

Degree Project in Computer Science and Engineering

First Cycle, 15 credits

A Ray Tracing Implementation

Performance Comparison between

the CPU and the GPU

ROBIN NORDMARK

TIM OLSÉN

Stockholm, Sweden 2022

A Ray Tracing Implementation
Performance Comparison
between the CPU and the GPU

ROBIN NORDMARK
TIM OLSÉN

Degree Project in Computer Science and Engineering
Date: June 8, 2022
Supervisor: Stefano Markidis
Examiner: Pawel Herman
School of Electrical Engineering and Computer Science
Swedish title: En prestandajämförelse av ray tracing-algoritmen
implementerad på både CPU och GPU

iii

Abstract
Ray tracing has gained recent popularity due to the advancement of computer
hardware capabilities. The algorithm is used as a rendering technique for com-
puter graphics by tracing rays of light to determine the color of a single pixel,
thus simulating the physical behavior of light. This study explores the perfor-
mance differences between the ray tracing algorithm on the CPU and the GPU
processor units. By using CUDA, NVIDIA’s platform for parallel program-
ming, general-purpose programming could be utilized on the GPU and C++
for the CPU counterpart. By rendering different numbers of spheres in varying
resolutions, the performance difference could be measured on the two devices
and put against each other. From the data gathered, we could conclude that
the GPU, in most measurements, could finish its execution up to 1000–10000
times quicker than the CPU. However, there were instances, in lower resolu-
tions, where the CPU would outperform the GPU. The performance on the
GPU would in these lower resolutions be more unpredictable due to memory
latency. The results of this study highlight the performance capabilities of the
GPU, but also certain use cases on the CPU for lower pixel counts.

iv

Sammanfattning
Ray tracing har på senare tid ökat i popularitet på grund av utvecklingen av
datorhårdvara. Algoritmen används som en renderingsteknik för datorgrafik
genom att spåra ljusstrålar för att korrekt färga enskilda pixlar, och på så sätt si-
mulera hur ljus rör sig i verkligheten. Denna studie undersöker prestandaskill-
naderna för ray tracing-algoritmen på CPU- och GPU-processorenheterna.
Genom att nyttja CUDA, NVIDIA:s plattform för parallellprogrammering,
kunde programmering nyttjas på GPU:n, och C++ på CPU:n. Genom att ren-
dera en uppsättning sfärer i varierande upplösningar kunde prestandaskillna-
der mätas på de två enheterna och därefter jämföras. Från den insamlade datan
kunde slutsatsen dras att GPU:n, i de flesta mätningarna, avslutade sin exekve-
ring upp till 1000–10000 gånger snabbare än CPU:n. Det förekom dock fall,
vid lägre upplösningar, där CPU:n kunde prestera bättre än GPU:n på grund av
latens i minneshantering. Resultaten av denna studie understryker potentialen
hos GPU:n, men också vissa specifika användningsområden för CPU:n.

Contents

1 Introduction 1
1.1 Research question . 2
1.2 Scope . 2

2 Background 3
2.1 Terminology . 3
2.2 Ray Tracing . 3

2.2.1 Pseudocode . 5
2.2.2 Blinn-Phong . 6

2.3 CPU . 6
2.4 GPU . 7
2.5 CUDA . 7

2.5.1 Thread blocks . 8
2.5.2 Kernel . 9
2.5.3 Automatic memory management 9

2.6 Profiling . 9
2.7 Previous work . 9

3 Method 11
3.1 Renders . 11
3.2 Benchmarking . 11
3.3 Data sets . 12
3.4 Implementations . 13

3.4.1 CPU Implementation 13
3.4.2 GPU Implementation 15

3.5 NVIDIA Visual Profiler . 16
3.6 Verification . 17
3.7 Hardware limitation . 17

v

vi CONTENTS

4 Results 18
4.1 Resolution complexity . 18
4.2 Scene complexity . 20

5 Discussion 25
5.1 Relevance . 26
5.2 Future work . 27

6 Conclusion 28

Bibliography 29

A Profiling 31

B Renders 33

Chapter 1

Introduction

During the past couple of decades, computer graphics have become an in-
tegral part of everyday life in all parts of society. Important scientific work
needs to be visualized, simulations are using graphics to imitate real-world
scenarios, and computer-generated imagery (CGI) is used in multiple multi-
million-dollar industries. In such a wide field as computer graphics, it is bound
to arise numerous different techniques in pursuit of an even more true-to-life
render. One such technique is Ray Tracing. Ray Tracing was first conceptu-
alized during the 16th century, but it took nearly 400 years for the first imple-
mentations to arise. The algorithm involves tracing rays throughout a scene,
bouncing them off of object surfaces towards sources of light, and calculating
color values accordingly. The first implementations during the 1960s included
various 3D visual renders where Ray Tracing was used to calculate realistic
reflections of light [1]. Even though the interest in the technique fell off during
these times as computers of this era were too slow and other computationally
cheaper techniques were just as good, the interest in Ray Tracing saw a resur-
gence a couple of decades later [2]. Today Ray Tracing is predominantly used
for 3D visualization, such as in animated movies, but new uses also include
real-time graphics rendering in computer games, as the performance in com-
puter hardware continues to improve.

