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ABSTRACT

This thesis aims to show that a Stacking Ensemble of multiple base-learners can provide a

more accurate prediction of commercial flight delays between the ten largest US airports

than the individual prediction models. Three types of machine learning models, namely

LASSO, Random Forests and Neural Networks are used as base-learners with different hyper-

parameters. A Stacking Ensemble is created by using LASSO as meta-learner. The Stacking

Ensemble and the base-learners that performed best on the training data are then evaluated

on a test data set. The results are compared by the metrics accuracy, ROC AUC, MCC and

F1 Score. It is shown that the Stacking Ensemble is able to provide superior predictions for

flight delays in comparison to the best individual models.
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1. Introduction

Flight delays are costly for passengers and airlines, therefore being able to predict potential

flight delays might reduce costs for both parties. It is a topic that has been researched

intensively from many different angles recently (Sternberg et al., 2022; Carvalho et al, 2020).

Commercial air traffic is a large part of the economy, that has been ever growing over the

last decades. This growth also led to worse on-time performance of planes due to limited

resources, for example the capacity of airports (Wang et al, 2022).

However, in the recent past from 2020 to 2022, the Covid-19 pandemic caused a significant

slump in flight and passenger numbers. Therefore, it is interesting to look at how flight delays

can be predicted under these specific external conditions.

Figure 1: Monthly domestic flights based on the data available from the Bureau of Transporta-
tion Statistics. The dotted lines mark the time frame investigated in this thesis.

Figure 1 visualizes the extent of the impact on the flight industry in the United States during

the pandemic in relationship to the year preceding the event. At the lowest point the number

of commercial flights was just around one third of the year over year comparison, with flight

numbers slowly increasing again over time.

The Bureau of Transportation Statistics (bts.gov) provides very detailed data about air traffic

in the United States. This makes the data particularly useful to investigate. Furthermore,

flight delays are more common in the US than in Europe (Campanelli et al., 2016).
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As mentioned previously, flight delays are a well researched, but complex topic. A combination

of many different factors could explain flight delays. One phenomenon is delay propagation,

which refers to the fact that one delayed flight can cause multiple other delays with either the

plane or the airport infrastructure being the bottleneck, partly due to a first-come first-served

handling of flights at US airports, which supports the propagation of flight delays (Campanelli

et al., 2016). Wang et al. (2020) found that the way airlines handle delays consistently

predicts further flight delays and that the operational performance of airlines in this regard

has improved in recent years.

Borsky and Unterberger (2019) investigated the influence of bad weather on flight delays

using regressions and found a significant influence of rainfall, wind and snow on US flight

performance, specifically on departure delays. Another example of influences on flight delays

is the general traffic at airports, which depends on multiple factors such as time of the week,

yearly seasonality and public holidays (Wang et al., 2022).

These are just some of the factors that make the prediction of flight delays a complex issue

(Carvalho et al., 2021). This compelxity leads to Stacking Ensembles, which are a state-of-

the-art method that proved successful at many machine learning competitions by providing

the best predictions on difficult problems. Between 2005 and 2015 the number of scientific

papers dealing with ensemble methods in general have tripled (Sagi & Rockach, 2018).

There are several studies about flight delay prediction using Stacking Ensembles, but they

are either based on data collected before the pandemic or they have a different scope or both.

For example Zhang et al.(2022) only focus on flights from a single airport or Mang and Chen

(2020) who focus on a different country.

Therefore this thesis aims to answer the following research question:

Can a Stacking Ensemble predict flight delays on the 10 busiest US airports based on data

collected during the pandemic better than its best base-learner models?
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2. Data

The main data source for this thesis is the website of the United Stated Bureau of Transporta-

tion Statistics (www.bts.gov). They provide data for all commercial flights in the United

States.

Due to computational limitations the initially very large data set was filtered down by the

top ten busiest airports by flights, hence only flights between these airports are considered.

The final data set consists of 624567 flights, split into 3/4 training and 1/4 testing data. The

final data set consists of 60 variables, which are described in the appendix.

Figure 2: Comparison of Delay Ratios for the Airports in the Data Set

There are also notable differences between the different airports and their performance, as

can be seen in figure 2. The lowest ratio of delayed flights occur at Charlotte Douglas (CLT),

while Dallas Fort Worth (DFW) and Denver International (DEN) for example have higher

ratios.

The initial data set includes the delay of each flight in minutes, including negative delays

for flights that arrived earlier than scheduled. This was transformed into a binary response

variable with the levels ‘on_time’ and ‘delayed’. The cut off was at flights with +1 minute

delayed arrival or more, which were classified as ‘delayed’ and the rest as ‘on_time’. Note
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that the response variable in the data set can be considered mildly imbalanced as can be

seen from figure 3, where approximately 30% of the flights were delayed and consequently

around 70% arrived by the scheduled time.

Figure 3: Distribution of the Binary Response Variable

By glancing at the data one can already make numerous observations that convey interesting

information in regards to the relationship of some of the explanatory variables and the delay

of flights. For example, figure 4 demonstrates the influence that the airlines themselves might

have on the on time performance of their flights.

