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Joan Jordi Boldú-O’Farrill Treviño

November 14, 2023

Department of Physics and Astronomy

Uppsala University

SE-75120 Uppsala, Sweden

Submitted to the Faculty of Science and Technology, Uppsala University

in partial fulfillment of the requirements for the degree of

Licentiate of Philosophy in Physics



© Jordi Boldú, 2023



Abstract

Charged particles constantly stream outward from the Sun to fill the solar

system. These particles, consisting mainly of protons and electrons, form a

plasma called the solar wind. The solar wind interacts with every celestial

body in the solar system, giving rise to different phenomena, such as the auro-

ras observed at high latitudes on Earth or disruption of the systems onboard

artificial satellites.

The general structure of the solar wind has been established several decades

ago, however we still do not fully understand how the solar wind properties,

like temperature and velocity distribution, evolve as it propagates outward in

the solar system. Observations of these properties cannot be explained from

a conventional fluid description. In a system approximated as a fluid, particle

collisions dictate its thermodynamic state. However, the solar wind is a weakly

collisional plasma that deviates from thermodynamic equilibrium. Therefore,

the radial evolution of the solar wind properties must be driven by different

processes. In particular, wave-particle interactions are an important regulator

of the solar wind properties, because of the strong connection between the

electromagnetic fields and the charged particles.

In this thesis, we probe how the velocity distribution of solar wind par-

ticles evolves as it travels from the Sun to the Earth. Specifically, we study

the contribution of waves on the observed solar wind properties at different

distances and how these waves can affect the interplanetary environment. We

focus on two types of plasma waves frequently observed in the solar wind,

Langmuir and ion-acoustic waves. We present their occurrence rates at differ-

ent heliocentric distances and suggest wave generation mechanisms based on

Solar Orbiter observations. We show that Langmuir waves in the unperturbed

solar wind are more commonly observed in regions where the magnetic field

magnitude is lower than the background value. Furthermore, we also find that

the occurrence rate of ion-acoustic waves is increased in the ramp regions of

interplanetary shocks observed at different heliocentric distances, compared

to the ion-acoustic wave occurrence rate in the unperturbed solar wind.
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1 Introduction

The solar wind is a stream of charged particles expelled constantly from the

Sun. It operates as an extension of the solar atmosphere’s outermost layer,

the corona, creating the heliosphere. The heliosphere reaches far beyond the

orbit of Pluto and every astronomical object inside it interacts with the solar

wind, generating a variety of interplanetary phenomena.

When particle collisions are the dominant processes, a system is brought

to thermodynamic equilibrium and it can be described by means of average

quantities, such as bulk velocity and temperature, of the particles constituting

a fluid. In this manner, the evolution of the corona and solar wind is usually

described with a magnetohydrodynamic (MHD) model accounting for a steady

coronal expansion. Although this model provides an insightful view of the

overall structure of the solar wind, it cannot explain the observed velocity

distributions of the particles. Moreover, the solar wind temperature profiles

at different distances deviate from that expected from an adiabatic expansion

(Cranmer et al., 2009) , meaning that some heating mechanisms must be

active. Because the mean free path of the particles in the inner heliosphere is

larger than the characteristic size of the system, collisions are rare. Therefore,

solar wind models cannot rely on collisions to accurately explain its evolution

and it is necessary to investigate how the particles are distributed in velocity

space. Investigation of the particle distributions is the basis of the kinetic

approach to describe the solar wind properties and their evolution.

When describing the solar wind using kinetic models, mechanisms that

can have similar effects to particle collisions arise. Notably, the interaction

between particles and waves that readily occur in the solar wind can play an

important role in shaping the particle distributions. Nevertheless, the influ-

ence of various wave modes on the solar wind distributions is still not fully

understood, much less how their effect varies with radial distance. With the

arrival of newer space missions, like Solar Orbiter, it is now possible to use

waves, described using the kinetic approach, to probe the evolution of the solar

wind at different heliocentric distances. Kinetic waves such as whistlers, Lang-

muir, ion-cyclotron, lower-hybrid, and ion-acoustic waves, frequently occur in

the solar wind and potentially contribute to the solar wind evolution. Know-

ing how these waves are generated, interact with the particles, and regulate

the kinetic features of the solar wind is, therefore, fundamental to understand-
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ing the evolution of the solar wind. In this thesis, we probe the evolution of

the solar wind by characterizing and quantifying two types of common kinetic

waves in the solar wind, namely Langmuir waves and ion-acoustic waves.

In Chapter 2, we describe the solar wind, its source, and its properties

under the scrutiny of different frameworks. In Chapter 3, we describe different

types of waves that can be present in a plasma. We focus on electrostatic waves

present in the solar wind. We show, in Chapter 4, the relation of the observed

electrostatic waves with various phenomena commonly occurring in the solar

wind at different heliocentric distances. Then, in Chapter 5, we describe the

Solar Orbiter spacecraft and its in-situ experiments utilized to probe the solar

wind evolution. We conclude with Chapter 6, where we include an outlook of

future efforts needed to understand better the role that kinetic waves play in

shaping the evolution of the solar wind.
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2 Solar Wind

One of the first mentions of the existence of a stream of particles originated

in the Sun was provided by Sir Arthur Eddington in 1910 . He proposed ions

streaming from the Sun as an explanation of the observed shape of cometary

tails (Eddington, 1910). This already provided evidence that the Sun not only

interacts with different bodies by emitting electromagnetic radiation, but also

by means of particle radiation. This stream of particles was later named the

solar wind and has been a crucial research topic in many disciplines such as

space weather and space physics due to its strong interaction with different

interplanetary bodies.

In this chapter we provide a general understanding of the solar wind. In

section 2.1 we introduce the solar wind from its origin at the solar corona to

the interplanetary medium. We present the solar wind under two different

frameworks: magnetohydrodynamics and kinetic theory. In section 2.2, we

focus in the kinetic picture of the solar wind and describe how its particles

are typically distributed according to their probability to be found moving at

a given velocity. Next, in section 2.3, we provide evidence of the dynamic

nature of the solar wind by analyzing different transient structures common

to it, such as interplanetary shocks, radio bursts, and magnetic holes.

2.1 The solar wind and its scales

It was shown in 1958 by Eugene Parker that the hot outermost layer of the Sun,

the corona, cannot sustain hydrostatic equilibrium. The pressure-gradient

force overcomes gravity and leads to a radial acceleration of the coronal plasma

to supersonic velocities (Parker, 1958). Because of this coronal expansion, the

Sun’s atmosphere extends throughout the interplanetary medium, forming

the heliosphere. As we will later see, the solar corona and solar wind can be

analyzed at different temporal and spatial scales. In the first models the solar

corona was assumed to be a stable system at the largest scales (Chapman S.,

1957). For the corona to be in hydrostatic equilibrium the pressure far from

the origin should not be greater than the interstellar medium pressure (Parker,

1958). However, as noted by Parker, the pressure at infinity in the hydrostatic

model was non-zero and certainly not small enough to support the equilibrium

assumption.

In Parker’s model a stationary hydrodynamic expansion of the corona is
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considered. To calculate the plasma expansion velocity (v) in terms of the

radial distance (r) we first consider the corona under the influence of gravity

and pressure, neglecting the effects of the magnetic field. The solution to the

equation of motion is then

v2

V 2
s

− ln(
v2

V 2
s

) = 4ln(
r

rc
) + 4

rc
r
+ v0, (1)

with v0 being an integration constant. To make the equation of motion solvable

analytically, an isothermal corona was assumed. Then, the speed of sound is

defined as Vs =
√
p/ρm, where p is the pressure and ρm the mass density. The

critical distance rc defines the distance at which the solar wind reaches the

isothermal speed of sound.

There are five types of solutions associated with eq. (1), shown in the left

panel on Fig. 1. Solutions of type 1, besides being double valued, never cross

the critical surface and are bounded to the corona. Solutions of type 2 are

also double valued and are not connected to the corona. Solutions of type 3

require supersonic plasma below the critical surface. This type of solution can

also be ruled out, as such high coronal motions are not observed (Hundhausen,

1972). Type 4 solutions predict a subsonic flow passed the critical point. This

kind of flow was termed the “solar breeze” (Chamberlain, 1961). Finally, type

5 solutions correspond to a supersonic flow beyond rc. This is the solar wind

solution. The solar breeze was proven to be unstable (Velli, 1994), but the

definitive evidence pointing toward the solar wind solution was provided by

the first in-situ measurements, which showed that the interplanetary plasma

travels at supersonic speed (Gringauz, 1960; Neugebauer & Snyder, 1962).