General-purpose computing on graphics processing units (GPGPU) is a pow-
erful alternative to the more common approach of programming using the
Central Processing Unit (CPU). Ray Tracing implementations can make use
of either one of these techniques, and both are used for different reasons in
practice. Real-time Ray Tracing is made possible by GPGPU as calculations
can be made in parallel, while animation studios often use clusters of CPUs

1

2 CHAPTER 1. INTRODUCTION

for rendering ray traced scenes.

1.1 Research question
The purpose of this thesis study is to investigate the performance of two im-
plementations of the Ray Tracing algorithm as our research question states:

How does a CPU versus a GPU implementation of Ray Tracing differ in per-
formance?

This problem will be explored and attempted to be answered by implementing
the Ray Tracing algorithm first on the CPU using C++, and then port that im-
plementation into the CUDA framework to utilize the GPU. The performance
will be benchmarked by rendering 3D images and the elapsed time measured.

It is very much anticipated that the GPU should gain an advantage over the
CPU in such a comparison due to calculations being made in parallel. The
interesting part, however, is exploring the scale on which both performances
differ and what these differences might imply. This is done in hope of provid-
ing a deeper understanding of how both hardware devices perform for the Ray
Tracing algorithm.

1.2 Scope
Since using Ray Tracing in real-time is computationally heavy and therefore
taxing on the limited hardware we have available we will not be examining
animations of any kind. We will instead render 3D still images and compare
the performance of each implementation based on render times. This study
will only focus on NVIDIA GPU devices as CUDA is utilized for the GPU
implementation. Other GPUs would require different frameworks, such as
OpenCL.

Chapter 2

Background

2.1 Terminology
Pixel: A single building block of a digital picture.
Scene: A composition of objects.
A Render: A digitally produced picture.
Ray: A vector representing light.
Space complexity: The amount of memory that is needed to calculate and
complete a problem.
Time complexity: The amount of time it takes for a function to complete a
problem.
Thread: The smallest type of instruction that the operating system can sched-
ule.

2.2 Ray Tracing
The Ray Tracing algorithm use case in the field of Computer Graphics is to
recreate true-to-life renderings of various scenes from the real world. To de-
scribe the process of Ray Tracing one can use the pinhole camera model as
seen in Figure 2.1. A light-proof box with a flat piece of photographic film
inside has a pinhole cut out which is covered. When uncovering the pinhole
rays of light can pierce the film and a chemical reaction occurs. This process
is equivalent to how a simple camera works. A modified model, as seen in
Figure 2.2, which suits computer graphics better fully disregards the box and
replaces the pinhole with a camera and the film with an image plane or screen.

3

4 CHAPTER 2. BACKGROUND

Figure 2.1: Pinhole camera model [2].

A fundamental question to be answered in computer graphics is; if a single
color is to represent a pixel, what color is the correct one to choose? There are
various algorithmic approaches to answering this question. The Ray Tracing
algorithm sets out to compute the color of each pixel in a scene according to
how a light source bounces rays within this scene against every object. Each
object can have different properties as to what material these are supposed to
represent. These properties will decide if a ray is wholly absorbed, reflected,
or a combination of both. A single pixel is then given a color according to
how the light has been reflected throughout the scene. The idea this describes
is called Forward Ray Tracing. With the modified pinhole model in mind a
ray from the light source is followed within the scene, bouncing on various
objects, passing through the image plane, and finally arriving at our eye. Only
rays that hit the eye will contribute to the color of the pixel that is found on
the image plane. A problem with this approach is that it is computationally
heavy. This is because most rays that we follow throughout the scene never
hit the image plane. Another more practical solution is to use Backward Ray
Tracing which is the same as the previously described forward algorithm but
in reverse. By starting at the eye, we can follow only the essential rays, now
called shadow rays, through the image plane, the scene, and to a light source
[2].

The simplicity of Ray Tracing makes the technique quite elegant. As the al-

CHAPTER 2. BACKGROUND 5

gorithm describes how light moves throughout a scene, akin to how photons
move in real life, it is an excellent tool for calculating reflections and shadows
in a render. These parts come naturally to the algorithm, though the technique
can be expanded upon to further increase its photorealism with some additional
shading techniques. One of these will be introduced in subsection 2.2.2.

Figure 2.2: An established model for describing Ray Tracing.
Credit goes to Wikipedia user Henrik.

2.2.1 Pseudocode
The Ray Tracing algorithm relies heavily on linear algebra, and therefore there
are some vector arithmetics in the pseudocode shown in Algorithm 1. The al-
gorithm iterates over each pixel, creating a ray vector that starts from a fixed
camera position and points in the direction of the current pixel. The ray will
then be followed throughout the scene, taking notice of any intersections with
objects, and finally, return a color depending on how and where the ray inter-
sected each object within the scene.

