Contrasting plant–soil–microbial feedbacks stabilize vegetation types and un­couple topsoil C and N stocks across a subarctic–alpine landscape

Carles Castaño1,2, Sara Hallin1,2, Dagmar Egelkraut2, Björn D. Lindahl3, Johan Olofsson4 and Karina Engelbrecht Clemmensen1

1Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; 2Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway; 3Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden; 4Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden

Author correspondence:
Carles Castaño
Email: carles.castano@slu.se

Received: 13 September 2022
Accepted: 2 December 2022

New Phytologist (2023) 238: 2621–2633
doi: 10.1111/nph.18679

Key words: forest, fungal saprotrophs, grassland, heathland, mycorrhiza, N cycling, vegetation gradients.

Introduction

In terrestrial ecosystems, biogeochemical processes are driven by interactions among plants and soil microorganisms (Rousk & Bengtson, 2014; Bennett & Klironomos, 2019). Particularly, the plant rooting zone selects for microorganisms that may generate either negative or positive feedbacks to plant growth (War­dle, 2002; Van der Putten et al., 2013). Negative feedbacks involve nutrient competition and pathogenic activities (Bell et al., 2006; Mangan et al., 2010), while positive feedbacks involve enhanced nutrient acquisition, for example, through mycorrhizal symbioses, and pathogen suppression (Bennett et al., 2017; Lance et al., 2020). While negative feedbacks may prevent dominance by single plant species (Mangan et al., 2010), positive feedbacks may stabilize vegetation types (Van der Putten et al., 2013). Plant–microbial feedbacks can involve modification of organic matter quality and nutrient cycling (Read & Perez-Moreno, 2003; Bennett & Klironomos, 2019). Particularly, abrupt transitions in mycorrhizal symbionts of dominant plants have been linked to shifting positive feedbacks between plants and microorganisms, generally related to carbon (C) and nitrogen (N) cycling (Egelkraut et al., 2018b; Bennett & Klironomos, 2019; Clemmensen et al., 2021). However, the belowground processes underpinning vegetation patterns are not well understood, although they may influence global soil C and N stocks (Averill et al., 2014; Steidinger et al., 2019).

Organic matter can be decomposed, and nutrient contents potentially released, by free-living, saprotrophic soil fungi, which through their filamentous growth and enzymatic capacities can overcome the spatial patchiness and recalcitrance of organic resources. However, almost all plants benefit from symbiotic associations with either arbuscular mycorrhizal (AM), ectomycorrhizal (ECM), or ericoid mycorrhizal (ERM) fungi to access soil nutrients (Smith & Read, 2008). A few ECM tree species from the genera Betula, Pinus, and Picea dominate Northern boreal and subarctic forests. These tree species are characterized by...
relatively poor quality of both leaf and root litter, which together with a harsh climate lead to slow saprotrophic decomposition and low availability of N in the soil (Ward et al., 2022). Trees may instead depend more on organic N mobilization, driven by associated ECM fungi (Phillips et al., 2013; Lindahl & Tunlid, 2015). However, there is large variation among ECM fungi in how they interact with organic matter. ECM decomposers may oxidize organic matter via extracellular manganese peroxidase enzymes (Bodeker et al., 2014) or Fenton chemistry (Rineau et al., 2012; Op De Beeck et al., 2018), while other ECM fungi lack genetic capabilities to decompose recalcitrant organic matter (Kohler et al., 2015). Under low N availability, ECM decomposers may mine N bound in organic matter, increasing residual soil C : N ratios in organic horizons and decreasing total soil C and N stocks (Talbot et al., 2008; Parker et al., 2015; Clemmensen et al., 2021; Lindahl et al., 2021). In forests, this can promote positive feedbacks by providing trees exclusive access to otherwise unavailable soil N via their ECM fungal associates (Northup et al., 1995; Bennett & Klironomos, 2019).

Much of the boreal and subarctic forest has an understory of ERM plant species belonging to the genera *Emetrum*, *Vaccinium*, and *Calluna*, and the same genera dominate boreal and arctic heathlands. Production of poor-quality litter by ericaceous plants (Cornwell et al., 2008; Adamczyk et al., 2016) and the recalcitrant nature of the mycelium of their associated ERM fungi (Fernandez & Kennedy, 2018; Adamczyk et al., 2019; Tonjer et al., 2021) may promote positive feedbacks, in this case by reducing decomposition (Fanin et al., 2022), and thus N availability, to faster-growing plant species (Bennett & Klironomos, 2019). Ericoid mycorrhizal (ERM) fungi can contribute to plant N uptake (Hobbie & Hobbie, 2006; Hewitt et al., 2015) and are genetically equipped for decomposition of a broad variety of organic compounds (Read & Perez-Moreno, 2003; Martino et al., 2018). However, the larger C stocks in ERM systems relative to ECM systems (Hartley et al., 2012; Clemmensen et al., 2013, 2021; Parker et al., 2015, 2021) suggest that ERM fungi use different mechanisms and/or are less efficient in accessing organic nutrient pools than ECM decomposers.