This steady expansion model of the corona is insightful to understand the

out-flowing nature of the solar wind, however it is not yet complete. Formed

by multiple charged particles, a plasma strongly interacts with electric and

magnetic fields. The Sun generates a coronal magnetic field that extends

throughout the heliosphere, becoming the interplanetary magnetic field (IMF).

Therefore, we need to extend Parker’s model based on hydrodynamics to a

more appropriate framework, namely the MHD framework.

In the MHD approach we consider the plasma as a single-fluid resulting

from the contribution of all particle species’ fluid equations. To apply the

MHD-fluid description of a plasma we need to know at which scales it is a

valid representation of the system.
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Figure 1: Solutions to the MHD model of the coronal expansion. The green
line (solution 5) corresponds to the solar wind solution. In the left panel,
solutions are presented with respect to the sound speed Vs and sound-speed
critical surface rc. Solutions 1-4 are not physical or not supported by obser-
vations. In the right figure, solutions with respect to the Alfvén speed VA

and the Alfvén critical surface rA. The third critical point, related to the fast
magnetosonic speed, is close to rA and is not distinguishable in the figure. The
solar wind solution passes through all critical points. Adapted from Weber &
Davis (1967).

When a charged particle is immersed in a magnetic field, it will start to

gyrate around the field lines. The radius of gyration is called the gyroradius

or Larmour radius ρL and depends on the particle’s mass m, charge |q|, the
perpendicular-to-magnetic field velocity v⊥ and the magnetic field strength B

such that

ρL =
mv⊥
|q|B

. (2)

We also introduce the inertial length, which is defined as

d = c/ωp, (3)

where c is the speed of light and ωp is the plasma frequency, defined as

ω2
p =

nq2

ϵ0m
, (4)

where n is the number density and ϵ0 the permittivity of free space. This
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is the frequency at which particles in a plasma oscillate due to electric fields

generated by small charge separation. Since it depends on the particle’s mass,

there will be a ωp associated to each species. Typical values of solar wind

scales and properties at 1 AU are shown in Table 2.1. It is important to note,

that these parameters vary with distance, and depend on the source of the

solar wind in the corona.

Property electrons protons

Inertial length (d) 3 km 140 km

Plasma frequency (fp) 20 kHz 500 Hz

Gyroradius (ρL) 2 km 160 km

Gyrofrequency (fg) 100 Hz 50 Hz

Number density (ns) 10 cm3 10 cm3

Temperature (Ts) 1.44×105 K 1.0×105 K

Magnetic field magnitude (|B|) 5 nT

Proton collisional mean free path (λmfp) 3 AU

Debye length (λD) 10 m

Table 1: Properties of the solar wind around 1 AU. (Verscharen et al., 2019;
Newbury et al., 1998). The ordinary frequencies f are related to the angular
frequencies ω by ω = 2πf .

For the MHD description to be valid, the length scales at which we study

the plasma must be much greater than the maximum between ρL and d. The

upper bound is defined by the characteristic length (L) of the system. For the

heliosphere L ∼90 AU, and for the inner heliosphere L ∼1 AU.

Now that we defined the scales we are interested in, we analyze the behavior

of the magnetic field. The rate of change of the magnetic field B is governed

by convection and diffusion effects given by

∂B

∂t
= ∇× (V ×B) +

1

µ0σ
∇2B, (5)

where µ0 is the permeability of free space, V the velocity of the plasma, and

σ is the conductivity of the plasma. The ratio between the convection and

diffusion can be roughly estimated by the magnetic Reynolds number, defined

as

Rm = µ0σV L. (6)

For values of Rm ≪ 1 diffusion dominates and the magnetic field will dissipate
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through the plasma. For Rm ≫ 1 convection dominates and the plasma will

be embedded in the magnetic field lines. This latter case is the condition

for the frozen field theorem, since the magnetic flux acts as if it was frozen

into the plasma. At the spatial scales analyzed and for the high solar wind

conductivity, the frozen field theorem holds. Then, we just need to understand

if it is the magnetic field or the plasma which governs the motion. For this

we define the plasma β as the ratio of the plasma pressure and the magnetic

pressure. If β > 1 the motion is primarily governed by the plasma and by the

magnetic field for β < 1. Now, we can include the effects of the magnetic field

into the solar wind model. We start by taking into account the rotation of the

Sun.

In a coordinate frame (r, ϕ, θ) rotating at the angular velocity of the Sun

ω⊙ , the solar wind will follow a trajectory with radial (vr = v) and azimuthal

(vϕ = −ω⊙r sin θ) components. As seen from eq. (1), at r ≫ rc the solar wind

velocity is approximately constant (v = v∞). Then, the geometry of the solar

wind streamlines, in this frame, will be of the form

(r − rc) = −
v∞

ω⊙r sin θ
(ϕ− ϕ0), (7)

with the initial azimuthal position at rc being ϕ0. This trajectory has the

shape of an Archimedean spiral. As a result, in the rotating frame, the solar

wind flow streamlines are not straight, but they spiral out. Here is where

the application of the frozen field theorem is of great importance. Since the

magnetic field and plasma streamlines are tightly related, the shape of the

former will be the same as the latter. In absence of the Sun’s rotation, the

magnetic field lines will be stretched radially as the solar wind expands. Taking

into account the rotation, the IMF will be stretched and twisted into a spiral

shape. This IMF configuration is called the Parker spiral.

The last step is to include the magnetic field forces into Parker’s solution.

The equation of motion is now

ρm(vr
dvr
dr
−

v2ϕ
r
) =

dp

dr
− ρm

GM⊙
r2
−

Bϕ

µ0r

d

dr
(rBϕ), (8)

with µ0 being the permeability of free space, GM⊙ the Sun’s gravitational pa-

rameter and Bϕ the azimuthal component of the magnetic field. The solutions

of eq. (8) are shown on the right panel in Fig. 1. Again, the acceptable solution

is the solar wind representation, corresponding to the central green line that

7



Figure 2: (a) Simplified version of the IMF. The coronal magnetic field is
stretched by the plasma, forming a current sheet near the solar equator where
the magnetic field polarity reverses. Taken from Russell (2013) (b) A 3D view
of the heliocentric current sheet extending throughout the inner heliosphere.
Taken from Council et al. (2004).

crosses all the critical points. In the hydrodynamic solution first considered

by Parker, the critical velocity was Vs. In a magnetized plasma, signals can-

not only travel as fluid pressure waves, but as magnetic pressure waves, called

Alfvén waves, or as a combination of both. As a consequence, there exist

three critical points, corresponding to the slow magnetosonic (Vsm), Alfvén

(VA) and fast magnetosonic (Vfm ) speeds. The distance at which v = VA is

called the Alfvén critical surface (rA) and has been adopted as the boundary

between the corona and the solar wind. Below this surface β < 1, the mag-

netic field dominates the motion and the plasma is bounded to the corona.

Beyond rA the plasma dominates and the radial expansion of the solar wind

at superalfvénic and supersonic speeds takes place.

Because the IMF is stretched by the solar wind, a current sheet is formed

in the boundary region where the magnetic field changes polarity, as depicted

in Fig. 2(a). This current sheet that extends throughout the heliosphere is the

heliospheric current sheet (HCS). In reality, the Parker spiral is not confined

to the Sun’s equatorial plane. The HCS turns up and down dividing the

heliosphere into magnetic sectors of different polarity, and resembles a waving

table cloth or a ballerina skirt as shown in Fig. 2(b).
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As a consequence of the solar wind expansion, its density decreases with

radial distance. Electron and ion temperatures also decrease with distance but

at a more moderate rate (Verscharen et al., 2019). This expansion model gives

a useful first-order description of the evolution of the solar wind. However,

this model cannot account for many of the observed features of the solar wind.

For example, observed faster solar wind streams do not fit this model (Leer,

1982; Hansteen, 2012). New models have come to light trying to reconcile the

observations of fast solar winds and unidentified heating mechanisms (McCo-

mas, 2007; Cranmer, 2012), many of which are not based on MHD, but on

kinetic theory (Jockers, 1970; Lemaire, 1971). Nonetheless, any theory able to

explain the solar wind acceleration and heating, must be consistent with the

observed velocity distributions and how they evolve as the solar wind prop-

agates radially from the Sun (Maksimovic et al., 2005; Matteini et al., 2007;

Štěpán Štverák et al., 2009). Small-scale processes occurring throughout the

solar wind, such as wave-particle interactions, may contribute to the solar

wind evolution. In the next section we focus on the kinetic description of the

solar wind, that is, at scales comparable to or smaller than particle inertial

lengths and gyroradii, where the single-fluid description is no longer valid.