6 CHAPTER 2. BACKGROUND

Algorithm 1 Ray Tracing
1: procedure Run()
2: for x← 0 to width do
3: for y ← 0 to height do
4: ray ← norm((x, y, 0)− CAMERA)

5: print TRACE_RAY(ray)

6: end for
7: end for
8: end procedure

9: procedure Trace_ray(ray)
10: for spheres in scene do
11: hits← intersects_sphere(ray)
12: end for
13: return calculated_color(min(hits))

14: end procedure

2.2.2 Blinn-Phong
The Blinn-Phong reflection model delivers a method of creating ambient light,
diffuse light, and specular highlights to an object. The model is based on
Phong shading with some slight adjustments to how lightning is calculated
[3]. Blinn-Phong is often to be preferred as it creates a subjectively more
realistic shading texture. By adding such a shading model to a ray tracer an
improvement in realism is achieved.

2.3 CPU
A central processing unit (CPU) is the primary unit used to fetch and execute
instructions on a computer. The instructions are generally fetched from the
main memory and passed to the arithmetic/logic unit (ALU) which is the elec-
tronic circuitry responsible for executing logical and arithmetic operations.
The communication done within the different units of the CPU is organized
with a control unit (CU) that uses electrical signals to direct the different parts
of the system [4]. Thus the CPU architecture design philosophy enables a
diverse set of workloads to be executed and lends itself especially well to per-
forming serial computing tasks.

CHAPTER 2. BACKGROUND 7

Modern CPUs use several processing cores to increase performance. These
cores each have their own ALUs and CUs which means that they can execute
instructions simultaneously and independently of each other. However, these
cores can communicate with each other through the use of a shared address and
memory space using different hierarchical structures of the cache system [4].
While the operating system can use the multi-core architecture to optimize
performance, it is oftentimes up to the software developer to utilize parallel
programming to further increase the performance of individual software [5].

2.4 GPU
The graphics processing unit (GPU) is a highly parallel processor making it
suitable for computationally heavy programs. While it started as a means to
help accelerate 3D graphics, it has over time expanded its capabilities and
thus found itself in the center of a wide range of areas in computing. The
most prevalent of these include high-performance computing (HPC) and deep
learning [6].

The GPU is composed of hundreds of lightweight cores capable of handling
a lot of hardware threads. These threads are designed primarily for floating-
point computations rather than more advanced instruction-level parallelism
that can be found on CPUs. As a consequence, the hardware threads on the
GPU have a very high latency when fetching data from memory. The GPU
makes up for this latency by rapidly switching between the available threads;
therefore, it can be a challenging task to construct code that utilizes the hard-
ware most optimally but it is essential to use enough threads to hide this latency
[7].

2.5 CUDA
The Compute Unified Device Architecture (CUDA) is a platform that opens
the possibility of general-purpose programming on NVIDIA GPU devices.
CUDA allows for the graphics application programming interface (API) to be
overlooked, which provides a layer of abstraction due to the ability to disregard
the underlying graphical concepts [8].

The CUDA source code can be written in a general-purpose programming lan-
guage, such as C++, extended with annotations to distinguish it from the stan-

8 CHAPTER 2. BACKGROUND

dard C++ syntax. The source code can be compiled using the CUDA compiler
(nvcc), which passes a CUDA binary to a C++ host compiler, which provides
an executable that can be run on the CUDA runtime [9].
Because the code is executed on two physically different hardware devices,
CUDA distinguishes them through the terms host and device, the first refer-
ring to the CPU and its memory and the latter to the GPU and its memory
[9].

2.5.1 Thread blocks
CUDA uses the abstraction of a grid consisting of thread blocks to represent
sets of threads that within the same block can cooperate with fast shared mem-
ory. Each block is run on a single multiprocessor within the GPU responsible
for scheduling the threads as shown in Figure 2.3. Each block, along with ev-
ery thread within these blocks, possesses a unique identifier available to the
programmer through the use of built-in variables.

Figure 2.3: CUDA abstractions mapped to the GPU hardware [10].

CHAPTER 2. BACKGROUND 9

2.5.2 Kernel
A CUDA program is initially run on the host. To start executing code on the
device, a kernel call is invoked along with a grid of thread blocks. A kernel
works as a normal C++ function, extended with annotations to decide how
many CUDA threads should run the function in parallel - meaning that the
function will be run once per thread. When the kernel call has been invoked,
the host will continue to run any remaining code, which may cause the program
to terminate prematurely. To prevent this, the function cudaDeviceSynchronize
can be called to stall the host and wait for every thread on the device to finish
its execution [9].

2.5.3 Automatic memory management
Memory allocation in CUDA works similarly to how it is done in C/C++. It
is possible to allocate memory accessible both from the host and device, this
memory address space is referred to as the Unified Memory [11]. The function
cudaMallocManaged will allocate memory that is automatically managed by
the Unified Memory system. The function cudaFree will free the allocated
memory, regardless of where the memory is handled [9].

2.6 Profiling
Profiling tools are used to analyze the performance of a program. The infor-
mation will either be presented as blocks of text or visualized within some
graphical interface. The profiler will measure a wide variety of parts during
execution, including the space and time complexity of the program, the amount
of executed instructions and which functions are being called, and how much
time elapses during their respective execution. With this knowledge about the
execution of the program, ways to optimize its run-time can be explored more
easily if needed. This can be achieved by finding bottlenecks in the execution
of the program and restructuring accordingly thereafter. An example of profil-
ing done during one of the renders can be seen in Figure A.1 in the Appendix.