In Northern Europe, AM symbioses are mostly found in croplands or grasslands dominated by forbs and grasses that produce high-quality litter (Cornelissen et al., 2001). As AM fungi lack the genes to access organic N (Smith & Read, 2008), saprotrophs in these systems drive soil organic matter decomposition and promote N mineralization (Phillips et al., 2013; Lin et al., 2017; Keller & Phillips, 2019). With increasing release of inorganic N species, bacterial communities involved in inorganic N cycling become more abundant, and the balance between different N cycling guilds further determine whether N is fixed from the atmosphere (via diazotrophy), retained (e.g. via dissimilatory nitrate reduction to ammonium, DNRA), or lost in gaseous or water-soluble forms (e.g. via denitrification or nitrification; Zhao et al., 2017; Putz et al., 2018).

It is uncertain whether links between ECM–AM mycorrhizal regimes and soil C : N ratios are driven by differences in soil N or C stocks, or both (Averill et al., 2014; Zhu et al., 2018). Further, the mechanisms that drive heathlands (Ward et al., 2021), and potentially some grasslands (Stark et al., 2019), to accumulate large soil organic stocks are not well established. At the global scale, mycorrhizal regimes covary with pedo-climatic conditions (Read, 1991; Steidinger et al., 2019), which makes it difficult to establish causal relationships between the shifts in mycorrhizal types and soil characteristics. We therefore used a landscape-level mosaic of grassland, heathland, and forest vegetation patches, with limited confounding pedo-climatic variation, to investigate whether different plant–microbial feedbacks stabilize vegetation types while driving contrasting trajectories of soil C and N storage. The grasslands were historical reindeer grazing fields (milking grounds) surrounded by ericaceous heathlands and mountain birch forests in a subarctic–alpine ecotone in northern Sweden (Egelkraut et al., 2018a). Analysis of historical aerial photographs indicated that the milking grounds are still stable despite abandonment over 100 yr ago, although some areas are slowly being colonized from the edges by the surrounding vegetation. We combined DNA-based characterization of soil microbial communities with biogeochemical analyses. We also analyzed natural abundances of stable N isotopes, which can indicate processes underlying variation in C and N stocks (Robinson, 2001; Hobbie & Högberg, 2012).

We hypothesized (H1) that the mosaic of heath, forest, and grassland (historic milking grounds) vegetation is stabilized by different plant–soil feedbacks involving different modes of microbial N cycling. Specifically, in grasslands, we expected grasses and forbs to associate with AM fungi and a high relative abundance of saprotrophic fungi to promote organic matter decomposition and N mineralization, leading to inorganic N cycling by bacteria and archaea. In forests, trees would associate with ECM fungi that promote organic N mining through decomposition of organic matter, and in heaths, dwarf shrubs and associated ERM fungi would promote organic N cycling but constrain decomposition by hampering saprotrophs. We further hypothesized (H2) that the contrasting plant–soil feedback mechanisms would have led to diverging long-term soil C and N stocks in grasslands, heathlands, and forests. Thus, we expected uncoupled soil C and N storage across the vegetation mosaic; C stocks would be highest in heath, intermediary in forest, and lowest in grassland, while N stocks would be highest in grassland, intermediary in heath, and lowest in forest.

Materials and Methods

Study system and soil sampling

We used seven historical milking grounds and surrounding vegetation situated in the sub-alpine-to-alpine ecotone within a 2 x 2 km area between Staloluokta (67°19′5.1888″N, 16°41′51.1476″E) and Staddajåkkå (67°14′27.2364″N, 16°35′28.5252″E) in Badjelânds National Park (NE Sweden; Supporting Information Fig. S1). Average yearly temperatures in the area have increased from −1.8 to 0.5 °C between 1961 and 2014, and average yearly precipitation is 968 mm. Milking grounds are cultural remains of historical (c. 1350–1900 AD) Sami reindeer husbandry, in which reindeer were kept for milk production during summer months.
and the high grazing pressure, resulted in vegetation patches dominated by grasses and forbs (Egelkraut et al., 2018a).

The milking grounds are surrounded by Arctic downy birch (Betula pubescens Ehrh) forest or heath vegetation (dominated by Empetrum nigrum and Vaccinium spp., Fig. S1). Near each milking ground (n = 7), control plots representing the same soil type, topography, and position in the landscape were selected previously to represent the vegetation type that most probably would have dominated the milking ground area without the historical grazing (Egelkraut et al., 2018a). Five milking grounds were paired with heath vegetation controls (n = 5) and two with mature birch forest controls (n = 2; Fig. S1). Sampling plots of 5 × 10 m in the central part of each milking ground and in the paired heath and forest controls were set up for vegetation analyses in a previous study (Egelkraut et al., 2018a). To facilitate studies of smaller-scale, plant–soil interactions, soil sampling plots of 0.5 × 0.5 m were established inside the vegetation plots. While these plots may have failed to cover spatial variation around larger trees, we prioritized to keep plot size equal across all vegetation types. Additional 0.5 × 0.5 m plots were set up along the outer circumference of each milking ground within zones that had been colonized by the surrounding vegetation between 1964 and 2008, as determined by comparisons of two sets of aerial photographs (Egelkraut et al., 2018a). For this, historical outlines of the milking grounds were converted to line plots in a handheld GPS, which were inspected during fieldwork (Fig. S1). Recently colonized zones were categorized as either colonizing heath (n = 7; dominated by Empetrum nigrum L.) or colonizing forest (n = 8; dominated by B. pubescens saplings). In addition, 0.5 × 0.5 m plots were set up under the closest established B. pubescens tree (established tree) outside each of the milking grounds (n = 6, excluding one milking ground). These established trees were either solitary trees located close to the milking grounds, or they were on the edge of the closest forest and were therefore analyzed separately from the mature forest controls.

