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Rasmus Dahlberg
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Abstract
Certificate Transparency is an ecosystem of logs, monitors, and auditors that
hold certificate authorities accountable while issuing certificates. We show
how the amount of trust that TLS clients and domain owners need to place
in Certificate Transparency can be reduced, both in the context of existing
gradual deployments and the largely unexplored area of Tor. Our contributions
include improved third-party monitoring, a gossip protocol plugging into
Certificate Transparency over DNS, an incrementally deployable gossip-audit
model tailored for Tor Browser, and using certificates with onion addresses.
The methods used range from proof sketches to Internet measurements and
prototype evaluations. An essential part of our evaluation in Tor is to assess how
the protocols used during website visits—such as requesting an inclusion proof
from a Certificate Transparency log—affect unlinkability between senders and
receivers. We find that most false positives in website fingerprinting attacks
can be eliminated for all but the most frequently visited sites. This is because
the destination anonymity set can be reduced due to how Internet protocols
work: communication is observable and often involves third-party interactions.
Some of the used protocols can further be subject to side-channel analysis. For
example, we show that remote (timeless) timing attacks against Tor’s DNS
cache reliably reveal the timing of past exit traffic. The severity and practicality
of our extension to website fingerprinting pose threats to the anonymity
provided by Tor. We conclude that access to a so-called website oracle should be
an assumed attacker capability when evaluating website fingerprinting defenses.

Keywords: Auditing, Certificate Transparency, DNS, Gossip, Side-Channels,
Timing Attacks, Tor, Tor Browser, Website Fingerprinting, Website Oracles





v

Kring verifiering av Certificate Transparency samt
länkbarhet av Tor-användare och besökta webbplatser
Rasmus Dahlberg

Institutionen för matematik och datavetenskap

Sammanfattning
Projektet Certificate Transparency är ett ekosystem av loggar, övervakare och
granskare som håller certifikatutfärdare till svars för utfärdade webbcertifikat.
Vi visar hur säkerheten kan höjas i ekosystemet för både domäninnehavare och
TLS-klienter i nuvarande system samt som del av anonymitetsnätverket Tor.
Bland våra större bidrag är förbättrad övervakning av loggarna, ett skvallerpro-
tokoll som integrerats med DNS, ett skvaller- och granskningsprotokoll som
utformats specifikt för Tors webbläsare och ett förslag på hur domännamn
med adresser i Tor kan bli mer tillgängliga. De metoder som använts varierar
från säkerhetsbevis till internetmätningar och utvärderingar av forskningspro-
totyper. En viktig del av vår utvärdering i Tor är att avgöra hur protokoll som
används av webbläsare påverkar möjligheten att koppla ihop användare med
besökta webbplatser. Detta inkluderar existerande protokoll samt nya tillägg
för att verifiera om webbplatsers certifikat är transparensloggade. Våra resultat
visar att i många fall kan falska positiva utslag filtreras bort vid mönsteri-
genkänning av Tor-användares krypterade trafik (eng: website fingerprinting).
Orsaken är att besök till de flesta webbplatser kan uteslutas till följd av hur
internetprotokoll fungerar: kommunikation är observerbar och involverar ofta
interaktioner med tredjeparter. Vissa protokoll har dessutom sidokanaler som
kan analyseras. Vi visar exempelvis att Tors DNS-cache kan undersökas med
olika varianter av tidtagningsattacker. Dessa attacker är enkla att utföra över
internet och avslöjar vilka domännamn som slagits upp vid angivna tidpunkter.
De förbättrade mönsterigenkänningsattackerna mot webbplatser är realistiska
och hotar därför Tors anonymitet. Vår slutsats är att framtida försvar bör
utvärderas utifrån att angripare har tillgång till ett så kallat webbplatsorakel.

Nyckelord: Granskning, Certificate Transparency, DNS, Skvaller, Sidokanaler,
Tidtagningsattacker, Tor, Tors webbläsare, Mönsterigenkänning,Webbplatsorakel
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3

1 Introduction
The security posture of the Internet increased significantly throughout the last
decade. For example, the cleaned-up and formally verified TLS 1.3 protocol
that underpins HTTPS has been rolled-out gradually [44], the certificates that
specify which public keys to use when bootstrapping a secure connection can
be obtained for free and automatically [1], and web browsers have shifted from
positive to negative security indicators in favor of security-by-default [109]. The
use of end-to-end encryption has further become the norm with services such
as DNS-over-HTTPS [43], virtual private networks [27], Tor [24], and secure
messaging [101] gaining traction. In other words, the era of attackers that can
passively snoop and actively tamper with unencrypted network traffic is over.

What will remain the same is the incentive for attackers to snoop and
tamper with network traffic. Therefore, the focus is (and will likely continue
to be) on circumventing protocols that add security and privacy as they are
deployed in the real world. For example, there is a long history of certificate
mis-issuance that allows attackers to impersonate websites and thus insert
themselves as machines-in-the-middle (“MitM”) without actually breaking
TLS [17, 96]. Or, in the case of encrypted channels that are hard to intercept,
instead analyzing traffic patterns to infer user activity like which website is
being visited [14, 40, 41, 58, 75, 102]. The bad news is that attackers only need
to find one vulnerability in a deployed protocol or its software. Sometimes,
such vulnerabilities can be purchased by zero-day brokers like Zerodium [114].

To address an attack vector, it is common to add countermeasures that
frustrate attackers and/or increase the risk involved while trying to exploit a
system. A good example is how the certificate authority ecosystem evolved.
For background, certificate authorities are trusted parties that validate domain
names before issuing certificates that list their public keys. Web browsers are
shipped with hundreds of trusted certificate authorities, which means that the
resulting TLS connections cannot bemore secure than the difficulty of hijacking
the weakest-link certificate authority [17]. A proposal eventually deployed to
mitigate this issue is Certificate Transparency: an ecosystem of public append-
only logs that publishes all certificates so that any mis-issuance can be detected
by monitors [54, 55]. These logs have a cryptographic foundation that holds
them and the issuing certificate authorities accountable, at least in theory. In
practice, the logs are essentially trusted parties that must act honestly due to
how web browsers shape their policies to respect user privacy [3, 33, 64, 97].

