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1. Introduction

In 1989 Jun Kigami presented an analytic construction of a Laplacian on the
Sierpiński gasket, a construction that he extended to post critically finite frac-
tals that constitute a large class of so-called finitely ramified fractals [16, 17].
All new results in the thesis are in the setting of Kigami’s theory. In this intro-
duction a background and necessary preliminaries are given.

1.1 Background
The first examples of sets with fractal structure were for a long time consid-
ered to be of interest to mathematicians only. It was not believed that they
could resemble anything in the real world. With the works of Mandelbrot,
who actually introduced the term fractal [24], it was recognized that many
physical objects should be modeled by sets with fractal properties rather than
by smooth sets. This, together with the discovered connections to dynamical
systems, lead to an increase in the study of fractal sets, and the emergence of
fractal geometry as a proper branch of mathematics.

From a mathematical point of view the mere existence of sets with a dif-
ferent kind of geometric properties is enough motivation to study (classes of)
functions defined on them. But to understand physical phenomena on objects
modeled by fractals, a theory for the geometry of fractals clearly is not suffi-
cient. It will be necessary to do some kind of analysis on fractals. Therefore
it is not surprising that the theory to which this thesis belongs has some of its
roots in the works of physicists.

In the early eighties it had become apparent to physicists that porous as
well as highly disordered media exhibit anomalous diffusive, conductive and
vibrational properties. In the theoretical study of these matters some very in-
teresting mathematical models of diffusion on fractals were made.

Inspired by their work, the first rigorous constructions of Brownian motion
as a scaled limit of random walks on approximating graphs of the Sierpiński
gasket were made independently by Kusuoka [22] and Goldstein [10]. Other
pioneering works in this direction were done by Barlow and Perkins [4] and
Lindstrøm [23]. In these probabilistic constructions the Laplacian is obtained
via the diffusion process.

The analytic construction [16, 17] appeared only shortly after the works of
Kusuoka and Goldstein. Kigami gives two equivalent definitions of the Lapla-

1



cian; a weak definition via an energy form E, through ∆u = f if

E(u,v) = −
∫

F
f vdµ , (1.1)

for all v in an appropriate class of test functions, and a pointwise definition as
a renormalized limit of discrete difference operators ∆m.

Both these approaches towards a theory of analysis on fractals have under-
gone a strong development since the original works. Roughly speaking, the
strength of the probabilistic approach has been the extension to greater gener-
ality in terms of the underlying set, while the strength of the analytic approach
has been the construction of fractal analogues of a great variety of concepts
and results from classical analysis.

Since the probabilistic approach will not be considered here we just men-
tion that already in 1989 Barlow and Bass [3] had extended this construction
to the Sierpiński carpet. The Sierpiński carpet is an example of an infinitely
ramified fractal not (yet) in the scope of the analytic approach. There is a
quick introduction to the probabilistic approach in [8, Section 12.4], whereas
a detailed account can be found in [2] and overviews of recent developments
in [20, 21].

We will describe the analytic construction in the following sections. The
general theory in full detail can be found in Kigami’s book [19]. The recent
book of Strichartz [32] is also a good introduction to the subject, working with
the standard construction on the Sierpiński gasket before the general case.
This book also covers most aspects of the rapid development in the last few
years.

As mentioned, the advantage of Kigami’s theory has been the possibility to
do as much analysis as possible on some fractal set, instead of doing some
analysis on as many fractal sets as possible, which is the advantage of the
probabilistic methods. In this spirit, much work in the analytic theory has
been done on the Sierpiński gasket only. The Sierpiński gasket has become the
prototype for p.c.f. fractals and the restriction is often not done by necessity,
but rather in the aim of clarity. Working on the Sierpiński gasket one will have
well-founded reasons on what to expect in general.

There has been other developments towards an analysis on fractal sets, or
sets with fractal boundary. In [25] there are references to some of these, as
well as an interesting exposition on the connections to the work of physicists
mentioned above.

An important feature of Kigami’s theory is its intrinsic approach. The de-
rived analytical properties are only dependent of the fractal itself, not its em-
bedding in Euclidean space. For instance the analytic structure of the von
Koch curve is not different from that of any closed interval. Functions with
some degree of regularity, such as harmonic functions or functions in the do-
main of the Laplacian, will not necessarily be restrictions of ‘nice’ functions
on Euclidean space. This is in contrast to the approach in the books of Jons-
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son and Wallin [15] and Triebel [35], who all consider restrictions of function
spaces in R

n to fractal subsets.
In Section 1.2 we introduce self-similar sets, and then give the definition

of post critically finite (p.c.f.) fractals. We also give examples of p.c.f. frac-
tals, and self-similar sets that are not p.c.f. fractals. Some notation and other
general terminology is also introduced. It should be remarked that notation
is fixed separately in each of the subsequent papers. These notations differ in
some cases to the one used in the introduction. We have aimed to follow the
notation in paper III, since this is the paper where general classes of fractals
are considered.

Section 1.3 contains an outline of the construction of the energy form that
is used in Section 1.4 to define the Laplacian. Harmonic functions are also
defined in this section.

The two equivalent definitions of the Laplacian are stated in Section 1.4.
This section also includes the Green’s function and operator, the normal
derivative and Gauss–Green formula. We end Section 1.4 with two striking
results of the theory. The domain of the Laplacian is not a multiplicative
domain, and, appropriately chosen, partial sums of Fourier series converge.

1.2 Post critically finite fractals
There is no generally accepted mathematical definition of a fractal set.
Although one usually thinks of fractals as sets with topological dimension
strictly less than their Hausdorff dimension, this has turned out not to be
a satisfactory definition, leaving out many sets with fractal properties.
However, for any theory of analysis on fractals it is of course necessary to
precisely define what properties the underlying set is assumed to have.

It will turn out that the unit interval is an example of a p.c.f. fractal. But,
from a geometric point of view, one would like to distinguish fractal sets from
smooth ones. However, from an analytic point of view, this is satisfactory
since the Laplacian obtained by Kigami’s construction on the unit interval
coincides with the usual second order derivative. We will also see that the
analytic properties of p.c.f fractals have a ‘one dimensional flavor’ in many
ways. In the first chapters of [32] the details of the construction on the unit
interval is included together with that on the Sierpiński gasket.

Self-similar sets are sets with a cellular structure, where each cell is home-
omorphic to the entire set. Formally, self-similar sets are quotients of topolog-
ical Cantor spaces.

Let W S
m denote the space of finite words w = w1, . . . ,wm of length m of

symbols from a finite set S and let W S
∗ = ∪m≥1W S

m. For any finite number of
mappings ψi, i ∈ S we will for w ∈W S

∗ denote by ψw the composition

ψw = ψw1 ◦ ...◦ψwm . (1.2)
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Let ΩS = SN the space of infinite sequences of elements in S, and for any
ω = ω1ω2 . . . ∈ ΩS let [ω ]m = ω1 . . .ωm ∈W S

m .
Define a metric on ΩS by δ (ω ,τ) = 2−s(ω ,τ), for ω �= τ , where s(ω ,τ) =

min{m | [ω ]m �= [τ ]m}, and δ (ω ,τ) = 0 if ω = τ . The space (ΩS,δ ) is compact.
There are several different metrics that induces the same topology and ΩS

with this topology is called a topological Cantor space. In part II and III it is
implicitly assumed that ΩS is equipped with this topology. For ease of notation
we will omit the superscript S in what follows.

Definition (Self-similar set). Let F be a compact metrizable topological space,
and suppose there are continuous injections ψi, i ∈ S, from F to itself. For
k ∈ S, let σk denote the mapping on Ω given by σk(ω1ω2 . . .) = kω1ω2 . . ..
Then (F,{ψi}i∈S) is a self-similar structure if there is a continuous surjection
π : Ω → F such that ψi ◦π = π ◦σi. The set F will be called a self-similar set.

The surjection π is uniquely defined, and is given by

π(ω) = ∩m≥1F[ω ]m , (1.3)

where F[ω ]m = ψ[ω ]m(F). The sets Fw, w ∈ Wm are called cells of level m, or
m-cells.

It is of course natural to assume that the underlying sets in our analysis are
connected. A self-similar set is connected if you can ‘walk’ between any pair
of cells of level 1.

Theorem ([13],[19] Theorem 1.6.2). A self-similar set F is connected if and
only if for any i, j ∈ S there exists {ik}n

k=1 ⊆ S such that

Fik ∩Fik+1 �= ∅. (1.4)

The abstract definition of self-similar sets above is motivated by the follow-
ing theorem that states that invariant sets of iterated function systems (i.f.s.)
of contractions are self-similar. This provides a rich source of examples.

Theorem ([14],[19] Theorem 1.1.4, Theorem 1.2.3). Let (X ,d) be a metric
space and ψi, i = 1, . . . ,N contractions on X with respect to the metric d. Then
there exists a unique non-empty compact set F ⊂ X such that

F = ψ1(F)∪ . . .∪ψN(F). (1.5)

Moreover, (F,{ψi}
N
i=1) is a self-similar structure with π : Ω→F given by (1.3).

As mentioned above p.c.f. fractals are finitely ramified. This means that they
are just barely connected in the sense that they can be disconnected by remov-
ing only a finite number of points. Actually, a self-similar set F is finitely
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ramified if the intersection, Fi ∩Fj, i �= j, of any two different cells of level 1
is at most finite. So one can ‘cut out’ a 1-cell from a finitely ramified fractal
by removing the finite number of points intersecting other 1-cells.

Not every finitely ramified fractal is p.c.f. The property that singles out
p.c.f. fractals is that π−1{x} is finite for any x ∈ F . Points will only have a
finite number of different ‘addresses’ in Ω. The geometric interpretation is
that for any point x there is a number M such that x will lie in at most M
different m-cells for any m. The formal definition is as follows.

Definition (Post critically finite fractal). Let (F,{ψi}i∈S) be a self-similar
structure. The critical set is

C = π−1(∪i, j∈S,i�= jFi ∩Fj), (1.6)

and the post critical set is

P = ∪n≥1σ n(C), (1.7)

where σ is the shift map on Ω, i.e. σ(ω1ω2ω3 . . .) = ω2ω3ω4 . . .. The self-
similar structure (F,{ψi}i∈S) is post critically finite, p.c.f., if the post critical
set P is finite. The set F will be called a p.c.f. fractal.

The boundary of F is defined as the set V0 = π(P). If one assumes that
every boundary point is the fixed point of one of the mappings ψi, then the
p.c.f. assumption implies that the boundary points lie in only one 1-cell.

Example 1.2.1 (Interval). Define two mappings on R by, ψ0(x) = x
2 and

ψ1(x) = 1
2 (x + 1). Then ([0,1],{ψi}

1
i=0) is a p.c.f. self-similar structure with

boundary V0 = {0,1}.

Example 1.2.2 (Sierpiński gasket). Let q0,q1,q2 be the vertices of an equilat-
eral triangle in R

2. Define three contractions on R
2 by ψi(x) = 1

2(x−qi)+ qi,
i = 0,1,2. The invariant set of the three homotheties ψi is called the Sierpiński
gasket (SG), see Figure 1.1, and (SG,{ψi}

2
i=0) is a p.c.f. self-similar structure

with V0 = {qi}
2
i=0.
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Figure 1.1: Sierpiński gasket
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Example 1.2.3 (Level-3 Sierpiński gasket). Let once again q0,q1,q2 be the
vertices of an equilateral triangle in R

2. This time define six different contrac-
tions on R

2 with contraction ratio 1
3 and fix points being the boundary points

qi or the midpoints of the edges qi+qj

2 , i �= j. The invariant set of these con-
tractions is called the level-3 Sierpiński gasket (SG3), see Figure 1.2, and is a
p.c.f. self-similar structure with V0 = {qi}
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Figure 1.2: Level-3 Sierpiński gasket

Example 1.2.4 (Level-n Sierpiński gasket). The construction in the previous
example can naturally be generalized to any level, using n(n+1)

2 contractions
with contraction ratio 1

n .

Example 1.2.5 (Hexagasket). Let q1, . . . ,q6 be the vertices of a regular
hexagon in R

2 and let ψi, i = 1, . . . ,6, be the homotheties with contraction
ratio 1

3 and fixed point qi. The invariant set of {ψi}
6
i=1 is called the hexagasket

(H), see Figure 1.3, and (H,{ψi}
6
i=1) is a p.c.f. self-similar structure with

boundary V0 = {qi}
6
i=1.
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Figure 1.3: Hexagasket

Example 1.2.6 (Polygasket). The construction of the hexagasket can be done
for n not divisible by 4 starting from any regular n-gon and with appropriately
chosen contraction ratio. The boundary of the polygasket will be the vertices of
the regular n-gon. Figure 1.4 shows the pentagasket, that is obtained for n = 5
in this construction.
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Figure 1.4: Pentagasket

Example 1.2.7 (Polygasket with three boundary points). Composing one of
the homotheties in the construction of polygaskets by rotations of the angles
2π j

n , j = 0, . . . ,n− 1, the same invariant set as in the previous example is ob-
tained but the boundary of the p.c.f. self-similar structure consists of only three
points.

The next examples of self-similar sets are not p.c.f..

Example 1.2.8 (Square). Let p1, p2, p3, p4, be the vertices of a square Q in R
2.

Let ψi, i = 1,2,3,4 be homotheties with contraction ratio 1
2 and fix point pi.

Then (Q,{ψi}
4
i=1) is a self-similar structure that is not p.c.f..

Example 1.2.9 (Sierpiński carpet). Let once again p1, p2, p3, p4, be the ver-
tices of a square Q in R

2. Define eight homotheties ψi, i = 1, . . . ,8 with con-
traction ratios 1

3 and fix point pi, for i = 1,2,3,4 and for i = 5,6,7,8 let the fix
point be the midpoint of each of the edges of Q. The invariant set of {ψi}

8
i=1

is called the Sierpiński carpet (SC), see Figure 1.5, and (SC,{ψi}
8
i=1) is a self-

similar structure that is not p.c.f..

Figure 1.5: Sierpiński carpet

It is clear that both the square and the Sierpiński carpet are infinitely rami-
fied since non-disjoint cells intersect along line segments. It is immediate from
the definitions that any p.c.f. fractal is finitely ramified, but the converse is not
true as shows the next example.
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Example 1.2.10 (Post critically infinite Sierpiński gasket). In [34, Example
8.9] it is given an example of an invariant set of nine contractions that is finitely
ramified but not p.c.f., see Figure 1.6.

Figure 1.6: The post-critically infinite Sierpiński gasket in harmonic coordinates.

We end this section with a discussion of other types of sets to which
Kigami’s analytic construction has been extended.

The self-similarity condition can be removed. What is important is rather
the cellular structure. Work has been done both for hierarchical gaskets [11,
12, 7] (see also [32, Section 4.6]) and for fractafolds [28].

Hierarchical gaskets uses the inductive construction of the level-n Sierpiń-
ski gaskets, starting from an equilateral triangle and removing in each step
n(n−1)

2 triangles. Instead of doing the same iteration in each step, one choose
one of the possible constructions for each of the cells of the same level. Self-
similarity is lost but finite ramification is kept.

Fractafolds are, as the name indicates, fractal manifolds. They are con-
structed by gluing together p.c.f. fractals at the boundary points. The perhaps
simplest example of a fractafold without boundary is the double cover of the
Sierpiński gasket which is constructed by pairwise identifying the boundary
points of two distinct copies of the Sierpiński gasket. Considering the Sierpiń-
ski gasket as the simplest fractal analogue of the interval, its double cover is
the simplest fractal analogue of the circle.

The most difficult condition to remove in extending the analytic
construction to larger classes of sets has turned out to be the finite
ramification. The only progress in this direction is the extension to products
of p.c.f. fractals [29].

1.3 Energy and harmonic structures
Throughout this section F is a connected p.c.f. fractal, with self-similar struc-
ture induced by mappings ψi, i = 1, . . .N.

The central idea in Kigami’s construction is the definition of an energy form
on F as a limit of discrete energy forms on approximating graphs, defined as
follows.
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Let Vw = ψw(V0) for any w ∈W∗ and define Vm = ∪|w|=mVw, V∗ = ∪∞
m=0Vm.

Define, inductively, graphs Γm with vertices Vm and edge relations x ∼m y by
letting Γ0 be the complete graph on V0 and x ∼m y for m > 0 if and only if
there exists i such that x = ψi(x′), y = ψi(y′) and x′ ∼m−1 y′.

q
0

q
1

q
2

Γ
0

:

q
0

q
1

q
2

Γ
1

:

q
0

q
1

q
2

Γ
2

:

Figure 1.7: The first three graphs approximating the Sierpiński gasket.

The discrete energy forms are given by,

Em(u,v) = ∑
x∼my

c(x,y)(u(x)−u(y))(v(x)− v(y)) (1.8)

for functions u and v defined on Vm. To obtain the required energy form on F it
is necessary that the conductances c(x,y) can be chosen so that Em has certain
properties.

First of all, the energy forms has to respect the self-similarity in the sense
that there are resistance scaling factors ri > 0, i = 1, . . . ,N such that

Em(u,v) =
N

∑
i=1

1
ri

Em−1(ui,vi) = ∑
w∈Wm

1
rw

E0(uw,vw), (1.9)

for uw = u◦ψw and rw = rwn · · · rw1 . Hence, once ri and c(x,y) for x and y in
V0 are chosen, Em will be defined for all m through (1.9).

The second requirement is that the sequence Em must be compatible in the
sense that for any function u defined on Vm−1 and ũ minimizing Em among all
extensions of u to Vm, we have Em(ũ, ũ) = Em−1(u,u).

The last condition is that all c(x,y) should be positive. Allowing some of
the conductances c(x,y) to be zero would yield degenerate energies for which
some non-constant functions have zero energy.

Any valid choice of c(x,y) > 0 and ri, i = 1, . . .N, is called a harmonic struc-
ture on F . It is not known whether there always exists a harmonic structure on
F , but there are many cases when it is known to do so. Lindstrøm [23] showed
existence for a class of nested fractals and Kigami [19, Theorem 3.8.10] ex-
tended this result to a class of strongly symmetric p.c.f. fractals. Examples of
a few particular harmonic structures are given below.

We will not be occupied with the issue of existence and uniqueness of har-
monic structures. Therefore we only mention that the problem can be refor-
mulated to an eigenvalue problem for a non-linear operator and the condition
that all conductances must be positive makes even the existence of solutions a
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very difficult problem. Important work on this so-called renormalization prob-
lem has been made by many authors. References can be found in [32, Section
4.7].

Example 1.3.1. Choosing all c(x,y) = 1 and all ri equal, a harmonic structure
is obtained in Examples 1.2.1-1.2.3 and 1.2.5 if, for the interval ri = 1

2 , for the
Sierpiński gasket ri = 3

5 , for the level-3 Sierpiński gasket ri = 7
15 , and for the

hexagasket ri = 3
7 .

We will make the additional assumption on the harmonic structures that all
ri < 1. Such harmonic structures are called regular. Note that all harmonic
structures in Example 1.3.1 are regular. This is always the case when all ri are
equal [19, Corollary 3.1.9]. In paper I-III we only work with regular harmonic
structures. For non-regular harmonic structures some things do not behave as
nicely as in the regular case. For instance, continuity is lost for the Green’s
function and functions in the domain of the energy.

The energy forms Em naturally induces an energy form E on F through

E(u,v) = lim
m→∞

Em(u|Vm ,v|Vm), (1.10)

since the right hand side of (1.10) form an increasing sequence by the com-
patibility condition. The energy of a function is the extended real number
E(u) = E(u,u). The domain of the energy form, Dom E, consists of the func-
tions with finite energy, and functions in Dom E are continuous under the reg-
ularity assumption. The only functions with zero energy are the constant func-
tions and Dom E modulo constants is a Hilbert space with E as inner product.

Harmonic functions are defined as energy minimizers with respect to
boundary values.

Definition 1.3.2. A function h : F →R is harmonic if E(h) = E0(h). The space
of harmonic functions is denoted by H.

If h is harmonic, then ∆mh = 0 where ∆m is the discrete Laplacian defined
by

∆mu(x) = ∑
y∼mx

c(x,y)(u(y)−u(x)). (1.11)

Given any set of boundary values there is a unique harmonic function at-
taining these and H forms a linear space. Consequently the dimension of H

is N0 = #V0. A function h is a harmonic spline of level m if any restriction
h◦ψw, w ∈Wm to a cell of level m is harmonic. A harmonic spline of level m
is uniquely defined by its values on Vm.

The restriction of a harmonic function to a cell of level-1 depends linearly
on its boundary values. This induces harmonic extension mappings Ai, i =
1, . . . ,N on H defined through

Aih = h◦ψi. (1.12)
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Restrictions to smaller cells are given by products of these, Awh = h ◦ψw,
where Aw = Awn . . .Aw1 . Notice the order of the matrices in the product.

The harmonic extension mappings are central in papers II and III. In paper
III we will also use the analogy between harmonic functions on p.c.f. fractals
and affine linear functions on the unit interval, which in that case are exactly
the harmonic functions.

1.4 The Laplacian
In this section we continue to let F be a connected p.c.f. fractal, with self-
similar structure induced by mappings ψi, i = 1, . . .N, and assume that F is
equipped with a harmonic structure with notation from the previous section.
We will not give specific reference to the basic results of the theory, they can
all be found in [19, chapter 3] and [32, chapter 2 and 4].