In July 2016, three soil cores including the litter layer and the complete organic horizon (the O-horizon; hereafter ‘organic topsoil’) were collected in each of the 35 plots, using a 3-cm diameter cylindrical steel corer with a sharpened edge. The fully organic topsoil, which was commonly 10–20 cm thick, rested on mostly shallow mineral soil or directly on bedrock. Thus, only the organic topsoils were sampled quantitatively to their full depth and according to surface area (in total 21.2 cm² per plot, but sampling depth was variable across sampling points due to the variable thickness of the organic topsoil. Preserving soil stratification, the 105 soil cores were kept cool (at c. 10°C) in separate plastic bags for up to 3 d during transport and then frozen at −20°C until processed.

Sample preparation and carbon, nitrogen, and stable isotope analyses

The three soil cores from each plot were separated into the superficial litter layer (L, constituting on average 10 and 2.4% of the organic topsoil carbon and mass, respectively), the upper half of the humus layer (H1), and the lower half of the humus layer, including any humus-mineral soil transition, if present (H2). The mineral soil was otherwise not included in the study. Living roots, stems, and woody debris larger than 2 mm in diameter were removed (i.e. finer roots were left in the sample), and the samples from the same horizon were pooled within plots, resulting in a total of 35 plots × 3 horizons = 105 samples. The composite samples were weighed to obtain the total fresh weight of the organic topsoil per sampled area (based on the added area of the tree soil cores), and a subsample was weighed before and after freeze-drying to obtain water content for calculation of total soil dry mass per m². The freeze-dried samples were ground with a mortar and pestle to a fine powder. Organic content was determined by loss-on-ignition at 550°C for 6 h (to account for in-mining of mineral soil in the otherwise organic samples), and samples were analyzed for total C and N content as well as 15N : 14N isotopic ratios (Methods S1).

DNA extraction and quantitative PCR (qPCR) of marker genes

DNA was extracted from 150 mg (H1 and H2 horizons only; as we targeted root–microbial interactions, the root-free litter layer was not included in microbial analyses) of freeze-dried and milled soil using the NucleoSpin Soil kit (Macherey-Nagel, Düren, Germany). DNA concentration was measured on a Qubit Fluorometer (Life Technologies), and the extracts were diluted to 3 ng DNA µl⁻¹ of which 2 µl (6 ng DNA) was used per PCR reaction of 20 µl. PCR inhibition was checked for all samples (Methods S1).

Total fungal and bacterial community sizes were evaluated by quantification of the fungal internal transcribed spacer region 2 (ITS2), using the primers ITS57 (Ihrmark et al., 2012), ITS4 (White et al., 1990) and ITS4arch (Sterkenburg et al., 2015), and the V3 region of the bacterial 16S rRNA gene, using the primers 341F and 534R (López-Gutiérrez et al., 2004), respectively. Genetic potential for ammonia oxidation was determined by quantification of amoA genes of ammonia-oxidizing archaea (AOA), using the primers crenamoA23F and crenamoA616R (Tourna et al., 2008), and ammonia-oxidizing bacteria (AOB), using the primers AmoA1F and AmoA2R (Rotthauwe et al., 1997). This process is a precursor of N loss as it results in the production of nitrate, a water-soluble and highly mobile N species, and further also fuels gaseous N losses through denitrification. Additionally, nrfA genes, involved in respiratory ammonification (a step in dissimilatory nitrate reduction to ammonium (DNRA)), were amplified using the primers NrfA2aw and NrfAR1 (Welsh et al., 2014) to assess the genetic potential for internal retention of N in the system, and nifH genes were quantified using the primers Ueda19F (Ueda et al., 1995) and R6 (Murasina et al., 2001) to assess the genetic potential for diazotrophic N₂ fixation. Primer information, qPCR mix, cycling conditions, and amplification efficiencies are listed in Table S1. Detailed qPCR procedure is available in Methods S1.

Fungal community sequencing

Fungal communities were PCR-amplified in duplicates using the forward gtTS7 (Ihrmark et al., 2012) and reverse ITS4/ITS4arch (White et al., 1990; Sterkenburg et al., 2015) primers, both of
which were extended by a linker base (T), sample-specific 8-base identification tags (which differed in at least three positions) and a terminal base (C) (Clemmensen et al., 2016). Amplification was done with minimized numbers of PCR cycles to avoid length-based biases (reaction mix and cycle conditions are available in Table S1; Castaño et al., 2020). Further details are available in Methods S1.