The first objective of this thesis is to better understand the current limits
of Certificate Transparency by proposing and evaluating improvements which
reduce the amount of trust that needs to be placed in third-party monitors and
logs. We make a dent in the problem of Certificate Transparency verification
both generally and concretely in the context of Tor Browser, which unlike
Google Chrome and Apple’s Safari does not support Certificate Transparency
yet. For context, Tor Browser is a fork of Mozilla’s Firefox that (among
other things) routes user traffic through the low-latency anonymity network
Tor [24, 77]. As part of our pursuit to improve the status quo for Certificate
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Transparency verification in Tor Browser, the second objective of this thesis is
to evaluate how the protocols used during website visits affect unlinkability be-
tween senders (web browsers) and receivers (websites). Our evaluation applies
to our addition of Certificate Transparency and other protocols already in use,
e.g., DNS, real-time bidding [110], and certificate revocation checking [85].

The remainder of the introductory summary is structured as follows. Sec-
tion 2 introduces background that will help the reader understand the context
and preliminaries of the appended papers. Section 3 defines our research
questions and overall objective. Section 4 provides an overview of our re-
search methods. Section 5 describes our contributions succinctly. Section 6
summarizes the appended papers that are published in NordSec (Paper I),
SECURWARE (Paper II), PETS (Paper III and V), WPES (Paper IV), and
USENIX Security (Paper VI). Section 7 positions our contributions with
regard to related work. Section 8 concludes and briefly discusses future work.

2 Background
This section introduces background on Certificate Transparency and Tor.

2.1 Certificate Transparency
The web’s public-key infrastructure depends on certificate authorities to issue
certificates that map domain names to public keys. For example, the certificate
of www.example.com is issued by DigiCert and lists a 2048-bit RSA key [87].
The fact that DigiCert signed this certificate means that they claim to have
verified that the requesting party is really www.example.com, typically by
first ensuring that a specified DNS record can be uploaded on request [11].
If all certificate authorities performed these checks correctly and the checks
themselves were fool-proof, a user’s browser could be sure that any certificate
signed by a certificate authority would list a verified public key that can be
used for authentication when connecting to a website via TLS. Unfortunately,
there are hundreds of trusted certificate authorities and a long history of issues
surrounding their operations in practice [8, 17, 96]. One of the most famous
incidents took place in 2011: an attacker managed to mis-issue certificates from
DigiNotar to intercept traffic towards Google and others in Iran [45]. The
astonishing part is that this incident was first detected seven weeks later.

Certificate Transparency aims to facilitate detection of issued certificates,
thus holding certificate authorities accountable for any certificates that they
mis-issue [54, 55]. The basic idea is shown in Figure 1. In addition to regular
validation rules, browsers ensure certificates are included in a public append-
only Certificate Transparency log. This allows anyone to get a concise view of
all certificates that users may encounter, including domain owners like Google
who can then see for themselves whether any of the published certificates are
mis-issued. The parties inspecting the logs are called monitors. Some monitors
mirror all log entries [86], while others discard most of them in pursuit of
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Figure 1: The idea of Certificate Transparency. Certificates encountered by
users must be included in a public log so that monitors can detect mis-issuance.

finding matches for pre-defined criteria like *.example.com [95]. Another
option is subscribing to certificate notifications from a trusted third-party [34].

What makes Certificate Transparency a significant improvement compared
to the certificate authority ecosystem is that the logs stand on a cryptographic
foundation that can be verified. A log can be viewed as an append-only tamper-
evident list of certificates. It is efficient1 to prove cryptographically that a
certificate is in the list, and that a current version of the list is append-only
with regard to a previous version (i.e., no tampering or reordering).2 These
properties follow from using a Merkle tree structure that supports inclusion
and consistency proofs [19, 28, 55, 67]. The reader only needs to know that
these proofs are used to reconstruct a log’s Merkle tree head, often referred
to as a root hash. It is a cryptographic hash identifying a list of certificates
uniquely in a tree data structure. The logs sign root hashes with the number
of entries and a timestamp to form signed tree heads. So, if an inconsistency is
discovered, it cannot be denied. Log operators are therefore held accountable
for maintaining the append-only property. A party that verifies the efficient
transparency log proofs without downloading all the logs is called an auditor.

A log that signs two inconsistent tree heads is said to perform a split-view. To
ensure that everyone observes the same append-only logs, all participants of the
Certificate Transparency ecosystem must engage in a gossip protocol [16, 72].
In other words, just because Alice observes an append-only log, it is not
necessarily the same append-only log that Bob observes. Therefore, Alice and
Bob must exchange signed tree heads and verify consistency to assert that the
log operators play by the rules and only append certificates. Without a secure
gossip protocol, log operators would have to be trusted blindly (much like
certificate authorities before Certificate Transparency). RFC 6962 defers the
specification of gossip [55], with little or no meaningful gossip deployed yet.

Rolling out Certificate Transparency without breakage on the web is a
challenge [98]. Certificates must be logged, associated proofs delivered to end-
user software, and more. One solution RFC 6962 ultimately put forth was the
introduction of signed certificate timestamps. A signed certificate timestamp is
a log’s promise that a certificate will be appended to the log within a maximum

1Efficient refers to space-time complexity O(log(n) ) , where n is the number of log entries.
2Interested readers can refer to our Merkle tree and proof technique introduction online [21].
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merge delay (typically 24 hours). Verifying if a log holds its promise is usually
called auditing. Certificate authorities can obtain signed certificate timestamps
and embed them in their final certificates by logging a pre-certificate. As such,
there is no added latency from building the underlying Merkle tree and no
need for server software to be updated (as the final certificate contains the
information needed). The current policy forGoogle Chrome andApple’s Safari
is to reject certificates with fewer than two signed certificate timestamps [3, 33].
How to request an inclusion proof for a promise without leaking the user’s
browsing history to the log is an open problem [64]. In other words, asking
for an inclusion proof trivially reveals the certificate of interest to the log.