Figure 4: Comparison of Delay Ratios for the Airlines in the Data Set

After the download of the flight delay data from the BTS website it was augmented with

information from other sources. Open source data from opensky-network.org was used to
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determine the types of planes associated with each flight. The data were linked via the

tail numbers that uniquely identify each airplane. Furthermore, the geographic locations

for every airport was obtained from openflights.org, where the data were linked using the

International Air Transport Association airport code available in both data sources. The

geographic locations were then used in conjunction with the flight dates to obtain weather

information by using the API of the National Oceanic and Atmospheric Administration

(noaa.gov).

Figure 5: Number of Flights and their Arrival Performance in Relation to the nearest Holiday

Additionally, the distance in days to the closest national public holiday was calculated. Figure

5 shows how the number of flights increases closer in time to public holidays. Additionally it

gives an indication of the quantity of delayed and on-time flights.

Figure 6: Proportion of Delayed Flights in Relation to the nearest Holiday
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Figure 6 shows the relationship of the flight delay proportion in relation to the flights temporal

proximity to the next US federal public holiday. There are a total of eleven federal holidays

per year and they are not uniformly distributed, however it can still be seen that there are

more flights close to holidays and that these flights seem to have a higher percentage of

delayed flights. When looking at figure 5 and 6 combined, it appears that a larger quantity

of flights per day could be related to an increasing proportion of delays.

Lastly, the flight dates were transformed using cyclical encoding to make it usable for the

machine learning models.
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3. Method

This section contains the theory behind the Stacking Ensemble, the base-learner models used

as candidates for this thesis, their model specifications and details about how the models are

evaluated.

3.1 Ensemble Learning

An integral part of ensemble learning is the combination of the learners. Dietterich (2000a)

categorizes the benefits of it in three areas. Firstly, through optimizing predictions from

many different starting points it is more likely to get closer to the true values as it is less

likely to erroneously rely on local optima. Furthermore, by using a multitude of models the

risk of overfitting on training data is reduced. Lastly, the combination of learners increases

the space of solutions and reduces bias and by that increasing the chance of approximating

the truth.

Figure 7: Visual Representation of Ensemble Classification (Polikar, 2012)

It has been shown that classification ensembles are able to predict classes better than the

best individual classifiers that underpin the ensemble, early examples are for example bagging

and boosting (Opitz & Maclin, 1999). Weak learners are models whose predictions are only a
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limited improvement over random guesses. Even using these weak learners as base-learners

in an ensemble can create strong learners with more accurate results (Zhou, 2012).

Figure 7 is a demonstration of how the principle of meta-learning functions, where it uses the

results produced by base-learners and learns about how they learned from the data (Džeroski

& Ženko, 2004). The figure (Polikar, 2012) depicts a classification problem with three different

classes (triangle, circle and square). Each of the three models in the figure produces different

decision boundaries based on two features. In this theoretical example the three models that

are the base-learners have different problems in classifying the symbols correctly, for example

model three works well with the circles, but has problems discriminating the triangles from

the squares. The Σ-symbol represents the combination of the base-learners into the stack in

the bottom left. The stack then is used as the data for the ensemble model in the bottom

right, which in this example achieves perfect discrimination between the classes.

Diversity is important for ensembles, as combining base-learners that each result in different

errors allows the overall errors to be reduced by using a sophisticated meta-learner (Polikar,

2006).

Ensembles can be distinguished by being heterogeneous or homogeneous. Homogeneous

ensembles only use different variations of one single type of learners where diversity can be

for example achieved through their respective hyper-parameters. In contrary heterogeneous

ensembles combine multiple different types of learners (Bian & Wang, 2007).

While often times choosing a simple model is preferred, the relatively complex combination

of many diverse models is very likely to improve the overall generalization capability (Elder,

2018).

For classification the simplest approach is using fixed combining rules, such as majority voting

or averaging (Kittler, 1998), but many more options to combine multiple models exist. The

one this thesis is focusing on is the Stacking Ensemble approach.
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3.2 Stacking Ensemble

Originally introduced by Wolpert (1992) Stacking Ensembles, or as he called the procedure

Stacked Generalization, aim to improve generalization accuracy. The primary way of achieving

this is to combine multiple base-learners. This procedure is described by Wolpert as an

advanced form of cross-validation. The combination procedure in this case is called a

meta-learner.

Ting and Witten (1999) identify the choice of meta-learner and the composition of the data

set D′ that is used for stacking as significant issues for Stacking Ensembles.

Unlike other methods such as bagging, meta-learners do not use different variations of subsets

of the training data, but instead create their own transformation of the data based on the

predictions that are made by the different base-learners (Vilalta & Drissi, 2002).

For classification using the class probabilities that each base-learner assigned for each ob-

servation as the meta-learner data set has shown to provide better results than using the

predicted class (Ting & Witten, 1999).

Stacking has been found to improve prediction quality, while other methods are better suited

to optimize other outcomes, such as bagging for decreasing variance (Nti et al., 2020; Zhou,

2012).