DNA sequence analyses

Sequences were quality-filtered and clustered using the Scata pipeline (https://scata.mykopat.slu.se/, accessed on April 16, 2019). Sequences shorter than 200 bases were removed, and the remaining sequences were screened for primers (requiring 90% match) and sample tags (100% match). Sequences with an average amplicon quality score of <20 or with a score of <10 at any position were omitted. Unique genotypes in the total data set were removed to limit the influence of sequencing errors on the clustering outcome. After collapsing homopolymers to three bases, sequences were clustered into species-level clusters (hereafter ‘species’) using single-linkage clustering based on USEARCH (Edgar, 2010) pairwise comparisons with mismatch penalty of 1, gap open penalty of 0, gap extension penalty of 1, and a minimum similarity of 98.5% to the closest neighbor required to enter clusters. The entire UNITE database of fungal species hypotheses (Abarenkov et al., 2010) and published reference data sets (Clemmensen et al., 2014, 2021; Lindahl et al., 2021) were included as reference data during clustering, providing taxonomical identification based on the same criteria as the clustering but without influencing the clustering outcome.

After the removal of clusters representing plants, 165 985 out of the total of 357 439 reads (1610 ± 65 reads per sample) remained. The 557 most abundant fungal species, each represented by at least 50 sequences and together representing c. 93% of total fungal reads, were evaluated further for taxonomical and functional classification. For this, the most abundant genotype from each species was compared against the UNITE and INSD databases using massBLASTER in PlutoF (Abarenkov et al., 2010), and the output carefully evaluated. A first full taxonomical profile of each species was also obtained using Protax (Somervuo et al., 2016) implemented in PlutoF, using a 50% probability of classification. Taxonomic identities at species level were assigned based on >98.5% similarity with database references. Fungal species were further assigned to the following functional guilds based on information on their prevalent substrate and plant associations: root-associated basidiomycetes, root-associated ascomycetes, yeasts, saprotrophic basidiomycetes, saprotrophic ascomycetes, pathogens, molds, wood saprotophs, lichens, and AM fungi.

Ectomycorrhizal (ECM) species were assigned to exploration types: contact, short, medium-smooth, medium-fringe, and long, according to Agerer (2001) and DeEMY (Agerer & Rambold, 2017).

Statistical analyses

Community data were analyzed with CANOCO v.5.0 (Biometris Plant Research International, Wageningen, the Netherlands), and univariate data were analyzed in R v.3.0.2 (R Core Team, 2021).

Our study was designed to minimize spatially confounding effects by targeting all vegetation types at each location. A Euclidean distance matrix based on Universal Transverse Mercator (UTM) coordinates of the plots was reduced into significant spatial principal coordinates of neighbor matrices (PCNM) vectors (P < 0.05). We then used variance partitioning to quantify variance attributed to spatial factors, vegetation types, and soil variables (C : N ratios, C stocks, N stocks, and δ15N). Conditional effects of these three variable groups (i.e. spatial, vegetation, and soil) were tested by redundancy analysis (RDA) with 999 Monte-Carlo permutations.

Initial analyses indicated that fungal communities and abundances of bacterial and archaeal functional genes were similar in the two humus horizons, with no vegetation type x horizon interactions found (P > 0.05). Hence, we based all further analyses of microbial communities on mass-weighed averages of the two humus layers, which also eliminated depth-wise pseudo-replication. To test whether soil fungal communities reflected vegetation types, we first used correspondence analysis (CA) of Hellinger-transformed fungal community data to obtain a graphical representation of community similarity among vegetation types. The effects of vegetation type on community composition were tested and visualized by canonical correspondence analysis (CCA) using Monte-Carlo permutation tests (999 permutations). Canonical correspondence analyses with forward selection of explanatory variables were also used to test whether soil factors indicative of N cycling mode (C : N and δ15N) and total N and C stocks per area were related to compositional and functional changes in fungal communities. To visualize patterns in microbial communities aggregated in functional groups, principal component analysis (PCA) was performed using the centered and standardized functional group abundances (absolute abundances of archaeal amoA, nirF and nrfA, relative abundances of each fungal guild; and ratios of fungal and bacterial abundance) and the soil variables were correlated to the ordination axes.

We tested whether plot-level soil variables (i.e. total C and N stocks, C : N ratios, and δ15N) and gene copy numbers (bacteria, fungi, and the functional N cycling groups) differed significantly among the six vegetation types using linear mixed-effects models (in the nlme package), in which site (n = 7) was included as random factor and vegetation type as fixed factor. Models were checked for normality and homoscedasticity, and data were transformed when needed. Tukey’s HSD (in the emmeans package to adjust for multiple testing) was used for post hoc tests (P < 0.05) of all pairwise comparisons.