Other than embedding signed certificate timestamps in certificates, they can
be delivered dynamically to end-users in TLS extensions and stapled certificate
status responses. For example, Cloudflare uses the TLS extension delivery
method to recover from log incidents without their customers needing to
acquire new certificates [100]. Several log incidents have already happened
in the past, ranging from split-views [6, 92, 93] to broken promises of timely
logging [29, 37, 5, 91] and potential key compromise [84]. These are all good
scaresmotivating continued completion of Certificate Transparency in practice.

In summary, the status quo is for web browsers to require at least two
signed certificate timestamps before accepting a certificate as valid. Merkle
tree proofs are not verified. Gossip is not deployed. The lack of a reliable
gossip-audit model means that the logs are largely trusted parties.3 We defer
discussion of related work in the area of gossip-audit models until Section 7.

2.2 Tor
The Tor Project is a 501(c)(3) US nonprofit that advances human rights and
defends privacy online through free software and open networks [79]. Some of
the maintained and developed components include Tor Browser and Tor’s relay
software. Thousands of volunteers operate relays as part of the Tor network,
which routes the traffic of millions of daily users with low latency [61]. This
frustrates attackers like Internet service providers that may try linking who is
communicating with whom from their local (non-global) vantage points [24].

Usage of Tor involves tunneling the TCP traffic of different destinations
(such as all flows associated with a website visit to example.com) in fixed-size
cells on independent circuits. A circuit is built through a guard, a middle, and
an exit relay. At each hop of the circuit, one layer of symmetric encryption
is peeled off. The used keys are ephemeral and discarded together with all
other circuit state after at most 10 minutes (the maximum circuit lifetime).
This setup allows guard relays to observe users’ IP addresses but none of the
destination traffic. In contrast, exit relays can observe destination traffic but no
user IP addresses. The relays used in a circuit are determined by Tor’s end-user
software. Such path selection is randomized and bandwidth-weighted but starts

3Historical remark: the lack of verification led Google to require that all certificates be disclosed
in at least one of their logs to validate [97]. The so-called one-Google log requirement was recently
replaced. Google Chrome instead interacts with Google’s trusted auditor. See Section 7.
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with a largely static guard set to protect users from eventually entering the
network from a relay an attacker volunteered to run.

Tor’s consensus lists the relays that make up the network. As the name
suggests, it is a document agreed upon by a majority of trusted directory
authorities. Five votes are currently needed to reach a consensus. Examples of
information added to the Tor consensus include tunable network parameters
and uploaded relay descriptors with relevantmetadata, e.g., public key, available
bandwidth, and exit policy. Each relay in the consensus is also assigned different
flags based on their configuration and observed performance, e.g., Guard,
MiddleOnly, Fast, Stable, and HSDir. The latter means that the relay is a
hidden service directory, which refers to being part of a distributed hash table
that helps users lookup onion service introduction points.

An onion service is a self-authenticated server identified by its public key.
Onion services are only reachable through the Tor network. Users that are
aware of a server’s onion address can consult the distributed hash table to find
its introduction points. To establish a connection, a user builds a circuit to
a rendezvous point. A request is then sent to one of the current introduction
points, which informs the onion service that it may build its own circuit to
meet the user at their rendezvous point. In total, six relays are traversed while
interacting with an onion service. This setup allows not only the sender but
also the receiver to be anonymous. The receiver also benefits from a large
degree of censorship resistance as the server location may be hidden. The main
drawback of onion services is that their non-mnemonic names are hard to
discover and remember. Some sites try to overcome this by setting their onion
addresses in onion location HTTP headers or HTML attributes [80].

Many users use Tor Browser to connect to the Tor network. In addition to
routing traffic as described above, Tor Browser ships with privacy-preserving
features like first-party isolation to not share any state across different origins,
settings that frustrate browser fingerprinting, and disk-avoidance to not store
browsing-related history as well as other identifying information to disk [77].
Tor Browser is a fork of Mozilla’s Firefox. Unfortunately, neither Firefox
nor Tor Browser supports any form of Certificate Transparency. Conducting
undetected machine-in-the-middle attacks against Tor users is thus relatively
straightforward: compromise or coerce the weakest-link certificate authority,
then volunteer to operate an exit relay and intercept network traffic. Such
interception has previously been found with self-signed certificates [113].

While global attackers are not within Tor’s threat model, it is in scope to
guard against various local attacks [24]. For example, the intended attacker may
passively observe a small fraction of the network and actively inject their own
packets. Figure 2 shows the typical attacker setting of website fingerprinting,
where the attacker observes a user’s entry traffic with the goal of inferring
which website was visited solely based on analyzing encrypted traffic [14, 40,
41, 58, 75, 102]. Website fingerprinting attacks are evaluated in the open-world
or closed-world settings. In the closed-world setting, the attacker monitors
(not to be confused with Certificate Transparency monitoring) a fixed list of
websites. A user visits one of the monitored sites, and the attacker needs to
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Figure 2: The setting of a website fingerprinting attack. A local passive attacker
analyzes a user’s encrypted network traffic as it enters the network. The goal
is to infer which website is visited. (Figure reprinted from Paper V.)

determine which one. The open-world setting is the same as the closed-world
setting, except that the user may also visit unmonitored sites. The practicality
of website fingerprinting attacks is up for debate, e.g., ranging from challenges
handling false positives to machine-learning dataset drift [15, 47, 76, 111].

In summary, Tor is a low-latency anonymity network often accessed with
Tor Browser. Among the threats that Tor aims to protect against are local
attackers that see traffic as it enters or leaves the network (but not both at the
same time all the time). A website fingerprinting attack is an example of a
passive attack that operates on entry traffic. A machine-in-the-middle attack is
an example of an active attack that typically operates on exit traffic. Discussion
of related work in the area of website fingerprinting is deferred until Section 7.

3 Research Questions
The overall research objective spans two different areas: transparency logs
and low-latency anonymity networks. We aim to reduce trust assumptions in
transparency log solutions and to apply such solutions in anonymous settings
for improved security and privacy. We defined the following research questions
to make this concrete in Certificate Transparency and Tor, the two ecosystems
with the most history and dominant positions in their respective areas.