The base-Learners ht create predictions through the algorithms L1, . . . ,LT based on the

training data D. The probability for one class and the true outcome are combined to create

the data set D′. While this is the procedure used in this thesis, there are other ways of

creating D′, for example by also including the initial training data D. The meta-learner h′ is

trained with the algorithm L on D′ to create the new Stacking Ensemble H(x) that can be

used to predict on unseen test data (Zhou, 2012). The process is summarized in algorithm 1.

Many different algorithms can be used with a classification meta-learner in a Stacking

Ensemble, for example XGBoost, Logistic Regression, Random Forest, LASSO or Neural

Networks.
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Algorithm 1: Stacking Ensemble Algorithm (Zhou, 2012)
Input : Data set D = {(x1, y1), (x2, y2), ..., (xm, ym)}

Base-Learners L1, . . . ,LT
Meta-Learner L

Output: H(x)=h′ (h1(x), . . . , hT (x)), where ht(x) denotes the output of the t-th

base-learner with x as a vector of class probabilities for all observations. These

are combined by the meta-learning algorithm h′ into the combined class

probability H(x).

1 for t = 1, ..., T : do

2 ht = Lt(D)

3 end

4 Generate a new data set D′ = ∅

5 for i = 1, ...,m : do

6 for t = 1, ..., T : do

7 zit = ht (xi), where the t-th learner is applied to the i-th observation in the input

vector x, resulting in the it-th class probability zit, which is the output of

base-learner ht on xi.
8 end

9 Combine the base-learner class probabilities into the new data set:

D′ = {(zi1, . . . , zit, yi)}mi=1.
10 end

11 Train the meta-Learner h′ by applying the Meta-Learner algorithm L to the new training

data set for D′.

12 h′ = L (D′)

3.3 Learners

3.3.1 Logistic LASSO

LASSO is an acronym for least absolute shrinkage and selection operator. This statistical

method’s goal is coefficient shrinkage and automatic selection of the predictor variables. The
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logistic variant is essentially a logistic regression model with a penalty term added that

regularizes the coefficients. Due to the variable selection properties the LASSO is well suited

for data sets with n >> p and due to the sparsity induced by the method it can handle large

data sets. (Tibshirani, 2011)

A categorical response variable is estimated using one or multiple predictor variables. In

logistic regression, predictor variables may be categorical or numerical. A sigmoid function

that limits outputs between 0 and 1 is used to convert the relationships between the predictor

variables into a binary categorical estimate, for which the numerical value conveniently is the

equivalent probability for the class membership of each observation. The logistic function, for

simplicity here exemplified with a single predictor, is represented in (1) based on James(et

al., 2012), with

p(X) = eβ0+β1X

1 + eβ0+β1X
, (1)

where p(x) can take any value between 0 and 1. This can be transformed into the odds ratio

in (2) by using cumulative logistic distribution.

p(X)
1− p(X) = eβ0+β1X (2)

The odds after the application of the natural log give the log odds as shown in (3):

log
(

p(X)
1− p(X)

)
= β0 + β1X (3)

Based on the probabilistic nature of the logistic regression one can make use of the likelihood

estimation in which (4) can be used to compute the joint probabilities under the assumption

that P (yi = 1) = p and P (yi = 0) = 1− p.

L (β0, β) =
n∏
i=1

p (xi)yi (1− p (xi))1−yi (4)
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Due to limitations of calculations with the likelihood function and its products, the negative

log of the likelihood function is used instead, as shown in (5), where the negative log loss

function is to be minimized:

Llog = ` (β0, β) =
n∑
i=1
− log 1 + eβ0+βxi +

n∑
i=1

yi (β0 + βxi) (5)

Logically speaking, the values for β̂0 and β̂1 are optimized in a way that if they are entered

in (5) as many observations as possible are associated with their true class.

Tibshirani (1996) developed the idea of the L1−penalty to reduce the errors in OLS estimation,

but it can similarly be applied in the logistic regression context. The effect of the penalty is

shrinkage of the coefficients, which is based on the absolute magnitude of the coefficients.

Consequently, coefficients of a LASSO model can be shrunk to 0 and by that remove the

respective predictor from the estimation. The LASSO has a hyper-parameter λ that is

multiplied by the penalty and thereby establishes the magnitude of the penalty. This is

represented in (6), with

L1 − penalty = P (β) =
p∑
j=1
|βj| , (6)

where λ can take any value between 0 and ∞. The penalizing term multiplied by λ is then

simply added to the log-likelihood formula in equation (7):

Llog + λ
p∑
j=1
|βj| (7)

From this can be deduced that if λ = 0 the LASSO becomes a regular logistic regression

without any shrinkage applied to its coefficients. The value for λ is in practice determined by

a cross-validation procedure (Harrel, 2015).