Linear mixed-effects models were used to test associations between soil variables and abundance of microbial groups (bacterial 16S rRNA gene and fungal ITS abundance, bacterial and archaeal amoA, nirF and nrfA genes; relative abundance of fungal functional groups). These models were run separately with each individual microbial abundance specified as fixed factor, but additional models also included vegetation type as random factor to disentangle patterns within vegetation types.
To understand how microbial communities interacted with long-term soil C and N dynamics, we compared depth profiles of C : N and δ¹⁵N based on the two organic soil layers and the litter layer. Soil depth is a good representation of organic matter age in cold ecosystems with acidic soils and limited vertical mixing by burrowing fauna (Clemmensen et al., 2013). The amount of organic matter above the sampling point (‘depth-wise cumulative stocks’) is a more reliable representation of soil depth than directly measured distances, which are confounded by variation in density and compaction during sampling. Therefore, we used depth-wise cumulative N stocks as a representation of depth (and organic matter age) to capture vertical variation in C : N ratio and ¹⁵N-enrichment. Slope values of linear regressions of δ¹⁵N values against depth-wise cumulative N stocks across the three depth layers in each plot were calculated as $s = r (\sigma X/\sigma Y)$, where s is the slope, σX is the SD of δ¹⁵N, σY is the SD of cumulative N stocks, and r is the correlation coefficient. We then used linear mixed-effects models to test relationships between the relative abundance of root-associated fungi, and (1) the soil C : N ratio (mass-weighed across all three layers per plot), and (2) the slope of δ¹⁵N linearly regressed against the depth-wise cumulative N stock.

Results

Soil and microbial N cycling characteristics

C : N ratios in the organic topsoil (averaged across H1 and H2) were lowest in milking grounds (17 ± 1), intermediate in transitional samples, and highest in forests (26 ± 1) and heath (32 ± 2), whereas the δ¹⁵N signatures showed the opposite pattern (Fig. 1; Table S2). Fungal : bacterial ratios were lowest in milking grounds and higher toward both heath and forest (Fig. 1; Table S2). The genetic potential for archaeal ammonia oxidation (i.e. archaeal amoA abundance) and respiratory ammonification (nrfa abundance) was highest in milking grounds, intermediate in transitions, and low or absent in both heath and forest (Fig. 1; Table S2). Bacterial amoA abundance was below detection limit. The genetic potential for soil-borne diazotrophic N2 fixation (nifH abundance) by free-living bacteria was lowest in milking grounds and increased progressively toward the heath (Fig. 1; Table S2).

Fungal communities differed among vegetation types

Soil variables, vegetation types, and their shared variation explained 21.8% of total variation in fungal community composition, whereas spatial distance had a small (3.2%) but significant influence (Fig. S2). Fungal communities in milking grounds and heathlands were most divergent, while forest and areas undergoing colonization by either heath or trees had intermediary positions along the first axis of the CA ordination plot (Fig. 2a). CCA confirmed that fungal communities changed across vegetation types ($P < 0.001$, $R^2_{adj} = 10.7%$; Fig. 2b). While several root-associated ascomycetes (e.g. Hyaloscypha and other Helotiales spp.) increased their dominance toward heath, root-associated basidiomycetes (e.g. Pseudotomentella, Cortinarius, and Russula) increased toward forest (Fig. 2b). There was a shift within the ECM fungal communities from the dominance of species with simple mycelia (contact, short, and medium-smooth exploration types) making up c. 98% of the ECM reads in plots recently colonized by trees, toward the dominance of cord-forming species (medium-fringe type), mainly Cortinarius, making up 20% of ECM reads under established trees and 83% of the ECM reads in mature forest (Fig. S3). Two AM clusters were found in milking grounds, but they accounted for <1% of reads. A set of root-associated ascomycetes were present in milking grounds, including species of Archaeorhizomyces, Oidiodendron, and Mollisia as well as members of the order Helotiales (Fig. 2b). Molds (e.g. Mortierella and, Umbelopsis) and other saprotrophs, such as Pseudeurotium and yeasts (e.g. Cryptococcus), were also associated with milking grounds (Fig. 2b).

Mode of N cycling is linked to changes in the abundance of microbial guilds

The relative contribution of fungal guilds and abundances of genes involved in inorganic N cycling was aligned with soil factors along a gradient from lower C : N and higher pH, δ¹⁵N and N stocks in milking grounds toward higher C : N and lower pH, δ¹⁵N and N stocks in forest and heath (Fig. 3), with correlations underpinned by both among- and within-vegetation type variation (Fig. S4; Table S2). Carbon stocks were unrelated to this overall pattern. Heaths had the lowest average pH of 3.9 ± 0.2, and milking grounds had the highest average pH of 4.6 ± 0.1.

