <7:0>

clk

reset

TxCRC32

 

Figure 22: The symbol for TxCRC32. 

The TxCRC32 block (fig. 22) computes the 32-bits CRC checksum. The block is 
a modified version of the free IP block “IEEE 802.3 Cyclic Redundancy Check” 
provided by Xilinx [XAPP209] as a reference design. 
The simplest way to compute the CRC value is by using a linear feedback shift-
register (LFSR) as shown in figure 23. 
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Figure 23: LFSR implementation of CRC-32. 

Using an LFSR is, however, not feasible since the application yields that it 
would have to work in 1 GHz. Instead, the CRC value has to be computed in 
parallel. This can be done using a state machine, as shown in figure 50, where 
the part of the logical net that computes the CRC-value is obtained from the IP 
core. 
Before the checksum generation begins, the register has to be loaded with ones, 
which is done by assertion of initCRC32. As soon as calcCRC32 is asserted the 
generation of the checksum begins. When calcCRC32 later is de-asserted, the 
value in the register is shifted one byte at a time. The inverted value of the 
lowest byte is at any time present at the output outgoingFrame. 
The input readCRC32 is not used and shall be ignored. 
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4.1.2.1.3 ComputePad  
frameSize <10:0>
padFrame

clk

reset

currentTransmitBit <10:0>

ComputePad

 

Figure 24: The symbol for ComputePad. 

If the frame size is less then minimum allowed value, arbitrary data has to be 
appended to the frame. The number of bytes that have to be appended, if needed, 
is computed by the block ComputePad (fig. 24), which simply compares the 
frame size given by the MAC client with the allowed minimum value defined in 
the standard [IEEE 802.3, Clause 4.4.2.1, 3 & 4]. 

4.1.2.2 TxMediaAccessMgmt  

 

Figure 25: The structure of TxMediaAccessMgmt. 

The function that shall be provided by the block TxMediaAccessMgmt (fig. 25) 
is described in IEEE 802.3, Clause 4.2.3.2.  
This block shall be able to handle collision detection, collision enforcement (i.e. 
jam, back off and retransmission), carrier extension and frame bursting. 
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4.1.2.2.1 TransmitLinkMgmt  
backOffisZero
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Figure 26: The symbol for TransmitLinkMgmt. 

TransmitLinkMgmt (fig. 26) attempts to transmit the frame. In half duplex mode, 
it first defers to any passing traffic. When a frame transmission is initiated, the 
internal procedure StartTransmit alerts the process BitTransmitter that 
transmission is to begin. If a collision occurs, the transmission is aborted and 
retransmission is scheduled using a suitable back off interval, which is computed 
by the block BackOff. Collisions are detected by the in standard defined 
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procedure WatchForCollision, which is incorporated into the block 
TransmitLinkMgmt. 

4.1.2.2.2 Random  
backOff <20:0>
backOffisZero

slotTime <3:0>

clk
reset

attempts <4:0>

Random

 

Figure 27: The symbol for Random. 

The function Random [IEEE 802.3, Clause 4.2.3.2.5] is implemented as a 
process (fig. 27) with the same name. The standard implies that the function, on 
request, shall return a uniformly distributed random integer between (and 
including) zero and maxBackOff i.e. {0, 1, 2, …, maxBackOff-1}. The 
variable maxBackOff can take the values 21, 22, 23, …, 210. 
In the implementation, this functionality is obtained by letting the random 
number generator produce a new number every clock cycle in the interval zero 
to 210-1. The bits are then masked with a vector that is maxBackOff-1 to obtain 
the correct interval. The masking is done in the calling block 
TransmitLinkMgmt. 
The standard implies that a random number only should be computed when 
needed but this gives rise to timing problems since the number then has to be 
computed with zero latency. Instead, a number is computed every clock cycle 
and ignored if not needed. The drawback with this solution is slightly higher 
power consumption. 

4.1.2.2.3 BurstTimer  
bursting
burstingRES

clk
reset

BurstTimer

 

Figure 28: The symbol for BurstTimer. 

In gigabit half duplex burst mode, the BurstTimer process [IEEE 802.3, 
Clause 4.2.3.2.7], see figure 28, clears the signal bursting when the 
burstLimit is reached. In any other modes, this block has no function. The 
constant burstLimit is the maximum size of a frame transmitted in this mode. 
This type of frame is sometimes referred to as “Jumbo frame”. 
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4.1.2.2.4 Deference  
interFrameSpacingPart2
interFrameSpacingPart1
interFrameSpacing
startRealTimeDelay

deferringSET
deferringRES

halfDuplex

clk
reset

transmitting
wasTransmitting

wasTransmittingSET
wasTransmittingRES

carrierSense

frameWaitingDeference

 

Figure 29: The symbol for Deference. 
This block implements the Deference process [IEEE 802.3, Clause 4.2.3.2.1], 
see figure 29. It continuously computes the proper value of the signal 
deferring, which indicates that any pending transmission must wait for the 
medium to clear. It assures that the minimum inter frame gap is obtained. When 
transmitting in half duplex burst mode, the signal is true throughout the whole 
burst and ignored by other parts of the system. 

4.1.2.2.5 RealTimeDelay  
startRealTimeDelay
interFrameSpacing
interFrameSpacingPart1
interFrameSpacingPart2

clk
reset

RealTimeDelay

 

Figure 30: The symbol for RealTimeDelay. 
The block RealTimeDelay (fig. 30) implements the function RealTimeDelay 
and the procedure StartRealTimeDelay as a process. The timer is reset by 
assertion of the signal startRealTimeDelay. The timer starts counting when 
startRealTimeDelay is de-asserted. The outputs are then asserted or not 
depending of how many microseconds that have elapsed since the recent 
invocation (i.e. assertion and de-assertion of startRealTimeDelay) of the timer, 
see figure 31. 
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Figure 31: The signal pattern of the outputs of RealTimeDelay. 
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4.1.2.2.6 BitTransmitter  
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Figure 32: The symbol for BitTransmitter. 

The BitTransmitter (fig. 32) process is enabled by the TransmitLinkMgmt 
process. The process incorporates four procedures defined in the standard, 
PhysicalSignalEncap, NextBit, StartJam and InterFrameSignal. 

PhysicalSignalEncap transmits the header, i.e. Preamble (PA) and Start 
Frame Delimiter (SFD). When the header has been transmitted without 
collisions BitTransmitter transmits the data. Between each transmission of a 
byte, the counter NextBit is incremented. 
If a collision is detected by the transmitting station during transmission, the 
procedure StartJam will be called that will cause the BitTransmitter to send 
arbitrary data for sufficient time so all stations on the network will detect the 
collision. 
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When sending in burst mode, InterFrameSignal fills the interval between 
two following frames with extension bits. 