2.2 Kinetic view of the solar wind

As a plasma, the solar wind exhibits collective behavior of charged particles

that are governed by electromagnetic forces. Although, individual particles

have a charge, at macroscopic scales the system is quasi-neutral and the plasma

has zero net charge. The minimum length at which quasi-neutrality holds, and

thus satisfy the definition of plasma, is called the Debye length, which is given

by

λ2
D =

ϵ0κBTe

nq2
, (9)

where κB is the Boltzmann constant and Te the electron temperature. This

length provides a lower limit where the kinetic description of the solar wind is

valid. The typical solar wind Debye length at 1 AU is around 10 m (Verscharen

et al., 2019), becoming shorter with decreasing heliocentric distance.

Using statistical mechanics, the particles in a plasma can be represented by

a probability distribution function f(r,v, t), rather than individual particles;

each governed by their own equation of motion. In the absence of collisions

between particles the evolution of the distribution function is described by the
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Vlasov equation:

∂fs
∂t

+ v · ∇fs +
qs
ms

(
E+ v×B

)
· ∇vfs = 0, (10)

where the subscript s indicates the particle species in question, E andB are the

electric and magnetic fields respectively. The symbol ∇v means the gradient

over velocity space.

Multiplying the distribution function by powers of the velocity and inte-

grating over velocity space we can define useful macroscopic quantities. These

quantities are called the moments of the distribution and can be used to an-

alyze the plasma as a multiple-fluid, where each particle species has its own

moment equations. The first four moments are:

1. Zeroth moment: number density −→ ns =
∫
v fs(r,v, t)d

3v

2. First moment: bulk velocity −→ Us =
1
ns

∫
v vfs(r,v, t)d

3v

3. Second moment: Pressure tensor−→
←→
P s = ms

∫
v(v−Us)(v−Us)fs(r,v, t)d

3v

4. Third moment: Heat-flux tensor −→
←→
Q s = ms

∫
v(v −Us)(v −Us)(v −Us)fs(r,v, t)d

3v

where ms is the mass of species s.

A plasma in thermodynamic equilibrium will exhibit a distribution of

Gaussian shape, called a Maxwellian distribution. Normally, thermodynamic

equilibrium is achieved by collisions in the plasma. In the solar wind the

typical proton collisional mean free path (λmfp) is of the order of ∼3 AU

(Verscharen et al., 2019). Since the characteristic size of the system at the

inner heliosphere (∼ 1-3 AU) is of the same order as λmfp, collisions play

a minor role in the evolution of the distribution function and it is said that

the plasma is weakly collisional. This is an important statement, because in

a collisionless or weakly collisional plasma the distributions can deviate sig-

nificantly from a Maxwellian distribution. Such deviations can result in the

distributions being unstable to kinetic instabilities. We will discuss in chapter

3 that wave-particle interactions can mimic the role of collisions by restoring

an unstable distribution to a stable state, which is not necessarily in thermo-

dynamic equilibrium.

The spread of the velocity distribution function (VDF) can be represented

by the thermal velocity (vth,s =
√

κBTs/ms), with Ts being the temperature
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Figure 3: Typical solar wind VDFs along the parallel-to-magnetic field direc-
tion. (a) elctron VDF. The solar wind electron VDF usually consists of three
population. A bi-Maxwellian core, an isotropic halo and a field aligned strahl.
(b) Ion VDF. The solar wind ion VDF usually contains two proton populations
and an α -particle population. The electron and ion velocities are normalized
by the thermal velocities of electrons and protons respectively. Taken from
Verscharen et al. (2019).

of species s. A typical VDF, in the direction along the magnetic field, of

solar wind electrons (subscript e) is shown in Fig. 3(a). Three components

are usually present. First, a core population exhibiting an approximately

Maxwellian distribution with vth,e ∼1300 km/s and that constitutes around

95 % of the total ne . Second, a population with increased number of electrons

at higher energies, closely exhibiting a Lorentzian or κ-distribution and vth,e ≲

3500 km/s, called the halo (Maksimovic et al., 1997; Štěpán Štverák et al.,

2009). Third, a population of electrons aligned with the magnetic field and

propagating outward from the Sun with bulk energies ∼100 eV, called the

strahl (Rosenbauer et al., 1977; Verscharen et al., 2019).

The ion VDF, shown in Fig. 3(b) consists mainly of protons (subscript p),

accounting for almost 95% of solar wind ions, but a population of α-particles

is often present (Ogilvie, 1975; Verscharen et al., 2019). Heavier ions are less

abundant, but can be also present (Bame et al., 1975). The proton distri-

bution often exhibits a two-stream population, deviating from a Maxwellian

distribution. This distribution is formed by thermal core protons and a faster

beam, mostly field-aligned and directed anti-sunward (Feldman et al., 1974;

Alterman et al., 2018). At least in the inner heliosphere, it is also common
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to observe proton distributions with larger thermal energies in the direction

perpendicular to the magnetic field (T⊥) than parallel to it (T||). Although,

periods when T|| > T⊥ are also observed, they happen less frequently (Matteini

et al., 2007). When the particles are not distributed equally among velocity

space directions, the distribution is referred as anisotropic. Anisotropies in

the VDFs are common sources of instabilities that can lead to wave growth.

The shape of the VDFs is heavily influenced by plasma waves and vice

versa. How these distributions change as they travel away from the Sun play

a primary role dictating the evolution of the solar wind bulk parameters.

2.3 Solar wind phenomena

We start this section by considering time variations to the solar wind model.

Due to various effects such as the Sun’s differential rotation, and internal

plasma circulation (Hazra & Nandy, 2016), the magnetic structure of the

Sun varies over an 11-year cycle (Babcock, 1961). Conventionally, this cycle

begins at solar minimum, when the magnetic field configuration is closer to a

dipole. As the cycle continues, a stage of solar maximum is reached, where

the magnetic field configuration becomes more complex and can no longer

be described as dipole. Consequently, the solar wind is classified into fast

wind, streaming from coronal holes where the IMF lines are ‘open’, and slow

wind emerging from streamer regions. During solar minimum the fast wind

is mostly confined to the polar coronal holes (McComas et al., 1998), and the

slow wind to the streamer belt near the solar equator (Zhao & Hundhausen,

1981; Gosling et al., 1981), as shown in Fig. 4(a). During solar maximum, the

coronal holes appear at lower latitudes and streamer regions at higher ones.

This causes fast and slow flows to be less localized and the overall structure

of the solar wind is less predictable. This is exemplified in Fig. 4(b).

The slow solar wind is on average denser and more variable than the fast

wind, with velocities below ∼500 km/s. The fast solar wind, traveling at

velocities around 500 km/s and 800 km/s (Verscharen et al., 2019), exhibits

more deviations from a Maxwellian distribution in its VDFs compared to

the slow wind (Marsch, 2006, 2018). Furthermore, transient events, typically

associated with solar maximum, exist in the solar wind and have velocities that

can vary from a few hundred km/s up to 2000 km/s (Verscharen et al., 2019).

One example are coronal mass ejections (CME), which are eruptive events

where a significant increase in the plasma expelled into the interplanetary
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Figure 4: Two configurations of the solar corona and IMF during a solar cycle.
(a) Solar minimum configuration. The fast solar wind is mostly confined to the
coronal holes located near polar latitudes; the slow solar wind streams from a
belt close to the equator. To the right a picture of a solar eclipse during solar
minimum. (b) Solar maximum configuration. The coronal magnetic field gets
tangles as an effect of the Sun’s differential rotation. The coronal holes and
streamer belts are no longer localized at the poles and equator, respectively.
To the right a picture of a solar eclipse during solar maximum. Taken from
Lyons (2003). Photographs taken from (Dikpati et al., 2016).

medium takes place (Low, 1996). Another example of solar wind transient

events are solar flares. Solar flares occur in regions of high solar activity where

an enhancement of electromagnetic emissions is produced (Sweet, 1969). In

contrast with the longer 11-year solar cycle, transient events are shorter lived,

and they are more frequent during solar maximum. Solar wind transient events

are of special interest, because of their extreme plasma and magnetic field

conditions, as well as their potential space weather effects (Baker & Kanekal,

2008). Here, we present some of the phenomena related to transient events
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and other solar wind processes that are often associated with plasma waves

that can influence the evolution of the solar wind and modify its VDF.