1. Can trust requirements in Certificate Transparency be reduced in practice?
Transparency logs have a cryptographic foundation that supports efficient
verification of inclusion and consistency proofs. Such proofs are useful
to reduce the amount of trust that is placed in the logs. The roll-out
of Certificate Transparency has yet to start using these proofs, and to
employ a gossip protocol that ensures the same append-only logs are
observed. Part of the challenge relates to privacy concerns as parties
interact with each other, as well as deploying gradually without breakage.
We seek practical solutions that reduce the trust requirements currently
placed in the logs and third-party monitors while preserving user privacy.
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2. How can authentication of websites be improved in the context of Tor?
Tor Browser has yet to support Certificate Transparency to facilitate
detection of hijacked websites. This includes HTTPS sites but also onion
services that may be easier to discover reliably with more transparency.
We seek incremental uses of Certificate Transparency in Tor that preserve
user privacy while engaging in new verification protocols to reduce trust.

3. How do the protocols used during website visits affect unlinkability between
Tor users and their destination websites?
Several third-parties become aware of a user’s browsing activities while
a website is visited. For example, DNS resolvers and certificate status
respondersmay be consulted for domain name resolution and verification
of if a certificate has been revoked. Fetching an inclusion proof from a
Certificate Transparency log would reveal the same type of information.
We seek to explore how unlinkability between Tor users and their exit
destinations is affected by the multitude of protocols used during website
visits. The considered setting is the same as in website fingerprinting,
except that the attacker may take additional passive and active measures.
For example, the attacker may volunteer to run a Certificate Trans-
parency log (passive) or inject carefully-crafted packets into Tor (active).

4 Research Methods
We tackle privacy and security problems in the field of computer science [23,
26]. Our work is applied, following the scientific method for security and
experimental networking research. Exactly what it means to use the scientific
method in these areas is up for debate [7, 39]. However, at a glance, it is about
forming precise and consistent theories with falsifiable predictions as in other
sciences except that the objects of study are information systems in the real world.

A prerequisite to formulating precise, consistent, and falsifiable theories is
that there are few implicit assumptions. Therefore, scientific security research
should be accompanied by definitions of security goals and attacker capabilities:
what does it mean that the system is secure, and what is the attacker (not)
allowed to do while attacking it [51]? Being explicit about the overall setting
and threat model is prevalent in formal security work like cryptography, where
an abstract (mathematical) model is used to show that security can be proved
by reducing to a computationally hard problem (like integer factorization) or a
property of some primitive (like the collision resistance of a hash function) [50].
It is nevertheless just as crucial in less formal work that deals with security
of systems in the real (natural) world—the exclusive setting of the scientific
method—which usually lends itself towards break-and-fix cycles in light of
new observations. Where to draw the line between security work and security
research is not trivial. However, a few common failures of past “security research”
include not bringing observations in contact with theory, not making claims
and assumptions explicit, or simply relying on unfalsifiable claims [39].



10

While deductive approaches (like formal reduction proofs) are instrumental
in managing complexity and gaining confidence in different models, more than
these approaches are required as a model’s instantiationmust also be secure [51].
It is common to complement abstract modeling with real-world measurements
as well as systems prototyping and evaluations [7]. Real-world measurements
measure properties of deployed systems like the Internet, the web, and the Tor
network. For example, a hypothesis in a real-world measurement could be that
(non-)Tor users browse according to the same website popularity distribution.
Sometimes these measurements involve the use of research prototypes, or the
research prototypes themselves become the objects of study to investigate
properties of selected system parts (say, whether a packet processor with new
features is indistinguishable from some baseline as active network attackers
adaptively inject packets of their choosing). If it is infeasible, expensive, or
unsafe (see below) to study a real-world system, a simulation may be studied
instead. The downside of simulation is that the model used may not be a good
approximation of the natural world, similar to formal cryptographic modeling.

The appended papers use all of the above approaches to make claims about
security, privacy, and performance in different systems, sometimes with regard
to an abstract model that can be used as a foundation in the natural world to
manage complexity. Paper I contains a reduction proof sketch to show reliance
on standard cryptographic assumptions. Paper V extends past simulation se-
tups to show the impact of an added attacker capability. Meanwhile, Paper III
models part of the Tor network with mathematical formulas to estimate perfor-
mance overhead. All but Paper IV contain real-world measurements relating
to Internet infrastructure, websites, certificates, Tor, or practical deployability
of our proposals. All but Paper III contain research prototypes with associated
evaluations, e.g., performance profiling, as well as corroborating or refuting our
security definitions in experimental settings. All papers include discussions of
security and privacy properties as well as their limitations and strengths in the
chosen settings (where assumptions are explicit and threat models motivated).

Throughout our experiments, we strived to follow best practices like doc-
umenting the used setups, making datasets and associated tooling available,
reducing potential biases by performing repeated measurements from multiple
different vantage points, and discussing potential biases (or lack thereof) [7].
We also interacted with Tor’s research safety board [81] to discuss the ethics and
safety of our measurements in Paper VI, and refrained frommeasuring real (i.e.,
non-synthetic) usage of Tor whenever possible (Papers III and V). Finally, the
uncovered bugs and vulnerabilities in Papers V–VI were responsibly disclosed
to the Tor project. This included suggestions on how to move forward.

5 Contributions
The main contributions of this thesis are listed below. An overview of how
they relate to our research questions and appended papers is shown in Figure 3.
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Paper I Paper II Paper III Paper IV Paper V Paper VI

C1 C2 C3 C4 C5 C6

RQ1 RQ2 RQ3

Figure 3: Overview of appended papers, contributions, and research questions.

1. Reduced trust in third-party monitoring with a signed tree head extension
that shifts trust from non-cryptographic certificate notifications to a log’s
gossip-audit model (or if such a model does not exist yet, the logs themselves).
Paper I applies existing cryptographic techniques for constructing static
and lexicographically ordered Merkle trees so that certificates can be
wild-card filtered on subject alternative names with (non-)membership
proofs. This building block is evaluated in the context of Certificate
Transparency, including a security sketch and performance benchmarks.