Abundance of nrfA and archaeal amoA genes and fungal saprotrophs increased with lower C : N ratios and higher N stocks typical of milking grounds (Fig. 3; Table S2). Litter C : N ratios were highest in heath (40 ± 3), lowest in forest (26 ± 3), and intermediate in milking grounds (33 ± 4), but C : N ratios decreased more steeply with soil depth in milking grounds than in heath and forest (Fig. 4a). By contrast, the δ¹⁵N signature increased more steeply with soil depth in forest than in heath and forest (Fig. 4a). Soil C : N ratio was positively associated with fungal abundance (Fig. S4, Table S2), particularly root-associated fungi (Figs 3, 4c; Table S2). Similarly, the steeper increases in δ¹⁵N with depth were positively related to the relative abundance of root-associated fungi ($F = 21.1$, $P < 0.001$, $R^2 = 37.4%$, Fig. 4d).

Mycorrhizal fungi with contrasting decomposition capacities uncouple soil N and C storage across vegetation types

Soil N stocks differed more among vegetation types than soil C stocks. Soil N stocks reflected patterns in δ¹⁵N with the highest levels in milking grounds and lower levels in both heath and forest (Fig. 1; Table S2). Soil C stocks were higher in the heath than in forests (Fig. 1; Table S2), but were not related to patterns in soil N stock, C : N or δ¹⁵N, fungal : bacterial ratio or inorganic N cycling potential in a consistent manner across vegetation types (Fig. 1). Along the milking ground-to-forest transitional
Fig. 1 Organic topsoil C : N ratios, δ¹⁵N signatures, fungal : bacterial ratios, abundances of functional genes involved in inorganic N cycling (nifH, amoA, and nrfA; values rescaled from copies per g OM⁻¹ to a range of [0,1] for each gene), and total N and C stocks in six vegetation types in Badjelândia National Park. The total depth of the organic topsoil was 10–20 cm, and the superficial litter layer was only included for the C and N stocks. Error bars are SE of the means, and different letters indicate significant difference among vegetation types for each variable, as determined by Tukey’s pairwise comparison test (α = 0.05, n = 2–8).
gradient, both C and N stocks declined, whereas along the milking ground-to-heath gradient N stocks decreased while C stocks remained high. Thus, milking grounds, forests, and heaths stabilize at different soil C : N ratios as they accumulate soil C and N stocks at different rates (Figs 1, S5).

Fungal community composition was significantly correlated with both N (Pseudo-F = 1.6, P(adj) = 0.004, Adj. expl = 4.8%) and C stocks (Pseudo-F = 2.2, P(adj) = 0.002, Adj. expl = 6.2%). A large group of root-associated ascomycetes and some root-associated basidiomycetes, prevalent in heath, correlated negatively with N stocks, but positively with C stocks (Fig. S6). By contrast, several root-associated basidiomycetes, prevalent in forest, such as ECM species within Cortinarius, Russula, Piloderma, and Lactarius, correlated negatively with both N and C stocks (Fig. S6). Molds, such as species of Mortierella, and some root-associated ascomycetes within Archaeorhizomycetes and Oidiodendron associated with the high N and C stocks of some milking grounds and transitional plots (Fig. S6).

Discussion

Our study of a stable mosaic of grasslands (historical reindeer milking grounds) and close-by forest and heath vegetation allowed us to test hypotheses derived from larger-scale vegetation patterns (Read, 1991; Steidinger et al., 2019) of how distinct plant–microbial interactions affect N and C cycling and stocks with limited confounding effects of climatic variation or other large-scale drivers. In addition, the studied indicators of plant–microbial feedbacks allowed us to evaluate stabilization mechanisms operating along, and potentially maintaining, abrupt changes among the vegetation types. The inclusion of areas more recently colonized by trees or heath vegetation corroborated the proposed causal relationships between microbial community composition and soil processes across the vegetation mosaic.

Overall, our data support the idea that contrasting plant–microbial feedback mechanisms, involving different modes of N cycling, act to stabilize the three vegetation types, in line with the predictions of our first hypothesis. However, AM fungi were less abundant in the grasslands than expected. Our second hypothesis predicted that C and N stocks would show disparate patterns across these vegetation types, along with the different feedbacks. This hypothesis was also supported, as C stocks differed much less than N stocks among vegetation types. However, grasslands had larger C stocks than expected. Below follows a proposal (Fig. 5) of how the vegetation types are maintained by contrasting positive feedbacks and how these may have resulted in the observed C and N stock patterns across the vegetation mosaic.