2.3.1 Interplanetary shocks

On certain occasions, the fast wind can reach regions of slow wind in the Parker

spiral. At the boundary of the fast and slow winds, a stream interaction region

(SIR) is formed (Richardson, 2018). At a SIR the plasma is compressed and

can potentially generate a shock wave. A shock wave in the interplanetary

medium is called an interplanetary (IP) shock. These shocks are common

in the solar wind, especially during periods of high solar activity, where the

coronal holes and streamer regions occur at closer latitudes (Kilpua et al.,

2015). Another source of IP shocks are CMEs. Because of the high velocities

at which the plasma can be expelled, shock waves are often formed in the

leading edge of CMEs.

An IP shock can be characterized by a few parameters. The Mach number

(M) relates the upstream velocity with a characteristic speed, such as Alfvén

speed or fast magnetosonic speed; the angle θBN formed by the upstream mag-

netic field and the vector normal to the surface of the shock; the velocity of the

shock front (Vsh); or the compression ratio between upstream and downstream

regions. An example of an IP shock observed by Solar Orbiter at 0.8 AU is

shown in Fig. 5. Signatures of an IP shock include a discontinuity or “jump”

in the magnetic field strength, density and velocity, as seen in panels (a),(b)

and (c), respectively.

Although an MHD analysis can provide an insightful description of the con-

ditions that lead to the formation of IP shocks, the processes occurring near

the shocks are of kinetic nature. For instance, the generation of kinetic waves,

that in turn affect the VDFs (Fitzenreiter, 2003; Goodrich et al., 2019). More-

over, ion-acoustic waves may be involved in the energy dissipation required for

the shocks to exist (Hess et al., 1998; Wilson et al., 2007).

2.3.2 Radio bursts

Also related to high solar activity are solar radio bursts. During a radio burst

the emission of the solar electromagnetic radiation at radio wavelengths is

enhanced. Depending on their signatures, radio burst can be classified into

different types. The most relevant in this thesis, are Type II and III radio
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Figure 5: An example of an IP shock as seen by the Solar Orbiter space-
craft, characterized by jumps or discontinuities in density, bulk velocity and
magnetic field. The x-axis is toward the Sun, the y-axis points against the
spacecraft’s velocity vector and the z-axis is directed normal to the orbital
plane of Solar Orbiter. (a) Magnetic field components and magnitude. (b)
Density derived from the spacecraft electrostatic potential. (c) Bulk velocity
components of the solar wind.

bursts, which are related with CMEs and solar flares, respectively. An example

of a Type III radio burst is presented in Fig. 6. They appear as an increase

in electromagnetic power density with decreasing frequency.

Solar wind Type II radio bursts are generated when electrons are acceler-

ated upstream of shock waves driven by CMEs, and an electron beam popu-

lation develops in the distribution function (Ergun et al., 1998). These beams

render the distribution unstable, by means of the electron-beam instability

described in section 3.3. Subsequently, Langmuir waves are triggered, and

through various processes their energy is converted into radio emissions (Gra-
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ham & Cairns, 2015). Similarly, Type III radio burst are generated by elec-

trons accelerated by strong convective electric fields near the corona associated

with solar flares (Shibata & Magara, 2011). These energetic electrons can es-

cape the corona and excite Langmuir wave emissions in the solar wind. Radio

burst have been widely studied due to their relation with Langmuir waves

and fast electron beam populations (Lin et al., 1981, 1986; Graham & Cairns,

2015; Mann et al., 2022).

Figure 6: A series of radio bursts captured by Solar Orbiter. The ra-
dio burst is recognized by its enhancement in power at radio frequencies.
Langmuir waves are observed at the base of the radio burst, close to the
electron plasma frequency. Retrieved from: https://rpw.lesia.obspm.fr/rpw-
data/daily-summary-plots/

2.3.3 Magnetic holes

One last solar wind feature relevant for this thesis are magnetic holes. Mag-

netic holes are defined as localized depressions in the magnetic field magnitude

Turner et al. (1977). An example of a solar wind magnetic hole is presented

in Fig. 7. The blue crosses indicate the times when Langmuir waves were

observed. We note that all of the Langmuir waves in this interval occurred

inside the magnetic hole. In section 3.2, we demonstrate that Langmuir occur

at frequencies near the electron plasma frequency. Since the electron plasma

frequency depends on the density, the electron density can be reliably esti-

mated from the frequency of Langmuir waves. Indeed, we see that the density

estimated from Langmuir waves is close to the density obtained from the

spacecraft potential shown in red.
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Magnetic holes are often in pressure balance with the plasma, and a density

enhancement is normally tied to them, as seen in Fig. 7. Their origin is not

well understood, but some theories point toward mirror mode storms remnants

(Winterhalter et al., 1994). Whatever their origin might be, magnetic holes

are frequently found in the solar wind, with sizes around 20 proton gyroradii

near Mercury’s orbit (Volwerk et al., 2020). Previous studies suggested that

magnetic holes might be source regions of solar wind Langmuir waves (Lin

et al., 1995; Briand et al., 2010). Magnetic holes can modify the electron

distributions so they can be unstable to Langmuir waves. Langmuir waves

might then subsequently affect the electron VDFs.

Figure 7: A magnetic hole observed by Solar Orbiter. In the left axis in black,
the magnetic hole is characterized by its decrease in magnetic field magnitude.
To the right axis in red, the density profile around the magnetic hole. A
localized enhancement in density is a common feature of solar wind magnetic
holes. The blue crosses indicate the density estimated from Langmuir waves.
All of the Langmuir waves observed in this interval occur inside the magnetic
hole.
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3 Plasma Waves

Disturbances from the equilibrium state in an ordinary gas propagate as sound

waves, with pressure-gradients acting as the restoring force. As a collection of

charged particles, a plasma, reacts to the long-range forces from electric E and

magnetic fields B via the Lorentz force (q[E+v×B]). In addition to pressure

gradients, the reaction of plasma particles with electromagnetic fields leads to

a variety of new wave modes not present in dielectric media. Since collisions

are usually not dominant in the solar wind, processes dictated by interactions

between waves and plasma particles might play a primary role in its evolution.

In this chapter, we explain the plasma waves that are investigated in this

thesis. We start by introducing, in section 3.1, the basic tools required to

understand waves in a plasma. In section 3.2, we focus on electrostatic waves,

which includes the wave modes investigated in papers I and II. We finish this

chapter with section 3.3 explaining possible kinetic instabilities that might

give rise to the observed electrostatic waves in the solar wind.

3.1 Basic plasma wave theory

As there are different ways to model a plasma, such as a MHD-fluid, using

moment equations or applying kinetic theory, there are various ways to ana-

lyze plasma waves. For example, an MHD-fluid approach will only be reliable

describing waves at very low frequencies and long length scales. In contrast,

kinetic theory can also describe these waves but in far more general and ac-

curate way. The wave modes will also differ if certain assumptions are made.

For example, we can consider the plasma as magnetized or unmagnetized; as

hot or cold, or with small or large perturbations. Except for the case of large

perturbations, wave linear theory can be applied. Nonlinear theory must be

applied if the amplitude of the fluctuating quantity is of the same order of

magnitude or larger than the background value of that quantity. In this sense,

we refer to waves as a small first order propagating fluctuation (x1) of the

quantity x around its equilibrium value (x0). Here, x represents any depen-

dent variable of the system, for example the magnetic field B. In this thesis

we focus in hot (T ̸= 0) kinetic waves with no fluctuating magnetic component

(B1 = 0). Plasma waves with B1 = 0 are called electrostatic.

The general approach to deal with linear wave analysis can be summarized

in the following steps:
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1. Linearization of the system: Define the total quantity x as a zero

order background value plus a small amplitude perturbation such that

x = x0 + x1. (11)

The quantity x may be a part of a coupled system, so disturbances in a

quantity will cause changes in all the dependent variables of the system.

In the expansion of x, second order terms and higher are neglected. In

MHD we use the fluid equations. Another approach is to linearize the

fluid equations from the moments of ions and electrons’ VDFs to give

a two-fluid description. In kinetic theory the perturbations are applied

directly into Vlasov equation (10), such that the VDF consists on a

zero-order equilibrium component fs0 and a small-amplitude first-order

component fs1 as

fs = fs0 + fs1. (12)

In all cases, the electromagnetic fields are governed by Maxwell’s equa-

tions, which are also linearized and need to be self-consistently solved.