2. Increased probability of split-view detection by proposing gossip protocols
that disseminate signed tree heads without bidirectional communication.
Paper II explores aggregation of signed tree heads at line speed in pro-
grammable packet processors, facilitating consistency proof verification
on the level of an entire autonomous system. Such verification can be
indistinguishable from an autonomous system without any split-view
detection to achieve herd immunity, i.e., protection without aggregation.
Aggregation at 32 autonomous systems can protect 30-50% of the IPv4
space. Paper III explores signed tree heads in Tor’s consensus. To reliably
perform an undetected split-view against log clients that have Tor in their
trust root, a log must collude with a majority of directory authorities.

3. Improved detectability of website hijacks targeting Tor Browser by proposing
privacy-preserving and gradual roll-outs of Certificate Transparency in Tor.
Paper III explores adoption of Certificate Transparency in Tor Browser
with signed certificate timestamps as a starting point, then leveraging the
decentralized network of relays to cross-log certificates before ultimately
verifying inclusion proofs against a single view in Tor’s consensus. The
design is probabilistically secure with tunable parameters that result in
modest overheads. Paper IV shows that Certificate Transparency logging
of domain names with associated onion addresses helps provide forward
censorship-resistance and detection of unwanted onion associations.
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4. An extension of the attacker model for website fingerprinting that provides
attackers with the capability of querying a website oracle.
A website oracle reveals whether a monitored website was (not) visited
by any network user during a specific time frame. Paper V defines and
simulates website fingerprinting attacks with website oracles, showing
that most false positives can be eliminated for all but the most frequently
visited websites. A dozen sources of real-world website oracles follow
from the protocols used during website visits. We enumerate and classify
those sources based on ease of accessibility, reliability, and coverage. The
overall analysis includes several Internet measurements.

5. Remotely-exploitable probing-attacks on Tor’s DNS cache that instantiate a
real-world website oracle without any special attacker capabilities or reach.
Paper V shows that timing differences in end-to-end response times can
be measured to determine whether a domain name is (not) cached by
a Tor relay. An estimated true positive rate of 17.3% can be achieved
while trying to minimize false positives. Paper VI improves the attack
by exploiting timeless timing differences that depend on concurrent
processing. The improved attack has no false positives or false negatives.
Our proposed bug fixes and mitigations have been merged in Tor.

6. A complete redesign of Tor’s DNS cache that defends against all (timeless)
timing attacks while retaining or improving performance compared to today.
Paper VI suggests that Tor’s DNS cache should only share the same
preloaded domain names across different circuits to remove the remotely-
probable state that reveals information about past exit traffic. A network
measurement with real-world Tor relays shows which popularity lists
are good approximations of Tor usage and, thus, appropriate to preload.
Cache-hit ratios can be retained or improved compared to today’s Tor.

6 Summary of Appended Papers
The appended papers and their contexts are summarized below. Notably, all
papers are in publication-date order except that Paper V predates Papers III–IV.

Paper I – Verifiable Light-Weight Monitoring for Certificate Transparency
Logs

An often overlooked part of Certificate Transparency is that domain owners
are expected to inspect the logs for mis-issued certificates continuously. The
cost and required expertise to do so have led to the emergence of third-party
monitoring services that notify domain owners of newly issued certificates
that they subscribe to. For example, one may subscribe to email notifications
whenever a certificate is issued for *.example.com. One downside of such
third-party monitoring is that these notification services become trusted parties
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with little or no accountability with regard to omitted certificate notifications.
We show how to add this accountability and tie it to the gossip-audit model
employed by the Certificate Transparency ecosystem by proposing verifiable
light-weight monitoring. The idea is for logs to batch appended certificates into
an additional data structure that supports wild-card (non-)membership proofs.
As a result, third-party monitors can prove cryptographically that they did not
omit any certificate notifications selectively. Our experimental performance
evaluation shows that overhead can be tuned to be small for all involved parts.

Paper II – Aggregation-Based Certificate Transparency Gossip

Another often overlooked part of Certificate Transparency is that monitors
and end-users who browse websites must observe the same append-only logs.
For example, if the same append-only logs are not observed, an end-user may
connect to a website that serves a mis-issued certificate that no monitor will
discover. This would largely defeat the purpose of public logging, which is why
RFC 6962 specifies that multiple gossip protocols should be defined separately
in the future. We define one such protocol that plugs into the (at the time
current) idea of having end-users interact with the logs through DNS. Our
work is exploratory, using recent advancements in programmable packet pro-
cessors that allow turning routers, switches, and network interface cards into
aggregators of tree heads that the logs signed and transmitted in plaintext via
DNS. The aggregated tree heads are then used as a reference while challenging
the logs to prove consistency, thus protecting entire vantage points from unde-
tected split views. A different network path (like Tor) can be used to break out
of a local vantage point to increase the likelihood of global consistency. If the
security definition for aggregation indistinguishability is satisfied, vantage points
without an aggregator may also receive protection due to herd immunity. Our
P4 and XDP prototypes satisfy the notion of aggregation indistinguishability
at line-rate with regard to throughput. Prevalent vantage points to roll out
aggregation-based gossip include autonomous systems and Internet exchange
points that route the traffic of many users. Our RIPE Atlas measurements
show that 32 autonomous systems could protect 30-50% of the IPv4 space from
undetected split views. End-users merely need to use plaintext DNS for opt-in.

Paper III – Privacy-Preserving & Incrementally-Deployable Support for
Certificate Transparency in Tor

One deployment challenge of Certificate Transparency is to ensure that moni-
tors and end-users are engaged in gossip-audit protocols. This is particularly
difficult for end-users because such engagement can harm privacy. For example,
verifying that a certificate is included by fetching an inclusion proof from a log
reveals which website was visited. We propose a gradual roll-out of Certificate
Transparency in Tor Browser that preserves privacy due to and how we use the
anonymity network Tor. The complete design holds log operators accountable
for certificates they promise to append by having Tor relays fetch inclusion
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proofs against the same view agreed upon by directory authorities in Tor’s con-
sensus. Found issues (if any) are reported to trusted auditors. The incremental
design side-steps much of the practical deployment effort by replacing the
audit-report pattern with cross-logging of certificates in independent logs, thus
assuming that at least one log is honest as opposed to no log in the complete
design. All Tor Browser needs to do is verify log signatures and then submit the
encountered certificates to randomly selected Tor relays. Such submissions are
probabilistic to balance performance against the risk of eventual detection of
log misbehavior. Processing of the submitted certificates is also randomized to
reduce leakage of real-time browsing patterns, something Tor Browser cannot
do on its own due to criteria like disk avoidance and the threat model for
wanting Certificate Transparency in the first place. We provide a security
sketch and estimate performance overhead based on Internet measurements.