Historical milking grounds are the result of previous intensive reindeer husbandry practices, which incurred disturbance and accumulation of nutrients during past centuries. The absence of AM fungi in milking grounds was unexpected, as the vegetation was dominated by grasses and forbs typically associated with AM fungi (Engelkraut et al., 2018a,b). Instead, we detected particular species of dark septate root endophytes and other putative root-associated ascomycetes, which are common in Antarctic and Arctic ecosystems (Newsham et al., 2009). These fungi are generally well protected against harsh conditions by thick and melanized cell walls (Fernandez & Koide, 2013), and some have been found...
Fig. 3 Functional characteristics of fungal and prokaryotic communities in the organic topsoil of six vegetation types in Badjelända National Park, based on sequencing of ITS2 amplicons and quantification of functional genes, respectively. (a) Relative abundances of fungal functional groups in the organic topsoil in each vegetation type. (b) Principal components analysis (PCA) of fungal guilds and bacterial and archaeal functional genes involved in inorganic nitrogen cycling (black arrows) and relationships with soil variables (red arrows). The soil parameters were passively fitted to the ordination axes, and length of arrows reflects the strength of association with the PCA axes. Vegetation types are grouped by confidence intervals (inner circles, 5%, and dotted outer circles, 75%). Microbial components were centered and standardized. Asco. sapr., Ascomycete saprotrophs; Basidio. sapr., Basidiomycete saprotrophs; F : B, fungal : bacterial ratio; RAA, root-associated ascomycetes; RAB, root-associated basidiomycetes.
Fig. 4 Depth profiles of (a) C : N ratios and (b) δ^{15}N (‰) in the organic topsoil of six vegetation types. Values for three depth layers (the superficial litter layer and the two deeper humus layers) are plotted against depth-wise cumulative N stocks. Relative abundances of root-associated fungi (summed Ascomycota and Basidiomycota) plotted against (c) the organic topsoil C : N ratios (mass-weighed over the three organic horizons per plot), and (d) the regression slopes of δ^{15}N against depth-wise cumulative N stocks (as in b, but with slopes obtained from linear regressions per sampling plot). Total depth of the organic topsoil was 10–20 cm. The lines and P-values in (c) and (d) are linear regressions across all 35 plots. Error bars are SE of the means (n = 2–7 per vegetation type).

To be favored by high soil N availability (Kytöviita & Olofsson, 2021) or may promote plant performance by mineralizing N in the vicinity of the roots (Newsham et al., 2009; Newsham, 2011). Even a century after active use ceased, the grasslands had the largest proportion of free-living saprotrophic fungi, with molds, yeasts, and ascomycete saprotrophs being particularly important. These groups typically mediate fast decomposition of relatively high-quality organic matter, such as recent plant litter and dead mycelium. Together with the low fungal-to-bacteria ratios (based on gene copy ratios) and high genetic potential for ammonia oxidation and respiratory ammonification, this suggests fast decomposition, mineralization, and inorganic N cycling (Phillips et al., 2013; Lin et al., 2017). We found no evidence for currently enhanced N inputs through diazotrophic N fixation by free-living bacteria, as the *nifH* abundance was low in the grasslands. Instead, the higher genetic potentials for respiratory ammonification in grasslands suggest elevated nitrification and that recycling of nitrate to ammonium can be an important mechanism that minimizes N losses and retains large N stocks in this system (Putz et al., 2018). We speculate that this inorganic N cycling and retention by DNRA bacteria underlie the previously suggested positive plant–soil feedbacks in milking grounds (Engelkraut et al., 2018b), which would favor the persistence of fast-growing, high-litter-quality plants. The δ^{15}N signatures were also particularly high in grasslands (Fig. 1), probably due to 15N-enriched inputs, and potentially also losses of 15N-depleted N during the reindeer grazing legacy (Högberg et al., 1996). Based on our results, we propose that, unless inorganic pools are depleted, these grassland patches may be resistant to colonization by less competitive birch seedlings and ericaceous shrubs (Fig. 5).

The increasing organic topsoil C : N ratios when transitioning from grasslands to either forest or heath were associated with decreasing genetic potentials for inorganic N cycling and increasing relative abundance of root-associated fungi. Together these patterns suggest that root-associated fungi promoted shifts from inorganic to organic N cycling along both gradients (Clemmensen et al., 2013; Phillips et al., 2013). The summed relative abundance of all ECM fungi increased toward forest, but there was also a shift within ECM communities. Several of the ECM fungi that dominated in forest soils, such as species within *Russula* and *Cortinarius*, correlated negatively with both C and N stocks, and particularly *Cortinarius* species have previously been suggested to be efficient decomposers that mine N from older organic matter (Bödeker et al., 2014; Lindahl & Tunlid, 2015). Such potential N mining activity would be consistent with the steeper depth gradient in δ^{15}N and higher C : N ratios in deeper organic layers observed in the forest, as both of these patterns can result from ECM fungal N mobilization and transfer of 15N-depleted N to plant hosts (Hobbie & Högberg, 2012; Clemmensen et al., 2013). In contrast to forests, under higher inorganic N availability in, or close to, former milking grounds, the relative abundance of ECM fungi was lower, and potential N mining ECM had lower relative abundance (established trees) or were absent (colonizing trees). This suggests that while trees colonizing former grasslands from the edges may mainly exploit easily available N pools, ECM decomposers increase in abundance only...
under N limitation further away from the grasslands. Based on our results and previous work, we speculate that ECM decomposers restrict the accumulation of soil N and C (Clemmensen et al., 2021; Lindahl et al., 2021), thus promoting a positive plant–soil feedback loop that allows trees to access and monopolize an otherwise inaccessible N pool in the forest (Fig. 5). If trees colonize ancient grasslands, a long-term consequence of this feedback may be a loss of soil C and N stocks. In forests, limiting N availability promotes ECM decomposers that can oxidize organic matter, decreasing soil N and C stocks. In heath, plant–fungal litter interactions stabilize organic matter. We postulate that these contrasting plant–microbial feedbacks drive the long-term stability of the three contrasting vegetation types.