The Laplacian on F is not uniquely defined by a fixed harmonic structure.
There is one more degree of freedom, which is the measure chosen on F . Even
though H does not depend on µ it turns out that, as desired, a function h is
harmonic if and only if ∆µh = 0.

Definition (Laplacian). Let µ be a finite non-atomic Borel measure on F such
that µ(O) > 0 for any open set O. Then we say that u∈Dom ∆µ , with ∆µu = f ,
if f ∈C(F) and

E(u,v) = −

∫
F

f vdµ , (1.13)

for any v ∈ Dom E vanishing on the boundary V0.

For convenience we shall assume that µ is a probability measure. Choosing
any other value of µ(F) only give rise to scaled versions.

Clearly there are lots of valid choices of µ . One important natural class of
valid measures are the self-similar measures. These are measures for which
any m+1-cell Fwi has the same relative weight in the m-cell Fw that the corre-
sponding 1-cell Fi has in F .

Definition (Self-similar measure). A non-atomic measure µ on F is
self-similar if there are positive numbers µ1, . . . ,µN such that ∑N

i=1 µi = 1 and
µ(Fw) = µw for any w ∈ W∗, where µw = µw1 · · ·µwn . If all µi are equal, µ is
called uniform self-similar measure.

In what follows we will assume that the measure µ is self-similar.
If on the unit interval the harmonic structure of Example 1.3.1 is used and

µ is uniform self-similar measure, then Dom (∆µ) = C2(I) and ∆µu = d2u
dx2 .

In paper I and II the Laplacian on the Sierpiński gasket obtained from the
harmonic structure of Example 1.3.1 and uniform self-similar measure is con-
sidered. We call this the standard Laplacian on the Sierpiński gasket and omit
the subscript µ .
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We will make extensive use of the fact that it is possible to construct a con-
tinuous Green’s function g(x,y) defined on F ×F that gives rise to a Green’s
operator,

G f (y) =

∫
F

g(x,y) f (y)dµ(y). (1.14)

The Green’s operator gives a unique solution to the Dirichlet problem for any
continuous f , i.e.,

−∆µG f = f and G f |V0 = 0. (1.15)

This means that Dom ∆µ really contains all the functions one could ask for.
The pointwise definition of the Laplacian uses the graph Laplacians ∆m on

Vm \V∗ defined in (1.11). For x ∈ Vm denote by h(m)
x the harmonic spline of

level m such that h(m)
x (x) = 1 and h(m)

x (y) = 0 for any other y ∈ Vm. Then for
u ∈ Dom ∆µ and x ∈V∗ \V0,

∆µu(x) = lim
m→∞

(∫
F

h(m)
x dµ

)−1

∆mu(x), (1.16)

and the convergence is uniform on V∗ \V0. Also, if u is continuous and the
right hand side of (1.16) converges uniformly to a continuous function f on
V∗ \V0, then u ∈ Dom ∆µ with ∆µu = f . For the standard Laplacian on the
Sierpiński gasket (1.16) becomes

∆u(x) =
3
2

lim
m→∞

5m ∑
y∼mx

(u(y)−u(x)). (1.17)

It follows from (1.13), as well as (1.16), that the Laplacian satisfies the
scaling identity ∆µ(u◦ψi) = riµi(∆µu)◦ψi. For the standard Laplacian on the
Sierpiński gasket this becomes ∆(u ◦ψw) = 5−|w|(∆u) ◦ψw for any w ∈ W∗,
since ri = 3

5 and µi = 1
3 . This scaling identity is apparent in the pointwise

formula (1.17).
For any function u∈Dom ∆µ there is a normal (Neumann) derivative ∂nu(q)

defined at every boundary point through

∂nu(q) = lim
m→∞

∑
y∼mq

c(x,y)(u(q)−u(y)). (1.18)

If every boundary point qi ∈V0 = {qj}
N0
j=1 is the fixed point of ψi then

∂nu(qi) = lim
m→∞

r−m
i ∑

j �=i

(u(qi)−u(ψi(qj)), (1.19)

which for the standard Laplacian on the Sierpiński gasket becomes

∂nu(qi) = lim
m→∞

(
5
3

)m

∑
j �=i

(u(qi)−u(ψi(qj)). (1.20)
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On the unit interval ∂nu(0) = −u′(0) and ∂nu(1) = u′(1).
Note that the normal derivative only depends on the harmonic structure. For

harmonic functions the right hand side of (1.18) does not depend on m.
There is a Gauss–Green formula, involving the normal derivative, that ex-

tends (1.13) to any v ∈ Dom E. For u ∈ Dom ∆µ and v ∈ Dom E we have

E(u,v) = −

∫
F

v∆µudµ + ∑
q∈V0

v(q)∂nu(q). (1.21)

If both u and v are in Dom ∆µ it follows, by using (1.21) twice, that∫
F

v∆µudµ = ∑
q∈V0

(v(q)∂nu(q)−∂nv(q)u(q))+

∫
F

u∆µvdµ , (1.22)

which can be seen as a nice fractal analogue of iterated use of partial integra-
tion on the unit interval.

With the normal derivative one can also speak of Neumann boundary con-
dition ∂nu(q) = 0 for all q ∈V0. If

∫
F f dµ = 0, then the Neumann problem has

a solution u, unique up to an additive constant, i.e.,

−∆µu = f and ∂nu(q) = 0 for every q ∈V0. (1.23)

Building a theory of analysis on fractals one would perhaps expect that
things will always be slightly worse compared to classical analysis. We end
this section with a discussion on two results. One on a case where things are
much worse and then one really surprising result, where things are better than
on the interval.

It is clear from the definitions that Dom ∆µ is a linear space. What about
multiplication? Is Dom ∆µ a multiplicative domain? The answer is no. In
fact it is not even close. Ben–Bassat, Strichartz and Teplyaev showed in [5]
that, for a large number of fractals, uv /∈ Dom ∆µ for any non-constant u,v ∈
Dom ∆µ . This causes serious complications in developing a PDE theory.

To indicate what this fact stems from, we can look at the Sierpiński gasket.
If u ∈ Dom ∆µ and ∂nu(q) �= 0 one can show that, as is not surprising in view
of (1.20), the variation of u on the m-cell neighboring q will decrease as

(3
5

)m
.

If ∂nu(q) = 0, then this variation is bounded by a constant times m
5m . The vari-

ation of u2 will not fit into any of these cases if ∂nu(q) �= 0, so u2 /∈ Dom ∆µ .
If ∂nu(q) = 0 the argument can be localized to a boundary point of one of it
cells.

There are orthonormal bases of Dirichlet and Neumann eigenfunctions, so
that there are fractal analogues of Fourier series. For instance, if {uj}

∞
j=1 is an

orthonormal basis of Dirichlet eigenfunctions with non-decreasing eigenval-
ues λ j, then for any f ∈ L2(F) we have

f =
∞

∑
j=1

c ju j, (1.24)
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where the Fourier coefficients are given by

c j =

∫
F

f u jdµ . (1.25)

The perhaps most surprising result of the theory concerns convergence of
Fourier Series. In [30] Strichartz showed that, on the Sierpiński gasket, par-
tial sums of Fourier series ∑

Nm
n=1 c ju j, for an appropriate choice of {Nm}, con-

verges uniformly to f for any continuous f . Thus, convergence properties of
Fourier series are better than on the interval! This result depends on the ex-
istence of large spectral gaps, i.e., that there are sequences {Nm} such that
λNm+1/λNm > c > 1. The convergence result for Fourier series is likely to hold
for many other fractals.
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2. Summary of results

Sections 2.1-2.3 summarizes the results in paper I-III. We set some of the par-
ticular notations of the corresponding papers in these summaries. Hopefully
this will help for clarity when passing from the summaries to detailed reading
of the papers.

2.1 Summary of paper I
In paper I, a problem formulated by Strichartz in [31] concerning the solvabil-
ity of differential equations on open subsets of the Sierpiński gasket is solved.

As the Laplacian is the basic differential operator of the theory, the term dif-
ferential equation is used for equations involving the Laplacian. It was shown
in [31] that for certain values of λ such simple differential equation as

−∆u−λu = f (2.1)

is not always solvable on the Sierpiński gasket. On the other hand, it was also
shown that the equation

−∆u = f (2.2)

is solvable on any open subset for any f continuous there.
Thus, it is natural to ask which restrictions on λ are necessary to have solv-

ability on any open subset for (2.1) and conversely, given an equation of the
form (2.1), on what open subsets can we solve it? Paper I contains the answer
to both of these questions for arbitrary linear differential equations,

p(∆)u = f . (2.3)

For the sake of clarity the result is first proved for (2.1) and the results for
general equations (2.3) are given as corollaries. Before stating the precise for-
mulation of these characterizations we need some further notation and back-
ground.

In paper I the Sierpiński gasket is denoted by K, with boundary {qi}
2
i=0 and

the three contractions inducing K are denoted by Fi, i = 0,1,2. Subscripts are
used as in section 1.2 to indicate compositions of mappings, Fw = Fw1 ◦ . . . ◦
Fwn , and cells Kw = Fw(K).

An important and surprising property of the Sierpiński gasket, and many
other p.c.f. fractals, is the existence of joint Dirichlet and Neumann eigen-
functions. This property is certainly not shared with the unit interval where,
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although the Dirichlet and Neumann spectrum are the same, the eigenfunc-
tions (sinπnx respectively cosπnx) are always different.

Any joint eigenfunction f with eigenvalue λ gives rise to localized eigen-
functions f w, with support on the cell Kw and eigenvalue 5|w|λ , through

f w(y) =

{
f ◦F−1

w (y) y ∈ Kw

0 y /∈ Kw.
(2.4)

As it turns out, the particular case when (2.1) is not solvable occurs when
λ is a joint Dirichlet/Neumann eigenvalue and f is a joint Dirichlet/Neumann
eigenfunction. Strichartz showed this by a careful analysis of these eigen-
functions, using their construction through spectral decimation [9]. Spectral
decimation means, essentially, that restrictions of eigenfunctions to Vm are
eigenfunctions of the discrete Laplacians ∆m and that the eigenvalues can be
obtained as renormalized limits of the corresponding eigenvalues of the dis-
crete Laplacians. Spectral decimation is only valid for a restricted class of
fractals [27].

It follows from the above that if λ/5 is a joint Dirichlet/Neumann eigen-
value then (2.1) cannot always be solved on an open subset Ω containing a
1-cell Ki. Let f be a joint eigenfunction with eigenvalue λ/5. Then, if (2.1),
with the localized eigenfunction f i on the right hand side, had a solution v on
Ω, one get, using the scaling property of the Laplacian, the contradiction that
5vi solves −∆u−λ/5u = f on K. Thus, the following result is not surprising.

Theorem (Theorem 3 paper 1). If λ/5 is not a joint Dirichlet/Neumann eigen-
value, then (2.1) is solvable on any proper open subset of the Sierpiński gasket.

From this a characterization of the polynomials for which (2.3) is solvable
on open subsets follows.

Corollary (Corollary 3 paper I). The equation (2.3) is solvable on any proper
open subset of the Sierpiński gasket if and only if p(−5λ ) �= 0 whenever λ is
a joint Dirichlet/Neumann eigenvalue.

We can also characterize the open subsets on which, given any polynomial
p, the equation (2.3) is solvable.

Corollary (Corollary 4 paper I). Suppose p does not satisfy the hypothesis of
the previous Corollary. Let n ≥ 1 be the largest n such that p(−5nλ ) = 0 for
λ a joint Dirichlet/Neumann eigenvalue. Then (2.3) is solvable on any open
subset of the Sierpiński gasket only containing m-cells, for m > n.

The proofs use local solutions on maximal cells contained in the open set.
The crucial step is to show that there exists what we call a λ -eigenfunction
spline that, added to these local solutions, gives the desired solution. What
must be taken care of is the matching condition that says that for functions in
Dom E, the sum of normal derivatives at boundary points of neighboring cells
is zero. In the proof we use some detailed properties of the spectrum of the
Laplacian that follows from spectral decimation.
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2.2 Summary of paper II
The second paper concerns the limit distribution of eccentricities, a kind of
generalized direction of gradients, of restrictions to small cells of fixed level
on the Sierpiński gasket. Some results by Öberg, Strichartz and Yingst [26] on
local properties of harmonic functions are extended to functions with Hölder
continuous Laplacian. We will call a function with Hölder continuous Lapla-
cian smooth.

The same notation as in paper I is used for the Sierpiński gasket and the
contractions. For restrictions of functions defined on K to cells notation fw =
f ◦Fw is used. The uniform self-similar measure on K is denoted by m.

The eccentricity e( f ) of a function f defined on K and non-constant on the
boundary is defined as

e( f ) =
f (q1)− f (q0)

f (q2)− f (q0)
, (2.5)

where the boundary points has been (re)labelled so that f (q0) ≤ f (q1) ≤
f (q2). Note that 0 ≤ e( f ) ≤ 1 and that e( f ) is invariant under affine trans-
formations and under the symmetries of K.

Non-constant harmonic functions on the Sierpiński gasket are non-constant
on every cell. Therefore the eccentricity of the restriction of a non-constant
harmonic function to any cell will also be defined. The harmonic extension
algorithm induces mappings ψi, i = 0,1,2, on [0,1], through ψi(e(h)) = e(hi)
for any non-constant harmonic function h so that ψi(e) gives the eccentric-
ity on the cell Ki for any harmonic function with eccentricity e. Hence, the
eccentricities of restrictions to cells is governed by the i.f.s. {ψi}

2
i=0.

In [26] it was shown that the limit distribution of eccentricities on n-cells,
{e(hw)}w∈Wn , is independent of the (non-constant) harmonic function h. More
precisely, there is a measure µ on [0,1] so that, for any (non-constant) h ∈ H

the discrete measures

∑
w∈Wn

1
3n δ (e(hw)) (2.6)

converges to µ in the Wasserstein metric.
Take as representative of all harmonic functions with eccentricity e, the har-

monic function he with boundary values 0,e,1. Then, considering a function
as built up by he(hw), w ∈Wm, any two (non-constant) harmonic functions are
built up by statistically the same functions on small scales. This is a prop-
erty similar to the ‘geography is destiny’ principle that says that restrictions
to small cells depend on the cell, and its location in the fractal, rather than the
function.

The same convergence result, but to another measure µE, was also shown
in [26] for energy weights instead of uniform weights. This means that each
cell is weighted with its contribution to the energy of the function. Thus the
uniform weights 1

3n in (2.6) is replaced by 5n
E(hw)

3nE(h) .
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The main results of paper II are Theorem 4 and Theorem 5. Instead of
restating them here we give their interpretation in terms of limit distribution
of eccentricities. Theorem 4 extends the convergence to µ in the Wasserstein
metric of (2.6) to a class of smooth functions called nearly harmonic functions.
Theorem 5 extends the corresponding result with respect to energy weights to
arbitrary non-constant smooth functions.

The restriction in Theorem 4 is necessary since the functions under consid-
eration can be constant on entire cells, for instance localized eigenfunctions.
However, these cells do not contribute to the energy of the function, so they
are neglected by the energy weights. That is the reason why Theorem 5 is
valid for any non-constant smooth function.

There is no simple rule, equivalent to the functions ψi, for the eccentricities
of restrictions to smaller cells of smooth functions. As a matter of fact, we al-
ready have the complication that the function can be constant on the boundary
of cells, and even on entire cells. Still, we will use an extension of the original
i.f.s. that describes the distribution of eccentricities for any smooth function
to obtain these results.

To deal with functions constant on the boundary of cells define e( f ) = −1
if f |V0 is constant. Then note that any smooth function f can be written

f = H f −Gu, (2.7)

where H f is the harmonic function that coincide with f on the boundary, u =
∆ f , and G is the Green’s operator (1.14) and after composition of a symmetry
of the Sierpiński gasket and an affine transformation f = he( f )−Gu. Since
these operations do not change eccentricities the distribution of eccentricities
is completely determined by e( f ) and u.

We use this to extend the i.f.s. {ψi}
2
i=0 to an i.f.s. {Ψi}

2
i=0 on the infinite

dimensional space ({−1} ∪ [0,1]})×Hα , where Hα is the space of Hölder
continuous functions on K. This new i.f.s. is defined so that Ψi(e,0) = ψi(e,0)
and for a smooth function f = he − Gu the distribution of eccentricities of
restrictions to n-cells is given by the first coordinate of {Ψw(e,u)}w∈Wn .

What makes it possible to arrive at Theorem 4 and Theorem 5 is that the sec-
ond coordinate in the new i.f.s. tends to zero. Thus, there is no need to worry
about exactly how the eccentricities of restrictions are obtained for general
f . We can concentrate on showing that the perturbation of the original i.f.s.
that leads to Ψi is in a sense continuous with respect to the second coordinate.
These results are Lemma 8 and Lemma 10.

We conclude with a discussion on nearly harmonic functions, mentioned in
connection to Theorem 4. Theorem 2 is used for the definition of this class of
functions. This theorem gives a lower bound of the energy of H fw under the
assumption that the quotient of the Hölder norm of ∆ f and the energy norm
of f is smaller than some real number ε0 > 0. We say that a function is nearly
harmonic if it satisfies the hypothesis of Theorem 2. In particular, this means
that for any nearly harmonic function f , e( fw) ∈ [0,1] for every w ∈W∗.
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The proof of Theorem 2 uses a gradient, Grad ω f for ω ∈Ω and f a function
on K defined by Teplyaev in [33]. In particular we use a theorem in that paper
which says that for smooth functions the Gradient always exists and the energy
norm of Grad ω f −H f is estimated by the Hölder norm of the Laplacian. We
restate this as Theorem 1 of paper II, where we have determined a numerical
value of the constant in this estimate not present in [33]. This constant can be
used to determine the value of ε0 in the definition of nearly harmonic functions
(Proposition 3).

The term nearly harmonic comes from the fact that most of the energy
comes from the harmonic part in the decomposition (2.7). In fact, E( f ) =
E(H f )+E(Gu) and for f nearly harmonic,

E(H f ) ≥ (1−‖g‖∞ε2
0 )E( f ), (2.8)

where g is the Green’s function.
It may seem as a sever restriction that Theorem 4 is valid only for nearly

harmonic functions. However, we show in Theorem 3, also using the gradient,
that (except on a closed nowhere dense set) essentially any smooth function f
is either nearly harmonic or constant on small enough cells.

2.3 Summary of paper III
In the third paper we also consider local behavior of functions but the approach
is different from that of paper II. Instead of the distributive properties of all
restrictions to cells of fixed level, fw, w ∈ Wn, we investigate the pointwise
local behavior of functions. This is done by exploiting the connection between
local behavior of harmonic functions on p.c.f. fractals and product of random
matrices, that stems from the harmonic extension mappings. In particular, we
extend the geography is destiny principle to larger classes of functions and
fractals.

Recall that each infinite sequence ω ∈ Ω correspond to a unique point x =
π(ω) ∈ F where π is defined through (1.3). The set π−1{x} is finite by the
p.c.f. assumption, and for non-junction points, points that do not lie in the
intersection of two different cells of the same level, this set consists of one
point. Thus for a non-junction point x = π(ω) we can define [x]n = [ω ]n. Note
that non-junction points are a set of full measure and that every such point has
a canonical basis of neighborhoods F[x]n .

The harmonic extension mappings Ai contain some information that is su-
perfluous with respect to local behavior. Since any harmonic function constant
on the boundary is constant, all Ai has the constant functions as eigenvectors
with eigenvalue 1. We therefore factor out the constant functions and denote
in paper III by H the space of harmonic functions such that ∑q∈V0

h(q) = 0,
and define mappings Mi = PHAiP∗

H
, where PHh = h−∑q∈V0

h(q).
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The results of paper III regards the generic local behavior, with respect to
any self-similar measure µ , at non-junction points of functions on p.c.f. frac-
tals. For harmonic functions this is given by the product of i.i.d. random matri-
ces M[ω ]n , with P[ωn = i] = µi, where by abuse of notation, we have written Mi

for the matrices corresponding to Mi, in some basis of H. Properties of prod-
ucts of random matrices can be interpreted as local properties of harmonic
functions on fractals.

To use results on products of random matrices we make two additional
assumptions on the harmonic structure. The first is that it should be non-
degenerate, which means that the matrices Mi all are invertible. This implies
that the restriction to any cell of a non-constant harmonic function will be
non-constant, which is not always the case. For instance the harmonic struc-
ture on the Hexagasket in Example 1.3.1 is degenerate. Our second condition,
which we call the SC-assumption, says that the semigroup generated by Mi is
strongly irreducible and contracting, Definition 2.2-2.4. Proposition 2.6 gives
sufficient conditions for the SC-assumption if V0 consists of three points.

Inspired by the analogy between harmonic functions and affine linear map-
pings, we take as starting point for paper III the definition of a derivative d f

dh
with respect to a harmonic function h at a non-junction point x by

f (y) = f (x)+
d f
dh

(x)(h(y)−h(x))+o
(
‖M[x]n h‖

)
y→x, (2.9)

for y ∈ F[x]n .
Section 2 of paper III is devoted to the properties of this derivative. The

main results of the section are Theorem 1 and Theorem 2, where we prove al-
most everywhere differentiability with respect to arbitrary harmonic functions
for large classes of functions.