2.7 Previous work
There is not an abundance of performance comparisons for GPU/CPU imple-
mentations related to Ray Tracing, but there are at least two bachelor thesis
studies from Mälardalen University. The work presented by Norgren [12] sets

10 CHAPTER 2. BACKGROUND

out to evaluate real-time Ray Tracing solutions on GPU/CPU, which is then
later built upon by Liljeqvist [13] who attempts to perform a similar study,
exploring performance drops from the aforementioned study using a hybrid
GPU/CPU solution. Both of these studies evaluate a Ray Tracing solution in
real-time, using several Ray Tracing engines and graphics libraries. Norgren
concluded that Ray Tracing on the GPU almost always can be assumed to per-
form better than that of a CPU implementation. They also point out the fact that
large companies such as Intel research CPU implementations for Ray Tracing,
and the possibility of equal performance can be achieved, but the cost for this
is much higher compared to that of GPU solutions. Liljeqvist concluded that
it was infeasible to implement a hybrid (both utilizing the GPU and the CPU)
solution which could outperform a pure solution.

This study seeks to evaluate pre-rendered scenes using Ray Tracing, meaning
that no real-time evaluations are done. It is also worth mentioning that, unlike
the previous work, no graphics engines or libraries are utilized – placing the
implementation closer to the actual GPU/CPU hardware.
While this thesis is by many means different, the previous work can still act
as a reference point when comparing benchmarks on the different hardware
devices.

Chapter 3

Method

3.1 Renders
Every execution of the Ray Tracers would produce color values for each pixel.
These values would later be saved in an external PPM (Portable Pixel Map)
file. The PPM file could then be visualized in any optional image editor, such
as GIMP.

3.2 Benchmarking
A variety of different scenes were constructed for the data collection phase.
Each scene consisted of a number of spheres, ranging between one to nine,
which were lit by a single light source bouncing reflections between each
sphere. A sphere is a basic geometric figure and could easily be defined in
the scene without any external graphics libraries, which suited both Ray Trac-
ing implementations due to them being close to the hardware. An example
of a render with four spheres can be seen in Figure 3.1. The complexity of
the scene could be modified by changing the active amount of spheres being
rendered, in other words, the complexity corresponds to how much should be
rendered in a given scene. The decision to limit each scene to a fixed num-
ber of spheres was made so that if any trend revealed itself it would be easily
spotted when later comparing the benchmarks. The number of spheres could
have exceeded that of nine without any problem, but a set of max 3×3 spheres
fit the render quite nicely, as each sphere was neither too small nor too large.
The last parameter for varying each render was selected to be the resolution,
as the pixel count of a render is important for both workload and details in the
rendered picture. An aspect ratio of 1:1 was chosen for each render and the res-

11

12 CHAPTER 3. METHOD

olution ranged between 1×1 and 1000×1000 pixels for both the GPU and the
CPU. The upper limit was dependent on the limitation of the CPU’s capability
to render larger pictures. The amount of work having to be executed during
each render could then easily be changed using the resolution parameter.

When running the benchmarks, a scene from the dataset was chosen and then
executed on the CPU implementation and then the GPU implementation. For
both implementations, a C++ timer function using the standard library Chrono
[14] was used to measure the elapsed time right before starting to cast the first
ray until after all computations were done. The timer would only be started
after all necessary preparations had been done, such as memory allocations in
the case of the GPU implementation which is further mentioned in section 3.5.
A total of 50 runs were executed for every single scene and resolution, thus
providing data with a solid enough margin of error.

Figure 3.1: An example render made using the GPU implementation.

3.3 Data sets
The data sets were generated by writing the data from the benchmarks into
CSV files. The variables represented were the number of spheres, resolution,
and time in seconds. For each combination of spheres and resolution, there
would exist 50 separate time entries. Since the benchmarks were done on two

CHAPTER 3. METHOD 13

different hardware devices, thus creating separate files, CSV files could later
be merged to also possess an entry representing the hardware as shown in
Table 3.1. Merging CSV files and visualizing the data sets in different types
of graphs were done using a python script.

Spheres Resolution Time Type
6 200x200 0.000171 GPU
6 200x200 0.000112 GPU
...
6 200x200 0.084363 CPU
6 200x200 0.078270 CPU

Table 3.1: Example data set.

3.4 Implementations
The following subsection deals with the implementations of the Ray Tracing
algorithm. The CPU code was written in C++, whereas the GPU counterpart
was written in CUDA C++. Some inspiration was gathered from an imple-
mentation done in python, an implementation that is rather slow due to the
high-level nature of the python programming language [15].
The entire project code for the implementation can be found in the GitHub
repository associated with this thesis [16].

3.4.1 CPU Implementation
Both the CPU and GPU implementations were constructed with the attempt of
consistency in mind, meaning that as little as possible had to be changed when
moving on from the CPU to the parallelization on the GPU. Classes describing
mathematical constructs such as three-dimensional vectors, spheres, and rays
were defined in separate header files to have more clearly defined objects in
the code.