The heath had the highest C : N ratio of the organic topsoil, which paralleled high litter layer C : N ratios. Nevertheless, the dominance of root-associated fungi and their positive association with C : N ratios suggests that root-mediated processes are important in regulating organic soil C and N dynamics and total stocks. Relative abundance of root-associated ascomycetes and ERM fungi, particularly *Hyaloscypha* spp., also increased progressively from milking grounds toward heath. Soil C stocks however...
did not differ between heath and milking grounds (Stark et al., 2019), but C stocks were less variable than N stocks and consistently high in heaths. The maintained C stocks in heath may seem counterintuitive, since ERM fungi have the capacity to access a wide range of organic substrates (Read & Perez-Moreno, 2003; Martino et al., 2018). However, ERM fungi do not possess oxidative mechanisms to attack complex, phenolic macromolecules (e.g. lignin), typical for white-rot (extracellular peroxidases) or brown-rot (Fenton chemistry) Basidiomycota. Moreover, ERM necromass can be stabilized by interacting with plant tannins (Adamczyk et al., 2019) and often has relatively high C : N ratios, lipid, and melanin concentrations, which makes it resistant to decomposition (Fernandez & Kennedy, 2018). Additionally, nifH genes were most abundant in heath, indicating that some of the N needed by the plants may be supplied through fixed N rather than through decomposition. We propose that low-quality plant and fungal litter and fungal communities without prominent decomposer capacities impair decomposition and N mineralization (Wardle et al., 2003), leading to strong positive plant–soil feedbacks that preserves the stress-adapted plant and fungal communities in the heath and precludes the establishment of faster-growing plant species (Read, 1991; Fig. 5).

In conclusion, more than a century after abandonment, the historical milking grounds still show multiple indications of prominent inorganic N cycling, likely maintaining dominance by grassland vegetation through a positive plant– soil– microbial feedback loop (Fig. 5). Only along the grassland edges, where trees or dwarf shrubs and their root-associated fungi had colonized within the last 50 yr, we observed decreasing inorganic N cycling potential and increasing soil C : N ratios. This suggests that unless inorganic pools are depleted, these grassland patches may be resistant to colonization by less competitive trees or shrubs. Heath and forest vegetation also showed indications of positive plant– soil– microbial feedbacks, albeit based on different mechanisms. While trees seemed to support organic matter decomposition and organic N mobilization via association with presumed efficient ECM decomposers, heath vegetation may hamper decomposition and N cycling by associating with stress-resistant root-associated ascomycetes. Meta-transcriptomics analyses would be a valuable approach to contrast N mining and decomposition activities across different soil communities, although sampling of rapidly degrading mRNA remains a challenge in remote areas like this. We propose that the contrasting plant– soil– microbial feedback mechanisms underlie the coordinated and abrupt patterns in multiple biotic and soil factors and stabilize the vegetation mosaic (Suz et al., 2021) even in the absence of strong climatic drivers (cf. Steidinger et al., 2019). We further propose that the disparate patterns in topsoil N and C stocks across the vegetation mosaic are tightly linked to contrasting ecologies of the root-associated fungal communities and the N cycling potential of the bacterial and archeal communities (Fig. 5).

Acknowledgements

This work was funded by grants from Swedish University of Agricultural Sciences. The authors would like to acknowledge support of the Uppsala Genome Center and UPPMAX for providing assistance in massive parallel sequencing and computational infrastructure. Work performed at Uppsala Genome Center has been funded by VR (Vetenskapsrådet) and Science for Life Laboratory, Sweden. Jaanis Juhanson is acknowledged for advice on quantitative PCR. We acknowledge the valuable contributions of four anonymous reviewers.

Competing interests

None declared.

Author contributions

JO, DE, KEC and CC designed the experiment. The sequencing work and bioinformatic analyses were performed by CC with the support of KEC. The qPCR work was performed by CC with the support of SH. Data analysis was performed by CC with the support of KEC and BDL. The manuscript was written by CC with inputs from all authors.

ORCID

Carles Castaño https://orcid.org/0000-0002-2403-7006
Karina Engelbrecht Clemmensen https://orcid.org/0000-0002-9627-6428
Dagmar Egelkraut https://orcid.org/0000-0002-2644-2144
Sara Hallin https://orcid.org/0000-0002-9069-9024
Björn D. Lindahl https://orcid.org/0000-0002-3384-4547
Johan Olofsson https://orcid.org/0000-0002-6943-1218

Data availability

Sequence data are archived at NCBI's Sequence Read Archive under accession no. PRJNA750897. Experimental design, community data, and associated data of this study can be found in Mendecy Data/Dryad, doi: 10.17632/ptj93cpf7k.1.

References