4.1.2.2.7 TxStateReg  
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Figure 33: The symbol for TxStateReg. 

The register TxStateReg (fig. 33) holds the signals that are shared within the 
TxMAC, see appendix C. The register consists of ordinary D-flip-flops, which 
typically have one (or more) set and clear input(s), and an output each. 
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4.1.2.3 TxBufferPort  

 

Figure 34: The structure of TxBufferPort. 

When data is ready for transmission, TxBufferPort (fig. 34) receives a descriptor 
from TxBufMgr via TxDataFIFO. When the descriptor is received and stored 
into the TxDescReg, the TxDataFIFO is filled with the beginning of the packet 
that is to be sent. At this moment, TxDescReg asserts the signal 
execTransmitFrame. When a link has been established the transmitting of the 
packet begins and the TxDataFIFO transfers data from TxBufMgr further to 
TxDataEncapsulation. When the transmission is finished, or aborted, the 
ownership of the descriptor together with updated fields of it is returned to 
TxBufMgr via TxDescFIFO. As soon as TxBufMgr returns the ownership, a new 
descriptor can be transferred to TxBufferPort to start another transmission. 
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4.1.2.3.1 TxDataFIFO  
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writeAck

writeErr

clk1

reset1

data <31:0>

readEnable

readDescEnable

empty
almostEmpty

readAck
readErr

clk

TxDataFIFO

 

Figure 35: The symbol for TxDataFIFO. 

The TxDataFIFO (fig. 35) is an IP core from Xilinx [XAPP258]. The FIFO uses 
two independent clocks, which makes it ideal to use when crossing clock 
domains. 
The functionality of a FIFO is considered fundamental and not discussed further. 

4.1.2.3.2 TxDescFIFO  
TxDesc <31:0>

readDescEnable

empty

almostEmpty

readAck

readErr

clk1

reset1

desc <31:0>
writeDescEnable

full
almostFull

writeAck
writeErr

clk

TxDescFIFO

 

Figure 36: The symbol for TxDescFIFO. 

The FIFO TxDescFIFO (fig. 36) transfers the content of the register TxDescReg 
to TxBufMgr. It is identical with TxDataFIFO, but mirrored. 
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4.1.2.3.3 TxDescReg  
data <31:0>
readEnable

empty

desc <31:0>
writeDescEn

full

execTransmitFrame

size <10:0>

supCRC

vtci <15:0>

vpkt

OK_SET

TXA_SET

OWN

OWN_RES

CRC_SET

TD_SET

ED_SET

OWN_SET

EC_SET

CCNT_SET <3:0>
clk

reset

TxDescReg

 

Figure 37: The symbol for TxDescReg. 

The register TxDescReg (fig. 37) holds the transmit descriptor associated with 
the packet currently being transmitted. 
Before a packet is being transmitted, the descriptor is transferred to the register 
via TxDataFIFO and the input data<31:0>. TxDescReg requests new data until 
signal empty is asserted. 
When the descriptor is received, execTransmitFrame will be asserted which 
cause the underlying layers to attempt to transmit the packet. 
After the transmission is finished, or aborted, and fields in the descriptor has 
been updated, e.g. via ok_set, the ownership is returned to TxBufMgr. By 
asserting own_res, not only the ownership is returned but also the transfer of the 
content of the register is initiated, i.e. assertion of writeDescEn. The data is 
transmitted via the bus desc<31:0>. The signal full reports if the FIFO is full 
and the transmission is paused until full is de-asserted. 
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4.1.2.4 TxMIG  

clk

reset

CCNT_SET <3:0>
EC_SET

OWC_SET
ED_SET
TD_SET

CRC_SET
OWN_RES

OWN

transmitStatus <2:0>

deferredSET
deferredRES

excessDeferRES
lateCollisionCountINC

lateCollisionCountRES
lateCollisionError

lateCollisionErrorSET
lateCollisionErrorRES

TxMIG

 

Figure 38: The symbol for TxMIG. 

This implementation is prepared for providing DTE Layer Management [IEEE 
802.3, Clause 5.2.4]. The Layer Management service consists of a set of 
counters and actions. The counters together form the Management Information 
Base (MIB), which is located in the block MAC. Some of the services provided 
by the Layer Management are implemented in the block Management 
Information Generator (TxMIG) in the transmitter and in the corresponding 
location in the receiver (RxMIG). Other services will be placed in the MIB itself. 
TxMIG (fig. 38) monitors different status signals in the transmitter and updates 
appropriate counters, either automatically or by the blocks within the 
transmitter. 
After each transmission, TxMIG updates the management information in the 
MIB and then resets all counters. 
The design shown in figure 38 is not complete, since it lacks the interface 
towards the MIB. 
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4.1.3 Precise Design: Reconciliation Sublayer (RS)  

 

Figure 39: The structure of RS. 

The MII and GMII consist of two parts, the RS interface and the station 
management interface (provided by STA). 
RS (fig. 39) maps the signals provided by the MII and GMII to the PLS service 
primitives. Further, RS maps the variables, procedures and functions provided to 
the Mac sublayer by the Physical layer to the PLS service primitives. The 
mapping of the latter is shown in table 6. 

Table 6: Mapping of PLS service primitives to physical layer signals as 
presented to MAC sublayer 

Variables  
ReceiveDataValid PLS_DATA_VALID.indicate 

CarrierSense PLS_CARRIER.indicate 

Transmitting PLS_DATA.request 

WasTransmitting PLS_DATA.request 

CollisionDetect PLS_SIGNAL.indicate 

Procedures  
TransmitBit PLS_DATA.request 

Wait N/A 

Functions  
ReceiveBit PLS_DATA.indicate 
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The variables transmitting and wasTransmitting are controlled by the MAC 
sublayer. The signals needed to set and clear these signals are not shown in 
figure 39. 
The, by Physical layer provided, procedure TransmitBit is implemented by 
the signals transmitData<7:0>, transmitExt, transmitExtErr and 
transmitDataValid (where transmitDataValid is the signal that performs the 
execution of the procedure). 
The, by physical layer provided, function ReceiveBit is implemented by the 
signals receiveData<7:0>, receiveExt and receiveDataValid (where 
receiveDataValid is the signal that performs the execution of the function). 
The design of MII and GMII allows the two interfaces to share many of the 
signals and the behavior needs only to be slightly modified for a few of them 
depending of which interface to provide. 
The signals transmitComplete, receiveExtErr are never used and shall be 
omitted. 

4.1.3.1 PLS_DATAreq  
transmitData <7:0>
transmitExt
transmitExtErr
transmitComplete
transmitDataValid

wasTransmitting
provideGMII

clk
reset

TXD <7:0>
TX_EN
TX_ER

GTX_CLK
TX_CLK

PLS_DATAreq

 

Figure 40: The symbol for PLS_DATAreq. 