Paper IV – SauteedOnions: Transparent Associations fromDomainNames
to Onion Addresses

Many prominent websites are also hosted as Tor onion services. Onion services
are identified by their public keys and subject to onion routing, thus offering
self-authenticated connections and censorship resistance. However, the non-
mnemonic names are a limitation due to being hard to discover and remember.
We explore how certificates with onion addresses may improve the status quo
by proposing sauteed onions, transparent associations from domain names to
onion addresses with the help of Certificate Transparency logs. The idea is to
extend a website’s regular certificate with an associated onion address. This
makes it possible to offer certificate-based onion location that is no less targeted
than the HTTPS connection facilitating the discovery, as well as name-to-onion
search engines that use the append-only logs for verifiable population of their
databases. The achieved goals are consistency of available onion associations,
improved third-party discovery of onion associations, and forward censorship-
resistance. To be discovered, sites must opt-in by obtaining a sauteed onion
certificate. Our prototypes for certificate-based onion location and third-party
search engines use an existing backward-compatible format. We discuss this
trade-off and note that a certificate extension may be used in the future.

Paper V – Website Fingerprinting with Website Oracles

One of the properties Tor aims to provide against local network attackers is
unlinkability between end-users (sender anonymity set) and their destinations
on the Internet (receiver anonymity set). A website fingerprinting attack aims
to break anonymity in this model by inferring which website an identifiable
end-user is visiting based only on the traffic entering the Tor network. We
extend the attacker model for website fingerprinting attacks by introducing the
notion of website oracles. A website oracle answers the following question: was
website w visited during time frame t ? In other words, the attacker can query
the receiver anonymity set for websites that were (not) visited. Our simulations
show that augmenting past website fingerprinting attacks to include website
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oracles significantly reduces false positives for all but the most popular websites,
e.g., to the order of 10−6 for classifications around Alexa top-10k and much less
for the long tail of sites. Further, some earlier website fingerprinting defenses
are largely ineffective in the (stronger) attacker model that includes website
oracles. We discuss a dozen real-world website oracles ranging from centralized
access logs to widely accessible real-time bidding platforms and DNS caches,
arguing that they are inherent parts of the protocols used to perform website
visits. Therefore, access to a website oracle should be an assumed attacker
capability when evaluating which website fingerprinting defenses are effective.

Paper VI – Timeless Timing Attacks and Preload Defenses in Tor’s DNS
Cache

Tor relays cache resolved domains with constant time-to-live values not to
reveal information about past exit traffic while boosting performance. We
show that this caching strategy and its implementation in the live Tor network
can be exploited by a timeless timing attack that leaks if a domain is (not)
cached. Further, the time that a domain was inserted into the cache can be
inferred by repeated probes. Our attack prototype’s experimental evaluation
in real conditions shows that there are neither false positives nor false negatives
(10M repetitions). Thus, it is useful for instantiating a real-world website
oracle without requiring any special attacker capabilities or reach (just a modest
computer that can create a Tor circuit). One of ourmitigations has beenmerged
in Tor: probabilistic time-to-live values that make the time-of-insertion fuzzy.
Long-term, Tor’s DNS cache could be redesigned to preload the same domains
at all exits. Such preloading would eliminate all (timeless) timing attacks
in Tor’s DNS cache because the same domains would always be (un)cached
across different circuits. To retain performance within the same circuit, we
propose that the preloaded domains should be complemented by a dynamic
same-circuit cache that is not shared across circuits. Our four-month-long
DNS cache measurement at two 100 Mbit/s exit relays informs on today’s
baseline performance. It is compared to a preloaded DNS cache based on
different variations of three popularity lists: Alexa, Tranco, and Umbrella.
A preloaded DNS cache can be as performant as today with similar resource
usage or significantly improve cache-hit ratios by 2-3x. However, the increased
cache-hit ratios have the cost of modest increases in memory and resolver load.

7 Related Work
This section positions the appended papers with regard to related work. For
Certificate Transparency, this includes approaches towards signed certificate
timestamp verification, gossip, and the problem of monitoring the logs. The
related work with regard to Tor is focused on the practicality of website
fingerprinting attacks and prior use of side-channels (such as timing attacks).
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7.1 Certificate Transparency Verification
Approaches that fetch inclusion proofs have in common that they should
preserve privacy by not revealing the link between users and visited websites.
Eskandarian et al. mention that Tor could be used to overcome privacy con-
cerns; however, it comes at the cost of added infrastructure requirements [31].
Lueks and Goldberg [59] and Kales et al. [49] suggest that logs could provide
inclusion proofs using multi-server private information retrieval. This requires
a non-collusion assumption while also adding significant overhead. Laurie
suggests that users can fetch inclusion proofs via DNS as their resolvers already
learned the destination sites [53]. While surveying signed certificate timestamp
auditing, Meiklejohn et al. point out that Certificate Transparency over DNS
may have privacy limitations [64]. For example, the time of domain lookups
and inclusion proof queries are detached. Paper II uses Laurie’s approach as a
premise while proposing a gossip protocol. Paper III applies Certificate Trans-
parency in a context where Tor is not additional infrastructure (Tor Browser).