Theorem 1 is valid under the SC-assumption and is stated for a class of
functions Ck(H), a multiplicative domain containing H. For Theorem 2 we
add what we call the weak main assumption, Definition 2.11, that involves the
measure µ . In return, we get almost everywhere differentiability for a larger
class Ck(Dom ∆µ), a multiplicative domain including Dom ∆µ . The proof of
Theorem 1 is straightforward while the proof of Theorem 2 is quite involved
and makes use of several detailed properties of products of random matrices.

The weak main assumption is an inequality that involves the upper Lya-
punov exponent of the matrices Mi with respect to µ and the scaling fac-
tor of the Laplacian. The upper Lyapunov exponent, the almost sure limit of
limn→∞

1
n log‖M[x]n‖, is very difficult to determine precisely but we can never-

theless assert that the weak main assumption is valid for the harmonic struc-
tures in Example 1.3.1 on the Sierpiński gasket and Level-3 Sierpiński gasket
with uniform self-similar measure.

In Theorem 3 we state a differentiability result for periodic points. A point
x ∈ F is periodic if it is a fixed point of some ψw, w ∈ W∗. We also discuss
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the relation between our derivative at periodic points and the local derivatives
previously studied at periodic points [1, 6].

The section on the derivative also include two analogs of Fermat’s theorem
on stationary points, Corollary 2.15-16.

In the third section we obtain the promised extension of geography is des-
tiny. The results follow more or less directly from the differentiability theo-
rems.

Under the SC-assumption the geography is destiny principle for harmonic
functions is a direct consequence of results on products of random matri-
ces. The principle was stated for the first time in [26], where it was noted
that the standard harmonic structure on the Sierpiński gasket satisfies the
SC-assumption. Essentially, it says that restrictions to the canonical neigh-
borhoods of a point will, for most harmonic functions, line up in the same
direction, in the sense that h[x]n ≈ c1hn + c2, for some harmonic functions hn.

We give a precise formulation of geography is destiny for harmonic func-
tions in Proposition 3.1 and in Theorem 4 we show that the same property is
valid, under the weak main assumption, for functions in Ck(Dom ∆µ) where
the derivative is nonzero. Corollary 3.4 is a similar result on the behavior of
eccentricities on neighborhoods of points.

The last section relates the derivative to the gradient from [33] that was used
in paper II. We work under the strong main assumption that involves the lower
Lyapunov exponent.

In Theorem 6 we show that at a non-junction point the gradient Grad x f is
the unique function in H that best approximates f on the canonical neigh-
borhoods of x. Proposition 4.5 gives the explicit relation between the gradient
and the derivative. In particular Grad x f = 0 implies d f

dh (x) = 0. Theorem 7
says that the converse can only fail on a null set and geography is destiny with
conditions on the gradient is formulated in Corollary 4.7.
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Summary in Swedish

En fraktal är en mängd med en starkt sönderbruten, cellulär, struktur. Exempel
på sådana finns givna i Figur 1.1-1.6. Temat i den här avhandlingen är analys
på fraktaler, studiet av differentialekvationer och funktioner definierade på
fraktaler.

Ur en matematisk synvinkel är själva existensen av mängder med annorlun-
da geometriska egenskaper tillräcklig för att studera (klasser av) funktioner
definierade på dessa. Men för att studera fysikaliska fenomen på objekt som
modelleras med fraktaler räcker det inte att studera fraktalers geometriska
egenskaper. Det är nödvändigt att göra någon slags analys på fraktaler. Den
matematiska teori som vi använder här har också sina rötter i fysikers mate-
matiska modeller för att förstå de oväntade egenskaper för exempelvis värme-
ledning som uppvisas av vissa oordnade material.

Jun Kigami gav 1989 en analytisk konstruktion av en Laplaceoperator på
Sierpińskitriangeln (Figur 1.1), en konstruktion som han senare utvidgade till
postkritiskt ändliga fraktaler, en klass av så kallade ändligt förgrenade frakta-
ler [16, 17]. Alla nya resultat i avhandlingen tillhör Kigamis teori.

Styrkan hos Kigamis konstruktion ligger i att en rik analytisk teori av frakta-
la motsvarighet till objekt och resultat från klassisk analys har uppnåtts, dock
till priset av en lägre generalitet med avseende på de underliggande mäng-
derna. Flertalet arbeten har gjorts enbart på Sierpińskitriangeln. En restriktion
som ofta har gjorts mer för tydlighets skull än av nödvändighet. Sierpińskitri-
angeln har blivit en modell för klassen av postkritiskt ändliga fraktaler.

Postkritiskt ändliga fraktaler är självlikformiga, dvs de har en cellulär struk-
tur, i oändligt många skalor, där varje cell är en kopia av fraktalen. En vik-
tig typ av självlikformiga mängder är invarianta mängder till iterativa funk-
tionssystem av kontraktioner. De exempel vi nämnt ovan är sådana invarianta
mängder. Exempelvis är Sierpińskitriangeln invariant mängd till tre kontrak-
tioner med kontraktionsfaktor 1/3 och fixpunkter i hörnen på en likformig
triangel.

Ändligt förgrenade fraktaler har egenskapen att två olika celler av samma
storleksordning bara kan skära varandra i ett ändligt antal punkter. Postkritiskt
ändliga fraktaler uppfyller det ytterligare villkoret att varje punkt har en övre
gräns för antalet celler av samma storlek som innehåller punkten.
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Kigami ger två ekvivalenta definitioner av Laplaceoperatorn. Dels en svag
definition via en energiform E, genom att ∆µu = f får betyda

E(u,v) = −

∫
F

f vdµ ,

för varje funktion v i en viss klass av testfunktioner, dels en punktvis definition
som ett renormaliserat gränsvärde av diskreta differensoperatorer ∆m.

Centralt i bägge definitionerna är att fraktalen approximeras av en följd
av grafer. De första graferna i denna approximation för Sierpińskitriangeln
är givna i Figur 1.7. Energiformen E som används i den svaga definitionen
konstrueras med hjälp av en kompatibel följd av energiformer på de approxi-
merande graferna. Differensoperatorerna ∆m är diskreta Laplaceoperatorer på
dessa grafer.

Laplaceoperatorn beror som synes på vilket mått µ som används på frak-
talen. Däremot är inte klassen av harmoniska funktioner beroende av µ . En
funktion h är harmonisk om ∆µh = 0. De definieras via energiformen genom
att de minimerar energin för funktioner med givet randvärde.

Då Laplace operatorn är den grundläggande differentialoperatorn i teorin
används termen differentialekvation för ekvationer innehållande denna. Stri-
chartz visade i [31] att första ordningens linjära differentialekvation

−∆u−λu = f

inte alltid är lösbar på Sierpińskitriangeln. I det första arbetet i avhandlingen
ges en karaktärisering av de polynom p för vilka den allmänna linjära diffe-
rentialekvationen

p(∆)u = f (2.10)

alltid är lösbar på öppna äkta delmängder av Sierpińskitriangeln. Omvänt så
ges också, för givet polynom p, en karaktärisering av de öppna delmängder
där (2.10) alltid är lösbar.

I det andra arbetet betraktas distributionen av eccentriciteter, ett slags gene-
raliserad gradientriktning, för restriktioner till celler av samma storlek. Re-
sultat för harmoniska funktioner på Sierpińskitriangeln som visades i [26]
utvidgas till funktioner med Hölder kontinuerlig Laplace. Resultaten uppnås
genom att studera ett iterativt funktionssystem (i.f.s.) på ett oändligt dimensio-
nellt rum. Detta i.f.s. är en perturbation av det i.f.s. på [0,1] som karaktäriserar
distributionen av eccentriciteter för harmoniska funktioner.

I det tredje arbetet studeras lokala egenskaper hos allmänna klasser av funk-
tioner med vissa regularitets egenskaper. Detta görs genom att utnyttja sam-
bandet mellan restriktioner av harmoniska funktioner till celler och produkter
av slumpmatriser. Speciellt så utvidgas ”geografin är ödet” principen, formu-
lerad i [26] för harmoniska funktioner på Sierpińskitriangeln, till större klasser
av fraktaler och funktioner. Denna princip säger att restriktioner till kanonis-
ka cellomgivningar kommer, för de flesta harmoniska funktioner, ha samma
riktning, i betydelsen att h[x]n ≈ c1hn + c2, för harmoniska funktioner hn.

24



En stor del av arbetet kretsar kring en derivata, som vi introducerar, d f
dh

med avseende på harmoniska funktioner h. Två satser angående deriverbarhet
µ-nästan överallt, där µ är ett självlikformigt mått, visas. Den första gäller
under vissa förutsättningar på energiformen, medan den andra, som gäller för
en större klass av funktioner, också inkluderar förutsättningar på måttet µ .

Dessa deriverbarhetssatser används till utvidgningen av ”geografin är ödet”
och ett resultat angående de punktvisa egenskaper för eccentriciteter. Avslut-
ningsvis studeras sambandet mellan den nämnda derivatan och gradienten de-
finierad i [33].
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Paper I





SOLVABILITY OF DIFFERENTIAL EQUATIONS ON OPEN

SUBSETS OF THE SIERPIŃSKI GASKET

ANDERS PELANDER

Abstract. We give necessary and sufficient conditions on the poly-
nomial p so that the differential equation p(∆)u = f , based on the
Laplacian, is solvable on any open subset of the Sierpiński gasket for
any f continuous on that subset. For general p we find the open subsets
on which p(∆)u = f is solvable for any continuous f .

The basic differential operator in the theory of analysis on post-critically
finite (p.c.f.) fractals constructed by Kigami [5, 6, 7, 11] is the Laplacian.
Therefore when speaking of differential equations on fractals, or fractal dif-
ferential equations, one means equations involving the Laplacian.

In this article we answer a question asked by Strichartz in [9] concerning
solvability of linear differential equations on open subsets of the Sierpiński
gasket. We prove that the equation p(∆)u = f is solvable on any open
subset for any f continuous there, if −5λ is not a root of p when λ is a joint
Dirichlet/Neumann eigenvalue. For arbitrary p the equation is always solv-
able on open subsets that only contain copies of the Sierpiński gasket of size
less than a particular value, determined by the roots of p . This is in con-
trast to the convexity conditions in the Malgrange–Ehrenpreis Theorem [4,
chapter 3].

Non-linear differential equations on the Sierpiński gasket were studied
in [2].

Let V0 = {qi}
2
i=0 be the set of vertices of an equilateral triangle. The

Sierpiński gasket K is the attractor of the iterated function system consisting
of the contractions

Fix =
1

2
(x − qi) + qi, i = 0, 1, 2.

Thus K satisfies the self-similar identity

K =

2⋃
i=0

FiK,

and the condition

FiK ∩ FjK ⊆ FiV0 ∩ FjV0 for i �= j.

The Sierpiński gasket is one of the basic examples of a p.c.f. fractal and
the standard one used in establishing as many fractal analogs as possible of
results and objects from analysis on smooth sets
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2 ANDERS PELANDER

For any word w = w1w2 · · ·wn, wj ∈ {0, 1, 2} of finite length |w| = n we
denote Fw = Fw1

◦ · · · ◦ Fwn
. The sets Kw = FwK are called cells of level n

and V0 respectively FwV0 are the boundaries of K respectively Kw.
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Figure 1. Sierpiński gasket.

We give a brief introduction to the basic concepts of Kigami’s analytic
theory in the case of the Sierpiński gasket. Complete expositions in the
general setting can be found in the books of Kigami [7] and Strichartz [11].

We treat K as a limit of graphs Γm with vertices Vm and edge relations
x ∼m y defined inductively as follows. Γ0 is the complete graph on V0 =
{q0, q1, q2}. Then Vm =

⋃
i FiVm−1 with x ∼m y if and only if there exists i

such that x = Fix
′, y = Fiy

′ and x′ ∼m−1 y′. Points in Vm \ V0 are called
junction points.

The bilinear graph energy forms

EΓm
(u, v) =

∑
x∼my

(u(x) − u(y))(v(x) − v(y)),

where the sum extends over the edges of Γm, are used to define the energy
form

E(u, v) = lim
m→∞

Em(u, v) = lim
m→∞

(
5

3

)m

EΓm
(u, v)

on functions defined on K. The sequence Em(u, u) is non-decreasing so the
energy E(u) = limm→∞ Em(u, u) of a function is a well-defined extended real
number. The class of functions with finite energy is denoted by domE and
form a dense linear subspace of C(K).

Let µ be the standard self-similar probability measure on K, i.e.,

µ(A) =
2∑

i=0

1

3
µ(F−1

i A).

A function u ∈ domE is in the domain of the Laplacian, dom∆, and ∆u = f ,
if there exists a continuous function f such that

E(u, v) = −

∫
K

fvdµ,

for any function v ∈ domE that vanishes on the boundary.



SOLVABILITY OF DIFFERENTIAL EQUATIONS ON THE SG 3

In junction points the Laplacian can be calculated as a limit of graph
Laplacians on Γm

∆u(x) =
3

2
lim

m→∞
5m∆mu(x) =

3

2
lim

m→∞
5m

∑
y∼mx

(u(y) − u(x)).

This is similar to the difference quotient formula for the second derivative
and justifies that we speak of the Laplacian as a differential operator. Note
that the Laplacian satisfies the scaling property

∆(u ◦ Fw) = 5−|w|∆u ◦ Fw.

If v ∈ domE does not vanish on the boundary there is a Gauss–Green
formula that relates energy with the Laplacian

E(u, v) = −

∫
K

(∆u)vdµ +
∑
q∈V0

v(q)∂nu(q),

where the normal derivative ∂nu is defined by

∂nu(q0) = lim
m→∞

(
5

3

)m

(2u(q0) − u(Fm
0 q1) − u(Fm

0 q2))

and likewise at q1 and q2.
The normal derivative can be localized to a junction point x = Fwqi

through the formula

∂nu(Fwqi) =

(
5

3

)|w|

∂n(u ◦ Fw)(qi).

Since junction points lie on the boundary of two different cells Kw and
Kw′ of high enough level there are two local normal derivatives defined at
junction points. If u ∈ domE then the normal derivatives sum up to zero
at any junction point, they satisfy the matching condition. The following
well-known proposition [9] will be an important tool for proving our results.

Proposition 1. Suppose u and f are continuous functions on K such that
u ◦ Fw ∈ dom∆ for all w of length m, and ∆(u ◦ Fw) = 5−|w|f ◦ Fw. Then
u ∈ dom∆ with ∆u = f if and only if the matching condition holds at every
junction point in Vm.

With Proposition 1 one can define a Laplacian on any union of cells in the
obvious way. There is also a local version of the Gauss–Green formula [11].

Proposition 2. Let A = ∪w∈W Kw be a finite union of cells such that
Kw ∩ Kw′ consists of at most one point if w,w′ ∈ W . If u and v are in
dom∆ on A then∫

A

u∆vdµ −

∫
A

∆uvdµ =
∑
∂A

u∂nv − ∂nuv,

where ∂A are the points that lie on the boundary of exactly one of the cells
Kw, w ∈ W .
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A function u ∈ dom∆ is called a Dirichlet, respectively Neumann, eigen-
function with eigenvalue λ if {

−∆u = λu

u|V0
= 0,

respectively {
−∆u = λu

∂nu|V0
= 0.

The Dirichlet and Neumann eigenfunctions and spectrum has been com-
pletely described through the method of spectral decimation [1, 3, 8]. It
relates the spectra of the discrete Laplacians ∆m and the spectrum of ∆
through backwards iteration of a quadratic polynomial. We refer to [11,
chapter 3] for a transparent and detailed account.

In [9] Strichartz proved a variety of results on differential equations on
p.c.f. fractals. We are particularly interested in the following two theorems.

Theorem 1. Let Ω be an open set of K not containing any point of V0.
Then there exists a solution of

(1) −∆u = f on Ω

for any function f continuous on Ω.

This theorem was actually proved for any p.c.f. fractal. Also note that
nothing is assumed about the behavior of f near the boundary. Theorem 1
is also true if Ω is a set that contains points in V0, interpreted in the sense
that there is a solution of (1) that is continuous at the boundary points
contained in Ω.

Theorem 2. The equation

(2) −∆u = λu + f

is solvable on K for every continuous f if and only if λ is not a joint
Dirichlet/Neumann eigenvalue.

The obstructive case in Theorem 2 occurs when f is a joint Dirich-
let/Neumann eigenfunction. The existence of such functions is a peculiar
feature of analysis on fractals. They are also called pre-localized eigenfunc-
tions, since they give rise to localized eigenfunctions; if f is a pre-localized
eigenfunction then

g(x) =

{
f ◦ F−1

w (x), x ∈ Kw

0, x /∈ Kw

is a 5|w|λ-eigenfunction with support in Kw.
Solvability in the case that λ is not a Dirichlet (Neumann) eigenvalue

is shown using the fact that there is a complete orthonormal basis {uj} in
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L2(K) of Dirichlet (Neumann) eigenfunctions with eigenvalue λj . If

(3) f =

∞∑
j=1

cjuj ,

then

(4) u =
∞∑

j=1

cjuj

λj − λ

is a continuous function that solves (2).
We will generalize Theorem 1 to linear differential equations with constant

coefficients,

(5) p(∆)u = f,

where p is a polynomial. In view of Theorem 2 it is not possible, without
restrictions on p, to have solvability of (5) on any open subset. We give in
Theorem 3 necessary and sufficient conditions on λ so that (2) is solvable on
arbitrary open subsets and in Corollary 3 conditions on p so that the same
is true for equation (5). For arbitrary p we give in Corollary 4 a complete
description of those open subsets on which (5) is solvable.

The proof uses ideas from that of Theorem 1 in [9]. The equation is
solved locally on maximal cells contained in Ω and then it is shown that
for certain choices of local solutions one can glue together a global solution.
The main difference is that we will, naturally, have to use ‘eigenfunction
splines’ instead of harmonic splines to glue together the local solutions and
rely on Proposition 2 to prove that this construction is always possible.

For transparency the result is first proved for equation (2).

Theorem 3. Suppose λ/5 is not a joint Dirichlet/Neumann eigenvalue of
the Laplacian on K and that Ω � K is an open subset of K. Then there
exists a solution to (2) for any function f continuous on Ω.

Proof. Suppose λ/5 is a Neumann eigenvalue. This assures that λ/5n is not
a Dirichlet eigenvalue for any n ≥ 1. If we only assume that λ/5 is not a
Dirichlet eigenvalue it might occur that λ/5n is a Dirichlet eigenvalue from
the so-called 2-series. To be able to use the Dirichlet expansion of f ◦ Fw

for local solutions we do not want this to happen.
Without loss of generality we assume that Ω is connected. Write

(6) Ω = ∪w∈WKw,

as an infinite union of cells Kw, maximal with the property that Kw ⊂ Ω.
If

f ◦ Fw =

∞∑
j=1

cj,wuj
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is the Dirichlet expansion of f ◦ Fw then

(7) vw =
∞∑

j=1

cj,wuj ◦ F−1
w

(5|w|λj − λ)
,

is a solution to (2) on Kw. The denominator in (7) cannot be zero by our
assumptions on λ. Define a function v on Ω through v|Kw

(x) = vw(x). Since
vw|FwV0

= 0 it is clear that v is continuous. However, to be a solution to (2),
it must also satisfy the matching condition at every junction point Fwqi,
w ∈ W .

As in the proof of Theorem 1 in [9] define Ṽ = ∪w∈WFwV0 and the graph

Γ̃, with set of vertices Ṽ , in the obvious way. Approximate Γ̃ by an increasing
sequence of connected finite graphs {Γ̃n}. The boundary ∂Γ̃n and interior

int(Γ̃n) are defined in the usual way (x ∈ int(Γ̃n) if x is a vertex connected

to four other vertices in Γ̃n). We define An to be the finite union of the cells

whose boundary points are vertices in Γ̃n.
We say that a function g, on Ω respectively An, is a continuous λ-

eigenfunction spline if it is continuous and satisfies −∆g = λg in the interior
of every Kw, w ∈ W respectively Kw, w ∈ W and Kw ⊂ An. The set of
continuous λ-eigenfunction splines can be identified with l(Ṽ ), the set of

functions on Ṽ , since gw = g ◦ Fw is a 5−|w|λ-eigenfunction, and 5−|w|λ is
not a Dirichlet eigenvalue. Likewise we identify continuous λ-eigenfunction
splines on An with l(Γ̃n).

The proof is completed by showing that there is a continuous λ-eigen-
function spline g such that v + g satisfies the matching condition at every
junction point Fwqi, w ∈ W . The crucial step is to show that for any values
of the normal derivatives of v at the points in int(Γ̃n), it is possible to define

values of g on Γ̃n so that v + g satisfies the matching condition at every
point in int(Γ̃n).

Define linear operators Ñn on l(Γ̃n) through

Ñng(q) =

{
∂Ng(q), if q ∈ ∂Γ̃n∑

Fwqi=q ∂Ng(Fwqi), if q ∈ int(Γ̃n),

where the sum is taken over the two normal derivatives at q. Clearly, the
existence of a spline g such that v+g satisfy the matching condition at every
point in int(Γ̃n) is equivalent to surjectivety of Pl(int(Γ̃n))Ñn, where Pl(int(Γ̃n))

denotes projection on l(int(Γ̃n)).

Define the following subspaces of l(Γ̃n). The ‘Dirichlet splines’

D = {g ∈ l(Γ̃n) | g|∂Γ̃n
= 0} = KerPl(∂Γ̃n),

the ‘Neumann splines’

N = {g ∈ l(Γ̃n) | Ñng|∂Γ̃n
= 0} = KerPl(∂Γ̃n)Ñn,
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and the ‘smooth splines’

L = {g ∈ l(Γ̃n) | Ñng|int(Γ̃n) = 0} = KerPl(int(Γ̃n))Ñn,

which are those splines that satisfies the matching condition in every interior
point and thus represent λ-eigenfunctions on An.