The block PLS_DATAreq (fig. 40) provides the Physical layer interface 
procedure TransmitBit [IEEE 802.3, Clause 4.3.3], which is the instantiation 
of the service primitive PLS_DATA.request [IEEE 802.3, Clause 22.2.1.1 (MII) 
and 35.2.1.1 (GMII)]. 
The mapping of PLS_DATA.request to MII and GMII is not identical. In order 
to obtain the different behavior depending of which type of interface to present, 
i.e. MII or GMII, the control signal provideGMII is used. 
In MII-mode, the signals transmitExt, transmitExtErr, TX_ER and GTX_CLK 
are not used. While transmitDataValid is asserted, transmitData will be stored 
in a double-clocked FIFO synchronously to clk. As long as the FIFO is not 
empty, TX_EN will be asserted and data read out, four bits at a time, to 
TXD<3:0> synchronous to TX_CLK. TX_CLK is generated by the PHY. 
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In GMII-mode, the signal TX_CLK is not used. While transmitDataValid is 
asserted, transmitExtErr, transmitExt and transmitData are read and the values 
of the output signals will be as shown in table 7. 

Table 7: Encoding of the GMII signals TXD, TX_EN and TX_ER 

transmitExtErr transmitExt transmitData<7:0> TXD<7:0> TX_EN TX_ER 
0 0 00 – FF transmitData 1 0 

0 1 00 – FF 0F 0 1 

1 0 00 – FF 1F 0 1 

1 1 00 – FF 1F 0 1 

 
The signals TX_EN and TX_ER are not supposed to be asserted at the same time. 
When transmitDataValid is not asserted, all outputs will be zero. 
The signal transmitComplete is never used and shall be omitted. 

4.1.3.2 PLS_SIGNALind  
collisionDetect COL

PLS_SIGANLind

 

Figure 41: The symbol for PLS_SIGNALind. 

The block PLS_SIGNALind (fig. 41) provides the Physical layer interface 
variable collisionDetect [IEEE 802.3, Clause 4.3.3], which is the 
instantiation of the service primitive PLS_SIGNAL.indicate [IEEE 802.3, 
Clause 22.2.1.4 (MII) and 35.2.1.4 (GMII)] 
The behavior of the signal COL is identical for both MII and GMII and is 
specified in [IEEE 802.3, Clause 22.2.1.4 (MII) and 35.2.1.4 (GMII)]. 
In the standard, COL is specified to be asynchronous. By reasons explained in 
section 4.3.1, it is not wise to allow asynchronous signals. Instead, COL is 
sampled with respect to transmit clock domain and renamed to collisionDetect. 
This can be done without violating the standard since it does not place any 
emphasis on suitability to a particular implementation technology [IEEE 802.3, 
Clause 4.2.2]. 
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4.1.3.3 PLS_DATAind  
receiveData <7:0>
receiveExt
receiveExtErr
receiveDataValid <1:0>
receiveClk
provideGMII
reset

RXD <7:0>
RX_ER

RX_CLK
RX_DVPLS_DATAind

 

Figure 42: The symbol for PLS_DATAind. 

The block PLS_DATAind (fig. 42) provides the Physical layer interface 
function ReceiveBit [IEEE 802.3, Clause 4.3.3], which is an instantiation of 
the two service primitives PLS_DATA.indicate [IEEE 802.3, Clause 22.2.1.2 
(MII) and 35.2.1.2 (GMII)] and PLS_DATA_VALID.indicate [IEEE 802.3, 
Clause 22.2.1.7 (MII) and 35.2.1.7 (GMII)]. 
Neither the mapping of PLS_DATA.indicate nor PLS_DATA_VALID.indicate 
to MII and GMII are identical. In order to obtain the different behavior 
depending of which type of interface to present, i.e. MII or GMII, the control 
signal provideGMII is used. All MII/GMII signals in this block are synchronous 
to RX_CLK. 
In MII-mode, the signals receiveExt and receiveExtErr are not used. The 
decoding of the input signals is presented in table 8. 

Table 8: Decoding of the MII signals RX_DV, RX_ER and RXD 

RX_DV RX_ER RXD<3:0> receiveData<3:0 / 7:4> receiveDataValid<0 / 1> 
0 0 0 – F 0 0 

0 1 0 – F 0 0 

1 0 0 – F RXD<3:0> 1 

1 1 0 – F INV (RXD<3:0>) 1 

 
When both RX_DV and RX_ER are asserted, the RS must ensure that the MAC 
sublayer will detect a FrameCheckError, i.e. wrong checksum. This is 
obtained by inverting the data as long as the condition persists. 
The direct mapping between RX_DV and receiveDataValid in MII-mode is 
allowed only if the process BitReceiver is implemented to receive a nibble of 
data on each cycle. This is fulfilled by using two signals that corresponds to first 
and second nibble in receiveData<7:0>. 
In GMII-mode, all signals are used. The decoding of the input signals is 
presented in table 9. 
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Table 9: Decoding of the GMII signals RX_DV, RX_ER and RXD 

RX_DV RX_ER RXD<7:0> receiveData<7:0> receiveDataValid receiveExt 
0 0 00 – FF 00 0 0 

0 1 00 – 0E 00 0 0 

0 1 0F 0F 1 1 

0 1 10 – 1E 00 0 0 

0 1 1F INV (1F) 1 0 

0 1 20 – FF 00 0 0 

1 0 00 – FF RXD<7:0> 1 0 

1 1 00 – FF INV (RXD<7:0>) 1 0 

 
When a “Carrier Extend” is received, i.e. RX_DV is de-asserted, RX_ER is 
asserted and RXD is “0F”, the RS shall notify the MAC sublayer that extension 
bits have been received. 
When a “Carrier Extend Error” is received, i.e. RX_DV is de-asserted, RX_ER is 
asserted and RXD is “1F”, the RS shall ensure that the MAC sublayer will detect 
a FrameCheckError [IEEE 802.3, Clause 35.2.1.5]. 
When both RX_DV and RX_ER are asserted RS shall ensure that the MAC 
sublayer will detect a FrameCheckError [IEEE 802.3, Clause 35.2.1.5]. 
The signal receiveExtErr is never used and shall be omitted.  

4.1.3.4 PLS_CARRIERind  
carrierSense CRS

PLS_CARRIERind

 

Figure 43: The symbol for PLS_CARRIERind. 