The idea for the algorithm on the CPU consisted of tracing rays through each
pixel of the image into the scene in a sequential manner. The main function
contains the initial setup before running the Ray Tracing algorithm. This in-
volves defining a light source vector, and the spheres to be rendered to the
scene. The number of spheres and their placements was predetermined in a
makeScene function.

14 CHAPTER 3. METHOD

The run function defines the camera vector and invokes the trace_ray function
for every pixel in the scene, much like the pseudocode presented in subsec-
tion 2.2.1. To take care of reflection, a ray is traced through the scene a finite
amount of times, defined as five times as shown in Listing 1. This means that
light that keeps reflecting infinitely between surfaces will be caught.

while(depth < 5) {

Ray OD = Ray(rayO, rayD);

Traced traced = trace_ray(OD);

if(traced.m_col_ray.x() == -1 &&

traced.m_col_ray.y() == -1 &&

traced.m_col_ray.z() == -1) {

break;

}

Sphere object = traced.m_sphere;

Vec M = traced.m_M;

Vec N = traced.m_N;

Vec col_ray = traced.m_col_ray;

rayO = M + 0.0001 * N;

rayD = norm(rayD - 2 * dot(rayD, N) * N);

col += reflection * col_ray;

reflection *= traced.m_sphere.ref();

++depth;

}

Listing 1: Calculation of reflection and color.

A crucial part of the code is the trace_ray function. Following the structure
from the pseudocode, every object in the scene is inspected for intersection
with the ray to determine whether the ray will bounce off an object as shown
in Listing 2. In the case of no intersection, infinity is returned resulting in
plain black color, representing nothingness. Lastly, the color is calculated with
Blinn-Phong shading as described in subsection 2.2.2.

CHAPTER 3. METHOD 15

Traced trace_ray(Ray & r) {

float t = INFINITY;

float t_object;

int object_i = 0;

int i = 0;

for(Sphere object : scene) {

t_object = intersect_sphere(object, r);

if(t_object < t) {

t = t_object;

object_i = i;

}

++i;

}

if(t == INFINITY) {

return Traced();

}

// Intersect with other objects

// along with shading left out

}

Listing 2: The trace_ray function.

3.4.2 GPU Implementation
The main differences when moving to the implementation on the GPU were
parallelization and memory management. Since rendering on the CPU was
done sequentially, every pixel could be written to a file directly. However, due
to the unpredictability of the parallelism, results needed to be stored in device
memory to later be written to a file. Initial setup before invoking the run kernel
consists of allocating memory on the device as well as defining the number of
threads per block as described in subsection 2.5.1.
Memory allocation on the device was done with cudaMallocManaged, as shown
in Listing 3, where the size allocated is determined by N multiplied by the size
of Vec, where N represents the total amount of pixels.

16 CHAPTER 3. METHOD

Vec * res;

int N = HEIGHT * WIDTH;

cudaMallocManaged(&res, N*sizeof(Vec));

Listing 3: Allocation of memory on the device.

Using dim3 variables, defined in the CUDA standard library, the block sizes
along with the number of threads could be declared. The threads are defined as
two-dimensional 8×8 grids. The blocks are also two-dimensional and depend
on the resolution, meaning that the number of blocks is defined as width

8
× width

8

grids, each added by one to make up for non-integer quotients as shown in
Listing 4.

dim3 blocks(c_WIDTH/blocks_x+1, c_HEIGHT/blocks_y+1);

dim3 threads(blocks_x, blocks_y);

Listing 4: Declaration of thread and block partitions.

A kernel call is invoked to the run function, as depicted in Listing 5, which
leads the GPU to execute the run function in parallel. The run function has the
same key functionality as described in subsection 3.4.1. Parameters passed are
mainly used to access essential data when moving from the host to the device.

run<<<blocks, threads>>>(

res, scene, LIGHT, number_of_spheres, x

);

Listing 5: Kernel launch for initializing computations on the GPU.

3.5 NVIDIA Visual Profiler
The NVIDIA visual profiler is a CUDA-compatible profiler with a graphical
interface. By running the compiled executable file of the GPU implementa-
tion through the visual profile some observations could be made. Regardless

CHAPTER 3. METHOD 17

of the resolution being rendered, a majority of the total time was spent allo-
cating memory as the GPU needed to cooperate with the CPU as explained in
subsection 2.5.3. This can be seen in Figure A.1 found in the Appendix. It is
first when the cudaMallocManaged function has completed its setup that the
kernel run is launched.

3.6 Verification
Verifying the correctness of the implementation is an integral part when ensur-
ing that correct results are provided. One of the most essential verifications
in this study was observing the rendered images. Even though unoptimized
code may lead to slower than possible performance, the rendered images pro-
vide the groundwork for ensuring an at least correct implementation. Having
consistency between both implementations is an attempt to assert that perfor-
mance differences are on the hardware, rather than optimization issues on the
implementation.