Let m = #int(Γ̃n) and m′ = #∂Γn. It is clear that DimD = m, DimN ≥
m, DimL ≥ m′ and we need to show DimL = m′.

Suppose DimL > m′. Then there are both non-trivial Dirichlet and non-
trivial Neumann eigenfunctions on An. However, there cannot be a function
that is both. Such a function could trivially be extended to a joint λ-
Dirichlet/Neumann eigenfunction on all of K with support strictly included
in K, which means that λ/5 is a joint Dirichlet/Neumann eigenvalue.

Thus, if v ∈ D∩L is a nontrivial Dirichlet eigenfunction on An, then ∂Nv
cannot be identically zero on ∂An = ∂Γ̃n, so

Dim(D ∩ L) = DimPl(∂Γ̃n)Ñn(D ∩ L) = k > 0.

Let u ∈ L be any spline corresponding to a λ-eigenfunction on An. The
Gauss–Green’s formula on An tells us that∑

∂Γ̃n

(u∂Nv − v∂Nu) =
∑

q∈∂Γ̃n

u(q)∂Nv(q)

=

∫
A

u∆vdµ −

∫
A

v∆udµ = 0,

i.e., DimPl(∂Γ̃n)L ≤ m′−k. So k = Dim(D∩L) = DimL−DimPl(∂Γ̃n)L ≥

DimL − (m′ − k) > k and we have a contradiction.
From here the proof is completed in the same way as the proof of Theo-

rem 1 in [9].
We conclude with the case when λ/5 is not a Neumann eigenvalue. The

equation is then solved locally on the cells Kw, w ∈ W using the Neumann
expansion of fw.

Gluing together local solutions vw given by (7) to a function v on Ω there
is a new complication since v is not necessarily continuous. It is necessary to
prove existence of a λ-eigenfunction spline g, such that v+g not only satisfies
the matching condition at every point of int(Γ̃n), but also is continuous there.
However, this complication also gives us the freedom to use discontinuous
λ-eigenfunction splines, i.e., functions g such that −∆g = λg in the interior
of every Kw but g is allowed to have discontinuities at the junction points
Fwqi, w ∈ W .

With discontinuous splines on Γ̃n we can, for every w ∈ W such that
Kw ⊆ An, fill the inside with any λ-eigenfunction regardless of what λ-
eigenfunctions we have chosen on neighboring cells. Let S be the linear
space of such splines. Then DimS = 2m + m′, where m = #int(Γ̃n) and

m′ = #∂Γ̃n, since vertices in ∂Γ̃n only belong to one cell such that FwV0 ⊆
Γ̃n and vertices in int(Γ̃n) belong to two cells such that FwV0 ⊆ Γ̃n.
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Note that if we want to identify S with l(�Kw⊆An
FwV0) then we need to

do it through the values of ∂Ng(Fwqi) and not through the values of g(Fwqi),
since there is no longer a 1–1 correspondence there in case gw is a Dirichlet
eigenfunction.

Define linear operators

Ñn : S → l(Γ̃n) ⊕ l(Γ̃n)

Ñn(g) =
∑

Fwqi=q

∂Ng(Fwqi)δq ⊕
∑

Fwqi=q

p(q, qi)g(Fwqi)δq

where p(q, qj) = 1 if q ∈ ∂Γ̃n and if q ∈ int(Γ̃n) we define p(q, q0) = 1,
p(q, q2) = −1 and p(q, q1) = −1 when q = Fw′q0 = Fw′′q1 and p(q, q1) = 1
when q = Fw′q2 = Fw′′q1. The factors p(q, qi) are chosen to assure that the
splines in KerP{0}⊕l(int(Γ̃n)) are exactly the continuous ones.

It is necessary to show that Pl(int(Γ̃n))⊕l(int(Γ̃n))Ñn is surjective, since then

there is always a spline g on Γ̃n such that v + g is continuous and satisfies
the matching condition at every point in int(Γ̃n). This time the ‘Dirichlet
splines’

D = KerP{0}⊕l(∂Γ̃n)Ñn,

the ‘Neumann splines’

N = KerPl(∂Γ̃n)⊕{0}Ñn,

and the ‘smooth splines’

L = KerPl(int(Γ̃n))⊕l(int(Γ̃n))Ñn,

are those splines that satisfies both the matching condition and continuity
condition in every point in int(Γ̃n) and thus represent λ-eigenfunctions on
An. The proof is completed as in the first case using the Gauss–Green’s
formula on An. �

Concerning global solutions of general linear differential equations with
constant coefficients (5), note that if there is no Dirichlet (Neumann) eigen-
value λ such that p(−λ) = 0, and f can be written as

f =

∞∑
j=1

cjuj

where {uj} is an orthonormal basis of Dirichlet (Neumann) eigenfunctions
with eigenvalue λj then

(8) u =

∞∑
j=1

cjuj

p(−λj)

solves (5) on K. If there are both Dirichlet and Neumann eigenvalues λD

and λN such that p(−λD) = p(−λN ) = 0 but no joint Dirichlet/Neumann
eigenvalue with this property, write p(∆) = pD(∆)pN (∆) where pD(−λD) �=
0 and pN (−λN ) �= 0. Then find uD that solves pD(∆)uD = f and then solve
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pN (∆)u = uD. If there is a joint Dirichlet/Neumann eigenvalue λ such that
p(−λ) = 0, Theorem 2 implies that there are continuous functions for which
p(∆)u = f is not solvable on K

Corollary 3. The equation (5) is solvable on any open subset Ω � K for
any f continuous in Ω if and only if p(−5λ) �= 0 whenever λ is a joint
Dirichlet/Neumann eigenvalue of the Laplacian on K.

Proof. Factorize the polynomial as p(∆) = pD(∆)pN (∆), where the roots of
pD are exactly the roots of p of the form −5λ for λ a Neumann eigenvalue.
As in the discussion preceding the corollary it is enough to show solvability
for pD and pN .

Write Ω as an infinite union (6) of maximal cells contained in Ω. If

f ◦ Fw =

∞∑
j=1

cj,wuj,

where uj are Dirichlet eigenfunctions then

(9) vw =

∞∑
j=1

cj,wuj ◦ F−1
w

pD(−5|w|λj)
,

is a solution to pD(∆)u = f on Kw, where the denominator in (9) is nonzero
by our assumptions on the roots of pD. The local solutions can be glued
together to a continuous function v on Ω. To assure that the matching
condition is satisfied at every junction point in Γ̃n we can add continuous
splines g such that pD(∆)g = 0 in the interior of the cells Kw, w ∈ W . We
thus have a larger family of splines than in the proof of Theorem 3 so this
obviously is possible and the proof can be completed in the same way. To
solve pN (∆)u = f we find local solutions using Neumann expansions and
follow the same path to obtain a solution on all of Ω.

In case p(−5λ) = 0 for some joint Dirichlet/Neumann eigenvalue, The-
orem 2 shows that the equation is not solvable for every f whenever Ω
contains a 1-cell. �

The open sets where (5) is solvable can be characterized as follows.

Corollary 4. Suppose p does not satisfy the hypothesis of Corollary 3.
Let n ≥ 1 be the largest n such that p(−5nλ) = 0 for λ a joint Dirich-
let/Neumann eigenvalue. Then (5) is solvable on the open set Ω for any f
continuous on Ω if and only if Ω only contains m-cells for m > n.

Proof. If Ω contains a cell of level n then (5) is not always solvable by
Theorem 2. If Kw ⊂ Ω implies |w| ≥ n + 1 the same idea as in the proof
of Theorem 3 can be used to solve the equation. The only thing that is
new is that one has to use the fact that if f is a joint Dirichlet/Neumann
λ-eigenfunction and no cell of level n is included in the support of f then
λ/5n+1 also is a joint eigenvalue. �
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Note that if n = 1 in Corollary 4, then Ω can be any open set without
points on the boundary. In the obstructive case of Theorem 2 that f is
a λ-eigenfunction and λ a joint eigenvalue, there is, if λ/5 is not a joint
eigenvalue, a solution to equation (2) on the interior of K that extends
continuously to two points on the boundary. If λ/5 is a joint eigenvalue but
λ/52 is not, and f is such that fi, i = 0, 1, 2 is a λ/5-eigenfunction, then
there are still solutions on the interior of K, but no one can be extended
continuously at any boundary point.

As noticed in [9] concerning Theorem 1, our results also generalize to
fractafolds based on the Sierpiński gasket [10].
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Math. Anal. Appl. 240 (1999), 552–573.
[3] M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket, Po-

tential Anal. 1 (1992), 1–35.
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INFINITE DIMENSIONAL I.F.S. AND SMOOTH FUNCTIONS ON

THE SIERPIŃSKI GASKET

ANDERS PELANDER AND ALEXANDER TEPLYAEV

Abstract. We describe the infinitesimal geometric behavior of a large class of

intrinsically smooth functions on the Sierpiński gasket in terms of the limit distri-

bution of their local eccentricity, which is essentially the direction of the gradient.

The distribution of eccentricities is codified as an infinite dimensional perturbation

problem for a suitable iterated function system, which has the limit distribution

as an invariant measure. Continuity properties of the gradient are used to define

a class of nearly harmonic functions which are well approximated by harmonic

functions. The gradient is also used to identify the part of the Sierpiński gasket

where a smooth function is nearly harmonic locally. We prove that for nearly har-

monic functions the limit distribution is the same as that for harmonic functions

found by Öberg, Strichartz and Yingst. In particular, we prove convergence in

the Wasserstein metric. We consider uniform as well as energy weights.

1. Introduction and notation

There is an extensive theory of analysis on fractals, see for example the books by

Kigami [3] and Strichartz [9], and the survey article [7]. For the most part of the

analytic theory (there is also a probabilistic theory) one is concerned with fractals

which are not too complicated. In the present paper we consider the Sierpiński gas-

ket, which is the example of two-dimensional fractal theory which is best understood

from an analytic point of view.

In classical analysis the study of the local structure of smooth functions is fun-

damental and has many important consequences. For instance it gives rise to such

a basic notion as the tangent space. In analysis on fractals the local structure of

smooth functions is not yet understood well enough to make it clear what conclu-

sions can be drawn. In this paper we will address some questions concerning the

local structure of smooth functions on the Sierpiński gasket. We actually show that

they inherit a property of the local structure of harmonic functions, which could be

seen as the analogues of linear functions on an interval, proven in [6].

2000 Mathematics Subject Classification. Primary 28A80; Secondary 28A33, 28A35, 31C05,

31C99, 41A99.

Key words and phrases. fractals, Sierpiński gasket, infinite dimensional i.f.s, smooth functions,

gradients, invariant measures.
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The Sierpiński gasket K is the invariant set for the iterated function system (i.f.s.)

in the plane given by

Fix =
1

2
(x − qi) + qi i = 0, 1, 2,

where qi are the vertices of an equilateral triangle. More specifically, K is the unique

compact subset of R
2 such that K = F0(K) ∪ F1(K) ∪ F2(K).
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Figure 1. Sierpiński gasket.

One reason why the Sierpiński gasket is not ’too complicated’, is that it is an

example of a fractal which is post-critically finite (p.c.f.). In this particular case, the

p.c.f. condition says that for the boundary V0 := {q0, q1, q2} of K we have

FiK ∩ FjK ⊆ FiV0 ∩ FjV0,

for i �= j. The general definition can be found in [3].

We regard K as the limit of graphs Γn with vertices Vn and edge relations x ∼n y

defined inductively as follows. Let Γ0 be the complete graph on V0 = {q0, q1, q2}.

Then Vn =
⋃

i FiVn−1 with x ∼n y if and only if there exists i such that x = Fix
′,

y = Fiy
′ and x′ ∼n−1 y′. Note that Vn−1 ⊆ Vn. We regard V0 = ∂K = {q0, q1, q2} as

the boundary of each of the graphs Γn, so that Vn \ V0 consists of all non-boundary

vertices in Γn. Note that every such vertex has exactly four neighbors in Vn. Points

in Vn \ V0 are called junction points.

We define Wn as the space of finite sequences, or words, w = w1 · · ·wn of length

|w| = n, W∗ =
⋃

n�0 Wn as the space of finite words of all lengths, and Ω as the space

of infinite sequences ω = w1w2 · · · , wj ∈ W1 = {0, 1, 2}. For ω = w1w2 · · · ∈ Ω, let

[ω]k = w1 · · ·wk ∈ Wk and likewise for w ∈ W∗ and k < |w|. We denote

Fw = Fw1
◦ · · · ◦ Fwn

and Kw = Fw(K).

For any function f on K and w ∈ W∗ we will use notation fw for the function

fw = f ◦ Fw defined on K.

We will denote by m the standard self-similar measure on K defined by

m(Kw) =
1

3|w|
.
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Note that there is a natural continuous projection π : Ω → K defined by

π(ω) =
⋂
n�0

K[ω]n .

We will abuse notation and define a measure m on Ω as the pullback of the measure

m on K under the projection map π, that is m(π−1(·)) = m(·). Then m is the

product Bernoulli measure.

A continuous function h on K is said to be harmonic if for all n its restriction to

Vn is graph-harmonic: its value at every non-boundary vertex x ∈ Vn is equal to the

average of its values at the four neighboring points in Vn,

(1.1) h(x) =
1

4

∑
y∼nx

h(y).

We say that f is n-harmonic if all restrictions fw, w ∈ Wn are harmonic.

We will need the concept of energy for functions defined on K. Define graph

energy forms

En(u, v) =

(
5

3

)n ∑
y∼nx

(u(x) − u(y))(v(x) − v(y)).

Then the sequence of graph energies En(u) = En(u, u) is nondecreasing for every u

and the harmonic functions are the only ones for which the sequence is constant.

The energy of a continuous function u can thus be defined as

E(u) = lim
n→∞

En(u),

and we will say that u ∈ DomE if and only if u has finite energy. The energy form

is defined on DomE through

E(u, v) = lim
n→∞

En(u, v).

Constant functions are the only ones with zero energy and DomE modulo constants

is a Hilbert space with the energy form as inner product. Functions with finite energy

are continuous and form a dense subspace of C(K). To every function f ∈ DomE

we associate its energy measure νf through

νf (Kw) =

(
3

5

)−|w|

E(fw), w ∈ W∗,

and, as with m, we denote also by νf the measure on Ω that is the pullback under

π of νf .

There is an unbounded Laplacian denoted ∆ for which the domain of definition,

Dom∆, is a dense subset of C(K), and such that the harmonic functions are exactly

those for which ∆f = 0. The Laplacian ∆f can be defined as a pointwise limit of
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difference operators ∆nf |Vn
but also by means of a Green’s operator G (see [2, 3, 9]).

We will say that ∆f = u if f and u are continuous and

f = −Gu + Hf

where Hf is the unique harmonic function that coincides with f on the boundary

and

(1.2) Gu(x) =

∫
K

u(y)g(x, y)dm(y).

Here g(x, y) is a Green’s function, which is nonnegative, symmetric and g(x, y) = 0

if x or y is a boundary point. Since the Sierpiński gasket is a regular harmonic

structure, g(x, y) is continuous on K ×K [2, Proposition 5.4]. The relation between

the Laplacian and the energy form is given by the Gauss–Green’s formula

E(u, v) = −

∫
K

u∆vdm +
∑
p∈V0

u(p)dv(p),

where dv(p) is a certain normal (Neumann) derivative of v at p (see [2, Proposition

7.3]). The Laplacian satisfies the following scaling identity

∆(fw) = 5−|w|(∆f)w.

The functions we will consider in this paper are those for which ∆f is Hölder

continuous. We will call such functions smooth.

It is proved in [8] that any function in the domain of the Laplacian is Hölder

continuous with Hölder exponent α = −
log 3

5

log 2 . Thus, the important eigenfunctions

of ∆ and multiharmonic functions, i.e. functions for which ∆nf = 0 for some n, are

smooth.

A central notion in this paper is the concept of eccentricity of a function defined

on the Sierpiński gasket

Definition 1. For a function f defined on the Sierpiński gasket K with boundary

points q0, q1, q2, ordered so that f(q0) ≤ f(q1) ≤ f(q2), we define the eccentricity

e(f) by

e(f) =

{
f(q1)−f(q0)
f(q2)−f(q0) provided f(q0) < f(q2),

−1 if f(q0) = f(q1) = f(q2).

For every n the Sierpiński gasket is naturally decomposed into 3n copies Kw, w ∈

Wn of itself. Our objective is to study how eccentricities are distributed among the

restrictions fw, w ∈ Wn, of a smooth function f to these copies (cells), generalizing

results obtained in [6] for harmonic functions.

Note that the eccentricity is invariant under the symmetries of the Sierpiński

gasket, and also is invariant under any affine transformation f �→ af + b, a �= 0. So

we may assume, without loss of generality, that if f is not constant on the boundary
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then f(q0) = 0, f(q1) = e, f(q2) = 1 and if f is constant on the boundary then

f(q0) = f(q1) = f(q2) = 0

The distribution of eccentricities of harmonic functions is governed by an i.f.s.

{ψi}
2
i=0 acting on ({−1} ∪ [0, 1]) that produces the new eccentricities on each of the

three smaller copies Ki, given an eccentricity on K for a harmonic function. The

i.f.s. is derived from the harmonic extension algorithm:

(1.3) h(x) =
2

5
h(y) +

2

5
h(z) +

1

5
h(v)

where x ∈ Vn \ Vn−1, where y and z are the two neighbors of x in Vn that belong to

Vn−1, and v is the third vertex of the triangle in Vn−1 that contains y and z.

The maps of the i.f.s. are computed by letting the maps ψi be defined as

ψi(e(h)) = e(h ◦ Fi),

where e(h) is the eccentricity on K for the harmonic function h. If h is constant on

the boundary, then h is a constant function, thus ψi(−1) = −1 for i = 0, 1, 2. If h

is not constant on the boundary, we let h(q0) = 0, h(q1) = e and h(q2) = 1. The

harmonic extension algorithm gives the new values for the blow-up h ◦ F0:

e(h ◦ F0) = (2e + 1)/(e + 2) = ψ0(e),

since h(F0(q0)) = 0, h(F0(q1)) = (2e + 1)/5 and h(F0(q2)) = (e + 2)/5. The other

maps, ψ1 and ψ2 are calculated analogously and one obtains the full iterated function

system for x ∈ [0, 1]:

(1.4)



ψ0(x) =
2x + 1

x + 2
,

ψ1(x) =



1 − 3x

2 − 3x
, if 0 ≤ x ≤

1

3

3x − 1, if
1

3
≤ x ≤

2

3
1

3x − 1
, if

2

3
≤ x ≤ 1,

ψ2(x) =
x

3 − x
.

Since the only harmonic functions for which any restriction hw is constant on

V0 actually are the constant functions, the arbitrary definition of eccentricity for

functions constant on V0 does not give any extra information in the harmonic case.

However, when working in the larger class of smooth functions it may happen that

some fw are constant on V0 even though f is not constant. To describe the dis-

tribution of eccentricities for our larger class it is therefore necessary to define the

eccentricity of functions constant on V0.

In [6] the i.f.s. {ψi}, i = 0, 1, 2 acting on [0, 1] were studied. It was shown that,

with respect to uniform weights 1
3 , 1

3 , 1
3 , there exists a unique probability measure µ0

which is a weak limit, as n → ∞, of the distribution of the eccentricities at level n,
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the discrete measure 3−n
∑

|w|=n δ(ψw(e)). This limit distribution µ does not depend

on the non-constant harmonic function, that is, the starting point of the iterations.

The case when each map in the i.f.s. is given the same weight as the restriction

of the function to the corresponding subcell contributes to the energy of the whole

function was also considered in [6]. Let h be the harmonic function with boundary

values h(q0) = 0, h(q1) = e and h(q2) = 1. These energy weights will be

pi(e) =
5E(hi)

3E(h)
,

which equals

(1.5)


p0(e) = 1

5
e2+e+1
e2−e+1

,

p1(e) = 1
5

3e2−3e+1
e2−e+1 ,

p2(e) = 1
5

e2−3e+3
e2−e+1

.

The same type of convergence result as for uniform weights holds in the energy case.

There exists a unique probability measure µE, different from µ0, that is the weak limit

of the discrete measures
∑

|w|=m pw(e)δ(ψw(e)). Here pw(e) =
∏m

i=1 pwi
(ψwi−1...w1

(e)).

In Section 2 we show that for a certain class of nearly harmonic functions, eccen-

tricities are in [0, 1] on all scales. Using the gradient defined in [10], we identify the

part of the Sierpiński gasket where a smooth function is nearly harmonic locally.

In Section 3 we define an i.f.s. {Ψi}
2
i=0 that governs the distribution of eccentricities

of smooth functions. This i.f.s. will be a perturbed version of the original i.f.s. (1.4),

and it will act on an infinite dimensional space, since the space of smooth functions

is not finite dimensional. We prove convergence of the perturbed i.f.s. to the same

measures µ0 resp. µE, as in [6] with uniform weights (Theorem 4) and energy weights

(Theorem 5) respectively. But with uniform weights we have the restriction that the

starting point must correspond to a nearly harmonic function. This restriction is

not necessary in the energy case since the subset of the Sierpiński gasket where a

smooth function is nearly harmonic locally has full energy measure.