The linear coupling between the the fields and the response of the plasma

can be expressed by Ohm’s law:

J =←→σ ·E, (13)

where J is the current density, and ←→σ is the conductivity tensor.

2. Define the form of the disturbance: Define the disturbance to be

a superposition of elementary plane waves ei(k·r−ωt). Each component

corresponds to a frequency (ω) and a wave propagation vector (k) per-

pendicular to the planes where the phase is constant. In this way, the

planes of constant phase move in the direction of k at the phase velocity

vp =
ω

k
k̂ (14)

where the magnitude and unit vector of k are k and k̂, respectively.

3. Perform a Fourier transformation: The system of equations con-

sisting of Maxwell’s equation and, either the MHD-fluid equations, the
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two-fluid equations, or the Vlasov equation, is a differential equation

system with temporal ( ∂
∂t ) and spatial (∇) derivative terms. A wave

solution x1(r, t) satisfying the linear differential equation

D(∇, ∂
∂t

)x1 = 0, (15)

can be converted into an algebraic equation, by applying a Fourier trans-

form to get

D(ik,−iω)x̃1 = 0, (16)

where x̃1 is the Fourier transform of the function x1. In this form, it is

simpler to determine the valid wave solutions x1, than dealing with the

derivatives. A non-trivial solution, where a perturbation exist (x1 ̸= 0),

must satisfy

D(ik,−iω) = 0 (17)

This condition is called the dispersion relation.

4. Solve for the roots of D(ik,−iω) = 0: From the system of algebraic

equations, we obtain the possible solutions of the first order perturba-

tions x1, which are found by solving eq. (17). If the system is in matrix

form, it is then the determinant of D(ik,−iω) that needs to be equal to

0. Solving for the roots of the dispersion relation, will yield a relation

between ω and k providing the wave properties.

In the general case, we look for solutions of waves propagating in a medium

with effective dielectric constant K, which is a tensor
←→
K if the medium is

anisotropic. The effective dielectric tensor is related to the conductivity tensor

and permittivity of free space in Fourier space as

←→
K = [I3x3]−

←→σ
iωϵ0

, (18)

where the matrix I3x3 is the unit tensor.

In a source-free system, Maxwell’s equations can be rearranged in Fourier

space to yield the wave homogeneous equation

k× (k× Ẽ1) +
ω2

c2
←→
K · Ẽ1 = 0. (19)

The non-trivial roots of the dispersion relation D(ik,−iω)Ẽ1 = 0 of eq. (19)
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provide the possible wave modes that can propagate in the plasma with char-

acteristics given by
←→
K .

3.2 Electrostatic waves

We now follow the steps described in the previous section to derive an ex-

pression for the dispersion relation of electrostatic kinetic waves. We begin by

combining and expanding Vlasov equation (10) of the zeroth and first order

quantities, as in eq. (11), and discarding any second order or higher terms.

Then, the linearized Vlasov equation is,

∂fs1
∂t

+v·∇fs1+(v×B0)·∇vfs0+
qs
ms

(v×B0)·∇vfs1+
qs
ms

[E1+v×B1]·∇vfs0 = 0

(20)

Where E0 = 0 , since for the cases we are interested in, it is always possible

to transform to a frame where this is true. The velocity v is not linearized

as it is here an independent variable. Instead of finding the roots of the

wave homogeneous equation in eq. (19), several assumptions can be made to

simplify the analysis. We can consider pure electrostatic waves, so that there

is no fluctuating component of the magnetic field (B1 = 0). Furthermore,

we consider a simplified version of the system where B0 = 0. Then, the

convection term v × B0 in the Lorentz force vanishes and the electric field

can be expressed as E = −∇Φ. Where Φ is the electrostatic potential and

can be calculated using Poisson’s equation. This consideration will allow us to

describe electrostatic waves in a more instructive way, and with results that

can still be applied to the observations.

After these modifications the linearized Vlasov equation (20) is rewritten

as
∂fs1
∂t

+ v · ∇fs1 +
qs
ms

Φ1 · ∇vfs0 = 0 (21)

and we complete the system by linearizing Poisson’s equation

∇2Φ1 = −
ρq1
ϵ0

= −qs
ϵ0

∫ ∞

−∞
fs1d

3v (22)

with ρq being the charge density, which is equal to the charge q multiplied by

the zeroth moment of the VDF, i.e. the number density.

The next step is to apply a Fourier transform to the linearized system of

eqs. (21) and (22). These equations in Fourier space are respectively
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−iωf̃s1 + ikvz f̃1 + ik
qs
ms

Φ̃1
∂fs0
∂vz

= 0 (23)

and

k2Φ̃1 = −
qs
ϵ0

∫ ∞

−∞
f̃s1d

3v (24)

We have selected the reference frame so the z-axis is aligned to the propagation

vector. Now, we introduce the reduced VDF Fsz0 along this axis. The reduced

distribution is normalized by ns0. Next, we solve for f̃s1 in eq. (23), substitute

it in (24) and combine for a multi-species plasma. After rearranging, the

following equation is obtained,

D(ik,−iω)Φ̃ =

[
1−

∑
s

ω2
ps

k2

∫ ∞

−∞

∂Fsz0/∂vz
vz − ω/k

dvz

]
Φ̃ = 0. (25)

Where ω2
ps = q2sns0/ϵ0ms is the species s plasma frequency. The last step

is to find the roots of D(ik,−iω), however one difficulty arises from it. At

phase velocities ω/k = vz the denominator of the integral goes to zero. If

there are particles moving at this speed, solutions for D(ik,−iω) cannot be

found using Fourier transform alone.

This problem stems from step 2 in our wave analysis. We have implied that

a solution of the form ei(kr−ωt) exists at all times, ignoring any initial transient

behavior that may exist. Particles moving at ω/k will interact heavily with

the wave, regulating its evolution and vice versa. Therefore, the time response

of the perturbations needs to be addressed as well. This initial value problem

was first resolved by Landau (1946), by taking into account the time evolution

of the perturbations using Laplace transformations.

We retake the wave analysis from step 3, but we perform a Fourier trans-

form in space and then a Laplace transform in time to eqs. (21) and (22).

Then, eq. (25) is modified and yields an expression of the form

D(k, s)Φ̃1 = N(k, s). (26)

The complex number s = γ − iω is the Laplace space variable. Because

now the initial conditions of fs1 are taken into account, a non-zero right-hand

side term N(k, s) appears. Here, D(k, s) is exactly the same as D(ik,−iω) in
(25), but with ω replaced by is.

Solving eq. (26) is an intricate process that involves finding the inverse
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Laplace transform of Φ̃1, which requires the analytical continuation of N(k, s)

and D(k, s), because the Laplace transform diverges for values of γ < 0. Mak-

ing the physically acceptable assumption that N(k, s) and D(k, s) are analyti-

cal functions, the only poles of Φ̃1 = N(k, s)/D(k, s), occur when D(k, s) = 0.

Thus, D(k, s) plays the same role as the dispersion relation D(ik,−iω) in the

Fourier approach. The only difference is that the dispersion relation D(k, s)

is now a function of the complex number is. The real part (ω = 2π/t) cor-

responds to the actual frequency and the imaginary part (iγ) to the growth

rate. For solutions where γ < 0 we have wave damping and for γ > 0 we have

wave growth.

The dispersion relation D(k, s) is found after the analytical continuation.

Applying the Cauchy residue theorem to find the inverse Laplace transform

we obtain

D(k, s) = 1−
∑
s

ω2
ps

k2

∫
C

∂Fsz0/∂vz
vz − is/k

dvz, (27)

which is similar to eq. (25), but now the integration is over the contour C

enclosing the poles of Φ̃1. Since C is closed to infinity in the left hand plane,

the poles need to be to the left of the right boundary of the contour in order

to be enclosed by it. For poles that lie in the region γ > 0 no further action

is needed and eq. (27) is valid. If the pole is in the region γ < 0 , a distortion

of the contour is needed to include the pole that is in the region where the

Laplace transform does not exist. The contribution of these poles to eq. (27)

is

−2πi k
|k|

ω2
ps

k2
∂Fsz0

∂vz
|vz=ip/k, (28)

which is added to D(k, s). For the wave onset (γ = 0) the pole contribution

is half of this.