3.7 Hardware limitation
The amount of benchmarking performed in this study was limited by the hard-
ware that was available at the time. Using an almost seven-year-old CPU (re-
leased 2015) may have had an impact on the max resolution which could be
rendered in a reasonable amount of time compared to using hardware released
more recently. As the pixel count grew in size, each benchmark would have
taken entire days to complete.

Listed below is the hardware used during the benchmarking. Please observe
the generous amount of CUDA cores the GPU has access to compared to the
CPUs counterpart in cores.

CPU: Intel(R) Core(TM) i7-6700K CPU @ 4.00 GHz, 4 cores, 8 logical pro-
cessors.
GPU: NVIDIA GeForce GTX 1070, 1607 MHz, 8GB GDDR5 (256-bit), 1920
CUDA Cores.

Chapter 4

Results

This section presents several graphs produced from the data collected through
the previously mentioned benchmarking. Subsections are divided into res-
olution and scene complexity to depict time with respect to these different
variables.

4.1 Resolution complexity
The following subsection presents data, represented as graphs, with execution
time in relation to varied resolutions, thus making the complexity of the scene
itself constant. The scene that was rendered consisted of one sphere, which can
be viewed in Figure B.1 in the Appendix. The image was the same regardless
of which hardware it was rendered on.

18

CHAPTER 4. RESULTS 19

Figure 4.1: Intersection of the CPU/GPU render times.

The line graph shown in Figure 4.1 depicts time (in milliseconds) along with
the resolution for one rendered sphere on the different hardware. The resolu-
tion ranged from 1×1 to 20×20 pixels, with an intersection between 14×14
and 15×15 pixels. Each resolution was rendered 50 times and the thickened
lines represent the average of these 50 runs. On average, the execution time
for the CPU was faster than that of the GPU for ranges of 1×1 to ca. 15×15
pixels. All 50 runs show somewhat the same execution time for the CPU. In
contrast, the 50 runs for each resolution on the GPU show a far wider spread,
thus having a more unpredictable execution time.

20 CHAPTER 4. RESULTS

Figure 4.2: A wide range of resolutions.

The graph represents the same line graph as Figure 4.1, although altered with
a logarithmic time axis, in seconds, with resolutions ranging from 1×1 to
1000×1000 pixels. As stated before, the execution time for the GPU shows
a far wider spread initially, which proceeds to stabilize as resolution grows
higher, thus having a more predictable execution time. The CPU execution
time grows very quickly as the resolution gets higher. Although the execution
time for the CPU grows more quickly than the GPU, it continues to have a
more predictable execution time than the GPU, however with a few spikes, up
until around 600×600 pixels.

4.2 Scene complexity
The data presented in this subsection depicts execution time along with the
number of spheres being rendered, thus altering the complexity of the scene.
This makes the resolution a constant parameter, where bar graphs are shown
representing the different resolutions. The different scenes rendered can be
found in Appendix B.

CHAPTER 4. RESULTS 21

(a) Execution time for 100×100 px resolution.

(b) Execution time for 200×200 px resolution.

22 CHAPTER 4. RESULTS

(c) Execution time for 400×400 px resolution.

(d) Execution time for 600×600 px resolution.

CHAPTER 4. RESULTS 23

(e) Execution time for 800×800 px resolution.

(f) Execution time for 1000×1000 px resolution.

Figure 4.3: Bar graphs depicting execution times for different numbers of res-
olutions.

24 CHAPTER 4. RESULTS

The bar graphs show average run-times for rendering spheres, ranging from
one to nine spheres, in varying resolutions. Each scene was rendered 50 times.
The color of the bars represents the different hardware, where shorter bars
mean less execution time, thus better performance. The line on top of each
bar is an error bar which represents the variation of the execution time. The
greatest time differences for the CPU are observed when there are less total
spheres present in the scene, and the more spheres that are added to the scene
the less the difference becomes which is seen as the bars level out. The CPU
bars are strictly growing throughout each resolution, as oppose to the GPU
bars which vary in total time execution up until a resolution of 600×600 when
the GPU also begin to follow an increasing trend.

Chapter 5

Discussion

The results from the benchmarking mostly confirm what was expected of this
comparison going into the study. Compared to the GPU, the CPU lacked the
advantage of parallelization as no attempt was made to utilize more than one
core during the renders, making it an unfair comparison. However, what is
interesting to evaluate is the magnitude of which the outperformance differed
and also how the two hardware handled smaller resolutions when rendering.

When rendering resolutions ranging between 1×1 to 20×20 pixels, as seen in
Figure 4.1, we can observe a clear intersection of the two lines around 14×14
and 15×15 pixels. The CPU overtakes the GPU in the amount of time to render
at that point and continues to grow thereafter. Before this, the CPU has lower
total rendering times than the GPU, and the variance is far less than that of the
GPU. When also taking Figure 4.2 into account we can see that the GPUs time
variance will eventually pan out, but not until after the 400×400 pixel count.
This is also clearly seen if comparing Figure 4.3a, Figure 4.3b, Figure 4.3c
and Figure 4.3d, Figure 4.3e, Figure 4.3f where the former GPU plots do not
follow any specific pattern whereas in the latter a strictly growing pattern can
be seen. As explained in section 2.4, there is a very high latency for GPU
threads when fetching data from memory. Due to the undersized pixel counts
in the initial resolutions rendered, the amount of threads utilized by the GPU
is far less than optimal, making GPU rendering times worse than when using
the CPU due to unexpected memory latencies.