The same measures µ0 and µE occurs as limit distribution of eccentricities, because

the perturbation of the original i.f.s. collapses fast enough on smaller scales. This

could be interpreted that every function with Hölder continuous Laplacian in the

limit satisfies the 1
5 − 2

5 extension algorithm.

Acknowledgements. The authors are grateful to Volker Metz, Anders Öberg and

Robert Strichartz for helpful discussions. We also thank the anonymous referee for

corrections and useful suggestions.

2. Gradient and local eccentricities

2.1. Nearly harmonic functions. In this section we define a class of functions

for which the local eccentricities are in [0, 1] on all levels. These are functions for
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which most of the energy comes from the harmonic part, i.e, the harmonic function

with the same boundary values. We rely to a great extent on the theory of gradients

developed in [10], in particular on Theorem 3 of that paper.

Let ‖f‖α be the Hölder norm with Hölder exponent α (with respect to the Eu-

clidean norm in R
2) of a function f on K. This norm is equivalent to an intrinsic

norm

(2.1) ‖f‖ρ = ‖f‖∞ + sup
n≥0

sup
w∈Wn

sup
x,y∈Kw

ρ−n|f(x) − f(y)|

where α = − log ρ
log 2 . We will be using this intrinsic norm on the space Hα of Hölder

continuous functions on K in the rest of the paper.

Following the notation in [10] we equip the space of harmonic functions H with

the norm ‖h‖2
H

= E(h, h) + (
∑

x∈V0
h(x))2. Let H̃ be the orthogonal complement to

constant functions and P̃ the orthogonal projection from H onto H̃. On H̃, as well

as on DomE modulo constants, we will use the norm ‖f‖2 = E(f, f).

If {h1, h2} is an orthonormal basis of H̃ then the Kusuoka measure, ν = νh1
+νh1

, is

independent of the choice of orthonormal basis. The Kusuoka measure is non-atomic

and νf is absolutely continuous with respect to ν for any f ∈ DomE, see [1, 5, 10].

Again, we denote by ν its pullback on Ω under π.

For i = 0, 1, 2 let the linear map Mi : H → H be defined by Mih = h ◦ Fi and

define M̃i : H̃ → H̃, by M̃i = P̃MiP̃
∗. The Sierpiński gasket is a non-degenerate

harmonic structure, i.e., the restriction of any non-constant harmonic function to

any Kw, w ∈ W∗ is non-constant, since the matrices M̃i, i = 0, 1, 2 are invertible.

For any continuous f we denote by Hf the unique harmonic function that coincides

with f on V0 and let H̃ = P̃H. In [10] Gradwf for w ∈ Wn is defined as

Gradwf = M̃−1
w H̃(fw),

where M̃w = M̃wn
. . . M̃w1

and

Gradωf = lim
n→∞

Grad[ω]nf,

for ω ∈ Ω whenever the limit exists.

Hölder continuity of ∆f gives the following estimate of ‖Gradωf‖, which is a

refinement of Theorem 3 in [10].

Theorem 1 ([10] Theorem 3). Suppose that ∆f is Hölder continuous on the Sierpi-

ński gasket, that is |∆f(x) − ∆f(y)| � cρn if x, y ∈ Kw, w ∈ Wn. Then Gradωf is

defined for every ω ∈ Ω and

(2.2) ‖Gradωf − H̃f‖ � 8

(
c

1 − ρ
+ ‖∆f(x)‖∞

)
.

The estimate (2.2) also holds for Gradwf , w ∈ W∗.

The map ω �→ Gradωf is continuous at ω in the standard topology of Ω if ω is not

constant after a finite segment or ∆f(π(ω)) = 0.
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For the convenience of the reader we mention that the proof in [10] consists of

writing Gradwf as a telescoping sum of terms Grad[w]n+1
f−Grad[w]nf , and carefully

estimating these terms using the Green’s formula (1.2), and properties of the matrix

M̃−1
[w]n

. The constant 8 in (2.2) is not explicitly found in [10], however it follows from

the argument there by inserting elementary estimates of the terms ha and hs into

the proof. The estimates we use are

‖ha‖ ≤
3
√

6

5
cρn

and

‖hs‖ ≤
1
√

2
‖∆f‖∞.

Remark 1. If x is a point in K, then the definition of the gradient of f at x is more

delicate. If x ∈ K is not a junction point, then there is a unique ω ∈ Ω such that

x = π(ω). Then one can see that the map x = π(ω) �→ Gradωf is well defined, and

is continuous at x in the topology of K.

However, x = π(ω) is a boundary point if and only if ω is constant, and x = π(ω)

is a junction point if and only if ω is constant after a finite segment. If x ∈ K is a

junction point, then there are two different ω1, ω2 ∈ Ω such that x = π(ω1) = π(ω2).

Then there can be two different gradients, Gradω1
f and Gradω2

f , of f at x. It is easy

to construct examples of such a situation, for example, every localized eigenfunction

of the Laplacian has points with this property.

Remark 2. In [10] there was an obvious typo that −H̃f was omitted in (2.2)

The following theorem gives a criterion to have all local eccentricities in [0, 1], i.e.

for the function to have a non-constant harmonic part on all cells. It will also be a

key for uniqueness of the distribution of eccentricities of such functions.

Theorem 2. There exists a real number ε0 > 0, such that if f is smooth and

(2.3)
‖∆f‖ρ

‖f‖
< ε0,

then f |V0
is not constant and

(2.4) ‖Hfw‖ �
1

2
·

‖f‖

‖M̃−1
w ‖

> 0,

for any finite word w.

Proof. We write f = Hf − Gu, where u = ∆f . If Hf = 0 then since

E(Gu) = −

∫
K

Gu · ∆Gudm =

∫
K

Gu · udm

=

∫
K×K

g(x, y)u(x)u(y)d(m × m)(x, y)
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≤ ‖g‖∞‖u‖2
∞,

we have
‖∆f‖ρ

‖f‖
≥

1√
‖g‖∞

,

and f |V0
is not constant for appropriate εo in (2.3). In the sense of the energy

norm, f is a slightly perturbed harmonic function, since E(f) = E(Hf)+E(Gu) and

E(Gu) ≤ ‖g‖∞ε2
0E(f) implies

(2.5) ‖Hf‖ ≥
√

(1 − ‖g‖∞ε2
0)‖f‖.

Then for ε0 > 0 small enough we have

‖Hfw‖ = ‖H̃fw‖ =
∥∥∥H̃(Hf)w + H̃(Gu)w

∥∥∥ =
∥∥∥M̃wP̃Hf + M̃wM̃−1

w H̃(Gu)w

∥∥∥
=

∥∥∥M̃w

(
P̃Hf + M̃−1

w H̃(Gu)w

)∥∥∥ ‖M̃−1
w ‖

‖M̃−1
w ‖

≥
1

‖M̃−1
w ‖

∥∥∥P̃Hf + M̃−1
w H̃(Gu)w

∥∥∥
=

1

‖M̃−1
w ‖

∥∥∥P̃Hf + GradwGu
∥∥∥ ≥

‖Hf‖ − ‖GradwGu‖

‖M̃−1
w ‖

≥
1

2
·

‖f‖

‖M̃−1
w ‖

.

The last inequality follows from Theorem 1. �

Definition 2. A smooth function f defined on K is nearly harmonic if f satis-

fies (2.3) with ε0 small enough that the conclusions of Theorem 2 hold.

The term nearly harmonic stems from inequality (2.5). Note that if h is a non-

constant harmonic function and u is any Hölder continuous function on K with

‖u‖ρ = 1, then h + tGu is nearly harmonic whenever 0 ≤ |t| ≤ ε0‖h‖.

Proposition 3. If ρ ≤ 1 − 3
20

√
3
2 ≈ 0.816288 . . . then ε0 is independent of ρ, and

can be put to ε0 = 0.06

Proof. To give a numerical value of ε0 it is necessary to estimate the supremum norm

of the Green’s function g, which is defined by (see [2] and [3]),

(2.6) g(x, y) =
∑

w∈W∗∪∅

rwΨw(x, y),

where

Ψw(x, y) =

{
Ψ((Fw)−1(x)), (Fw)−1(y)) if x, y ∈ Kw

0 otherwise

and

(2.7) Ψ(x, y) =
∑

p,q∈V1\V0

Xp,qψp(x)ψq(y).

Since the functions ψp are 1-harmonic the maximum of Ψ will be obtained for x and

y in V1, which gives ‖Ψ‖∞ = 9
50 .
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For any pair of points x and y, it is clear that Ψw(x, y) can be non-zero for more

than one w ∈ Wk, only if x and y lie in Vk, but for such points Ψw(x, y) = 0. Thus,

for every k, there can only be at most one non-zero term Ψw(x, y), w ∈ Wk, and

‖g‖∞ ≤
∞∑

k=0

(
3

5

)k

‖Ψ‖∞ =
9

20
.

From the proof of Theorem 1 it follows that if ρ ≤ 1 − 3
20

√
3
2 the sum of the

asymmetric parts are bounded by 8c and thus the right hand side of (2.2) can be

replaced by 8‖∆f‖ρ. In the last step of the proof of Theorem 2 we choose ε0 small

enough that

‖Hf‖ − ‖GradwGu‖ ≥

(√
(1 − ‖g‖∞ε2

0) − 8ε0

)
‖f‖ ≥

1

2
‖f‖.

which holds for ε0 = 0.06. This value is also small enough to assure that f |V0
is not

constant. �

Remark 3. In [4] it is conjectured that ‖g‖∞ = 178839/902500.

Remark 4. Note that in the important case ρ = 3
5 , which includes all functions

whose Laplacian is itself in Dom∆, the hypothesis of Proposition 3 is satisfied.

Remark 5. The value 1
2 in (2.5) is of course arbitrarily chosen from (0, 1). Replacing

it with a number close to 0, it is possible to obtain a value of ε0 arbitrarily close to
1√

64+‖g‖∞
in Proposition 3. Also note that we can change 1

2 to a factor b(ρ) ∈ (0, 1)

depending on ρ to have Proposition 3 valid for more values of ρ. For ρ < 1 −
3
√

6ε0

5
√

1−‖g‖∞ε2
o

it is possible to choose b(ρ) so that Proposition 3 is valid but it seems

impossible to have a value ε0 valid for all ρ.

2.2. Eccentricities of restrictions of smooth functions. In this section we show

that the value of eccentricities of restrictions of smooth functions depend on whether

the gradient vanishes or not. In particular we prove that restrictions of smooth

functions are nearly harmonic on small enough cells where the gradient does not

vanish.

Proposition 4. Suppose f is a smooth function. Let O be the subset of Ω where

Gradωf �= 0. Then for any ε > 0 there exists an open set Oε ⊆ O with the following

property. For any ω ∈ Oε there is n such that

(2.8)
‖∆f[ω]m‖ρ

‖f[ω]m‖
< ε

for all m � n. Moreover, O\Oε consists only of sequences which are constant after

a finite segment. In particular, O\Oε is at most countable.
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Proof. We have,

(2.9) ‖∆fw‖ρ � 5−|w|‖∆f‖ρ

and

(2.10) ‖f[ω]m‖ � ‖H̃f[ω]m‖ = ‖M̃[ω]mGrad[ω]mf‖ �
1

‖M̃−1
[ω]m

‖
‖Grad[ω]mf‖.

Suppose Gradω0
f �= 0 and ω0 is not constant after a finite segment. Then

lim infm→∞ ‖Grad[ω]mf‖ > 0 uniformly in a neighborhood of ω0, we even have

for some n that ‖Grad[ω0]nwf‖ ≥ cω0
‖Gradω0

f‖ for every w ∈ W∗. In addition,

‖M̃−1
j ‖ = 5 and limn→∞ 5−n‖M̃−1

[ω0]n
‖ = 0 by the estimate in Theorem 2 in [10] (see

also Lemma 8 below). We thus have

‖∆f[ω0]nw‖ρ

‖f[ω0]nw‖
≤

5−n5−|w|‖M̃−1
[ω0]nw

‖‖∆f‖ρ

‖Grad[ω0]nwf‖
≤

5−n‖M̃−1
[ω0]n

‖‖∆f‖ρ

cω0
‖Gradω0

f‖
,

for every w ∈ W∗. This completes the proof.

�

Corollary 5. Suppose f is a non-constant smooth function. Then for any ε > 0

there exists W ′
ε ⊆ W∗ such that

(2.11)
‖∆fw‖ρ

‖fw‖
< ε

for all w that can be written as w = w′w∗ where w′ ∈ W ′
ε and w∗ ∈ W∗. Moreover,

if O is the subset of Ω where Gradωf �= 0, then π(O)\(
⋃

w∈W ′

ε

Kw) consists only of

boundary and junction points. In particular, this set is at most countable.

Proof. As W ′
ε take the set of all [ω]n with ω ∈ Oε not constant after a finite segment,

where n is the least possible value for which (2.8) holds. Then apply the projection

π to the objects in the previous corollary. �

This corollary tells us that any restriction fw, w ∈ W ′
ε0

is nearly harmonic. We

want to show that f is constant on cells whose intersection with ∪w∈W ′

ε0

Kw is at most

finite. This does not follow directly from Theorem 1 since the set π(O)\(
⋃

w∈W ′

ε

Kw)

might intersect such cells. We will need the following result.

Proposition 6. Suppose f is a smooth function and that

ν ({ω ∈ Ω | Gradωf = 0}) = 1,

where ν is the Kusuoka measure. Then f is constant.

Proof. We prove that E(f) = 0. Let fn be the n-harmonic function that coincides

with f on Vn. Then E(f) = limn E(fn). Let

gn =
∑

w∈Wn

< Gradwf, Zn(w)Gradwf > 1Kw
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where 1Kw
denotes the characteristic function of Kw and

Zn(w) =
M̃∗

wM̃w

TrM̃∗
wM̃w

It is noted in [10, section 4] that

E(fn) =

∫
K

gndν.

Theorem 1 implies gn is uniformly bounded and Gradωf = 0 for ν a.e. ω gives

limn→∞ gn(x) = 0 for ν a.e. x. Dominated convergence completes the proof.

�

Remark 6. If the set

Kz ∩
(
∪w∈W ′

ε0

Kw

)
, z ∈ W∗

is finite or empty, then fz is constant, since by Corollary 5, Gradωfz �= 0 for at most

a countable number of ω, and ν has no atoms, so Proposition 6 applies. The converse

is trivially true.

For smooth functions, depending on where in K a point x lies, restrictions to small

enough neighborhoods of x will exhibit one of three possible behaviors. Either they

will be constant, nearly harmonic or exhibit what we will call exceptional behavior.

Theorem 3. Let f be a smooth function on K. Then there are sets KH
f , KC

f and

KE
f such that

K = KH
f ∪ KC

f ∪ KE
f

where pairwise intersections between the sets in the union are at most countable and

such that f is nearly harmonic locally on KH
f , in the sense that the restriction to

any cell contained in KH
f is nearly harmonic. Also f is constant locally on KC

f in

the same sense. The set KE
f is closed and nowhere dense.

Proof. The different parts of K can be constructed as follows. Partition Wn into

W H
n,f = {w | [w]k ∈ W ′

ε0
for some k ≤ n}

W C
n,f = {w | f |Kw

= const}

and W E
n,f what is left. Then define three sequences of subsets of K

KH
n,f = ∪w∈W H

n,f

Kw, KC
n,f = ∪w∈W C

n,f

Kw, and KE
n,f = ∪w∈W E

n,f

Kw,

with the property that

K = KH
n,f ∪ KC

n,f ∪ KE
n,f .

Note that KH
n,f and KC

n,f are increasing and KE
n,f decreasing. Define

KH
f = ∪n≥1K

H
n,f , KC

f = ∪n≥1K
C
n,f and KE

f = ∩n≥1K
E
n,f .
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Then K = KH
f ∪KC

f ∪KE
f with pairwise intersections at most countable, f is nearly

harmonic (constant) locally in KH
f (KC

f ) and the closed set KE
f has empty interior

(Remark 6). �

On the exceptional set KE
f we can not say anything about the local behavior of

f . If x = π(ω) ∈ KE
f is not a junction or boundary point then Gradωf = 0 but we

don’t have Grad[ω]nf = 0 for n big enough. Thus the eccentricity of f[ω]n might very

well jump between −1 and [0, 1].

This partition shows that in the case of uniform weights we can not hope for con-

vergence of the perturbed i.f.s. for arbitrary starting points since possibly m(K E
f ) >

0. But in the energy case this is true because of the following fact.

Proposition 7. If f is a function with Hölder continuous Laplacian then νf (KC
f ) =

νf (KE
f ) = 0.

Proof. It is trivial that νf (KC
f ) = 0, so we can suppose that f is not constant on

any subcell of K.

Let fn be the n-harmonic function that coincides with f on Vn. From [10, section

4], we know that

νfn
(KE

m,f ) =
∑

w∈W E
m

∑
w′∈Wn−m

< Gradww′f, Zn(ww′)Gradww′f > ν(Kww′),

for n ≥ m.

Then, because KE
m,f is a finite union of cells, we have

νf (KE
m,f ) = lim

n→∞
νfn

(KE
m,f )

= lim
n→∞

∑
w∈W E

m

∑
w′∈Wn−m

< Gradww′f, Zn(ww′)Gradww′f > ν(Kww′)

=

∫
π−1(KE

m,f
)\π−1(KE

f
)
< Gradωf, Z(ω)Gradωf > dν(ω),

where we have used that Gradωf = 0, ν a.e. on π−1(KE
f ). Since Hölder continuity

of ∆f implies that < Gradωf, Z(ω)Gradωf > is uniformly bounded, we see that

νf (KE
f ) = lim

m→∞
νf (KE

m,f ) = 0.

�

3. Distribution of eccentricities

3.1. Perturbation of the iterated function system. To study the limit distri-

bution of eccentricities of smooth functions it is necessary to extend the original

i.f.s. on {−1} ∪ [0, 1] describing the harmonic case to ({−1} ∪ [0, 1]) × Hα, where

Hα is the space of Hölder continuous functions on K. For this purpose we make the

following identification, the notation for which will be used throughout this section.
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Let (e, u) ∈ ({−1} ∪ [0, 1]) × Hα correspond to a function with Hölder continuous

Laplacian through the following identification. If e ∈ [0, 1] let f = h − Gu where

h is the unique harmonic function such that h(q0) = 0, h(q1) = e and h(q2) = 1,

and if e = −1 let f = −Gu. After composition with a symmetry of the Sierpiński

gasket and an affine transformation any function with Hölder continuous Laplacian

is of this form so it is sufficient to study such functions.

The i.f.s. that describes the distribution of eccentricities on this larger class of

functions is of course the same as the original i.f.s. on ({−1} ∪ [0, 1]) × {0} but for

non-zero second coordinate the maps are perturbed to

(3.1) Ψj(e, u) =


(
e(fj),

u′

j

5(maxV0
fj−minV0

fj)

)
if fj|V0

is not constant

(
−1,

uj

5

)
if fj|V0

is constant

with u′
j = uj ◦R where R is a symmetry of K such that f ′

j = fj ◦R has the property

that maxV0
f ′

j is achieved at the vertex q2 of K and minV0
f ′

j is achieved at the

vertex q0 of K. Thus, in the above identification Ψj(e, u) corresponds to fj if fj|V0

is constant and to
f ′

j

(maxV0
fj−minV0

fj)
if fj|V0

is not constant.

In the case of energy weights there will also be new weights pi(e, u) that depend

on the second coordinate.

For ease of notation we will let Ψw = Ψw′

1
◦ · · · ◦ Ψw′

n
where w �→ w′ is the

permutation of Wn such that

Ψw′(e, u) =


(
e(fw), u′

w

5n(maxV0
fw−minV0

fw)

)
if fw|V0

is not constant

(
−1, uw

5n

)
if fw|V0

is constant.

Since we will only be interested in estimating the norm of the second coordinate we

will skip the prime notation.

Lemma 8. The second component in the perturbed i.f.s. Ψw tends to 0 for every

orbit ω ∈ Ω that is not constant after a finite segment, from any starting point

(e, u) ∈ ({−1} ∪ [0, 1]) × Hα corresponding to a function f such that Gradωf �= 0.

Proof. We know from Corollary 5 that [ω]m = w for some w ∈ W ′
ε0

. Then according

to Theorem 2

(max
V0

f[ω]n − min
V0

f[ω]n)2 �
1

3
E(Hf[ω]n) � Const

E(f[ω]m)

‖M̃−1
[σm(ω)]n−m

‖2
.

With the estimate

(3.2) ‖M̃−1
[ω]n

‖ ≤ 5nβC(ω,n),
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where β < 1 and C(ω, n) is the number of changes in [ω]n, from the proof of Theorem

2 in [10], it follows that for any ω ∈ Ω we have

(3.3) 5n(max
V0

f[ω]n − min
V0

f[ω]n) � Const
‖f[ω]m‖

βC(σm(ω),n−m)
→ ∞.

We conclude that the second term of the iterates
u[ω]n

5n(maxV0
f[ω]n − minV0

f[ω]n)
→ 0

in Hölder norm. �

Remark 7. Note that if (e, u) corresponds to a nearly harmonic function f then

Lemma 8 is true without any assumption on Gradωf . However, for nearly harmonic

functions Gradωf �= 0 for every ω ∈ Ω anyway, because of (2.2).