The LASSO method is represented in algorithm 2:
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Algorithm 2: Logistic LASSO Algorithm (Van Loon et al., 2010)
Input : A set of features X

Binary outcomes y

Output: A learned function f̂

1 Define a set of candidate tuning parameter values Λ.

2 Randomly split the data into K cross-validation folds of roughly equal size.

3 foreach λ ∈ Λ do

4 for k = 1 to K do

5 Optimize the penalized likelihood using only the observations outside of fold k.

6 Apply the trained model to obtain an error for each observation on fold k.

7 end

8 Average the cross-validation error across all observations.

9 end

10 Choose λ∗ to be the value in Λ with the lowest cross-validation error.

11 Optimize the penalized likelihood using all observations and the penalty parameter vaule

to obtain a set of parameters β̂(λ∗)
0 , β̂(λ∗).

12 Return the learned function f̂(X) = 1/
(
1 + exp

(
−β̂(λ∗)

0 −Xβ̂(λ∗)
))

.

3.3.2 Random Forest

A Random Forest is an ensemble of Decision Trees with the trees as the base-learners and

the Random Forest as the meta-learner. Random Forests can either be constructed from

regression or classification trees. The disadvantage of Decision Trees is their high variance,

which can be overcome by the combination of many trees into a forest (James et al., 2021).

Simply using Decision Trees also tends to result in overfitted models that are not working

well on new data. This is where Random Forests a come into play, as they can be used to

improve prediction accuracy on unseen data compared to a Decision Tree due to the Law of

Large Numbers (Breiman, 2001).

In order to de-correlate the Decision trees from each other, the predictor variables in each

tree are a randomly selected subset m of the entirety of predictors p. This is done so the
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trees of the model are not focusing on few strong predictors where they would end up very

similar to each other. Therefore, by increasing the number of trees B the accuracy of the

classifier improves and overfitting is prevented. The minimum amount of nodes per tree is

nmin (James et al., 2021; Breiman, 2001).

Bagging is used where repeated bootstrap samples Z∗B are taken from the data set D with

replacement and of size N . The classifier is then trained using this sample to obtain the

model f̂ ∗b(x). The procedure is repeated B times, after which uniform aggregation leads to

(8):

f̂bag(x) = 1
B

B∑
b=1

f̂ ∗b(x) (8)

This results in better performance where the avgErr(f̂ b(x)) ≥ Err(avg(f̂ b(x)). The bagging

produces B trees, after which a majority vote is cast between the trees to determine class C

of observation x.The Random Forest procedure is summarized in algorithm 3:
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Algorithm 3: Random Forest Classification Algorithm (Hastie et al., 2009)
Input : Training Data D

Parameters {B, nmin,m, p,N}

Output: Tree Ensemble

Class Prediction

1 for b = 1 to B do

2 (a) Draw a bootstrap sample Z∗ of size N from D.

3 (b) Grow a Random Forest tree Tb to the bootstrapped data, by recursively repeating

the following steps for each terminal node of the tree until nmin is reached .

4 i. Select m variables at random from p.

5 ii. Pick the best variable/split-point among m.

6 iii. Split the node into two daughter nodes.

7 end

8 Output the ensemble of tree {Tb}B1
9 Let Ĉb(x) be the class prediction of the b-th tree.

10 Then ĈB
rf (x) = majority vote

{
Ĉb(x)

}B
1
.

3.3.3 Neural Network

Figure 8: Shallow Feed-Forward Neural Network (Hastie et al., 2009)
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Neural Networks can be distinguished by the amount of hidden layers in the network. In this

paper the focus is on single layer neural networks, which means that the structure is similar to

figure 8, with a network consisting of an input layer, a single hidden layer and an output layer.

The input layer of a classification model consists of nodes based on the predictor variables

X1 to Xp. The input layer nodes feed into each of the M nodes of the hidden layer. From

there, the hidden layer nodes feed into the output layer with its K nodes, which represent

each of the classes predicted. Neural Networks can include non-linear transformations and

hence are well suited for non-linear relationships within the data (Hastie et al., 2009).

Each of the M nodes in the hidden layer has an activation Z, with equation (9)

Zm = hm(X) = g

wm0 +
p∑
j=1

wmjXj

 , (9)

where g is the non-linear activation function, hm(X) a transformation of the input and w the

weights (James et al., 2021).

Common activation functions are ReLU, linear, sigmoid and softmax. For this study only

the softmax function (10) is of relevant. It formulated as

g(x)i = exp (xi)∑n
j=1 exp (xj)

, (10)

where g is the function and x the input. The denominator normalizes the result of the

function to a value between 0 and 1, which similar to the sigmoid in logistic regression can

be interpreted as probabilities (James et al., 2021).

The fitting of Neural Network is concerned with the weights that represent the unknown

parameters in the model, where θ is the set of all weights. The components of θ are shown in

(11) (Hastie et al., 2009):
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{α0m, αm;m = 1, 2, . . . ,M} M(p+1)weights, {β0k, βk; k = 1, 2, . . . , K} K(M+1)weights.

(11)

The fit of a neural network used for classification can be measured by the cross-entropy (12)

that is calculated with

R(θ) = −
N∑
i=1

K∑
k=1

yik log fk (xi) , (12)

where the objective function R(θ) is minimized. A common procedure for the minimization

in stochastic gradient descent, but computationally more efficient options exist, such as

the ADAM optimizer. The combination of cross-entropy loss and softmax activation is the

equivalent of logistic regression within the nodes of the hidden layer (Hastie et al., 2009;

Kingma & Ba, 2015).