Due to the time response of the perturbations, we now have complex roots

of the dispersion relation. This translates to wave modes that are damped

or that grow. This collisionless process is called Landau damping (or inverse

Landau damping in the latter situation). It is a kinetic process that is not

found when working in a fluid framework. It is an important mechanism in

which waves can interact with particles moving at the same velocity as the

wave in the plasma, i.e vz = ω/k. This particles are said to be resonant with

the wave. A simple way to picture this process is to think that at velocities in
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the vicinity of vp, slower particles will be accelerated by the wave and the wave

will lose momentum, it will be damped. Faster particles will lose momentum

and transfer it to the wave, which in turn will grow in amplitude. For a

Maxwellian distribution, there are more particles at slower velocities than

faster ones near vp. Therefore, waves in a Maxwellian plasma will tend to

damp. In weakly collisional plasmas, such as the solar wind, Landau damping

may be an important mechanism for transfer of energy between the fields and

the particles.

3.2.1 Langmuir waves

The last step in our wave analysis is to solve for the roots of D(k, s) = 0 and

find the wave modes. When γ ≫ ωr , the wave amplitude increases in a time

shorter than a wave period, the periodic behavior is lost and linear theory is

no longer valid. Therefore, the subsequent solutions presented here satisfy the

weak growth approximation γ ≪ ωr.

We begin with Taylor expansion of D(k, s) around s = −iω. Keeping only

first order terms, we get

D(k, s) = Dr(k,−iω) + iDi(k,−iω) + i(
∂Dr(k,−iω)

∂ω
)γ = 0 (29)

Here, Dr(k,−iω) and Di(k,−iω) indicate the real and imaginary parts of

D(k, s = −iω). Separating the real and imaginary parts we get the following

expressions for the dispersion relation and growth rate

Dr(k,−iω) = 0 (30)

γ =
−Di(k,−iω)
∂Dr/∂ω

(31)

The real part is the usual dispersion relation relating ω with k and γ is

the growth rate predicted by the Landau approach, which is proportional to

∂Fsz0/∂vz. Therefore, a positive slope in the reduced distribution will cause

growth rate.

Applying this to the dispersion relation in eq. (27), for electrons with

Maxwellian distribution, we obtain

ω2 = ω2
pe + 3v2th,ek

2 (32)
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and

γ = −
√

π

8

ωpe

k3λ3
D

exp

[
− 1

(2kλD)2
− 3

2

]
. (33)

These equations are the dispersion relation of Langmuir waves. Here, we

have considered only electron motion and immobile ions. This means that we

are considering perturbations with high frequencies, so the ions cannot respond

quickly enough to them, due to their larger mass. This does not mean that

the effect of ions is nonexistent, but it is small enough that can be treated

as a small correction to the dispersion relation. The dispersion relation of

Langmuir waves is plotted in Fig. 8(b). This dispersion relation can be found

using different frameworks, such as the moment equations, however they will

fail in identifying the damping process that the waves will suffer, as seen from

the kinetic approach.

We see from eq. (32), that in the limit of cold electrons (vth,e = 0), the

frequency is just the electron plasma frequency. This is the frequency at which

a plasma will oscillate due to microscopic charge separation. Electric fields

generated from these charge separations will act as a restoring force. The effect

of electron thermal motion will produce a propagating wave at frequencies close

to ωpe, these are the Langmuir waves. A spectrogram of electric field waveform

snapshots captured by Solar Orbiter is shown in Fig. 8(a). Details of Solar

Orbiter’s snapshots are given in section 5. The Langmuir waves are identified

as emissions close to the electron plasma frequency fpe. We note that these

Langmuir waves are observed in absence of radio bursts signatures. In paper I,

we investigate Langmuir waves that are not connected with radio burst source

regions, in order to recognize the plasma conditions that make their excitation

favorable and understand the role of Langmuir waves in shaping the electron

VDFs in the solar wind. An example of a Langmuir waveform is shown in

Fig. 8(c). The electric field waveform is closely aligned with the magnetic

field, as expected for electrostatic waves. Typical amplitudes for Langmuir

waves in the solar wind are ∼ 1 mV/m, with some waves, generally the ones

associated with radio burst source regions and planetary foreshocks, reaching

≳ 10 mV/m (Hess et al., 2011; Briand, 2015).

3.2.2 Ion-acoustic waves

For perturbations with frequencies much lower than ωpe, the response of ions

becomes important. With this in mind we evaluate the electron integral in
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Figure 8: (a) Spectrogram of electric field waveform snapshots captured by
Solar Orbiter. Several snapshots are taken every day, the x-axis indicates the
snapshot number of the given day. Langmuir waves and ion-acoustic waves are
observed on this day.(b) Dispersion relation of Langmuir waves derived from
eqs. (32) and (33). At long wavelengths (kλD ≪ 1) the frequency of Langmuir
waves approaches the electron plasma frequency. (b) Waveform of a Langmuir
wave observed by Solar Orbiter. The wave field is mostly along the component
parallel to the magnetic field (black). The component perpendicular to the
magnetic field (blue) remains near the background level.

the dispersion relation eq. (27) in the limit ω/k ≪ vz and the ion integral in

the ω/k ≫ vz limit.

Next, following the same procedure as done with the Langmuir waves, we

solve eqs. (30) and (31). The solutions are

ω2 =
ω2
pi

(1 + 1/k2λ2
D)

[
1 +

3Ti

Te
(1 + k2λ2)

]
(34)

and

γ = −
√

π

8

ω

(1 + k2λ2)3/2

[√
me

mi
+

(
Te

Ti

)3/2

exp

(
− Te

2Ti(1 + k2λ2)

)]
(35)
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This is the dispersion relation for ion-acoustic waves. The plot for the

ion-acoustic dispersion relation is shown in Fig. 9(a), for two different values

of Te/Ti. In this case, the ion term is of a similar form to the electron term in

the Langmuir wave dispersion relation. Thus, ions behave somewhat similarly

to electrons in the Langmuir mode. However, the resulting wave mode differs

significantly from Langmuir waves. The difference comes from the electrons,

which react to the low frequency perturbations. At long wavelengths (kλD ≪
1), these waves behave as a sound wave, propagating at the ion sound speed

(cia =
√

kbTe/mi), where the electrons provide the pressure gradient restoring

force and the ions the inertia. Hence, the name ion-acoustic.

Figure 9: (a) Dispersion relation of ion-acoustic waves derived from eqs. (34)
and (35) at two different Te/Ti ratios. (b) Waveform of an ion-acoustic wave
observed by Solar Orbiter. The wave field is mostly along the component
parallel to the magnetic field (black). The component perpendicular to the
magnetic field (blue) remains near the background level.

In Fig. 9(b), an example of an ion-acoustic wave is presented. Several ion-

acoustic waves are also seen on the spectrogram on Fig. 8(a), with frequencies

well below fpe. The frequency of ion-acoustic waves is near ωpi, nevertheless,

a spacecraft traveling in the solar wind will observe a shift in frequency. This

is because of the convection of the solar wind producing a Doppler shift effect.

Solar wind ion-acoustic waves in spacecraft frame vary in frequency from a few

hundred Hz up to around 20 kHz at ∼1 AU (Ṕı̌sa et al., 2021). In contrast,

due to their high frequency, the relative Doppler shift felt by Langmuir waves

is much less drastic. Ion-acoustic waves are frequently observed in the solar

wind (Gurnett & Anderson, 1977; Ṕı̌sa et al., 2021), potentially influencing

the various phenomena that occur in the solar wind, such as IP shocks. We

study ion-acoustic waves near IP shocks and present our results in paper II. We

analyzed the dependence on radial distance of ion-acoustic waves excited in
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the upstream and downstream regions of IP shocks. Ion-acoustic waves might

be a significant energy dissipation channel for IP shocks and understanding

their generation mechanisms and their correlation with shock parameters will

provide insight into the physics of IP shocks.

So far, we have assumed that perturbations of certain form exists. How-

ever, in order for the perturbation to exist, a source of free energy is necessary.

If this is the case an instability can be triggered and wave modes associated

to it excited.

3.3 Kinetic instabilities

We will now review some instabilities relevant for the excitation of Langmuir

and ion-acoustic waves. In the kinetic approach, we look for instabilities re-

lated to the VDFs. We mentioned that a particle in resonance with a wave

will be accelerated or decelerated, depending if its faster or slower than vp.