3.2. Limit distribution with uniform weights. It was shown in [6] that the i.f.s.

(1.4) on [0, 1] with uniform weights has a unique invariant measure µ0 in the sense

that

(3.4) µ0 =

3∑
j=1

1

3
µ0 ◦ ψ−1

j .

Our extension of this i.f.s. to {−1} ∪ [0, 1] trivially gives rise to some new invariant

measures that satisfy (3.4), namely

µt = tδ−1 + (1 − t)µ0, t ∈ [0, 1].

Since Ψj(x, 0) = (ψj(x), 0), it is obvious that µt × δ0 are invariant measures of the

perturbed i.f.s. (3.1) in the sense that

µt × δ0 =
3∑

j=1

1

3
(µt × δ0) ◦ Ψ−1

j .

We define the action of an operator A on a probability measure λ on ({−1} ∪

[0, 1]) × Hα by

Aλ(B) =

3∑
j=1

1

3
λ(Ψ−1

j (B)) =

∫
({−1}∪[0,1])×Hα

P ((e, u), B)dλ(e, u),

where B is any Borel subset of ({−1} ∪ [0, 1]) × Hα and

P ((e, u), B) =

3∑
j=1

1

3
δΨj(e,u)(B) = m(ω | ψ[ω]1(e, u) ∈ B)

is the probability, with respect to uniform weights, of ending up in B when starting

from (e, u). Then the invariant measures µt × δ0 are exactly the fixed points of A.

To state our main result we need the following definition.
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Definition 9. The Wasserstein metric for probability measures µ and ν on a mea-

surable set X is defined as

dW (µ, ν) = sup
‖f‖Lip≤1

∣∣∣∣∫
X

fdµ −

∫
X

fdν

∣∣∣∣ .
In [6] it was proven that Anδe → µ0 in the Wasserstein metric, regardless of the

starting point e. Next, we prove that the limit distribution of eccentricities for nearly

harmonic functions is the same as for harmonic functions.

Theorem 4. For any (e, u) ∈ ({−1}∪[0, 1])×Hα corresponding to a nearly harmonic

function f ,

Anδ(e,u) → µ0 × δ0

in the Wasserstein metric.

Theorem 4 does not follow immediately from Lemma 8. That Lemma only tells

us that if Anδ(e,u) converges in the Wasserstein metric it must converge to a measure

with support in ({−1}∪ [0, 1])×{0}. However, to prove Theorem 4 it is necessary to

show that the perturbation of the original i.f.s. is, in some sense, continuous in the

second coordinate; if a function is close enough to harmonic, eccentricities distribute

almost like in the harmonic case.

Lemma 10. Suppose f |V0
and fi|V0

, i = 0, 1, 2 are not constant. If ‖u‖∞ ≤ 1
20‖g‖∞

then

(3.5) |e(fi) − ψi(e)| ≤ Const‖u‖∞ i = 0, 1, 2.

Proof. Let V1 \ V0 = {p0, p1, p2} where p0 = F1(q2), p1 = F2(q0), p2 = F0(q1) and

f = Hf − Gu with f(q0) = 0 ≤ f(q1) = e ≤ f(q2) = 1. The harmonic extension

algorithm (1.1) gives that Hf(p0) = 2
5 + 2e

5 , Hf(p1) = 2
5 + e

5 , and Hf(p2) = 1
5 + 2e

5 .

Under the hypothesis of the lemma it is clear from (1.2) that ‖Gu‖∞ ≤ 1
20 and

this is enough to control in what point of Fi(V0) either maxV0
fi or minV0

fi will

occur. In the case i = 0 it is clear that minV0
f0 = f(q0) = 0 and independently of e

we have

e(f1) = min

(
2
5 + e

5 + Gu(p1)
1
5 + 2e

5 + Gu(p2)
,

1
5 + 2e

5 + Gu(p2)
2
5 + e

5 + Gu(p1)

)
.

Define

ecc0 : I × [−
1

20
,

1

20
] × [−

1

20
,

1

20
] → R

(e, x, y) �→ min

(
2
5 + e

5 + x
1
5 + 2e

5 + y
,

1
5 + 2e

5 + y
2
5 + e

5 + x

)
.

Note that ecc0 is Lipschitz continuous and that ecc0(e, 0, 0) = ψ0(e) and

ecc0(e,Gu(p1), Gu(p2)) = e(f0), hence

|e(f0) − ψ0(e)| ≤ Const‖(e,Gu(p1), Gu(p2)) − (e, 0, 0)‖
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≤ Constmax(|Gu(p1)|, |Gu(p2)|) ≤ Const‖Gu‖∞ ≤ Const‖u‖∞.

For i = 2 we know that maxV0
f2 = f(q2) = 1 so

e(f2) = min

(∣∣ e
5 + Gu(p0) − Gu(p1)

∣∣
3
5 − e

5 − Gu(p1)
,

∣∣ e
5 + Gu(p0) − Gu(p1)

∣∣
3
5 − 2e

5 − Gu(p0)

)
and a similar proof as for i = 0 can be done with

ecc2(e, x, y) = min

(∣∣ e
5 + x − y

∣∣
3
5 − e

5 − y
,

∣∣ e
5 + x − y

∣∣
3
5 − 2e

5 − x

)
.

The case i = 2 is a mixture of the two previous cases and is treated similarly.

�

Proof of Theorem 4. We must estimate

dW (ANδ(e,u), µ0 × δ0)

= sup
‖h‖Lip≤1

∣∣∣∣∣∣ 1

3N

∑
w∈WN

h(Ψw(e, u)) −

∫
h(x, 0)dµ0(x)

∣∣∣∣∣∣
= sup

‖h‖Lip≤1

∣∣∣∣∣∣ 1

3N

∑
w∈WN

h(e(fw),
uw

5N (maxV0
fw − minV0

fw)
) −

∫
h(x, 0)dµ(x)

∣∣∣∣∣∣ .
For this it is necessary to first iterate a certain number of steps so that the norm

of the second coordinate is small enough on most subcells of K, and then use the

result obtained in [6, Thm 5.6] together with Lemma 10 on those subcells.

Inequality (3.3) from the proof of Lemma 8 tells us that

(3.6)

∥∥∥∥ uw

5|w|(maxV0
fw − minV0

fw)

∥∥∥∥
∞

≤ Const
‖u‖∞βC(w,n)

‖f‖

for any w ∈ Wn. In the rest of the proof we will always assume that M is big enough

that

Const
‖u‖∞βM

‖f‖
<

1

20‖g‖∞
,

so that Lemma 10 applies whenever C(w,n) � M .

Let m, m′ and M be such that m+m′ = N and M ≤ m. Then for any ‖h‖Lip ≤ 1

we have ∣∣∣∣∣∣ 1

3N

∑
w∈WN

h(e(fw),
uw

5|w|(maxV0
fw − minV0

fw)
) −

∫
h(x, 0)dµ0(x)

∣∣∣∣∣∣
≤

1

3N

∑
w∈WN ,C(w,m)<M

∣∣∣∣h(e(fw),
uw

5|w|(maxV0
fw − minV0

fw)
) −

∫
h(x, 0)dµ0(x)

∣∣∣∣
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+
1

3N

∑
w∈WN ,C(w,m)≥M

∣∣∣∣h(e(fw),
uw

5|w|(maxV0
fw − minV0

fw)
) − h(e(fw), 0)

∣∣∣∣
+

1

3m

∑
w0∈Wm,C(w0,m)�M

1

3m′

∑
z∈W

m′

|h(e(fw0z), 0) − h(ψz(e(fw0
)), 0)|

+
1

3m

∑
w0∈Wm,C(w0,m)�M

∣∣∣∣∣∣ 1

3m′

∑
z∈W

m′

h(ψz(e(fw0
), 0) −

∫
h(x, 0)dµ0(x)

∣∣∣∣∣∣ .
The last term in the previous inequality is in [6, Thm 5.6] shown to be bounded

by Constam′

, with a < 1. To estimate the third term, let B = maxi=1,2,3 ‖ψi‖Lip and

use that if C(w0,m) � M we obtain by using (3.2) and Lemma 10 that for every

z ∈ Wm′

|e(fw0z) − ψz(e(fw0
))|

≤ |e(fw0z) − ψz
m′

(e(fw0z1...z
m′

−1
))|

+|ψz
m′

(e(fw0z1...z
m′

−1
)) − ψz

m′zm′
−1

(e(fw0z1...z
m′

−2
))|

+ . . .

+|ψz
m′ ...z2

(e(fw0z1
)) − ψz(e(fw0

))|

≤ Const

m′−1∑
k=0

Bk ‖u‖∞βM

‖f‖
.

We can conclude that∣∣∣∣∣∣ 1

3N

∑
w∈WN

h(e(fw),
uw

5|w|(maxV0
fw − minV0

fw)
) −

∫
h(x, 0)dµ0(x)

∣∣∣∣∣∣
≤ 2m[C(ω,m) < M ] +

1

3N

∑
w∈WN ,C(w,m)�M

∥∥∥∥ uw

5|w|(maxV0
fw − minV0

fw)

∥∥∥∥
+Const

Bm′

− 1

B − 1
βM + Constam′

≤ 2m[C(ω,m) < M ] + βM (Const + Const
Bm′

− 1

B − 1
) + Constam′

where a < 1, β < 1 and B > 1. This completes the proof.

�

With Theorem 4 we know that eccentricities of smooth functions locally has the

same limit distribution of eccentricities as harmonic functions in the set KH
f . In par-

ticular Theorem 4 remains true if Gradωf �= 0 for every ω ∈ Ω. Without control on

the behavior of the perturbed i.f.s. on π−1(KE
f ) it is not possible to have convergence

for arbitrary starting points. But in case KE
f is negligible we still have convergence.
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Corollary 11. If (e, u) ∈ ({−1}∪ [0, 1])×Hα corresponds to a function f for which

m(KE
f ) = 0. Then

Anδ(e,u) → µt × δ0,

with t = m(KC
f ), in the Wasserstein metric.

Proof. Partition Wn into W H
n,f , W C

n,f and W E
n,f as in section 2. We estimate

dW (ANδ(e,u), µt × δ0)

= sup
‖h‖Lip≤1

∣∣∣∣∣∣ 1

3N

∑
w∈WN

h(Ψw(e, u)) − (1 − t)

∫
h(x, 0)dµ0(x) − th(−1, 0)

∣∣∣∣∣∣
≤ sup

‖h‖Lip≤1

∣∣∣∣∣∣∣
1

3N

∑
w∈W C

N,f

h(Ψw(e, u)) − th(−1, 0)

∣∣∣∣∣∣∣
+ sup

‖h‖Lip≤1

∣∣∣∣∣∣∣
1

3N

∑
w∈W H

N,f

h(Ψw(e, u)) − (1 − t)

∫
h(x, 0)dµ0(x)

∣∣∣∣∣∣∣
+ sup

‖h‖Lip≤1

∣∣∣∣∣∣∣
1

3N

∑
w∈W E

N,f

h(Ψw(e, u))

∣∣∣∣∣∣∣ .
Since Ψw(e, u) = (−1, 0) if w ∈ W C

N,f , we have

sup
‖h‖Lip≤1

∣∣∣∣∣∣∣
1

3N

∑
w∈W C

N,f

h(Ψw(e, u)) − th(−1, 0)

∣∣∣∣∣∣∣ ≤
∣∣m (

KC
N,f

)
− t

∣∣ → 0

and for the last term note that

sup
‖h‖Lip≤1

∣∣∣∣∣∣∣
1

3N

∑
w∈W E

N,f

h(Ψw(e, u))

∣∣∣∣∣∣∣ ≤ m(KE
N,f ) → 0.

Given ε > 0, take n such that m(KH
f \ KH

n,f ) < ε. Then for any N ≥ n we can

estimate the mid term by,

sup
‖h‖Lip≤1

∣∣∣∣∣∣∣
1

3N

∑
w∈W H

N,f

h(Ψw(e, u)) − (1 − t)

∫
h(x, 0)dµ0(x)

∣∣∣∣∣∣∣
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≤ sup
‖h‖Lip≤1

∣∣∣∣∣∣∣
1

3N

∑
w∈W H

N,f

h(Ψw(e, u)) − m(KH
n,f )

∫
h(x, 0)dµ0(x)

∣∣∣∣∣∣∣
+ sup

‖h‖Lip≤1

∣∣∣∣(m(KH
n,f ) − (1 − t)

) ∫
h(x, 0)dµ0

∣∣∣∣
≤

∑
w′∈W ′

ε0
|w′|≤n

1

3|w′|
sup

‖h‖Lip≤1

∣∣∣∣∣∣ 1

3N−|w′|

∑
w∈W

N−|w′
|

h(Ψw′w(e, u)) −

∫
h(x, 0)dµ0(x)

∣∣∣∣∣∣
+2ε.

and for each w′ ∈ W ′
ε0

with |w′| ≤ n this supremum goes to 0 by Theorem 4.

�

3.3. Limit distribution with energy weights. Energy weights are naturally ex-

pressed as normalized energy measure of the subcells of level one. If f is the function

corresponding to the point (e, u) �= (−1, 0), then pi(e, u) = ν̄f (Ki) where

ν̄f =
νf

E(f)
.

Cells on which a function is constant do not matter since they give no contribution

to the energy. Thus we can arbitrarily define pi(−1, 0) = 1
3 .

It was shown in [6] that there is a unique invariant measure µE to the i.f.s. (1.4)

on [0, 1] with energy weights pi(e) = pi(e, 0) satisfying

(3.7) µE =

3∑
j=1

pi(e)µE ◦ ψ−1
j .

The extension of the original i.f.s. with energy weights to ({−1} ∪ [0, 1]) will then

have invariant measures

µE,t = tδ−1 + (1 − t)µE,

and clearly µE,t × δ0 are invariant measures to the perturbed i.f.s. (3.1) with energy

weights, and in fact there are no others.

Proposition 12. µE,t × δ0 are the only invariant measure for the perturbed i.f.s.

(3.1) with energy weights.

Proof. The result follows from Lemma 8 and Proposition 7. Suppose λ is an invariant

measure. Then λ is a fixed point of the operator

AEλ(B) =
3∑

j=1

∫
Ψ−1

j
(B)

pj(e, u)dλ(e, u) =

∫
({−1}∪[0,1])×Hα

PE[(e, u), B]dλ(e, u)
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acting on the probability measures on ({−1} ∪ [0, 1]) × Hα. Here PE[(e, u), B] =

ν̄f (ω | Ψ[ω]1(e, u) ∈ B) is the probability, with respect to energy weights, of ending

up in the Borel set B starting from (e, u). So

(3.8) λ(B) = An
E
λ(B) =

∫
P

(n)
E

((e, u), B)dλ(e, u),

where

P
(n)
E

((e, u), B) = ν̄f (ω | Ψ[ω]n(e, u) ∈ B).

Let B = ({−1} ∪ [0, 1]) × Bm in equality (3.8), with Bm = {u ∈ Hα | ‖u‖ρ > 1
m
}.

The second coordinate of Ψ[ω]n(e, u) tends to zero in Hölder norm for every ω ∈ Oε

that is not constant after a finite segment. This is a set of full ν̄f measure thus

P
(n)
E

((e, u), ({−1} ∪ [0, 1]) × Bm) → 0 for every (e, u).

Dominated convergence gives that λ(({−1}∪ [0, 1])×Bm) = 0 and thus λ(({−1}∪

[0, 1]) × {0}c) = 0 and the support of λ must be included in ({−1} ∪ [0, 1]) × {0}.

The only possibilities are λ = µE,t × δ0. �

With energy weights we have a nicer convergence result than for uniform weights

since we have convergence, to the same measure, no matter what starting point.

With respect to energy, the limit distribution of eccentricities is the same for all

non-constant smooth functions. This is a consequence of the fact that the set KH
f

where a non-constant smooth function f is nearly harmonic locally has full energy

measure.

Theorem 5. For any (e, u) ∈ ({−1} ∪ [0, 1]) × Hα, with (e, u) �= (−1, 0)

An
E
δ(e,u) → µE × δ0

in the Wasserstein metric.

Proof. The proof follows the same path as the proofs of Theorem 4 and Corollary 11,

only some more attention to the weights has to be paid. In view of Proposition 7,

one can mimic the proof of Corollary 11 to see that it is enough to consider starting

points (e, u) corresponding to a nearly harmonic function f .

We must show

dW (AN
E

δ(e,u), µE × δ0)

= sup
‖h‖Lip≤1

∣∣∣∣∣ ∑
w∈Wn

ν̄f (Kw)h(Ψw(e, u)) −

∫
h(x, 0)dµE(x)

∣∣∣∣∣
= sup

‖h‖Lip≤1

∣∣∣∣∣ ∑
w∈Wn

ν̄f (Kw)h

((
e(fw),

uw

5|w|(maxV0
fw − minV0

fw)

))

−

∫
h(x, 0)dµE(x)

∣∣∣∣ → 0.



22 A. PELANDER AND A. TEPLYAEV

As in the proof of Theorem 4 we will always assume that M is big enough that

Const
‖u‖∞βM

‖f‖
<

1

20‖g‖∞
,

so that Lemma 10 applies whenever C(w,n) � M .

Let m, m′ and M be such that m+ m′ = n and M ≤ m. Then for any ‖h‖Lip ≤ 1

we have

(3.9)

∣∣∣∣∣ ∑
w∈Wn

ν̄f (Kw)h(e(fw),
uw

5|w|(max fw − min fw)
) −

∫
h(x, 0)dµE(x)

∣∣∣∣∣
≤

∑
w∈Wn,C(w,m)<M

ν̄f (Kw)

∣∣∣∣h(e(fw),
uw

5|w|(max fw − min fw)
) −

∫
h(x, 0)dµE(x)

∣∣∣∣
+

∑
w∈Wn,C(w,m)≥M

ν̄f (Kw)

∣∣∣∣h(e(fw),
uw

5|w|(max fw − min fw)
) − h(e(fw), 0)

∣∣∣∣
+

∑
w0∈Wm,C(w0,m)�M

ν̄f (Kw0
)

∑
z∈W

m′

ν̄fw0
(Kz) |h(e(fw0z), 0) − h(ψz(e(fw0

)), 0)|

+
∑

w0∈Wm,C(w0,m)�M

ν̄f (Kw0
)

∑
z∈W

m′

|ν̄fw0
(Kz) − ν̄Hfw0

(Kz)||h(ψz(e(fw0
)), 0)|

+
∑

w0∈Wm,C(w0,m)�M

ν̄f (Kw0
)

∣∣∣∣∣∣
∑

z∈W
m′

ν̄Hfw0
(Kz)h(ψz(e(fw0

), 0) −

∫
h(x, 0)dµE(x)

∣∣∣∣∣∣ .
The three first terms can be handled as in the proof of Theorem 4. The last term

in the previous inequality is in [6, Thm 5.9] shown to be bounded by Constam′

, with

a < 1. So what is new in this proof is the fourth term.

To estimate it note that

ν̄fw0
(Kz) =

m′∏
j=1

ν̄fw0z1...zj−1
(Kzj

)

and

ν̄Hfw0
(Kz) =

m′∏
j=1

ν̄(Hfw0
)z1...zj−1

(Kzj
)

so using the fact that all terms in the product are bounded by 1

(3.10) |ν̄fw0
(Kz) − ν̄Hfw0

(Kz)| ≤
m′∑
j=1

|ν̄fw0z1...zj−1
(Kzj

) − ν̄(Hfw0
)z1...zj−1

(Kzj
)|,
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and each term can be estimated by

(3.11) |ν̄fw0z1...zj−1
(Kzj

) − ν̄(Hfw0
)z1...zj−1

(Kzj
)|

≤ |ν̄fw0z1...zj−1
(Kzj

) − ν̄Hfw0z1...zj−1
(Kzj

)|

+|ν̄Hfw0z1...zj−1
(Kzj

) − ν̄(Hfw0
)z1...zj−1

(Kzj
)|.

To bound the first term of (3.11) we show that if f = Hf −Gu with maxV0
f = 1

and minV0
f = 0, then for ‖u‖∞ small enough

(3.12) |ν̄f (Ki) − ν̄Hf (Ki)| ≤ Const‖u‖∞.

Since the difference in the first term does not change if we rescale fw0z1...zj−1
as

in the i.f.s. (3.1) and that u for this function is bounded by (3.6) inequality (3.12)

will hold for large enough M .

Note the estimates E(Gu) ≤ Const‖u‖2
∞ and E((Gu)i) ≤ Const‖u‖2

∞ that fol-

lows by the same reasoning as in the proof of Theorem 2 and E((Hf)i, (Gu)i) =

E0((Hf)i, (Gu)i) ≤ Const‖u‖∞, where the equality holds since Hf is harmonic.

Thus (3.12) for small enough ‖u‖∞ is a consequence of the equalities

3

5
ν̄f (Ki) =

E(fi)

E(f)
=

E((Hf)i) + E((Gu)i) + 2E((Hf)i, (Gu)i)

E(Hf) + E(Gu)

and
3

5
ν̄Hf (Ki) =

E((Hf)i)

E(Hf)

together with E(Hf) ≥ 3
2 . Using (3.6) once more gives∣∣∣ν̄fw0z1...zj−1
(Kzj

) − ν̄Hfw0z1...zj−1
(Kzj

)
∣∣∣ ≤ ConstβM .