The scale on which the GPU outperformed the CPU can be observed in Fig-
ure 4.3. A clear trend is seen where the time difference is around 1000–10000
times faster for each of the renders compared. A remark about how the Chrono

25

26 CHAPTER 5. DISCUSSION

timer is set up when benchmarking the GPU should be made here. The GPU,
compared to the CPU, has a much more intricate setup which is not included
when timing a render, as stated in section 3.5. If this setup would be taken
into consideration when comparing performances the GPU implementation
would increase a bit in total execution time, depending on how much mem-
ory is allocated. This is not the fault of the algorithm, but a side effect of the
parallelization on the GPU, which is worth mentioning in such a comparison
context.

When observing the CPU bars in Figure 4.3 the fastest-growing times, bars
standing beside each other with the greatest difference, seem to be those with
fewer total spheres in the scene, around 1–3. This should be the case, as a
single sphere does not have to reflect itself between any other objects. But as
soon as one or more spheres are introduced into the scene the total number of
reflections drastically increases and thus also the execution time. The more
the scene is filled with spheres the less the time grows, which may indicate
that the jump in computations is not as great when the scene gets cramped.
Though, none of this is clearly seen in the GPU bars as the time still varies
more than the CPU equivalent.

The findings of this study confirms some of the previous research conclusions,
as written about in section 2.7. In almost all scenarios of benchmarking the
GPU outperformed the CPU, as concluded by Norgren. This was to be ex-
pected, but as Norgren also mentions there is potential in a CPU implemen-
tation of the Ray Tracing algorithm, as companies such as Intel spend both
time and effort to research this. If optimizations were explored for the CPU
implementation the potential for a higher breaking point between the two im-
plementations could exist.

5.1 Relevance
In the field of game development, there has been a resurgence of pixel art
graphics in the last couple of years, which has been especially prevalent for
indie developers. These smaller teams, typically composed of employees in
the single digits, often have a much tighter economic budget when developing
new titles [17], than that of bigger established studios. A case could be made
for using a CPU for rendering smaller pixel counts, such as sprite work in
games. The performance difference in these insignificant pixel counts is not
huge by any means, but the alternative is available.

CHAPTER 5. DISCUSSION 27

5.2 Future work
The results gained from this research could be extended from different perspec-
tives. The CPU implementation was done on a multi-core processor, however,
programmed sequentially. Potential further study suggests exploring paral-
lelization on the CPU in multi-core, or even manycore, architectures. Since
there is an initial breaking point for lower pixels where the CPU gains an ad-
vantage, the parallelization on the CPU could potentially extend that breaking
point. This could result in significant resolutions with relevant use cases.

The work presented by Norgren [12] suggests working with implementations
closer to the hardware, rather than already existing graphics engines. While
our study does just that, it is not done on a real-time ray tracer. Therefore,
evaluating differences in real-time in CUDA/C++ is an interesting point of
view for further research.

Chapter 6

Conclusion

This study set out to explore performance differences in a CPU and a GPU
implementation of the Ray Tracing algorithm. The results show that the differ-
ences in performance are immense due to the highly parallelized GPU. How-
ever, the benefits of the massive number of cores on the GPU become irrelevant
when lower resolutions lead to higher memory latency. This is where the CPU
gains its advantage as memory latency is not an issue due to the much more
advanced processor core found on the CPU.

28

Bibliography

[1] Jon Peddie. Ray Tracing: A Tool for All. Springer Nature Switzerland
AG, 2019. isbn: 9783030174897.

[2] Andrew S. Glassner. An introduction to ray tracing. London: Academic,
1989. isbn: 0122861604.

[3] Bui Tuong Phong. “Illumination for Computer Generated Pictures”. In:
Commun. ACM 18.6 (June 1975), pp. 311–317. issn: 0001-0782. doi:
10.1145/360825.360839. url: https://doi.org/10.
1145/360825.360839.

[4] John L. Hennessy and David A. Patterson. Computer architecture : a
quantitative approach. 5th ed. Waltham, MA: Morgan Kaufmann, 2011.
isbn: 9780123838728.

[5] Thomas. Rauber and Gudula. Rünger. Parallel Programming For Mul-
ticore and Cluster Systems. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2010. isbn: 9783642048180.

[6] Intel. What is a GPU? 2022. url: https://www.intel.com/
content / www / us / en / products / docs / processors /
what-is-a-gpu.html (visited on 01/06/2022).

[7] André R. Brodtkorb, Trond R. Hagen and Martin L. Sætra. “Graphics
processing unit (GPU) programming strategies and trends in GPU com-
puting”. In: Journal of Parallel and Distributed Computing 73.1 (2013).
Metaheuristics on GPUs, pp. 4–13. issn: 0743-7315. doi: https://
doi.org/10.1016/j.jpdc.2012.04.003. url: https:
//www.sciencedirect.com/science/article/pii/
S0743731512000998.