Regularization can be used in neural networks to address the overfitting that R(θ) likely

inhibits (Hastie et al., 2009). While there are multiple options, dropout regularization is used

for the neural network in this study. The technique is based on randomly dropping nodes

from the input and hidden layer of a single layer neural network to reduce overfitting. A

new subset is dropped for every training sample. The constant φ determines the proportion

of dropped nodes. Because the overall number of nodes used in each iteration this neural

network is lower, the weights are scaled using the factor 1/(1− φ) (James et al., 2021).

3.4 Model

Figure 9 visualizes the definition of the different candidate models that were used to create

the Stacking Ensemble. Different models of base-learners were configured with different

hyper-parameters or combinations thereof. Due to computational constraints the amount of

models and hyper-parameter combinations was limited.

The four LASSO models differ only in their λ value, the different values that were used are 0,

0.0001, 0.001 and 0.01. The predictor variables were one-hot encoded and normalized.
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Figure 9: Model Definitions for the different Base-Learners that became Candidate Models
for the Stacking Ensemble after Cross-Validation, inspired by stacks.tidymodels.org

For the Random Forest models the number of trees and the number of randomly selected

predictors was varied between the models

The four Neural Network models had different numbers of hidden layer node with everything

else equal.The predictor variables were one-hot encoded and normalized. Dropout was set to

10%, batch size to 32. The minimization of the binary cross-entropy was done by using the

ADAM optimizer and the activation function was softmax.

The results of the base-learner models, specifically the class probabilities, and the true

outcomes from the data set were combined into the data stack as represented in figure 10.

Figure 10: Representation of the Data Stack with the Results of the Base-Learners that was
used for Training the Stacking Ensemble

The LASSO meta-learner used 25 bootstrap re-samples of the data stack with λ values in the

range of 10−6 to 10−1. This lead to the creation of the combined Stacking Ensemble model,

which was evaluated on the test data.

The best base-learner models per type were determined from the test data by their ROC
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AUC and were then also evaluated on the test data to have a benchmark for the Stacking

Ensemble.

3.5 Model Evaluation

This section describes by which metrics the models are evaluated and why they are evaluated.

The first applications of model evaluation are the candidate base-learner models for the

ensemble, here it is determined to which extent the base-learners are included in the final

Stacking Ensemble. This is purely based on test data and only ROC AUC is used, as there is

a limitation within the R package for this procedure.

After the ensemble composition is determined, multiple metrics are used to evaluate the

Stacking Ensemble and the best performing base-learners on the test data and against each

other. The intuition is based on figure 7 in section 3.1, where it is implied that a Stacking

Ensemble should be performing better at classification than its base-Learners. To reduce the

number of models compared against the ensemble, the base-learner models are first evaluated

on the training data to find the best one for each type.

3.5.1 Confusion Matrix

One way to summarize to performance of a model is the confusion matrix (Table 1), which

displays the information about how many observations of each class are correctly or falsely

classified by the model.

Table 1: Confusion Matrix

Actual True Actual False

Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

The values that are represented within the confusion matrix can be used as building blocks

for the other metrics.
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3.5.2 Accuracy

Accuracy is simply the rate of correctly classified observations calculated as follows (13):

ACC = 1
n

n∑
i=1

I (yi 6= ŷi) = TP + TN
TP + TN + FP + FN . (13)

Accuracy can be a misleading metric in cases of imbalanced data sets, for example in cases

where the classifier only guesses the majority class (Chicco & Jurman, 2020).

3.5.3 ROC AUC

The Receiver Operator Characteristic (ROC) graphically represents the relationship between

the false positive rate or specificity (14) and the true positive rate or sensitivity (15) for

binary classification tasks and can be used to diagnose the fit of a model (Kuhn & Johnson,

2013).

Specificity = TN
TN + FP (14)

Sensitivity = Recall = TP
TP + FN (15)

The performance of a classifier can be assessed by determining the Area Under the Curve

(AUC) of the ROC using equation (16).

ROCAUC = 1 + TP− FP
2 (16)

According to Huang and Ling (2005) the AUC has advantages over accuracy when it comes

to consistency and discriminancy. The ability to discriminate between the classes can be

interpreted by the following heuristic based on Hosmer et al. (2013):

22



IF



ROCAUC = 0.5 No Discrimination

ROCAUC < 0.7 Poor Discrimination

0.7 ≤ ROCAUC < 0.8 Acceptable Discrimination

0.8 ≤ ROCAUC < 0.9 Excellent Discrimination

ROCAUC ≥ 0.9 Outstanding Discrimination

3.5.4 F1 Score

The F1 Score (18) combines Precision (17) and Recall (15) into a measure for the entire

model and it increases if both values are balanced, which makes it particularly useful when

both classes are of equal importance (Chinchor, 1992). This behavior can at the same time

be problematic in imbalanced data sets (Chicco & Jurman, 2020).