The block PLS_CARRIERind (fig. 43) provides the Physical layer interface 
variable carrierSense [IEEE 802.3, Clause 4.3.3], which is an instantiation 
of the service primitive PLS_CARRIER.indicate [IEEE 802.3, Clause 22.2.1.3 
(MII) and 35.2.1.3 (GMII)]. 
The mapping of PLS_CARRIER.indicate to MII and GMII is not identical. 
However, which is also is stated in [IEEE 802.3, Clause 22.2.1.3], the mapping 
is carried out in the same way in practice. 
The signal CRS is asynchronous and therefore sampled into the transmit clock 
domain to avoid timing problems. The actual sampling occurs within the process 
Deference, see section 4.1.2.2.4. 
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4.1.4 Precise Design: Station Management (STA)  

 

Figure 44: The structure of STA. 

The Station Management entity (STA) (fig. 44) provides the MII/GMII 
Management Interface, which is a part of the MII/GMII. The management 
interface is the same regardless if it is a part of the MII or the GMII. 
The management interface [IEEE 802.3, Clause 22.2.4] is a simple, two-wire, 
serial interface that connects a management entity and a managed PHY for the 
purposes of controlling the PHY and gathering status from the PHY. In addition 
to the signals, the interface also defines a frame format and protocol [IEEE 
802.3, Clause 22.2.4.5] and a register set in the PHY [IEEE 802.3, Clause 
22.2.4, Table 22-6]. 
The host interface of the STA is not covered in the standard, whether the 
implemented interface is suitable or not has not been confirmed. 
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4.1.4.1 InDataReg  
mgmtDataIn <15:0>

MDO_EN
MDI_DV

ce
clk
reset

MDI

InDataReg

 

Figure 45: The symbol for InDataReg. 

The register InDataReg (fig. 45) is managed by the Controller. When MDI_DV 
is true and MDO_EN is false, the bit present at MDI is shifted into the register. 
When the shift-register is full, the data is present in parallel form at the output 
mgmtDataIn. 
MDI is one of the two channels that form the signal MDIO, which is explained 
in section 4.1.5.4. 

4.1.4.2 ClockGenerator  
clkGenEn

ce2
ce1
clk
reset

MDC

ClockGenerator

 

Figure 46: The symbol for ClockGenerator. 
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The ClockGenerator (fig. 46) generates the clock signal MDC. The block also 
generates two clock enable signals, ce1 and ce2. These signals are used by the 
other blocks to determine when MDC makes a transition. When the 
ClockGenerator is disabled, i.e. clkGenEn is de-asserted, all outputs of the block 
will be de-asserted. 
The MII/GMII Management Interface signal MDC [IEEE 802.3, Clause 
22.2.2.11] is sourced by the Station Management entity to the PHY as the timing 
reference for transfer of information on the MDIO signal. MDC is a non-periodic 
signal that has no maximum high or low times. The minimum high and low 
times for MDC shall be 160 ns each, and the minimum period for MDC shall be 
400 ns (2.5 MHz), regardless of the nominal period of TX_CLK and RX_CLK. 

4.1.4.3 OutDataMUX  
mgmtPhyAd <4:0>
mgmtRegAd <4:0>
mgmtDataOut <15:0>
mgmtOP

clk
reset

MDO

MDO_En

ce

bitSelect <4:0>

OutDataMUX

 

Figure 47: The symbol for OutDataMUX. 

The OutDataMUX (fig. 47) builds the management frame and sends the frame in 
serialized form via MDO when MDO_EN is asserted. The signals mgmtPhyAd, 
mgmtRegAd, mgmtDataOut and mgmtOP represents the field values of the 
frame. 
MDO is one of two channels that form the signal MDIO, which is explained in 
section 4.1.5.4. 
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4.1.4.4 Controller  
mgmtOp
mgmtPre
mgmtRequest

clk
reset

mgmtBusy

bitSelect <4:0>

mdo_en
mdi_dv

ce

Controller

 

Figure 48: The symbol for Controller. 

The Controller (fig. 48) manages the communication between the STA and one 
or more connected PHYs. The STA is enabled by assertion of mgmtRequest. If 
the controller can respond to the request, mgmtBusy is asserted. Assertion of 
mgmtRequest when mgmtBusy is asserted is ignored. 
The signal mgmtOP determines if the STA shall perform a read or write 
transaction. Each frame begins with a preamble. This preamble is not always 
needed and can be omitted by de-assertion of mgmtPre. The signal bitSelect is 
used by the OutDataMUX to select which bit from which filed to transmit. 
MDIO [IEEE 802.3, Clause 22.2.2.12] is a bidirectional signal between the PHY 
and the STA. It is used to transfer control information and status between the 
PHY and the STA.  When MDO_EN is asserted, control information is driven by 
the STA synchronously with respect to MDC and is sampled synchronously by 
the PHY. When MDI_DV is true, status information is driven by the PHY 
synchronously with respect to MDC and is sampled synchronously by the STA.  
MDO_EN and MDI_DV cannot be true at the same time. 
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4.2 Analysis of Possible Critical Blocks  
Reasons that could vindicate an implementation of a specific block can be: 
� Speed: 

  There are reasons to believe that the block should fail to pass the 
  delay and timing constraints. Such reason can be a large counter 
  that will be updated each clock-cycle, a large multiplier, signals 
  used by many blocks (propagation delay and skew) etc. 

� Complexity: 
  If the block is very complex it can be hard to predict its  
  performance and behavior. 

� Simplify verification: 
  If the block is simple, meaning little room for mistakes, it can be a 
  reason to rather implement it to simplify the verification process of 
  other blocks instead of constructing test vectors that simulates the 
  block. 

� Unspecified interface: 
  Since the standard do not specify electrical interfaces between each 
  block, there can be a reason for implementation to achieve a fully 
  specified electrical interface. 

 
With the reasons stated above and after studies of the Pascal-code and the 
interconnection diagrams in appendix C, the following blocks have been 
selected for implementation: 
� TransmitLinkMgmt 

� CRC32 

� BitTransmitter 

The motivation for each block selected can be found in section 4.2.1-3. 
The block CRC32 will not be shared between the transmitter and receiver since, 
which can be read in section 4.2.2, the block will process the data in real-time. 
In that case, the transmitter and receiver have to have their own checksum 
generator in order to be able to support full duplex communication.  
As can be seen in above listing all blocks can be found in the transmitter. This is 
not surprising since the transmitter consists of both more blocks and more 
signals than the receiver does. 
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4.2.1 Critical Block: TransmitLinkMgmt  
The implementation of this block will include the, in standard defined, blocks 
TransmitLinkMgmt, WatchForCollision, StartTransmit and 
BackOff. 
As can be seen in appendix C this block involves the counter 
currentTransmitBit, which can cause delay problems since it is 11 bits 
wide, it may be updated each clock cycle and it is distributed to several other 
blocks. The block is also complex since it incorporates much functionality, 
which performance and behavior is hard to predict. Further, the interface is not 
specified in the standard. 