Using Lemma 10 and once again that the second coordinate of the iterates satis-

fies (3.6) we estimate the second term of inequality (3.11) by∣∣∣ν̄Hfw0z1...zj−1
(Kzj

) − ν̄(Hfw0
)z1...zj−1

(Kzj
)
∣∣∣

≤ C|e(fw0z1...zj−1
) − ψz1...zj−1

(e(fw0
))|

≤ C

j−1∑
k=0

ConstBkβM ≤ Const
Bj

B − 1
βM ,

where B = maxi=1,2,3 ‖ψi‖Lip and C = maxi=1,2,3 ‖pi‖Lip, where pi are the energy

weights (1.5) for the original i.f.s.

Summing up all terms on the right hand side of (3.10) we have∣∣∣ν̄fw0
(Kz) − ν̄Hfw0

(Kz)
∣∣∣
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≤ m′βM (1 +
Bm′

B − 1
).

It follows from (3.9) that∣∣∣∣∣ ∑
w∈Wn

ν̄f (Kw)h(e(fw),
uw

5|w|(maxV0
fw − minV0

fw)
) −

∫
h(x, 0)dµE(x)

∣∣∣∣∣
≤ 2ν̄f [C(ω,m) < M ]

+βM

(
Const + Const

Bm′

− 1

B − 1
+ m′(1 +

Bm′

B − 1
)

)
+Constam′

where a < 1, β < 1 and B > 1. Note that ν̄f [C(ω,m) < M ] → 0 since ν̄f does

not have atoms. This completes the proof. �
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gasket, Ark. Mat. 40 (2002), 335–362.

[7] R.S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc. 46 (1999), 1199–1208.

[8] R.S. Strichartz, Taylor approximations on Sierpiński gasket type fractals, J. Funct. Anal. 174
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PRODUCTS OF RANDOM MATRICES AND

DERIVATIVES ON P.C.F. FRACTALS

ANDERS PELANDER AND ALEXANDER TEPLYAEV

Abstract. We define and study intrinsic first order derivatives on post
critically finite fractals and prove differentiability almost everywhere
with respect to self-similar measures for certain classes of fractals and
functions. We apply our results to extend the geography is destiny prin-
ciple to these cases, and also obtain results on the pointwise behavior of
local eccentricities, previously studied by Öberg, Strichartz and Yingst,
and the authors. We also establish the relation of the derivatives to the
tangents and gradients previously studied by Strichartz and the authors.
Our main tool is the Furstenberg-Kesten theory of products of random
matrices.
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1. Introduction

For the last twenty years a theory of analysis on fractals has evolved,
with the construction of Laplacians and Dirichlet forms as cornerstones.
There is both a probabilistic approach, where the Laplacian is constructed
as an infinitesimal generator of a diffusion process, and an analytic approach
where the Laplacian can be defined as a limit of difference operators. In this
article we will work in the context of post critically finite (p.c.f.) fractals,
for which Kigami laid the foundations of an analytic theory [7, 8, 9, 10].

We consider one of the most fundamental topics in analysis; the local
structure of smooth functions. This is not only an interesting matter as

2000 Mathematics Subject Classification. Primary 28A80; Secondary 15A52, 31C05,
31C25, 37A30, 37A50, 37H15, 41A99, 53B99, 60F05, 60F15 60G18.

Key words and phrases. Fractals, derivatives, harmonic functions, smooth functions,
products of random matrices, self-similarity, energy, resistance, Dirichlet forms.
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such, it also shed light on an important phenomenon that does not occur
when the underlying set is smooth.

In classical analysis any two points in the interior of the considered set
have homeomorphic neighborhoods. This is not the case in analysis on frac-
tals. Some points, called junction points, are boundary points of several
copies of the self-similar set and neighborhoods of such points are different
from those at non-junction points that have a canonical basis of neighbor-
hoods consisting of copies of the self-similar set. However, although two
non-junction points x, x′ have bases of homeomorphic neighborhoods, the
homeomorphisms do not in general map x onto x′.

It turns out that, as a consequence of the above, the local behavior of
functions depend on the point under consideration. This geography is destiny
principle, that has no analog whatsoever in analysis on smooth sets, were
proven for harmonic functions on the Sierpiński gasket by Öberg, Strichartz
and Yingst in [14]. Restrictions to the canonical neighborhoods will, for
most harmonic functions, line up in the same direction, a direction that
depends on the point, or rather the neighborhood. This property follows
from theorems on products of random matrices since the restrictions to the
canonical neighborhoods are given by linear mappings.

We will show that the geography is destiny principle extends to other
fractals and to larger classes of functions with certain smoothness properties.

Generally speaking, the notion of smoothness of functions addresses the
degree of differentiability of the function and its derivatives. Since the basic
differential operator in analysis of fractals is the Laplacian, the term smooth
has mostly been used to point out that a function f , sometimes together
with ∆kf , are in the domain of the Laplacian.

On the other hand, in the classical calculus a differentiable function locally
behaves like an affine linear mapping. In fractal analysis the analogs of such
mappings are the harmonic functions, and from this point of view we make
a natural definition of a derivative, and thus a concept of differentiability, of
a function with respect to a harmonic function. This give us wider classes of
functions with some degree of smoothness for which we can prove geography
is destiny. We also relate this derivative to the gradient defined by the second
author [20].

Our results concerns generic, with respect to a self-similar measure, prop-
erties of the local behavior of smooth functions at non-junction points. It
would be interesting to know if the same properties hold generically with
respect to the Kusuoka energy measure [12, 20]. Local behavior at junction
points were studied in [18].

It is probable that our results can be extended to the category of self-
similar finitely ramified fractals defined in [21].

We need to fix some notation, and at the same time recall some of the basic
results of the theory. We refer to the books by Kigami [11] and Strichartz [19]
for the whole story.
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Throughout this paper, F will denote a p.c.f. self-similar fractal, by which
we mean a compact connected metric space F equipped with a post critically
finite self-similar structure as defined in [11]. Thus, there are continuous
injections

(1.1) ψ1, ..., ψm : F → F

such that

(1.2) F =
m⋃

i=1

ψi(F ),

and a finite set V0 ⊂ F such that for any n and for any two distinct words
w,w′ ∈ Wn = {1, ...,m}n we have

(1.3) Fw ∩ Fw′ = Vw ∩ Vw′ ,

where Fw = ψw(F ) and Vw = ψw(V0). Here for a finite word w = w1...wn ∈
Wn we denote

(1.4) ψw = ψw1
◦ ... ◦ ψwn

.

We call Fw, w ∈ Wn a cell of level n. The set V0 is called the boundary of F
and consequently points in V0 are referred to as boundary points. The fractal
F is p.c.f. self-similar fractal if every boundary point is contained in only
one 1-cell. We denote the number of boundary points by N0 and will assume
that N0 � 2. A point x ∈ F is called a junction point if x ∈ Fw ∩ Fw′ , for
two distinct w, w′ ∈ Wn.

Define Vn =
⋃

w∈Wn
Vw, V∗ =

⋃
n�1 Vn and W∗ =

⋃
n�1 Wn. If w =

w1 . . . wk ∈ W∗, we say that |w| = k is the length of w. It is easy to see
that V∗ is dense in F . Note that, by definition, each ψi maps V∗ into itself
injectively.

Let Ω = {1, . . . ,m}N be the space of infinite sequences ω = w1w2 . . .,
wj ∈ W1 = {1, . . . ,m}. For any ω ∈ Ω let [ω]n = w1 · · ·wn ∈ Wn, and
likewise for w ∈ W∗ and n � |w|. There is a natural continuous projection
π : Ω → F defined by

(1.5) π(ω) =
⋂
n�0

F[ω]n ,

and π−1{x} is finite for any x by the p.c.f. assumption. Moreover, π−1{x}
consists of more than one element if and only if x is a junction point. In case
x is not a junction point we can therefore define [x]n = [ω]n if x = π(ω). In
particular, [x]n is well defined for any x /∈ V∗.

We assume that a harmonic structure, as defined in [11], is fixed on the
p.c.f. self-similar structure. This will give rise to a self-similar Dirichlet
(resistance, energy) form

(1.6) E(f, f) =

m∑
i=1

ρiE(fi, fi) =
∑

w∈Wn

ρwE(fw, fw).
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Here fw = f ◦ψw and ρw = ρw1
. . . ρwn

, where ρ = (ρ1, ..., ρm) are the energy
renormalization factors. The energy renormalization factors, or weights, are
often called conductance scaling factors because of the relation of resistance
forms and electrical networks. They are reciprocals of the resistance scaling
factors rj = 1/ρj . We will always assume that the resistance form is regular,
i.e. ρj > 1, j = 1, . . . ,m.

The domain, Dom E, of E consists of continuous functions such that the
energy, E(f) = E(f, f) < ∞. A function on F is harmonic if it minimizes
the energy for the given set of boundary values.

Harmonic functions are uniquely defined by their restrictions to V0 and we
often, for convenience, identify the space of harmonic functions with the N0-
dimensional space l(V0) of functions on V0. The restrictions of a harmonic
function to cells of level 1 give rise to linear mappings Ai, i = 1, . . . ,m on
l(V0) through Aih = h ◦ ψi. The restrictions to smaller cells are given by
products of these matrices since h|Fw

= Awh, where Aw = Awn
. . . Aw1

for
w ∈ Wn.

Constant functions are harmonic so constant functions on l(V0) will be
eigenvectors of all the mappings Ai, i = 1, . . . ,m with the corresponding
eigenvalue equal to 1. To study the local behavior of harmonic functions it
is therefore usable to factor out the constant functions. Denote by H the
space of harmonic functions such that

∑
q∈V0

h(q) = 0 and define operators
Mi, i = 1, . . . ,m on H by Mi = PHAiP

∗
H

, where PH is the projection of
l(V0) onto H given by PHh = h−

∑
q∈V0

h(q). Note that each Aj commutes
with PH.

For any function f defined on F we will denote by Hf the unique harmonic
function that coincides with f on the boundary.

Given a finite non-atomic measure µ on F with the property that µ(O) > 0
for any nonempty open set O there is a Laplacian ∆µ that is an unbounded
operator defined on a dense set of continuous functions defined by

(1.7) E(u, v) = −

∫
F

u∆µvdµ

for any u ∈ Dom E with u|V0
= 0. In this paper we will always assume that

∆µv ∈ L∞(F ). Functions with this property is denoted Dom L∞∆µ but we
will in what follows omit the index L∞. We will also always assume that
µ is self-similar, i.e. that there are real numbers µi, i = 1, . . . ,m such that
µ(Fw) = µw for any w ∈ W∗. For convenience we will assume that µ(F ) = 1.

Harmonic functions are exactly those for which ∆µh = 0. It should be
noted that even though the Laplacian depends on the measure µ, the set of
harmonic functions only depend on the harmonic structure.

There is a Green’s operator

(1.8) Gu(x) =

∫
F

g(x, y)u(y)dµ(y)
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acting on L∞(F ) such that −∆Gu = u, and Gu|V0
= 0. Thus, any function

f ∈ Dom ∆µ can be written f = Hf − Gu. The Green’s function g(x, y) is
continuous for regular harmonic structures.

We next define some regularity classes of functions on F .

Definition 1.1. We say that f ∈ Ck(H) if there are harmonic functions
h1, ..., hl ∈ H and u ∈ Ck(Rl) such that f = u(h1, ..., hl). We say that
f ∈ Ck(Dom ∆µ), if there are g1, ..., gl ∈ Dom ∆µ and u ∈ Ck(Rl) such that
f = u(g1, ..., gl).

Note that whereas Ck(Dom ∆µ) and Ck(H) are multiplication domains,
in general Dom ∆µ is not by [2, 5, 6]. Also note that by definition

(1.9) Ck(H) ∪ Dom ∆µ ⊂ Ck(Dom ∆µ).

There are several approaches to define derivatives on a p.c.f. fractal F .
A weak gradient was studied by Kusuoka in [12, 13]. A stronger notion
of gradients and tangents was considered in [18, 20] by Strichartz and the
second author. In this we paper introduce the following definition.

Definition 1.2. Let f and h be real valued functions on a p.c.f. frac-
tal F , and suppose h is continuous at x ∈ F . For S ⊆ F let OscSh =
supx,y∈S |h(y) − h(x)|. Then we say that f is differentiable with respect to

h at a non-junction point x if there is a real number df
dh

(x) such that

(1.10) f(y) = f(x) +
df

dh
(x)(h(y) − h(x)) + o

(
OscF[x]n

h
)
y→x

,

where n is such that y ∈ F[x]n , and at a junction point x if

(1.11) f(y) = f(x) +
df

dh
(x)(h(y) − h(x)) + o

(
OscUn(x)h

)
y→x

,

where Un(x) is a canonical basis of neighborhoods and n is such that y ∈

Un(x). Naturally, df
dh

(x) is called the derivative of f at x with respect to h.

It is easy to show usual properties of the derivative df
dh

(x), such as sum,
product, ratio and chain rules. Also if f is differentiable with respect to h
at x, then f is continuous at x. For later use we formulate the following
version of the chain rule.

Proposition 1.3. Suppose fj : F → R, j = 1, . . . , l are differentiable with

respect to h at x and that g : R
l → R is in C1(Rl). Then g(f1, . . . , fl) is

differentiable with respect to h at x and

(1.12)
d(g(f1, . . . , fl))

dh
(x) =

l∑
j=1

∂g

∂fj
(f1, . . . , fl)

dfj

dh
(x)

We will only use Definition 1.2 for h harmonic. Harmonic functions are
the natural choice with respect to which one should differentiate since they
are, in a sense, the analogues of linear functions on the interval. In fact,
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we will only differentiate with respect to h ∈ H since df
d(h+c) = df

dh
for any

constant c. The maximum and minimum of a harmonic function is always
attained on the boundary and we can therefore replace OscF[x]n

h[x]n by

‖M[x]nh‖ in (1.10).
In section 2 we prove in Theorem 1, under certain conditions on the

harmonic structure on F , that given any non-constant harmonic function h ∈
H, a function f ∈ C1(H) is differentiable with respect to h at generic points.
Then, according to Definition 1.2, the function f behaves as a function of one
variable up to smaller order terms. This means, in a sense, that the space
F is essentially one dimensional. Under some additional hypotheses, that
we call the weak main assumption, on the measure µ, we prove the same
result for any function f ∈ C1(Dom ∆µ) in Theorem 2. We also discuss
the relationship between our derivative and the local derivatives defined at
periodic points in [1, 3].

In section 3 we prove the “geography is destiny” principle for smooth
functions on the set where the derivative is different from zero and then use
this to prove a result on the local behavior of the eccentricity for functions
defined on fractals with three boundary points. The concept of eccentricity
was introduced and studied for harmonic functions on the Sierpiński gasket
in [14] and were studied for larger classes of functions in [15].

In section 4 we relate the derivative to the gradient defined in [18, 20]
under a stronger assumption on µ. Using this relation and technical results
from the theory of products of random matrices we are also able to show
geography is destiny on the set where the gradient is different from zero.

Acknowledgments. The authors thank Robert Strichartz and Anders Öberg
for many interesting and helpful suggestions.

2. Derivatives on p.c.f. fractals

Since our aim is to describe the local behavior of functions with cer-
tain smoothness properties with that of harmonic functions it is essential to
understand their local structure. We therefore first state conditions on the
harmonic structure under which we can use the theory of products of random
matrices, developed in the 60s and 70s by Furstenberg, Kesten, Guivarch,
Le Page, Raugi, Osseledec et al., to draw some immediate conclusions on
the properties of the local behavior of harmonic functions. It was noted
in [14, 18] that these conditions hold for the standard harmonic structure
on the Sierpiński gasket. We refer to [4] when any result on products of ran-
dom matrices is used. The reader will find references to the original sources
there.

If x ∈ F is a non-junction point it is contained in a unique sequence of
cells F[x]n , and the local behavior of harmonic functions at x is given by the
properties of the products M[x]n. The generic local behavior of harmonic
functions with respect to a self-similar measure µ will thus be governed by
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the product of iid random matrices M[ω]n , where P [ωn = i] = µi. In the rest
of this section we will only consider non-junction points.

From now on we will always assume that the matrices Mi are invertible.
This is equivalent to the property that the restriction of a non-constant
harmonic function to any cell is itself non-constant. Harmonic structures
with this property are called non-degenerate. To see what the local behavior
of harmonic functions on a degenerate harmonic structure might be like,
there is an interesting study in [14, Section 7] on the case of the hexagasket.

It follows from a theorem by Furstenberg and Kesten [4, Theorem I.4.1]
that there is α+ > 0 such that limn→∞

1
n

log M[x]n = log α+ for µ a.e. x.
The number log α+ is called the upper Lyapunov exponent of the matrices
Mj, j = i, . . . ,m with respect to the measure µ.

Notation 2.1. We use notation cn = Ø(an) if lim
n→∞

1
n

log cn = log a.

Note that cn = Ø(an) is equivalent to cn = o
(
(a+ε)n

)
n→∞

and (a−ε)n =
o(cn)n→∞, for any ε > 0 but does not imply that cn = O(an)n→∞.

Under additional assumptions on the harmonic structure it turns out that,
for a fixed harmonic function h, h[x]n will decrease as Ø(αn

+) for µ a.e. x,
and for a fixed x every h outside a N0 − 1 dimensional subspace will exhibit
this rate of decrease at x.

Definition 2.2. A subset S of Gl(d, R) is strongly irreducible if there does
not exist a finite family {L1, . . . , Lk} of proper linear subspaces of R

d such
that

(2.1) M(L1 ∪ L2 ∪ . . . ∪ Lk) = L1 ∪ L2 ∪ . . . ∪ Lk,

for any M ∈ S.

Definition 2.3. The index of a subset T of Gl(d, R) is the least integer p
such that there exists a sequence Mn in T for which ‖M‖−1

n Mn converges
to a rank p matrix. T is contracting if its index is one.

Definition 2.4. We say that F satisfies the SC-assumption if the semigroup
generated by Mi, i = 1, . . . ,m is strongly irreducible and contracting.

The index of a set is in general difficult to determine, however in the case
of semigroups there is a useful result in [4, Corollary IV.2.2]. Recall that an
eigenvalue λ of a matrix M is simple if Ker (M − λId) has dimension one
and equals
Ker (M −λId)2 and it is dominating if |λ| > |λ′| for any other eigenvalue λ′.

Proposition 2.5. A semigroup T in Gl(d, R) which contains a matrix with
a simple dominating eigenvalue is contracting.

If a matrix M ∈ Gl(2, R) has two distinct real eigenvalues it is clear that
the lines in a finite union of lines invariant under M are the eigenspaces, so
we have the following.
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Proposition 2.6. If the boundary V0 consists of three points, then F satis-
fies the SC-assumption if there is some Mv with a simple dominating eigen-
value and there are two matrices Mw, Mw′ both with two distinct real eigen-
values and no eigenvector in common.

It is readily verified that for instance the standard harmonic structures
on the Sierpiński gasket and the level 3 Sierpiński gasket satisfies the SC-
assumption. In fact, any non-degenerate structure with D3 symmetry con-
sidered in [18, Section 5] satisfies the SC-assumption if a �= b where

(2.2)

 1 0 0
1 − a − b a b
1 − a − b b a


is the matrix corresponding to the restriction to a level 1 cell containing one
of the boundary points.

It is clear from the remark following [2, Theorem 5.1] that if F satisfies
the SC-assumption then Dom ∆µ is not a multiplication domain.

Definition 2.7. We say that x ∈ F is weakly generic if there is a subspace
H

−
x ⊂ H of co-dimension one such that

(2.3) ‖M[x]nh−‖ = o‖M[x]n‖n→∞

for any h− ∈ H
−
x .

Denote by H
+
x the orthogonal complement of H

−
x and by P−

x and P+
x the

orthogonal projections onto H
−
x and H

+
x respectively. Also denote by h+

x an
element of H

+
x of norm one.

Proposition 2.8. x ∈ F is weakly generic if and only if there is a subspace
H

−
x ⊂ H of co-dimension one such that

(2.4) ‖M[x]nh−‖ = o‖M[x]nh‖n→∞

for any h− ∈ H
−
x and h /∈ H

−
x .

Proof. Necessarily ‖M[x]nh+
x ‖ = O‖M[x]n‖n→∞, since if not ‖M[x]nh‖ =

o(‖M[x]n‖) for any h ∈ H. The proposition follows immediately since if

h /∈ H
−
x then P+

x h �= 0.
�

Proposition 2.9. If x ∈ F is weakly generic and f = u(h1, . . . , hl) ∈ C1(H)

then df
dh

exists for any h /∈ H
−
x with

(2.5)
df

dh
=

l∑
j=1

∂u

∂hj

dhj

dh
.

If h′ ∈ H then

(2.6)
dh′

dh
=

< h′, h+
x >

< h, h+
x >

,

and in particular h′ ∈ H
−
x if and only if dh′

dh+
x

= 0.



PRODUCTS OF RANDOM MATRICES AND DERIVATIVES ON P.C.F. FRACTALS 9

Proof. Because of Proposition 1.3 it is enough to show that dh′

dh
exists for

any h′ ∈ H. Write h′ = axh + h− with h− ∈ H
−
x . Then since

(2.7)
(h′(y)−h′(x))|F[x]n

= ax(h(y)−h(x))+(M[x]nh−(ψ−1
[x]n

y)−M[x]nh−(ψ−1
[x]n

x)),

it is clear from Proposition 2.8 that dh′

dh
(x) = ax = <h′,h+

x >

<h,h+
x >

and (2.6) follows.