Precision = TP
TP + FP (17)

F1 Score = 2 · TP
2 · TP + FP + FN = 2 · precision · recall

precision + recall (18)

3.5.5 MCC

Matthews Correlation Coefficient (MCC) has the advantage to be indifferent to imbalanced

data sets and class swapping (Chicco & Jurman, 2020).

MCC = TP · TN− FP · FN√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

(19)

The values of the MCC can range between -1 and 1, where -1 represents perfect misclassification

and 1 perfect classification (Chicco & Jurman, 2020).
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4. Results

This section presents the results of three different procedures. First the the results of the

base-learner models on the training data set set will be demonstrated. This is followed by the

tuning of the LASSO meta-learner and its results in order to compose the Stacking Ensemble.

Lastly, the performance of the Stacking Ensemble is assessed based on the test data set and

then compared against the performance of the best LASSO, Random Forest and Neural

Network models. Note that for all of the the tables in section 4.1 the ROC AUC values are

the means of the N-fold cross validation procedure. For all models five folds are used. The

standard error is a mean based on the results of the different folds.

4.1 Base-Learner Results on Training Data

The base-learner results are presented in table form. They are relevant because they determine

which models are the benchmarks for the stack. To decide which base-learner has the best

performance only the ROC AUC metric is used, which is captured as the mean value across

the five folds of the cross-validation procedure. Within the tables the models are ordered

descending by their ROC AUC value.

Table 2: Performance of the LASSO Base-Learner Models

Model λ Metric Mean N Std_Err

L1 0 ROC AUC 0.63876 5 0.00034

L2 0.0001 ROC AUC 0.63876 5 0.00034

L3 0.001 ROC AUC 0.63776 5 0.00033

L4 0.01 ROC AUC 0.61495 5 0.00072

Table 2 shows the performance of the LASSO models. It is notable that the model without

penalty and the model with λ = 0.0001 perform exactly the same. Therefore the simpler

model, in this case the model that is equivalent to a logistic regression model is determined

to be the best model.
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Table 3: Performance of the Random Forest Base-Learner Models

Model nmin Trees Metric Mean N Std_Err

RF5 8 500 ROC AUC 0.73919 5 0.00071

RF6 16 500 ROC AUC 0.73849 5 0.00081

RF3 8 250 ROC AUC 0.73783 5 0.00062

RF4 16 250 ROC AUC 0.73733 5 0.00069

RF1 8 25 ROC AUC 0.71995 5 0.00054

RF2 16 25 ROC AUC 0.71974 5 0.00071

Table 3 shows the results of the training procedure for the Random Forest base-learners

configurations. Differentiating are the randomly selected predictors for each tree and the

number of trees in the forests. The minimum node size was left static for this procedure with

a value of 15. As can bee seen from the results, the number of randomly selected predictors

was not very influential for the performance of the individual models. In contrast the number

of decision trees for the random forests had a more significant impact on the ROC AUC of

the models. The best Random Forest configuration uses 500 trees and 8 randomly selected

predictors.

Table 4: Performance of the Neural Network Base-Learner Models

Model Hidden Units Metric Mean N Std_Err

NN4 250 ROC AUC 0.70293 5 0.00068

NN2 150 ROC AUC 0.70279 5 0.00119

NN3 200 ROC AUC 0.70248 5 0.00049

NN1 100 ROC AUC 0.70206 5 0.00071

Table 4 shows the the best performing Neural Network model was the one with the most

hidden units. The general trend appears to be that more nodes improve the metric. However,

there is some inconsistency for the model with 150 nodes. The cross-validation for this model
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has a higher standard error than the other four Neural Networks and it is also higher than

for any other base-learner model. Interestingly, when comparing ROC AUC and accuracy

of the Neural Networks it can be observed in figure 11 that at 150 nodes the accuracy dips

strongly and is better at lower and higher node counts.

Figure 11: Comparison of Accuracy and ROC AUC for the Neural Networks during Training

Figure 12 compares the performance of all base-learners visually. For the accuracy metric all

three types of models are clustered relatively distinct from each other with small performance

differences within the different groups. One observation is that the the two weakest of the

Random Forest models are slightly worse than the others. The performance variation between

the Neural Network modes is slightly declining, while for the Lasso models the last ones drops

of strongly compared to the other three. Generally the Random Forest models outperform

the other two types, while the Neural Networks beat the Lasso models.

The order of models is similar for the other metric. The graph for the ROC AUC shows

larger differences between the types as well as within the the types. The two weaker Random

Forest models fall off more for this metric and between the Neural Networks and the other

Random Forest models. The LASSO model look much worse relatively to the other model

types and the weakest model falls off more for the ROC AUC than for accuracy.
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Figure 12: Comparison of Accuracy and ROC AUC for the Base-Learners during Training

4.2 Generation of the Stacking Ensemble

Figure 13: Training Performance of the Stacking Ensemble on the Data Stack

Figure 13 above shows the result of the tuning of the Stacking Ensemble model based on the

training data results of the base-learner models. The graph sets the number of base models

in the Stacking Ensemble into related to the accuracy and the ROC AUC values achieved

with the different configurations fed into the Lasso meta-learner model. Due to the similarity

off some of the base-learner predictions the regularization of the Lasso removes some of the

models. From a total of 14 models the lowest level of regularization at λ = 0.000001 sets the
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coefficients of three models to zero as part of the automatic feature selection properties in

the Lasso. When the amount of base-learners gets reduced further the performance of the

Stacking Ensemble drops of for accuracy as well as ROC AUC. The tuning process determined

the optimal amount of regularization to be at λ = 0.00001 as marked with the dotted line in

the graph.