4.2.2 Critical Block: TxCRC32  
There are two ways that the checksum can be generated, either it is done before 
the transmission begins, either do it “on-the-fly”. The problem with the first 
solution is that a buffer is needed to store the frame before the transmission 
begins and the delay from the transmission is initiated at higher layers until the 
actual transmission begins. The other way to generate the checksum is better but 
two factors have to be verified, the throughput and the latency. The critical of 
the two is the throughput, but when that is solved, an eventual latency problem 
is easily solved by insertion of delay elements in the data path. 
 

TxCRC32

T T

M
U
X

 

Figure 49: Insertion of delay elements to overcome latency problems. 

The interface of the block is simple so there is no need to implement any 
adjacent block for simplifying the verification.  

4.2.3 Critical Block: BitTransmitter  
The implementation of this block will include the, in standard defined, blocks 
BitTransmitter, InterFrameSignal, PhysicalSignalEncap, 
StartJam and NextBit. 
As can be seen in appendix C this block involves the counter 
currentTransmitBit, which can cause delay problems since it is 11 bits 
wide, it may be updated each clock cycle and it is distributed to several other 
blocks. The block is also complex since it incorporates much functionality, 
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which performance and behavior is hard to predict. Further, the interface is not 
specified in the standard. 

4.3 Design Entry  
The development environment (i.e. HDL Designer) allows several ways to enter 
the design as mentioned in section 3.4. In this project, the block diagram entry 
method has been used. There was no crucial factor in the choice of method, but 
rather by force of habit of the author. 

4.3.1 Different Styles  
The implementation is done with synchronous logic. The problems associated 
with asynchronous logic (e.g. temperature and voltage dependency, speed 
variations through different paths, difficult to verify) outnumber the benefits 
(e.g. higher speed, smaller implementations). 
One very common construction is the state machine. In this implementation, a 
synchronous type of the commonly known Mealy machine has been used 
consistently (fig. 50). In the synchronous type, the output signals are stored in a 
separate register, which are reloaded at each clock edge. Consequently, if an 
output signal is used for feedback it will be duplicated and stored in both 
registers. 
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Figure 50: Mealy state machine. Grayed-out register makes it synchronous. 

The difference between the original and the synchronous Mealy machine is that 
the outputs in the latter one do not suffer from the glitches that arise in the 
logical net. The trade-off is that the synchronous Mealy has a latency of one 
clock cycle while the original Mealy machine has no latency in terms of clock 
cycles (there will always be some delay). 
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4.3.2 Implementation Example: BitTransmitter  
In order to illustrate how the Pascal-like code in the standard IEEE 802.3 was 
converted to VHDL the following example is used. The program is not a part of 
the standard. 
The program consists of a process (Counting) and a procedure (Sum). Further, 
there are two input variables (number and countingEnable) and two output 
variables (counter and status). All these variables are global and used by other 
blocks that are not defined within this example. The variables number and 
counter are integers with the range 0 to 255. 
 

Declaration of global variables. 

type type_status = (overflow,idle,ok); 
var  countingEnable : boolean;     {in} 
var  number         : integer;     {in} 
var  counter        : integer;     {out} 
var  status         : type_status; {out} 

 

Listing of process Counting. 

process Counting; 
  var break : boolean; 
begin 
  cycle {outer loop} 
    counter := 0; 
    status  := idle; 
    break   := false; 
    while countingEnable and not break do 
    begin {inner loop} 
      Sum(number); 
      if counter < 256 then 
        status := ok 
      else 
      begin 
        status := overflow; 
        break  := true 
      end 
    end {inner loop} 
  end {outer loop} 
end; {Counting} 

 

Listing of procedure Sum. 

procedure Sum(var offset: integer); 
begin 
  counter := counter + offset 
end; {Sum} 
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While countingEnable is de-asserted, counter will be zero. Then, while 
countingEnable is asserted and counter is less than 256, counter is increased 
with the value number until it is 256 or greater. When counter becomes 256 ore 
greater, it will be reset but first it will contain a wrong value for one period. This 
is indicated by the status variable, which takes the value “overflow”. 
At every moment, the status of the process will be reported. The status variable 
(status) can take the following three values:  
� “idle”, i.e. countingEnable is de-asserted 

� “ok”, i.e. countingEnable is asserted and counter ∈ [0, 255] 
� “overflow”, i.e. countingEnable is asserted and counter is greater than 255 
 

counter := 0
status := idle

status :=
ok

status :=
overflow

True

True

False

T

T

False

counter < 256

countingEnable

counter := counter + number

s0

s1

 

Figure 51: The program flow with grayed out delay elements. 
 
First, which is not illustrated, the procedure(s) is written in line in the code of 
the process. Then a flowchart (fig. 51) is created, not including the grayed out 
boxes. 
The flowchart now consists of three loops. In each of these loops a delay 
element must be inserted in order to achieve the correct behavior, otherwise for 
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example the value at the input number might be added to counter several times 
when it only was intended to be added once. Each delay element, denoted T in 
figure 51, is then assigned a state number s0, s1, … 
Then, the flowchart is divided into several flows. Each of theses flows begins at 
a delay element and ends at one or more. When the branches in each of these 
flows have been studied, some of these might be removed. Such a branch is 
when starting in state s0. As can be seen in figure 51, the counter is first reset 
and then if countingEnable is asserted it is set to number. Since number always 
is less than 256, it is unnecessary to check if counter is less than 256 so the false 
branch can be removed. The resulting flows are shown in figure 52. 

True

False

status :=
overflow

status :=
ok

status :=
idle

True

True

False

countingEnable countingEnable

counter < 256

s0

s0s0

s0s1

s1

s1

counter := number
status := ok counter := counter + number

False

counter := 0counter := 0
status := idle

 

Figure 52: Flow within each state. 
 
The flowchart in figure 52 is then used when creating the VHDL 
implementation shown on the following two pages.  
First, an entity is declared which describes the interface of the block. Then 
comes the architecture body, which describes the behavior of the block. 
As stated in section 4.3.1, all state machines in this study is of the type 
synchronous Mealy. 
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The entity declaration of the block. 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity ent_Counting is 
  port(  
    countingEnable : in  std_logic; 
    number         : in  std_logic_vector (7 downto 0); 
    clk            : in  std_logic; 
    arst_n         : in  std_logic; 
    counter        : out std_logic_vector (7 downto 0); 
    status         : out std_logic_vector (1 downto 0) 
  ); 
end ent_Counting; 

 
The architecture body is shown as a whole in next page. 
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The architecture body of the block. 