In thermodynamic equilibrium, there will be more particles moving slower

and the net effect is damping. In certain VDF configurations, there may be

more particles moving faster than slow ones in the vicinity of vp. In this case,

the wave grows in amplitude. A distribution like this will normally have a

beam-like population of particles with bulk velocity higher than the core of

the distribution. In general, we are looking for distributions with this char-

acteristic, namely with a positive slope (∂Fsz0/∂vz > 0), as can be seen from

eq. (27). We present four examples of instabilities that may explain the ob-

served electrostatic waves in the solar wind.

• Electron-beam instability: since ion effects play a minor role in Lang-

muir wave modes, we typically look for beam-like features in the electron

VDF. This instability is called bump-on-tail instability and is one of the

strongest candidates for Langmuir wave excitation. This instability de-

pends on the density, temperature and bulk velocity of the beam.

• Ion-beam instability: Similarly, for ion-acoustic waves, an ion beam

can lead to an instability as well, given that there is a positive slope in

the VDF. However, unlike Langmuir waves, the effects of both ions and

electrons need to be considered. In particular, electrons can contribute

to Landau damping so a positive slope in the ion VDF may not always

lead to instability.
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• Current-driven instability: In the presence of currents due to drifts

between ions and electrons, the electron VDF will be shifted with respect

to the ion VDF. If the currents are large enough, a positive slope may

appear in the equivalent VDF of electrons and ions. The onset of in-

stability will depend on the electron-to-ion temperature ratio Te/Ti, the

wavelength-to-Debye length ratio kλD and the drift-to-ion sound speed

ratio vd/cia. This instability will trigger waves of the ion-acoustic type

with phase velocities close to cia.

• Heat-flux instability: Drift velocities can still appear in the absence

of net currents. This can be achieved by heat fluxes acting to balance

the total current. In the solar wind, heat fluxes are commonly related

with non-symmetric features in the distribution function, such as the

electron strahl. This velocity drifts will have the same effect as current-

induced drifts, generating waves if the equivalent VDF has a positive

slope. Since this instability involves a positive slope in the equivalent

VDF and non-Maxwellian features, like beams, it is hard to disentangle

it from other instabilities in the observations, causing debate regarding

their role in the generation of solar wind ion-acoustic waves.

All of the instabilities listed here are associated with a positive slope in

the distribution. The first two are related to a bump-on-tail type of distribu-

tion, like the example given in Fig. 10(a). The last two, are linked to velocity

drifts producing a positive slope in the equivalent distribution of ions and elec-

trons, as shown in Fig. 10(b). Examples of the dispersion relation computed

from the distributions on panels (a) and (b) are shown in panels (c) and (d),

respectively.

More details regarding these instabilities are presented in papers I and II.

We have based our wave analysis on derivations presented in a variety of space

plasma physics textbooks, and for a deeper and more rigorous explanation on

its derivation, as well a more exhaustive list of wave modes and instabilities,

we refer to a few of them, such as (Treumann & Baumjohann, 1997; Gurnett &

Bhattacharjee, 2017; Baumjohann & Treumann, 1997; Gary, 1993; Swanson,

1989).
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Figure 10: Two examples of distributions subject of different kinetic insta-
bilities. (a) Electron and two ion populations distributions unstable to the
ion-beam instability. (b) Ion and drifting electron distributions unstable to
the current-driven instability. (c) Dispersion relation calculated from the dis-
tribution on panel (a). (d) Dispersion relation calculated from the distribution
on panel (b)
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4 Effect of electrostatic waves on the evolution of

the solar wind

The role of kinetic electrostatic waves on the evolution of the solar wind is

still debated. In order to provide answers, first we need to know how common

electrostatic waves are in the solar wind and how their occurrence varies with

distance. Second, it is necessary to know how the waves are triggered and

what instabilities and sources of free energy take part in it. In this chapter

we briefly discuss some possible effects of Langmuir and ion-acoustic waves

on the evolution of the solar wind VDF. We focus in the connection between

previous solar wind observations and the results presented in papers I and II.

Solar wind measurements show that the electron VDF changes with helio-

centric distance (Maksimovic et al., 2005), as shown in both panels on Fig. 11.

In particular, it is theorized that the strahl dissipates into the halo population

over distance from the Sun. It is likely that wave-particle interactions are re-

sponsible for the observed changes in the solar wind electron VDF. However,

which waves are involved remains unresolved. One plausible candidate are

Langmuir waves due to their tight relation with electron thermodynamics.

Langmuir waves have been frequently studied in the solar wind in connec-

tion with radio bursts (Lin et al., 1981, 1986; Ergun et al., 1998; Graham &

Cairns, 2015). However, Langmuir waves, outside of these regions also exist in

the solar wind. In paper I, we investigated the occurrence of non-radio burst

related Langmuir waves in the solar wind. We analyzed the plasma conditions

where these waves were most likely observed and explored possible generation

mechanisms. In particular, we found a tight relation with Langmuir waves

Figure 11: Evolution of the electron distribution function in the inner helio-
sphere. Left: core and halo components. Right: strahl component. Taken
from (Maksimovic et al., 2005)
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and magnetic holes, supporting the idea that these magnetic structures are

indeed source regions of Langmuir waves in the solar wind.

Besides Langmuir waves, ion-acoustic waves are a common feature of the

solar wind in the inner heliosphere. With occurrence rates between 0.1 %-

1 % (Graham et al., 2021; Ṕı̌sa et al., 2021), it is likely that they play some

role in shaping the VDFs in the solar wind. Despite being discovered sev-

eral decades ago (Gurnett & Anderson, 1977), their origin is still disputed.

Theories normally revolve around proton beams (Gary, 1978), strong current

sheets (Fried & Gould, 1961), electron heat-fluxes (Forslund, 1970) and ion-

scale turbulence (Valentini et al., 2011). Understanding the mechanisms that

trigger these waves will help us identify what is their effect in the solar wind

VDFs.

In paper II, we focus in ion-acoustic waves occurring near IP shocks. Since,

shocks require dissipation, in a collisionless environment, the presence of ion-

acoustic waves may indicate that an important dissipation mechanism is in

place through these waves. Using a list of IP shocks observed by Solar Or-

biter at different distances (Dimmock et al., 2023), we found that ion-acoustic

activity is enhanced near the ramp of IP shocks, in accordance with previous

studies at 1 AU (Hess et al., 1998; Wilson et al., 2007). Furthermore, we

observe a slight correlation with ion-acoustic wave occurrence rate near IP

shocks and heliocentric distance.

Interplanetary shocks also serve as a laboratory for ion-acoustic wave stud-

ies, where the extreme solar wind conditions can highlight the processes in-

volved in the generation mechanisms. In this sense, studying ion-acoustic

waves associated with IP shocks may help us understand the role of the waves

in the energy dissipation of low-to-moderate M shocks; as well as identifying

sources for solar wind ion-acoustic waves. In particular, we found that esti-

mated currents do not meet the current-driven instability thresholds for wave

onset. It is likely that more complex triggering mechanisms may be active,

involving a combination of various instabilities and modifying the theoretical

thresholds. Knowing which instabilities are important in triggering the elec-

trostatic waves in the solar wind, will reveal what are some of the drivers of

the observed evolution of the electron and ion VDFs.
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5 The Solar Orbiter Mission

Solar Orbiter was launched in February 2020 and since then it has been mon-

itoring the solar wind. It orbits the Sun at distances ranging from 0.28 AU

to 1.1 AU. The Solar Orbiter payload consists of six remote-sensing instru-

ments and four in-situ experiments (Müller et al., 2020). The allocation of

the instruments onboard Solar Orbiter is shown in Fig. 12. To investigate the

electrostatic waves in the solar wind we utilized the Radio and Plasma Waves

instrument (RPW). For the particle measurements the Solar Wind Analayzer

(SWA) instrument was mainly used and the Energetic Particle Detector (EPD)

to a lesser extent. Magnetic field data was retrieved from the Magnetometer

(MAG) instrument.

Solar Orbiter is a three-axis stabilized spacecraft, with its x-axis always

oriented toward the Sun. Its y-axis is anti-parallel to the velocity vector and

its z-axis is normal to the orbit plane, completing the spacecraft reference

frame (SRF) as depicted in Fig. 12. In this chapter, we will briefly describe

the instruments used and how the data is handled.