Table 5: Models Included in the Stacking Ensemble with Coefficients

Stacking Ensemble Member Coefficient

Random Forest 5 1.6806

Random Forest 6 1.5868

Random Forest 4 0.7188

Random Forest 3 0.5399

Neural Network 4 0.3581

Neural Network 3 0.2959

Neural Network 2 0.2762

Neural Network 1 0.2220

Random Forest 2 0.0257

Random Forest 1 0.0141

The models are not necessarily in order of their ROC AUC results. Random Forest models

5 and 6 have by far the biggest coefficients. Notably is also that all Neural Networks have

similar coefficients. The magnitude of the coefficients is likely driven by the difference in

information the base-learners convey to the ensemble with their predictions.

4.3 Evaluation on Test Data

Figure 14 shows the confusion matrices for the best base-learners of each type and the stacking

ensemble after the evaluation on the test data set.

The confusion matrix for the Stacking Ensemble based on the evaluation on the test data in

figure 14 shows that the true values for the test data had 71.4% of flights on time and 28.6%
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Figure 14: Confusion Matrices for the Stacking Ensemble and the best Base-Learners

delayed. In contrast to that the model predicted 85.5% of the flights to be on time and 14.5%

to be delayed. With these predictions 93% of the on time flights were correctly predicted

while 7% of the on time flights were falsely predicted to be delayed. Of the truly delayed

flights only 33.2% of flights were correctly predicted and 66.8% were wrongly classified as

delayed.

The small percentages in the figure indicate the vertical and horizontal class proportions for

the true and predicted values. For example, the ensemble predicted 93% of the on-time flights

correctly, while 7% were wrongly classified as delayed. 77.6% of the as on-time predicted

flights by the ensemble were actually on-time, while 22.4% were in truth delayed.

It can be seen that the LASSO model is the best at correctly classifying the majority group,

but is really unsuccessful when it comes to the minority class. Hence this model has problems

dealing with the imbalance of the dependent variable, while at the same time the Stacking

Ensemble has the highest percentage of correct predictions on the minority class of all models,

but is only third best on the majority class.
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Table 6: Evaluation Metrics based on Test Data

Model Accuracy ROC AUC MCC F1

Stacking Ensemble 0.75889 0.75122 0.33683 0.84631

Random Forest 0.75626 0.74409 0.32009 0.40192

Neural Network 0.73796 0.71079 0.27372 0.39888

LASSO 0.71802 0.63827 0.11015 0.10351

Table 6 shows that by every single metric the Stacking Ensemble is superior to all other

models. The models are ranked the same for every single metric, which allows for an easy

ranking between them. The general types of the base-learners perform similar in relation to

each other as during the training phase, while the Stacking Ensemble outperforms the best

individual models.

While all models are relatively close to each other in accuracy with values between 71.8% and

75.95% the differences in the other metrics are more pronounced, even if the metrics do not

cover the same ranges. The LASSO falls off a bit more on the ROC AUC metric and even

more for the MCC and the F1 Score, which indicates that a linear model is not well suited for

this task. While the Random Forest is close to the performance of the Stacking Ensemble in

accuracy, ROC AUC and MCC it performs relatively worse on the F1 Score. It can be said

that overall the Stacking Ensemble predicts flight delays the best of the models evaluated.

Figure 15 shows the Receiver Operator Characteristics for the Stacking Ensemble and the

best performing models of each type of base-learner based on the test data set. The dotted

line represents the performance of flipping coins. It can be observed that the Lasso models

clearly performs the worst. The Neural Network comes close to the two best models but is

still clearly outperformed. The curves for the Stacking Ensemble and the Random Forest

model are very close performance wise and even overlap each other. From the ROC AUC

values it is visible that the value for the Stacking Ensemble is superior. The graph shows

that the Random Forest model performs slightly better between x-axis values 0 and 0.25,

but is outperformed by the Stacking Ensemble between 0.25 and 1, which overall leads to
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Figure 15: The ROCs for the different Models visually indicate the respective AUC

the conclusion that even visually, the Stacking Ensemble is the best model according to this

metric based on the evaluation on the test data set.
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5. Conclusion and Discussion

Like multiple studies before, performance of predictions based on unseen data has been

improved by using a Stacking Ensemble approach. The Stacking Ensemble model outperforms

every of its constituent base-learners in all metrics that were used for evaluation. It can

therefore be confirmed that a Stacking Ensemble can predict flight delays on the 10 busiest

US airports based on data collected during the pandemic better than its best base-learner

models.Interestingly, the best performing base-learner is also an ensemble model, showing

that the concept of ensembles in general can be very powerful if the extra computational cost

is no issue.