architecture arch_Counting of ent_Counting is 
  type state_type is (s0, s1); 
  signal   state    : state_type := s0; 
  constant idle     : std_logic_vector(1 downto 0) := "00"; 
  constant ok       : std_logic_vector(1 downto 0) := "01"; 
  constant overflow : std_logic_vector(1 downto 0) := "10"; 
 
begin 
  proc_Counting: process (clk, arst_n) 
    variable temp:std_logic_vector(8downto0):=(others=>'0'); 
  begin 
    if arst_n = '0' then      –-asynchronous negative reset 
      temp    := (others => '0'); 
      status  <= idle; 
      state   <= s0; 
      counter <= (others => '0'); 
    elsif rising_edge(clk) then 
      case state is 
        when s0 => 
          if countingEnable = '1' then 
            temp    := '0' & number; 
            status  <= ok; 
            state   <= s1;          --next state will be s1 
          else 
            temp    := (others => '0'); 
            status  <= idle; 
            state   <= s0;          --next state will be s0 
          end if; 
        when s1 => 
          if countingEnable = '1' then 
            temp := temp + ('0' & number); 
            if temp(8) = '0' then   --temp < 256  
              status <= ok; 
              state  <= s1;         --next state will be s1 
            else                    --temp >= 256 
              status <= overflow; 
              state  <= s0;         --next state will be s0 
            end if; 
          else 
            temp   := (others => '0'); 
            status <= idle; 
            state  <= s0;           --next state will be s0 
          end if; 
      end case; 
      counter <= temp(7 downto 0); 
    end if; 
  end process proc_Counting; 
end arch_Counting; 
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4.4 RTL Simulation  
The standard [IEEE 802.3, Clause 4.2.2.1:d.2] declares: 
 

“Among processes, no assumptions are made about relative speeds of 
execution. This means that each interaction between two processes 
shall be structured to work correctly independent of their respective 
speeds.” 

 
Since the design consists of several processes, this complicates the verification. 
However, the processes in the implementation that were defined as functions in 
the standard are easier to verify since the interaction between a function and its 
host is clearly specified. 
Of the three blocks that were selected in section 4.2 to be implemented, only 
BitTransmitter is specified as a process in the standard. Both TxCRC32 and 
TransmitLinkMgmt are specified as functions. However, the functions are not 
always easy to verify either. Such an example is TransmitLinkMgmt. 
Unlike TxCRC32, TransmitLinkMgmt interacts with several processes, which 
makes it hard to tell when the block possesses the correct behavior. 
When discussing behavior a distinction can be made between internal and 
external behavior. The internal behavior is the easier one to verify: 
 

“If A and B both are true then C is true, otherwise C is false.” 
 
The external behavior in this implementation can be harder to identify. In the 
example above, the question arise: 
 

“What latency is allowed between that A and B are true 
 until C should be set to true?” 

 
Since this aspect is not all-over covered by the standard many assumptions have 
been made, which in the final validation step can turn out to be wrong. 
For that reason, the focus in this step was set to verify the internal behavior. It is 
considered to be possible to change the design in such way that the interaction 
can be corrected without that the performance and size of a future and correct 
implementation will differ too much from this implementation. 
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4.5 Synthesis  
This step covers both the selection of device and the synthesis step itself. 

4.5.1 Choosing Target Device  
There is no need for any hard blocks except memory, which many FPGAs 
provides. The memory is needed by FIFOs, which are used when crossing clock 
domains. 
Since there is no specific product where this Ethernet controller shall be 
implemented, it is hard to identify non-functional characteristics that could 
exclude any FPGA. However, the size of the FPGA has to be sufficient to house 
the Ethernet controller together with other, future, functions. Another aspect of 
which FPGA size to select, is its associated routing resources. 
An FPGA usually have two different types of routing resources, hierarchical and 
dedicated. The hierarchical routing resources are different types of global and 
local resources used for interconnection between blocks. The dedicated 
resources are used for distribution of e.g. clock signals. 
The different types of hierarchical resources are illustrated in figure 53, which 
refers to a Xilinx Virtex-II device [Xilinx ds031]. 
 

16 Direct Connections
(total in all four directions)

40 Horizontal Double Lines
40 Vertical Double Lines

120 Horizontal Hex Lines
120 Vertical Hex Lines

24 Horizontal Long Lines
24 Vertical Long Lines

 

Figure 53: Hierarchical routing resources for each row/column. 
 
If there are many signals in the design that have to be distributed to several 
blocks, the Long Lines is the ideal routing resource. Nevertheless, this is a 
strongly limited resource. The Long Lines covers a whole row or column of 
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CLBs, meaning that in a large FPGA many blocks will be connected to the same 
Long Line. If there are not sufficient amount of Long Lines available, a shorter 
type of routing will be used to build long routes. This will lead to a decrease in 
performance. 
The choice is an FPGA from Xilinx’s Virtex-II family, which is a rather new 
family that still grows and that contains both small and large devices with 
different hard blocks and speed grades. The speed grade used in this project is -4 
(which is the slowest, -6 is currently the fastest). By selecting a “slow” device at 
this stage, the opportunity exists to change to a faster device when implementing 
a large system where the Ethernet controller is included. 
The device XC2V1000-4-ff896 was selected where 1’000 is the number of 
thousands of equivalent system gates, -4 is the speed grade, ff stands for flip-
chip fine-pitch ball grid array (BGA) and 896 is the number of pins of which 
432 can be used as I/O-pins. The footprint of this device is identical with the 
larger devices XC2V1500 and XVC2V2000. 

4.5.2 Choosing Synthesis Method  
In this study, only parts of the controller will be synthesized. The parts were 
synthesized one at time. The parts are quite small in the context of synthesis, 
which results in that the performance will not differ much depending of which 
optimization target that was used. There are two targets to optimize for as 
mentioned in section 3.6.2, area or delay. The results are presented in section 5.1 
and 5.2. The other choice whether the design should be flattened or not does not 
have any affect since there is only one block at a time that will be synthesized. 
The option to assign different timing criteria to different paths has not been 
used. Such an example where this option can be used is the signals controlled by 
the block Initialize (e.g. the signal extend), which may be multi cycle paths since 
they do not change during transmission/reception. This potential of performance 
improvement is saved for the future. 