[8] Jason. Sanders and Edward. Kandrot. CUDA by example : an introduc-
tion to general-purpose GPU programming. Boston, Mass.: Addison-
Wesley, 2010. isbn: 9780131387683.

29

https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/360825.360839
https://www.intel.com/content/www/us/en/products/docs/processors/what-is-a-gpu.html
https://www.intel.com/content/www/us/en/products/docs/processors/what-is-a-gpu.html
https://www.intel.com/content/www/us/en/products/docs/processors/what-is-a-gpu.html
https://doi.org/https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/https://doi.org/10.1016/j.jpdc.2012.04.003
https://www.sciencedirect.com/science/article/pii/S0743731512000998
https://www.sciencedirect.com/science/article/pii/S0743731512000998
https://www.sciencedirect.com/science/article/pii/S0743731512000998

30 BIBLIOGRAPHY

[9] Nvidia. CUDA Toolkit Documentation v11.7.0. 2022. url: https://
docs.nvidia.com/cuda/index.html (visited on 01/06/2022).

[10] Pradeep Gupta. CUDA Refresher: The CUDA Programming Model. 2020.
url: https : / / developer . nvidia . com / blog / cuda -
refresher-cuda-programming-model/ (visited on 01/06/2022).

[11] Steven Chien, Ivy Peng and Stefano Markidis. “Performance Evaluation
of Advanced Features in CUDA Unified Memory”. In: 2019 IEEE/ACM
Workshop on Memory Centric High Performance Computing (MCHPC).
2019, pp. 50–57. doi: 10.1109/MCHPC49590.2019.00014.

[12] Daniel Norgren. “Implementing and Evaluating CPU/GPU Real-Time
Ray Tracing Solutions”. Mälardalen University, 2016.

[13] Erik Liljeqvist. “Evaluating a CPU/GPU Implementation for Real-Time
Ray Tracing”. Mäldardalen University, 2017.

[14] Cppreference.com. Date and time utilities. 2022. url: https://en.
cppreference.com/w/cpp/chrono (visited on 01/06/2022).

[15] Cyrille Rossant. Very simple ray tracing engine. https://gist.
github.com/rossant/6046463. 2017.

[16] Robin Nordmark and Tim Olsén. CPU/GPU Performance Analysis of
Ray Tracing. https://github.com/skvarre/raytracing.
2022.

[17] Guo Freeman et al. “"Pro-Amateur"-Driven Technological Innovation:
Participation and Challenges in Indie Game Development”. In: Proc.
ACM Hum.-Comput. Interact. 4.GROUP (Jan. 2020). doi: 10.1145/
3375184. url: https://doi.org/10.1145/3375184.

https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://doi.org/10.1109/MCHPC49590.2019.00014
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://gist.github.com/rossant/6046463
https://gist.github.com/rossant/6046463
https://github.com/skvarre/raytracing
https://doi.org/10.1145/3375184
https://doi.org/10.1145/3375184
https://doi.org/10.1145/3375184

Appendix A

Profiling

31

32 APPENDIX A. PROFILING

Figure
A

.1:Snapshotfrom
visualprofilerforthe

G
PU

.

33

34 APPENDIX B. RENDERS

Appendix B

Renders

Figure B.1: 1 Sphere rendered on the GPU with a resolution of 1000×1000
px.

APPENDIX B. RENDERS 35

Figure B.2: 2 Spheres rendered on the GPU with a resolution of 1000×1000
px.

36 APPENDIX B. RENDERS

Figure B.3: 3 Spheres rendered on the GPU with a resolution of 1000×1000
px.

APPENDIX B. RENDERS 37

Figure B.4: 4 Spheres rendered on the GPU with a resolution of 1000×1000
px.

38 APPENDIX B. RENDERS

Figure B.5: 5 Spheres rendered on the GPU with a resolution of 1000×1000
px.

APPENDIX B. RENDERS 39

Figure B.6: 6 Spheres rendered on the GPU with a resolution of 1000×1000
px.

40 APPENDIX B. RENDERS

Figure B.7: 7 Spheres rendered on the GPU with a resolution of 1000×1000
px.

APPENDIX B. RENDERS 41

Figure B.8: 8 Spheres rendered on the GPU with a resolution of 1000×1000
px.

42 APPENDIX B. RENDERS

Figure B.9: 9 Spheres rendered on the GPU with a resolution of 1000×1000
px.

TRITA-EECS-EX-2022:519

www.kth.se

	Introduction
	Research question
	Scope

	Background
	Terminology
	Ray Tracing
	Pseudocode
	Blinn-Phong

	CPU
	GPU
	CUDA
	Thread blocks
	Kernel
	Automatic memory management

	Profiling
	Previous work

	Method
	Renders
	Benchmarking
	Data sets
	Implementations
	CPU Implementation
	GPU Implementation

	NVIDIA Visual Profiler
	Verification
	Hardware limitation

	Results
	Resolution complexity
	Scene complexity

	Discussion
	Relevance
	Future work

	Conclusion
	Bibliography
	Profiling
	Renders