The combination of the base-learners shows that not only the best performing base-learners

are combined with descending magnitude of meta-learner coefficients. Instead some weaker

models have bigger coefficients than models that were performing better themselves, which

indicates that these models convey some additional useful information into the meta-learner.

This however does not mean there is no room for further improvement of the predictions on

this type of data. Especially since the RIC AUC for the Stacking Ensemble is only 0.751,

which can be only classified as fair discrimination. The model that is used by Zhang et

al. (2021) achieves a better values for ROC AUC, accuracy and F1 score, which are the

commonly used metrics. It has to be mentioned that they use more diverse models and have

a larger sample size. That means there is still significant potential to increase the predictions

of flight delays.

There are many paths for further investigations and improvements. Firstly, the number

of models for each base-learner type could be increased and more variety in their hyper-

parameters could be utilized. Secondly, additional types of base-learners could be used, for

example Support Vector Machines or XGBoost models. Thirdly, a different meta-learner

model could be used, such as a Random Forest or Neural Network. Fourthly, one could try

to take different approaches to combining the data stack, for example by including the initial

data. Lastly, the scope of the data could be extended, for example by including more airports,

a longer time period or additional variables to capture other potential causes for flight delays.
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Appendix A - Variable Description

Name Type Description

arr_delay categorical Response, flight delayed or on_time
cos_day numerical Cosine transformed day ( all dates are

scheduled arrival times)
cos_hour numerical Cosine transformed hour
cos_month numerical Cosine transformed month
cos_week numerical Cosine transformed week
cos_year numerical Cosine transformed year
dest categorical Arrival airport
dest_awnd numerical Average daily wind speed (tenths of meters

per second) at destination
dest_flght_day numerical Number of flights at destination
dest_prcp numerical Precipitation (tenths of mm) at destination
dest_snow numerical Snowfall (mm) at destination
dest_snwd numerical Snow depth (mm) at destination
dest_tmax numerical Maximum temperature (tenths of degrees

C) at destination
dest_tmin numerical Minimum temperature (tenths of degrees C)

at destination
dest_wsf2 numerical Fastest 2-minute wind speed (tenths of

meters per second) at destination
dest_wsf5 numerical Fastest 5-second wind speed (tenths of

meters per second) at destination
dest_wt01 categorical Fog, ice fog, or freezing fog (may include

heavy fog) at destination
dest_wt02 categorical Heavy fog or heaving freezing fog (not

always distinguished from fog) at
destination

dest_wt03 categorical Thunder at destination
dest_wt04 categorical Ice pellets, sleet, snow pellets, or small hail

at destination
dest_wt05 categorical Hail (may include small hail) at destination
dest_wt06 categorical Glaze or rime at destination
dest_wt07 categorical Dust, volcanic ash, blowing dust, blowing

sand, or blowing obstruction at destination
dest_wt08 categorical Smoke or haze at destination
dest_wt09 categorical Blowing or drifting snow at destination
dest_wt10 categorical Tornado, waterspout, or funnel cloud at

destination
dest_wt11 categorical High or damaging winds at destination
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Name Type Description

dest_wt18 categorical Snow, snow pellets, snow grains, or ice
crystals at destination

distance numerical “Distance between airports (miles)
holiday_dist numerical Time distance to the closest holiday in days
origin categorical Departure airport
org_awnd numerical Average daily wind speed (tenths of meters

per second) at origin
org_flght_day numerical Number of flights at origin
org_prcp numerical Precipitation (tenths of mm) at origin
org_snow numerical Snowfall (mm) at origin
org_snwd numerical Snow depth (mm) at origin
org_tmax numerical Maximum temperature (tenths of degrees

C) at origin
org_tmin numerical Minimum temperature (tenths of degrees C)

at origin
org_wsf2 numerical Fastest 2-minute wind speed (tenths of

meters per second) at origin
org_wsf5 numerical Fastest 5-second wind speed (tenths of

meters per second) at origin
org_wt01 categorical Fog, ice fog, or freezing fog (may include

heavy fog) at origin
org_wt02 categorical Heavy fog or heaving freezing fog (not

always distinguished from fog) at origin
org_wt03 categorical Thunder at origin
org_wt04 categorical Ice pellets, sleet, snow pellets, or small hail

at origin
org_wt05 categorical Hail (may include small hail) at origin
org_wt06 categorical Glaze or rime at origin
org_wt07 categorical Dust, volcanic ash, blowing dust, blowing

sand, or blowing obstruction at origin
org_wt08 categorical Smoke or haze at origin
org_wt09 categorical Blowing or drifting snow at origin
org_wt10 categorical Tornado, waterspout, or funnel cloud at

origin
org_wt11 categorical High or damaging winds at origin
org_wt18 categorical Snow, snow pellets, snow grains, or ice

crystals at origin
p_airline categorical Airline
p_flights numerical Number of flights the plane had that date
p_manufac categorical Manufacturer of the plane
sin_day numerical Sine transformed day
sin_hour numerical Sine transformed hour
sin_month numerical Sine transformed month
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Name Type Description

sin_week numerical Sine transformed week
sin_year numerical Sine transformed year
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