4.6 Place & Route  
The place & route tool (ISE Alliance) allows the user to have a big influence on 
the result. However, in this work the tool has been used with its default settings. 
The reason for this is simply that, in the future, when one wants to actually 
construct a fully functional Ethernet controller with the use of this work there 
should be a good potential of improvement on this stage to compensate the 
problems related to a much larger design. 
The sizes of the implementations are presented in section 5.1. 
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4.7 Static Timing Analysis  
The synthesis tool (Leonardo Spectrum) and the place & route tool (ISE 
Alliance) together analyze the static behavior of the implementation. The 
interest for this study is of course to assure that the timing constraints are 
fulfilled. 
The results are presented in section 5.2. 
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CHAPTER 5: RESULTS  

The results presented in section 5.1 and 5.2 are reported values from the place & 
route tool ISE Alliance. The results in section 5.3 are estimated values from 
Xilinx’s Virtex-II Power Estimate Worksheet. 
Each table in the following sections has two columns of data named O.f.A. and 
O.f.D. The values in column O.f.A. corresponds from values obtained when the 
design is optimized for minimum area and O.f.D. when the design is optimized 
for minimum delay. The choice of optimization target is done in the synthesis 
step (i.e. the synthesis tool Leonardo Spectrum). 
The target device is XC2V1000-4-ff896, which belongs to Xilinx’s Virtex-II 
family. It is a mid-size device with about one million gate equivalents. The 
speed grade is –4, which makes it the slowest version available in that family. 
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5.1 Size  
The target device (XC2V1000-4-ff896) has 10’240 LUTs. 
 

Table 10: Size of the selected implementations 

Block O.f.A. [LUTs] O.f.D. [LUTs] 

TransmitLinkMgmt  227  239 

TxCRC32  135  137 

BitTransmitter  110  116 

 
 

Table 11: Size of additional implementations 

Block O.f.A. [LUTs] O.f.D. [LUTs] 

TransmitFrame  122  131 

BurstTimer  37  43 

Deference  26  29 

Random  31  31 

RealTimeDelay  9  11 

TxStateReg  39  39 
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5.2 Performance  
 

Table 12: Performance of the selected implementations 

Block O.f.A. [MHz] O.f.D. [MHz] 
TransmitLinkMgmt  145.5  141.1 

TxCRC32  140.1  146.8 

BitTransmitter  162.0  164.0 

 
 

Table 13: Performance of additional implementations 

Block O.f.A. [MHz] O.f.D. [MHz] 
TransmitFrame  126.6  131.9 

BurstTimer  155.2  143.8 

Deference  212.8  211.7 

Random  339.3  301.8 

RealTimeDelay  305.8  290.1 

TxStateReg  265.2  252.3 
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5.3 Power Dissipation  
The values entered into the “Xilinx Virtex-II Power Estimate Worksheet” can be 
found in appendix D. 
 

Table 14: Power dissipation of the selected implementations 

Block O.f.A. [mW] O.f.D. [mW] 
TransmitLinkMgmt  14  15 

TxCRC32  35  36 

BitTransmitter  10  11 

 
 

Table 15: Power dissipation of additional implementations 

Block O.f.A. [mW] O.f.D. [mW] 
TransmitFrame  9  9 

BurstTimer  3  3 

Deference  1  2 

Random  11  11 

RealTimeDelay  1  1 

TxStateReg  4  4 
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CHAPTER 6: DISCUSSION  

In section 6.1, the results presented in chapter 5 will be discussed. In section 6.2 
follows a comparison with an IP core released by Xilinx in section 6.2. 

6.1 Reliability and Availability of Obtained Results  
After the rough estimation of the hardest blocks to implement TxCRC32, 
BitTransmitter and TransmitLinkMgmt were selected. As it turned out, the 
TransmitFrame block should has been selected instead of the block 
BitTransmitter. However, since much more design effort has been placed on the 
latter block the selection might not been wrong. 

6.1.1 Size  
As table 10 and 11 shows, the difference in area is not big depending of which 
optimizations target that has been selected. 
By adding the area for all blocks in column O.f.A., the sum is 736 LUTs. If the 
whole TxMAC would be implemented the size could be both bigger and smaller. 
Bigger since the place and route tool not tends to share slices between different 
blocks and some LUTs may be needed for routing. Smaller since some shared 
logic may be removed during optimization. 
An estimation of the size of the whole controller would be in the range of 3’000 
LUTs. The RxMAC is considered slightly smaller than the TxMAC. The MIB 
together with RS would probably be in parity with the size of the TxMAC. The 
size of the TxBufMgr and RxBufMgr is hard to estimate, much depending of the 
size of the buffers and functionality. 
A good piece of advice is that never fill an FPGA to more than 80%. Using the 
same device as before (XC2V1000) and following the advice gives 80% * 
10’240 = 8’192 available LUTs. If the Ethernet controller takes 3’000 LUTs, 
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there is room for a design of about 5’200 LUTs, which allows the 
implementation of a rather big design. 

6.1.2 Performance  
As can be seen in table 12 and 13, the most critical block is TransmitFrame. As 
pointed out in the beginning of this chapter, this block was not among the 
selected ones and the design effort of this block is minimal meaning that there 
surely is room for improvements in the design. 
All blocks are implemented using registered outputs, which makes the 
performance results usable even in the future. The only factor that can decrease 
the performance is how the routing resources are divided among the blocks. This 
is not a negligible factor but also, to a certain degree, possible to affect by 
writing constraint files for the place & route tool. 
As suggested in section 8.2, a lot of performance can be gained by dividing the 
current design into three different versions. The controller can be in three 
different modes (half duplex, full duplex and full duplex with bursting enabled). 
The controller is not allowed, by standard, to change mode in runtime meaning 
that it should be possible to have three different versions of the controller in the 
ROM, each version corresponding to one mode, and then load a certain version 
depending of which mode the controller should operate in. This was a miss in 
the current design, which allows changing of mode within one clock cycle. Still, 
the controller must be able to change transfer speed (10, 100 or 1’000 Mbps) in 
runtime. 
In ISE Alliance 5.1i, it is possible to add an optional module, Modular Design, 
which supports Partial Reconfiguration. With this technique is it possible to 
reconfigure a part of the FPGA, while the device continues to run. This seems to 
be a very suitable solution in this case. 

6.1.3 Power Dissipation  
By adding the estimated values for power dissipation in table 14 and 15 for all 
blocks in column O.f.A., a sum of 92 mW is obtained. Following a similar line 
of reasoning as in section 6.1 where the total area can be estimated to be four 
times the area of the transmitter, a power dissipation would be around 370 mW. 
Add to this a device quiescent power of 183 mW for the device. Each used pin 
on the device can dissipate around 1 mW. 
A rough estimation of the total power dissipation for the device would be around 
600 mW. 
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6.2 Comparison with IP core from Xilinx  
In April 2002, Xilinx had the initial release of their first IP core for gigabit 
Ethernet, DO-DI-1GEMAC. 
The key features presented at Xilinx’s web as is of January 29, 2003 
(www.xilinx.com/systemio/gmac/gmac_desc.htm): 
� Single-speed half and/or full-duplex 1 Gbps MAC controller 
� Compliant with IEEE 802.3-2000 
� Choice of GMII or serial PHY interface options 
à 8b GMII interface running 125MHz for 1Gbps bandwidth 

- 8b wide interface in both Tx and Rx directions 
- Allows direct interfacing between Xilinx FPGAs and industry standard 