Several proposals try to avoid inclusion proof fetching altogether. Dirk-
sen et al. suggest that all logs could be involved in the issuance of a signed
certificate timestamp [25]. This makes it harder to violate maximum merge de-
lays without detection but involves relatively large changes to log deployments.
Nordberg et al. suggest that signed certificate timestamps can be handed back
to the origin web servers on subsequent revisits [72], which has the downside
of assuming that machine-in-the-middle attacks eventually cease for detection.
Nordberg et al. [72] as well as Chase and Meiklejohn [13] suggest that some
clients/users could collaborate with a trusted auditor. Stark and Thompson
describe how users can opt-in to use Google as a trusted auditor [99]. This
approach was recently replaced by opt-out auditing that cross-checks a frac-
tion of signed certificate timestamps with Google using k-anonymity [22].
Henzinger et al. show how such k-anonymity can be replaced with a single-
server private information retrieval setup that approaches the performance of
prior multi-server solutions [38]. None of the latter two proposals provide
a solution for privately reporting that a log may have violated its maximum
merge delay because the trusted auditor is assumed to know about all signed
certificate timestamps. Eskandarian et al. show how to prove that a log omitted
a certificate privately [31]. However, they use an invalid assumption about
today’s logs being in strict timestamp order [64]. Paper III suggests that Tor
Browser could submit a fraction of signed certificate timestamps to randomly
selected Tor relays. These relays perform further auditing on Tor Browser’s
behalf: much like a trusted auditor, except that no single entity is running it.

Merkle trees fix log content—not promises of logging. Therefore, inclu-
sion proof fetching by users or their trusted parties must be accompanied by
consistency verification and gossip to get a complete gossip-audit model [55].
Chuat et al. suggest that users and web servers can pool signed tree heads,
gossiping about them as they interact [16]. Nordberg et al. similarly suggest
that users can pollinate signed tree heads as they visit different web servers [72].
Hof and Carle suggest that signed tree heads could be cross-logged to make all
logs intertwined [42]. Gunn et al. suggest multi-path fetching of signed tree
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heads [36], which may make persistent split-views hard depending on the used
multi-paths. Syta et al. suggest that independent witnesses could cosign the logs
using threshold signatures [103]. Smaller-scale versions of witness cosigning
received attention in industry [18, 65], and generally in other types of trans-
parency logs as well [60]. Larger browser vendors could decide to push the
same signed tree heads to their users, as proposed by Sleevi and Messeri [94].
Paper II uses the operators of network vantage points for aggregating and
verifying signed tree heads to provide their users with gossip-as-a-service, how-
ever assuming plaintext DNS traffic and a sound signed tree head frequency
as defined by Nordberg et al. [72]. We used the multi-path assumptions of
Gunn et al. to break out of local vantage points. In contrast, Paper III ensures
that the same logs are observed in the Tor network by incorporating signed tree
heads into Tor’s consensus (thus making directory authorities into witnesses).

Li et al. argue that it would be too costly for most domains to run a moni-
tor [57].4 Similar arguments have been raised before, and lead to alternative
data structures that could make monitoring more efficient than today’s over-
head [30, 66, 104]. Paper I falls into this category, as the root of an additional
static lexicographically-ordered Merkle tree is added to a log’s signed tree heads
to encode batches of included certificates. The downside is that a non-deployed
signed tree head extension is assumed [56], as well as a tree head frequency
similar to those described by Nordberg et al. [72] to get efficiency in practise.

Paper IV uses a Mozilla Firefox web extension to verify embedded signed
certificate timestamps in Tor Browser. Such verification is similar to the
gradual deployments of Certificate Transparency in other browsers [97, 98],
and the starting point to improve upon in Papers II–III. Moreover, the use of
Certificate Transparency to associate human-meaningful domain names with
non-mnemonic onion addresses (as in Paper IV) is one of many proposals for
alternative naming systems and onion search solutions [48, 69, 73, 80, 88, 108].

7.2 Website Fingerprinting and Side-Channels
Several researchers outline how past website fingerprinting attacks have been
evaluated in unrealistic conditions [47, 76, 111]. This includes not accounting
for the size of the open-world setting, failing to keep false positive rates low
enough to be useful, assuming that homepages are browsed one at a time, how
to avoid dataset drift, and training classifiers on synthetic network traces. While
some of these challenges were addressed [15, 111], the question of how to deal
with false positives remains open. Papers V–VI make a significant dent in this
problem by providing evidence that the website fingerprinting attacker model
could be made stronger to capture realistic real-world capabilities that eliminate
most false positives around Alexa top-10k and the long tail of unpopular sites.

Others have evaluated traffic analysis attacks against Tor beyond the website
fingerprinting setting. On one side of the spectrum are end-to-end correla-
tion/confirmation attacks that typically consider a global passive attacker that
observes all network traffic [46, 71, 74, 83]. Such strong attackers are not

4Whether the third-party monitors in this study misbehaved or not can be questioned [4].
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within the scope of Tor [24]. On the other side of the spectrum are local attack-
ers that see a small fraction of the network, typically in a position to observe a
user’s encrypted entry traffic (Figure 2). Many have studied those weak attacks
in lab settings where, e.g., advances in deep learning improved the accuracy sig-
nificantly [63, 82, 90]. Others have focused on improved attacks that are active
in the Tor network from their own local vantage points [12, 68, 70], which
is similar to the techniques in Papers V–VI. Greschbach et al. show that an
attacker who gains access to (or traffic to [89]) commonly used DNS resolvers
like Google’s 8.8.8.8 get valuable information to improve both end-to-end
correlation and website fingerprinting attacks [35]. Paper V generalizes the
attacker capability they uncovered by allowing the attacker to query Tor’s
receiver anonymity set with a website oracle of time-frame t . It is further
shown that it is possible to instantiate such an abstraction in the real-world
while staying within Tor’s threat model. In other words, the attacker is still
local but may employ passive and active measures to narrow down the receiver
anonymity set. Paper III proposes Certificate Transparency verification that
gives log operators website oracle access. Tor’s directory authorities tune t .

Website oracles exist because Tor is designed for anonymity—not unob-
servable communication [78]. The instantiation of a real-world website oracle
is either a direct result of observing network flows from the protocols used
during website visits, or due to state of these network flows being stored and
inferable. Inferring secret system state is widely studied in applied cryptog-
raphy and hardware architecture [2, 32, 52, 62, 105, 107], where the goal is
usually to determine a key, decrypt a ciphertext, forge a message, or similar
using side-channels. A side-channel can be local or remote and ranges from
analysis of power consumption to cache states and timing differences. There
is a long history of remote timing attacks that are practical [9, 10, 20, 112].
A recent improvement in this area that is relevant for Tor is timeless timing
attacks, which exploit concurrency and message reordering to eliminate net-
work jitter [106]. Paper V demonstrates a remote timing attack against Tor’s
DNS cache that achieves up to 17.3% true positive rates while minimizing false
positives. Paper VI instead uses a remote timeless timing attack with no false
positives, no false negatives, and a small time-frame t . This approaches an ideal
website oracle without special attacker capabilities or reach into third-parties.