Figure 12: Solar Orbiter spacecraft in-situ experiments and spacecraft ref-
erence frame configuration. The x-axis points toward Sun, y-axis points
opposite to the velocity velocity vector and the z-axis perpendicular to
the orbital plane, completing the right-hand triad. Adapted from https :
//www.esa.int/ScienceExploration/SpaceScience/SolarOrbiter
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5.1 The Radio and Plasma Waves Instrument

The main source of observations analyzed in this thesis is the RPW instrument

suite (Maksimovic et al., 2020). Capable of detecting electric fields from ∼DC

values up to tens of MHz, RPW is well suited to detect electrostatic waves

in the solar wind. Besides electric field, RPW also provides electron density

derived from spacecraft potential measurements. This instrument consists of

a set of three antennae of 6.5 m each, located in the spacecraft’s yz-plane and

a search coil magnetometer (SCM).

The electric field measurements are processed by four different units, cov-

ering different frequency ranges. The Low Frequency Receiver (LFR) handles

signals from near DC to approximately 10 kHz. The Thermal Noise Receiver

(TNR) and High Frequency Receiver (HFR), focused mainly in observations

of radio waves, cover frequencies ranging from 4 kHz to 16 MHz. In the middle

frequencies, between 200 Hz and 200 kHz, the Time Domain Sampler (TDS)

provides electric field signals in the form of high-resolution snapshots.

With solar wind Langmuir waves ranging around 20 kHz to 60 kHz (Hess

et al., 2011; Briand, 2015) and Doppler shifted ion-acoustic waves from few

hundred Hz to ∼20 kHz (Ṕı̌sa et al., 2021), TDS temporal resolution is suffi-

cient to capture them. The waveform snapshots produced by TDS are typi-

cally sampled at 262.1 kHz and with a duration of ∼60 ms. The Langmuir and

ion-acoustic wave snapshots shown in Figs. 8(a) and 9(b), respectively, were

captured by TDS. Snapshots are regularly taken by TDS every minute, but

only the ones with highest quality flag are downlinked to the ground station.

Since the telemetry bandwidth does not allow for transmission of all snap-

shot waveforms, a different data product containing statistical averages is

generated onboard. This statistical data (STAT) product, provides median

frequency, maximum amplitude, RMS amplitude, among other quantities of

snapshots containing waves in a 16 s interval. Since one snapshot is processed

every minute, the maximum number of waves a STAT packet can have is 16.

A snapshot is classified as containing a wave if it meets the onboard wave algo-

rithm criteria. In this way, continuous data of waves is available, making the

STAT product useful for statistical studies. For more details on the onboard

wave detection algorithm see Soucek et al. (2021).
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5.2 Other in-situ experiments

Magnetic field data is available through MAG. This instrument consist of a

three-axis fluxgate magnetometer mounted on the same boom as the EAS sen-

sor heads (Horbury et al., 2020). In normal operation mode MAG delivers 8

vectors per second, and 64 vectors per second in burst mode. It has a dynamic

range of ±128 nT and nominal resolution of 4 pT. With the magnetic field

measurements we can probe the solar wind conditions around regions with

high wave activity. For example, we can investigate if the electrostatic waves

are correlated to magnetic structures such as magnetic holes. We can also rep-

resent the VDF by its component parallel and perpendicular to the magnetic

field, revealing important features linked to kinetic instabilities. Furthermore,

with magnetic field measurements it is possible to perform polarization anal-

ysis of the waves, which can provide insight into the waves’ nature.

Since we are interested in kinetic waves, information on the particle VDFs

is of high interest. Solar Orbiter’s SWA can produce VDFs and calculate

moments of ions and electrons (Owen et al., 2020). The Proton-Alpha Sensor

(PAS), part of the SWA instrument suite, is an electrostatic analyzer that

measures 3D ion distributions from 200 eV to 20 keV. Generally, PAS measures

a 3D distribution every 4 s, over nine elevation angles, eleven azimuthal angles

and 96 energy channels. The instrument does not have a full sky field of view,

but its detector opening is directed toward the Sun. This enables the solar

wind ion VDF accurately to be resolved, as ions in the solar wind tend to have

much larger bulk velocity than thermal velocity.

The electron VDFs are provided by the Electron Analyzer System (EAS),

also part of the SWA consortium. Electrons in the solar wind, generally, have

larger thermal velocity than bulk velocity, therefore a full sky field of view is

required. To address this, EAS counts with two electrostatic analyzer sensor

heads mounted on a boom in the shadow of the spacecraft. The cadence of

EAS is, nominally, 4 s and it is designed to measure electrons with energies

from a few eV to ∼ 5 keV. The two sensor heads measurements are combined to

generate 3D distributions. Then, these measurements can be used to calculate

distributions of particles according to the angle that their velocity vector makes

with the magnetic field. This angle is the the pitch angle, and the distribution

of particles according to their pitch angle is the pitch angle distribution (PAD).

These type of distributions are useful for inspection of non-Maxwellian features

in the VDF, for example the electron strahl, which can be responsible of
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instabilities in the solar wind.

When particles with higher energy than the resolved by SWA are of inter-

est, we make use of EPD. This instrument is capable of detecting energetic

particle fluxes with energies around a few keV up to several MeV (Rodŕıguez-

Pacheco et al., 2020). With EPD data we can analyze energetic populations

that may influence the instability thresholds. For example, it can be used

to find signatures of reflected ions at IP shocks. This backstreaming popula-

tion of ions can potentially generate ion-acoustic waves, through the ion beam

instability (Goodrich et al., 2019).
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6 Outlook

We have quantified the presence of Langmuir waves in the solar wind and

identified possible source regions. Although, generation mechanisms have not

been explicitly found, it is likely that the bump-on-tail instability plays a

primary role. As described in paper I, Langmuir waves in the solar wind are

more common in regions with localized density enhancements with respect

to the steady background value. Consequently, instabilities associated with

density fluctuations can also be involved. Future developments should focus

on case studies of solar wind Langmuir waves not connected to radio bursts in

order to confirm the mechanisms behind their excitation.

With the results of paper I, we aim to characterize the Langmuir waves

in the solar wind and estimate the overall effect that they might have in

the solar wind VDF evolution. Through wave-particle interactions, such as

Landau resonance, Langmuir waves may be responsible of a fraction of the

observed strahl dissipation into the halo and electron temperature regulation.

Similar analysis should be performed in regard of ion-acoustic waves. In

particular, their originating mechanisms must be decoded. Especially, the

possible connection of non-Maxwellian VDFs, currents and heat fluxes in the

generation of ion-acoustic waves near IP shocks, as suggested in paper II. If

such connection exists, it would be possible to test if it holds for regions devoid

of IP shocks.

Concerning IP shocks, the energy dissipation provided by ion-acoustic

waves must also be assessed. The identification of ion-acoustic wave gener-

ation mechanisms near IP shocks, will facilitate distinguishing between the

waves related to the shock and the ones related to marginally stable solar

wind conditions or other external factors. As a consequence, we may be able

to quantify the effects of ion-acoustic waves on energy dissipation at IP shocks.

Furthermore, other possible generation mechanisms of ion-acoustic waves

in the upstream and downstream regions of IP shocks must be explored. For

instance, recent studies have reported the presence of a backstreaming ion

population in the upstream region of an IP shock event (Dimmock et al., 2023).

The role that reflected ion beams can play in upstream ion-acoustic wave

generation must be investigated. In this manner, it should be possible to link

reflected ion beams with observed changes in the upstream VDFs, by means of

the beam susceptibility to generate ion-acoustic waves. Impulsively reflected
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ions have been proposed as a source of ion-acoustic waves upstream the Earth’s

bow shock (Goodrich et al., 2019). Its applicability to IP shocks still needs to

be addressed. Regarding the downstream region, it still remains unresolved if

the ion-acoustic waves observed are generated locally or convected from the

ramp. As part of the ongoing study presented in paper II, we will investigate

the decay time of the observed ion-acoustic waves and analyze if these waves

are indeed convected waves originated at the ramp.

Besides ion-acoustic and Langmuir waves, other kinetic waves, such as,

whistlers, ion-cyclotron and electromagnetic ion-cyclotron (EMIC) waves might

contribute to the solar wind evolution. Investigation of these waves is also nec-

essary to characterize the different effects of wave-particle interactions in the

solar wind VDFs.

Finally, any solar wind model should be able to explain the preferential

heating of ions in directions perpendicular to the magnetic field (T⊥ > T||) in

the inner heliosphere. If ion-acoustic waves take part in such process, investi-

gation of the effects of the waves on the ion VDFs may reveal it.
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Richardson, I. G. 2018, Living Reviews in Solar Physics, 15, 1
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