ASSP PHY devices 
à Serial PHY interface integrates PCS/PMA functions for 1.25 Gbps 

bandwidth 
- Provides a single-chip solutions for 1000BASE-X applications 

� 8-bit internal data path and back-end interface 
à 125MHz operation 

� Cut-through operation with minimum buffering for maximum flexibility in 
64-bit client bus interfacing 

� Configured and monitored through an independent microprocessor-neutral 
interface 

� Powerful EtherStats-based statistics gathering 
� Optional flow control through MAC Control pause frames; symmetrically or 

asymmetrically enabled 
� MDIO interface to managed objects in PHY layer 
� Optional support of VLAN frames to specification IEEE 802.3ac-1998 
� Programmable Interframe Gap 
� Optional support of “jumbo frames” of any length 
� Available under terms of the SignOnce IP License 
 
There are some differences between the design presented in this study (from 
now on referred to as STU in this section) and above IP-core. First of all, with a 
few number of modifications the STU is capable of transmitting in both 10, 100 
and 1’000 Mbps in comparison with this IP’s single-speed capability. 
The STU incorporates only the GMII option. The serial PHY interface is only 
needed for communication over optical medium. The two remarks regarding the 
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IP-core’s GMII (“bit width” and “direct interfacing”), are already covered by the 
fact that the core is IEEE 802.3 compliant. 
Like the IP-core, the STU also operates at 125 MHz and uses an 8-bit internal 
data path. 
The “Cut-through operation…”- and “Configured and monitored…”-features is 
not, yet, implemented in the STU since this should be done in higher layers. 
The statistics gathering feature for the IP-core is also, but yet not fully, 
implemented in the STU. 
The flow control should be implemented in the MAC Control sublayer, which is 
not within the scoop of this study. 
The STU is also capable of handling VLAN-tags as well as the IP-core. 
Programmable Interframe Gap is a feature that not has been implemented in the 
STU and, at this state, hard to see the need of since the design already capable of 
handling pause frames. 
Jumbo frames are not supported by the STU. 
According to the documentation of the IP-core, the size of it varies between 625 
and 1’777 slices depending of device and optional features. Translated to LUTs, 
this means a size between 1’250 and 3’554 LUTs, which can be compared with 
the estimated size of 3’000 LUTs for the STU. 
To summarize above comparison, the STU is in parity with Xilinx IP core 
regarding functionality, size and choice of platform (Virtex-II). 
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CHAPTER 7: CONCLUSION  

It would be fully possible to implement a gigabit Ethernet controller using an 
FPGA. Even though many parts of the controller have not been implemented 
and nothing else but the controller has been implemented in the FPGA, it is 
beyond reasonable doubt that it should not be possible. 
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CHAPTER 8: RECOMMENDATIONS  

8.1 Status of Work  
At this moment, three out of seven main parts of the system are implemented. 
These are the transmission part of the MAC sublayer, RS and STA. 
Guidelines for verification do only exist for the highest level, i.e. how a 
complete implementation shall react in a number of different situations. This 
means that the blocks that have been implemented during this project have not 
been possible to verify fully complete. The verification process in this project 
has instead focused on the functional behavior of the blocks. 

8.2 Future Work  
As stated in previous section, four main parts of the complete Ethernet controller 
remains to be implemented. These are the receive part of the MAC sublayer, the 
transmit and receive buffers and the host interface. 
During the development of the blocks that were implemented many discoveries 
were made about how the system is intended to work, which made the author to 
realize that the partition of the system could have been much better in order to 
achieve a simpler design. Some of these observations follow: 
� Make a clear division between the data path and the control path when the 

frame is assembled in the MAC sublayer. Now, a lot of data is unnecessarily 
moved back and forward. By dividing into data and control paths, the timing 
is much easier to manage. 

� There are three different clock signals present in the MAC sublayer. These 
could be generated by the RS. Now, RS only generates the transmit clock for 
GMII. By letting RS generates all clock signals used between the MII/GMII 
and the MAC client, the design should be easier. 
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� There are signals present in the transmit part of the MAC sublayer that are 
never used. Some of these signals are identified in section 4.3. 

The use of the signal wasTransmitting was not consequent in the standard 
IEEE 802.3 year 2000 edition. It was mentioned in the summary of the services 
provided by the Physical layer [IEEE 802.3, Clause 4.2.7.4], but then not 
declared in the definition of the services [IEEE 802.3, Clause 4.3.3], which the 
summary refers. The signal was assumed similar with the signal 
transmitting and implemented in that way, which turned out to be wrong. 
Later, the year 2002 edition of the standard was released in which this had been 
corrected and the variable is now declared as a shared variable within the 
transmitter. 
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APPENDIX B EDA SOFTWARE  

The following EDA software have been used throughout the project: 
� HDL PD Transition – HDL Designer Series 2001.3 (Mentor Graphics) 

Design entry tool 
� Leonardo Spectrum LS2001.1b.12 (Exemplar Logic) 

Synthesis tool 
� ISE Alliance 4.1i (Xilinx) 

Implementation and configuration tool 
� ModelSim PE 5.5a (Model Technology) 

Simulation and verification tool 
 
When estimating the power dissipation the following tool was used: 
� Xilinx Virtex-II Power Estimate Worksheet, version 1.05 (Xilinx) 
 
 

B-1 

 



Feasibility study: Implementation of a gigabit Ethernet controller using an FPGA 

 
 
 
 
 
 
 
 
 
 
 
 
 

– This page was intentionally left blank – 
 
 

B-2 

 



 

 APPENDIX 
 C 

 

Signal Table for MAC Sublayer 
 

APPENDIX C SIGNAL TABLE FOR MAC SUBLAYER  

Table begins on next page. 
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APPENDIX D POWER DISSIPATION  

 
CLB Logic Power 

Name Frequency 
(MHz) 

Total 
Number of 
CLB Slices 

Total 
Number of 
Flip/Flop 

or Latches 

Total 
Number of 

Shift 
Register 

LUTs 

Total 
Number of 

Select 
RAM 
LUTs 

Average 
Toggle 
Rate % 

Amount 
of 

Routing 
Used 

VCCint 
Subtotal 

(mW) 

TransmitLinkMgmt 125 125 37 0 0 12% Medium 14 

TxCRC32 125 69 33 0 0 55% Medium 35 

BitTransmitter 125 58 12 0 0 12% High 10 

TransmitFrame 125 70 38 0 0 12% Medium 9 

BurstTimer 125 20 23 0 0 12% Medium 3 

Deference 125 15 9 0 0 12% Medium 1 

Random 125 21 27 0 0 55% Medium 11 

RealTimeDelay 125 8 7 0 0 12% Medium 1 

TxStateReg 125 31 36 0 0 12% Medium 4 

              Total 92 
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