8 Conclusions and Future Work
Throughout the thesis, we contributed to the understanding of how trust
requirements in Certificate Transparency can be reduced. Efficient and reliable
monitoring of the logs is easily overlooked. If the broader ecosystem achieves
monitoring through third-parties, they should be subject to the same scrutiny
as logs. We proposed a solution that makes it hard for third-party monitors to
provide subscribers with selective certificate notifications. We also proposed
a gossip-audit model that plugs into interacting with the logs over DNS by
having programmable packet processors verify that the same append-only logs
are observed. Avoiding the addition of complicated verification logic into
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end-user software is likely a long-term win because it reduces the number of
moving parts. In other words, simple gossip-audit models will be much easier
to deploy in the wide variety of end-user software that embeds TLS clients.

We also contributed to the understanding of how Certificate Transparency
can be applied in the context of Tor Browser. Compared to a regular browser,
this results in a different setting with its own challenges and opportunities.
On the one hand, Tor Browser benefits from the ability to preserve privacy
due to using the anonymity network Tor. On the other hand, data relating
to website visits cannot be persisted to disk (such as signed certificate times-
tamps blocked by maximum merge delays). Our incrementally-deployable
proposal keeps the logic in Tor Browser simple by offloading all Certificate
Transparency verification to randomly selected Tor relays. The design is com-
plete because mis-issued certificates can eventually reach a trusted auditor who
acts on incidents. In addition to proposing Certificate Transparency in Tor
Browser, we also explored how certificates with onion addresses may improve
the association of domain names with onion addresses. Such certificates ensure
domain owners know which onion addresses can be discovered for their sites,
much like Certificate Transparency does the same thing for public TLS keys.
This also adds censorship resistance to the discovery as logs are append-only.

As part of exploring Certificate Transparency in Tor Browser, we further
contributed to the understanding of how the protocols used during website
visits affect unlinkability between Tor users and their destination websites. For
example, fetching an inclusion proof from a Certificate Transparency log is
one such protocol. We extended the attacker model of website fingerprinting
attacks with website oracles that reveal whether any network user visited a
website during a specific time frame. Our results show that website oracles
eliminate most false positives for all but the most frequently visited websites. In
addition to the theoretical evaluation of the extended attacker model, we could
exploit (timeless) timing attacks in Tor’s DNS cache to instantiate real-world
website oracles without any special capabilities or reach into third-parties. This
led us to contribute to the understanding of how Tor’s DNS cache performs
today, including a proposal for a performant alternative that preloads the same
popular domains on all Tor relays to withstand all (timeless) timing attacks.

As an outlook, our angle on Certificate Transparency verification has
mostly been reactive for end-users. In other words, some or all certificate
verification occurs asynchronously after a website visit. An alternative to
this would be upfront delivery of inclusion proofs that reconstruct tree heads
which witnesses cosigned; a form of proactive gossip as proposed by Syta et
al. [103]. The significant upside is that the browser’s verification could become
non-interactive, eliminating privacy concerns and ensuring end-users only see
certificates merged into the append-only logs. Investigating what the blockers
for such a proposal are in practice—today—would be valuable as log verification
quickly becomes complicated with signed certificate timestamps and reactive
gossip-audit models. Are these blockers significant? Are they significant over
time as other eventual changes will be needed, like post-quantum secure certifi-
cates? New transparency log applications are unlikely to need the complexity
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of Certificate Transparency, and should likely not copy something that was
designed to fit into an existing system with a large amount of legacy (such as
certificate authorities, their established processes for certificate issuance, and
the many client-server implementations already deployed on the Internet).

Orthogonal to the verification performed by end-users, contributing to
the understanding of how domains (fail to) use Certificate Transparency for
detecting mis-issued certificates is largely unexplored. For example, subscribing
to email notifications of newly issued certificates becomes less useful in an era
where certificates are renewed frequently and automatically. Instead, domain
owners need easy-to-use solutions that raise alarms only if there is a problem.

Finally, the mitigation deployed to counter our (timeless) timing attacks
in Tor’s DNS cache is just that: a mitigation, not a defense, that applies to
modestly popular websites but not the long tail where the base rate is low.
This is because the attacker’s needed website oracle time frame is so large that
a fuzzy time-to-live value does nothing. Practical aspects of a preloaded DNS
cache need to be explored further before deployment, such as the assumption
of a third-party that visits popular domains to assemble an allowlist. We may
also have underestimated the utility of the existing Umbrella list, which in and
of itself does not require any new third-party. Does the use of Umbrella impact
page-load latency? Latency is the most crucial parameter to keep minimized.
The question is whether frequently looked-up domains are missed or not by
skipping the website-visit step, as for the non-extended Alexa and Tranco lists.

More broadly, the question of how to strike a balance between efficiency and
effectiveness of website fingerprinting defenses is open. How much overhead
in terms of added latency and/or bandwidth is needed? How much of that
overhead is sustainable, both from a user perspective (where, e.g., latency is
crucial for web browsing and other interactive activities) and a network health
perspective (such as the amount of volunteered relay bandwidth that is wasted)?
It is paramount to neither overestimate nor underestimate attacker capabilities,
which goes back to the still-debated threat model of website fingerprinting
attacks. Regardless of if Tor’s DNS cache becomes preloaded or not, it will
be difficult to circumvent DNS lookups from happening. Someone—be it a
weak attacker like ourselves or a recursive DNS resolver at an Internet service
provider—is in a position to narrow down the destination anonymity set. This
is especially true when also considering other protocols that reveal information
about the destination anonymity set during website visits. Accepting that
sources of real-world website oracles are prevalent implies that the world can be
closed. Therefore, a closed world is more realistic than an open world.
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