�

Lemma 2.10. Suppose F satisfies the SC-assumption. Then µ-almost ev-
ery x is weakly generic and moreover, at µ a.e. weakly generic x we have
‖M[x]n‖ = Ø(αn

+).

Proof. This follows from [4, Corollary VI.1.7]. �

Thus, under the SC-assumption Proposition 2.9 hold at µ a.e. x. The
following result shows that also for given harmonic h and f ∈ C 1(H), df

dh

exists for µ a.e. x.

Theorem 1. Suppose F satisfies the SC-assumption. Then for any nonzero

h ∈ H and any f = u(h1, . . . , hl) ∈ C1(H) we have that df
dh

(x) exists for µ
a.e. x and is given by (2.5).

Proof. This is a direct consequence of the theory of products of random
matrices [4, Theorem III.3.1]. Note, in particular, that h /∈ H

−
x for µ a.e.

x. �

One of the main results of our paper is the extension of this theorem to
functions in C1(Dom ∆µ) under some additional hypotheses on the measure
µ. To this end, we define γ by

(2.8) log γ =

m∑
j=1

µj log(rjµj).

Then

(2.9) r[x]nµ[x]n = Ø(γn)

for µ a.e. x. One can see that γ is the analog of the Lyapunov exponent
for the Laplacian scaling factor r[x]nµ[x]n, which in turn is the product of
energy and measure scaling factors.

Definition 2.11. We will say that (F, µ) satisfies the weak main assumption
if F satisfies the SC-assumption and

(2.10) γ < α+.

Example 2.12. It is known that the Sierpiński gasket with the standard
harmonic structure and uniform self-similar measure satisfies the weak main
assumption. It also holds for the level 3 Sierpiński gasket with the uniform
self-similar measure and standard harmonic structure, which is discussed in
detail in [18, 19]. In this case γ = 7/90 and of the six restriction matrices
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three has determinant 7/152 and three has determinant 8/152. It is known
that if all determinants equals one, then α+ > 1. It follows that for the level
3 Sierpiński gasket α+ >

√
7/15 > γ.

Theorem 2. Suppose (F, µ) satisfies the weak main assumption and h is a
non-constant harmonic function. Then for µ-almost every x the derivative
df
dh

(x) exists for any function f = u(g1, . . . , gl) ∈ C1(Dom ∆µ) and is given
by

(2.11)
df

dh
=

l∑
j=1

∂u

∂gj

dgj

dh
.

Moreover, there exists C such that if f ∈ Dom ∆µ, then for µ a.e. x

(2.12)

∣∣∣∣ dfdh

∣∣∣∣ �

∣∣∣∣d(Hf)

dh

∣∣∣∣ + C
‖∆f‖∞

| < h, h+
x > |

∞∑
n=0

r[x]nµ[x]n‖M
−1∗
[x]n

h+
x ‖.

We first state and prove two Lemmas.

Lemma 2.13. Suppose u ∈ L∞(F ) has support in a cell Fw. Then

OscF[w]
k

Gu � Const r[w]kµw‖u‖∞

for k = 0, 1, ..., n = |w|.

Proof. It will be enough to show that

(2.13) |Gu(x) − Gu(x0)| � Const r[w]kµw‖u‖∞

for x ∈ F[w]k and x0 ∈ V[w]k . This can be done by using properties of the
Green’s function

(2.14) g(x, y) =
∑

v∈∅∪W ∗

rvΨ(ψ−1
v (x), ψ−1

v (y)).

For the exact definition of Ψ, see [11].
Since we consider points in F[w]k and u has support in Fw we only bother

about x and y in F[w]k . For those, Ψ(ψ−1
v (x), ψ−1

v (y)) = 0 in case |v| � k
and [v]k �= [w]k, and in case |v| < k and [w]|v| �= v. The properties of Ψ also

makes Ψ(ψ−1
v (x0), ψ

−1
v (y)) = 0 for all |v| � k. In all

(2.15)

|g(x0, y)−g(x, y)| �

k−1∑
m=1

r[w]m|Ψ(ψ−1
[w]m

(x0), ψ
−1
[w]m

(y))−Ψ(ψ−1
[w]m

(x), ψ−1
[w]m

(y))|

+

∣∣∣∣∣∣
∑

v∈φ∪W ∗

rvr[w]kΨ(ψ−1
vw (x), ψ−1

vw (y))

∣∣∣∣∣∣ .
The difference in the first term is, by the definition of Ψ, bounded by a
constant times the difference of the value of 1-harmonic functions at the
points ψ−1

[w]m
(x0) and ψ−1

[w]m
(x). Both points lie in the cell F[w]m,k

, where

[w]m,k is the word of length k−m defined by [w]m[w]m,k = |w]k for k � m and
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the difference is thus bounded by a constant times r[w]m,k
since the largest

eigenvalue of Mi is less or equal to ri , see [11, Appendix A], and the first
term is bounded by Const r[w]k. The second term is r[w]kg(ψ−1

[w]k
x,ψ−1

[w]k
y) �

r[w]k‖g‖∞ and we conclude that

(2.16) |Gu(x) − Gu(x0)| �

∫
F

|g(x, y) − g(x0, y)||u(y)|dµ(y)

� Const r[w]k

∫
Fw

|u(y)|dµ(y) � Const r[w]kµw‖u‖∞.

�

Lemma 2.14. Suppose F satisfies the SC-assumption. Given any non-
constant h, h′ ∈ H, we have for µ a.e. x ∈ F that

(2.17) sup
y∈F[x]n

∣∣∣∣h′(y) − h′(x) −
dh′

dh
(x)(h(y) − h(x))

∣∣∣∣ � cn,x
‖h‖‖h′‖

| < h, h+
x > |

,

where

(2.18) lim sup
1

n
log cn,x � log α2,

with log α2 < log α+ being the second Lyapunov exponent.

Proof. Since, in the proof of Proposition 2.9, h− = P−
x h′ − <h′,h+

x >

<h,h+
x >

P−
x h, it

follows from (2.7) that for y ∈ F[x]n

(2.19)∣∣∣∣h′(y) − h′(x) −
dh′

dh
(h(y) − h(x))

∣∣∣∣ � ‖M[x]n(P−
x h′ −

< h′, h+
x >

< h, h+
x >

P−
x h)‖.

Now [4, Corollary VI.1.7] says that

(2.20) lim sup
n

1

n
log ‖M[x]nh−‖ � log α2

for any h− ∈ H
−
x . Let h1, . . . hl be an ON-basis of H

−
x and bn,i = ‖M[x]nhi‖.

Then cn,x = 2
∑l

i=1 bn,i satisfies (2.18) and for any h− ∈ H
−
x with ‖h−‖ = 1

we have ‖M[x]nh−‖ � cn,x. This gives (2.17). �

Proof of Theorem 2. In view of Proposition 1.3 it is enough to suppose f ∈
Dom ∆µ. It is clear from Theorem 1 that we can suppose f = Gu. We
also assume x ∈ F is weakly generic, r[x]nµ[x]n = Ø(γn) and h /∈ H

−
x with

‖M[x]nh‖ = Ø(αn
+).

Denote B[x]n = F[x]n−1
\F[x]n and let u[x]n be the restriction of u to B[x]n

so that

(2.21) f =

∞∑
n=1

Gu[x]n .
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Since u[x]n = 0 on F[x]n , Gu[x]n is harmonic on F[x]n and thus d(Gu[x]n)
dh

exists
and our aim is to show that

(2.22)
df

dh
=

∞∑
n=1

d(Gu[x]n)

dh
.

To prove convergence of the right hand side of (2.22) let v [x]n be the

function in H that corresponds to (Gu[x]n)[x]n and note that

(2.23)
d(Gu[x]n)

dh
=

d(v[x]n)

d(M[x]nh)
(ψ−1

[x]n
(x)) =

〈
v[x]n , h+

ψ−1

[x]n
(x)

〉
〈
M[x]nh, h+

ψ−1

[x]n
(x)

〉 ,

where the last equality follows from (2.6). We show that the absolute value
of the denominator of the right hand side of (2.23) is Ø(αn

+) and that the
absolute value of the nominator is bounded by Ø(γn).

From [4, Theorem VI.3.1] it follows that there is h̃ ∈ H such that

(2.24) h+
x = lim

n→∞

M∗
[x]n

h̃

‖M∗
[x]n

h̃‖

and

(2.25) h+
ψw(x) = lim

n→∞

M∗
w[x]n

h̃

‖M∗
w[x]n

h̃‖
,

consequently

(2.26) h+
ψ−1

[x]n
(x)

=
M−1∗

[x]n
h+

x

‖M−1∗
[x]n

h+
x ‖

.

Another result of the theory of products of random matrices [4, Corollary
VI.1.8] says that ‖M−1∗

[x]n
h+

x ‖ = Ø((1/α+)n), and it follows that

(2.27)
∣∣〈M[x]nh, h+

ψ−1

[x]n
(x)

〉∣∣ =
| < h, h+

x > |

‖M−1∗
[x]n

h+
x ‖

= Ø(αn
+).

The nominator has the bound
(2.28)

| < v[x]n , h+
ψ−1

[x]n
(x)

> | � ‖v[x]n‖ � ConstOsc(v[x]n) � Const r[x]nµ[x]n‖u‖∞,

where the last inequality follows from Lemma 2.13. Thus, the right hand
side of (2.22) converges and (2.12) follows from (2.27) and (2.28) as soon as
we have shown (2.22).

For y ∈ F[x]k we must show

(2.29)

∣∣∣∣∣Gu(y) − Gu(x) −

∞∑
n=1

d(Gu[x]n)

dh
(h(y) − h(x))

∣∣∣∣∣ = o(‖M[x]kh‖).
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We write

(2.30)

∣∣∣∣∣Gu(y) − Gu(x) −
∞∑

n=1

d(Gu[x]n)

dh
(h(y) − h(x))

∣∣∣∣∣
�

∣∣∣∣∣
k∑

n=1

(Gu[x]n(y) − Gu[x]n(x)) −

k∑
n=1

d(Gu[x]n)

dh
(h(y) − h(x))

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

n=k+1

(Gu[x]n(y) − Gu[x]n(x))

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

n=k+1

d(Gu[x]n)

dh
(h(y) − h(x))

∣∣∣∣∣ .
Lemma 2.13 implies that the second term is estimated from above by Ø(γk).
The third term is also is estimated from above by Ø(γk) as a product of some-
thing that is at most Ø((γ/α+)k) and something that is Ø(αk

+). Remains
the first term which we write

(2.31)

∣∣∣∣∣
k∑

n=1

Gu[x]n(y) − Gu[x]n(x) −
d(Gu[x]n)

dh
(h(y) − h(x))

∣∣∣∣∣ .
Suppose that we fix a (large) constant M , which is to be chosen later, and
that the integers from 1 to k are divided into M subintervals [jk/M, (j +
1)k/M ]. From the arguments below it is evident that without loss of gen-
erality we can assume that k is an integer multiple of M , say k = Mm. So
we write the sum in (2.31) as M sums of m = k/M addends each, and have
to show that for each j = 1, ...,M we have
(2.32)∣∣∣∣∣∣

jm∑
n=m(j−1)+1

Gu[x]n(y) − Gu[x]n(x) −
d(Gu[x]n)

dh
(h(y) − h(x))

∣∣∣∣∣∣ = o(‖M[x]kh‖).

If we denote

(2.33) hj =

jm∑
n=m(j−1)+1

Gu[x]n

then we have to show

(2.34)

∣∣∣∣∣∣
jm∑

n=m(j−1)+1

hj(y) − hj(x) −
dhj

dh
(h(y) − h(x))

∣∣∣∣∣∣ = o(‖M[x]kh‖).

Note that hj is harmonic on F[x]jm
. By Lemma 2.13 we have ‖hj‖ =

Ø(γm(j−1)) and Lemma 2.14 then implies that the left hand side of (2.34) is
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bounded by Ø
(
γm(j−1)α

m(M−j)
2

)
. Let α̃ = max{γ, α2} and ε = 1

2(α+−α̃) >

0. If we have that

(2.35) M >
log γ

log α̃ − log(α̃ + ε)

then

(2.36) γj−1α2
M−j

� α̃Mγ−1 < (α̃ + ε)M = (α+ − ε)M

which implies

(2.37) Ø
(
γm(j−1)α

m(M−j)
2

)
= o

(
(α+ − ε)k

)
k→∞

and this completes the proof. �

The next corollary is an analog of Fermat’s theorem about stationary
points in our context.

Corollary 2.15. Suppose (F, µ) satisfies the weak main assumption. Then
for any non-constant harmonic function h there exists a set F ′ of full µ-
measure such that if f = u(g1, . . . , gl) ∈ C1(Dom ∆µ) has a local maximum

at x ∈ F ′, then df
dh

(x) = 0.

Proof. Let F ′′ be the set of full µ-measure such that, according to Theorem 2,
the derivative df

dh
(x) exists for any f ∈ C1(Dom ∆µ). There exists w ∈ W∗

such that the cell Fw does not contain any boundary points. We define F ′

as the set of all x such that x ∈ F ′′ and there are infinitely many n such that
[x]n,k = w, |w| = n − k. Obviously F ′ is a set of full µ-measure. The result
follows from Theorem 2 by standard arguments because, by an elementary
compactness argument and the Harnack inequality [11, Proposition 3.2.7],
there is c > 0 such that

(2.38) max
y∈F

h′(y) � c‖h′‖

for any harmonic function h′ with zero in Fw. �

For the next theorem recall that a point x ∈ F is called periodic if it is a
fixed point of some ψw, w ∈ W∗.

Theorem 3. Let x = ψw(x) ∈ F be a periodic point. Suppose Mw has
a dominating eigenvalue λ and the corresponding eigenvector is denoted by

hλ. If |λ| > rwµw then the local derivative
df

dhλ

(x) exists for any f ∈

C1(Dom ∆µ). In particular, if x is a boundary fixed point then the normal
derivative ∂Nf(x) exists for any f ∈ C1(Dom ∆µ).

Proof. In order to prove this one can adapt the proof of Theorem 2 defining
Bwn = Fwn−1 \ Fwn , where wn = w . . . w︸ ︷︷ ︸

n times

and use

(2.39) f =

∞∑
n=1

Guwn

.
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The condition |λ| > rwµw is necessary to have convergence of
∑∞

n=1
d(Guw

n

)
dhλ

.

For a boundary fixed point x = ψi(x) this condition is always fulfilled
since λ = λ2 = ri in this case. �

The next corollary is another analog of Fermat’s theorem.

Corollary 2.16. If x is a non-boundary periodic point, assumptions of The-
orem 3 hold, and f = u(g1, . . . , gl) ∈ C1(Dom ∆µ) has a local maximum at

x, then
df

dhλ

(x) = 0.

Proof. The proof is the same as that of Corollary 2.15 and uses Theorem 2
and Theorem 3. �

The result of Theorem 3 partially improves Theorem 3.2 in [3] where
it was shown in the case of the Sierpiński gasket that ∂2f and ∂3f exists
for any f ∈ Dom ∆. Namely, under the assumption that Mw has two real
eigenvalues λ2 > λ3, two local derivatives at periodic points of the Sierpiń-
ski gasket were defined in [3]. If h2, h3 ∈ H are any harmonic functions
corresponding to these eigenvalues and

(2.40) Hf[x]n = a1n + a2nh2,[x]n + a3nh3,[x]n

then

(2.41) ∂2f(x) = lim
n→∞

a2n and ∂3f(x) = lim
n→∞

a3n

if the limits exists, and ∂2f(x) = df
dh2

(x). Note that the notation λ2 for

the leading eigenvalue is used in [3] because λ1 = 1 denotes the leading
eigenvalue of the matrix Aw.

For arbitrary p.c.f. fractals, local derivatives ∂2, . . . , ∂N0
can be defined

analogously to (2.41) at any periodic point x = ψw(x) such that Mw has
distinct real eigenvalues |λ2| > . . . > |λN0

| with corresponding harmonic
functions h2, . . . , hN0

. Periodic points of this type are weakly generic and H
−
x

is spanned by h3, . . . , hN0
, but the rate of decrease for h /∈ H

−
x is ‖M[x]nh‖ =

Ø(σn) for σ = λ
1/|w|
2 instead of Ø(αn

+).
It should be noted that if x = ψi(x) is a boundary point then ∂2 equals,

for an appropriate choice of h2, the normal derivative ∂N . For the Sierpiński
gasket, ∂3 equals the tangential derivative ∂T , for an appropriate choice of
h3. For periodic points on the Sierpiński gasket where Mw has two complex
conjugate eigenvalues local derivatives ∂+ and ∂− were defined in [1] using
the eigenvectors. It was also shown that there are infinitely many periodic
points with this property. Such periodic points are not weakly generic.
Actually for any non-constant h ∈ H, ‖M[x]nh‖ = O((

√
3/5)n) and h is only

differentiable with respect to harmonic functions that are proportional to
h. The local behavior at such points is thus truly different from the generic
behavior.
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3. Directions on p.c.f. fractals

In this section we prove the geography is destiny principle for large classes
of functions and use it to obtain a result on the pointwise behavior of eccen-
tricities. We begin by giving a precise formulation of the principle. It was
formulated for the first time in [14] for harmonic functions on the Sierpiński
gasket. For harmonic functions it holds under the SC-assumption.

For any h ∈ l(V0), h �= 0 we define the direction Dirh as the element in
the projective space P(H) corresponding to PHh. This definition extends to
any function f defined on F , and non-constant on the boundary, through
Dirf = Dirf |V0

. We denote by ρ the standard angular distance on P(H).

Proposition 3.1. Suppose F satisfies the SC-assumption. Then for any
non-constant harmonic functions h1, h2 ∈ H

(3.1) lim
n→∞

ρ(Dirh1|F[x]n
,Dirh2|F[x]n

) = 0

for µ a.e. x.

Proof. This follows from [4, Theorem III.4.3]. �

In fact, the convergence in (3.1) is even exponential [4, Proposition III.6.4].
If f is differentiable with respect to h with nonzero derivative at a point x,

then the difference in direction of f[x]n and h[x]n will tend to zero. Note that

by definition of the derivative, Dirf[x]n exists for n large enough if df
dh

(x) �= 0.

Proposition 3.2. Suppose df
dh

(x) exists and is different from zero. Then

(3.2) lim
n→∞

ρ(Dirf[x]n,Dirh[x]n) = 0

Proof. This is clear since f(y)−f(x) = c(h(y)−h(x))+o(‖M[x]nh‖) implies

(3.3) ρ(Dirf[x]n,Dirh[x]n) = ρ(Dir(ch[x]n + o(‖M[x]nh‖)),Dirh[x]n) → 0

�

The above Proposition together with Theorem 2 immediately gives the
following broad extension of the geography is destiny principle.

Theorem 4. Suppose (F, µ) satisfies the weak main assumption and that
f ∈ C1(Dom ∆µ) and h ∈ H is a non-constant harmonic function. Then

(3.4) lim
n→∞

ρ(Dirf[x]n,Dirh[x]n) = 0

for µ a.e. x outside the set where df
dh

(x) = 0.

Remark 3.3. From the estimate (2.12) it follows that given any Hf �= 0
and ε > 0, there is δ(ε) > 0 with limε→0 δ(ε) = 0, such that

(3.5) µ{x :
df

dh
(x) �= 0} > 1 − δ(ε)

for any f = Hf + G∆f with ‖∆f‖∞ < ε and ‖h‖ = 1.
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In [14] the eccentricity e(h) of a non-constant harmonic function h on the
Sierpiński gasket were defined as

(3.6) e(h) =
h(q1) − h(q0)

h(q2) − h(q0)
,

where qi, i = 0, 1, 2 are the boundary points labeled so that h(q0) � h(q1) �

h(q2). Note that the eccentricity is the same for harmonic functions cor-
responding to the same element in H. The concept of eccentricity extend
to any F with three boundary points and any function defined on F and
non-constant on the boundary.

It was shown in [14] that there is a measure on [0, 1] such that for any
non-constant harmonic function, the distribution of eccentricities of the re-
strictions hw to cells of a fixed level |w| = n converges in the Wasserstein
metric to this measure. This result was extended to functions with Hölder
continuous Laplacian in [15].

If, instead of the global distribution of local eccentricities, we look at
the generic behavior of the eccentricities on neighborhoods of a point, the
geography is destiny principle applies. Since e(−f) = 1− e(f) we define an
equivalence relation on [0, 1] by e ∼ e′ if and only if e = e′ or e = 1− e′. We
denote by ē the equivalence class of e and let d(ē, ē′) = minx∼e,x′∼e′ |x − x′|
be the natural distance on [0, 1]/ ∼.

Corollary 3.4. If F satisfies the SC-assumption then for any non-constant
harmonic functions h, h′

(3.7) lim
n→∞

d(ē(h[x]n), ē(h′
[x]n

)) = 0,

for µ a.e. x. If (F, µ) satisfies the weak main assumption then for any
f, f ′ ∈ C1(Dom ∆µ) and non-constant h ∈ H we have

(3.8) lim
n→∞

d(ē(f[x]n), ē(f ′
[x]n

)) = 0

for µ a.e. x outside the set where df
dh

or df ′

dh
are zero.

Proof. Since ē depends continuously on the direction this follows immedi-
ately from Theorem 4. �

4. Derivatives and gradients

In this section we clarify the relation between the derivative and the
gradient of a function on F defined in [20]. We will restrict attention to
cases where (F, µ) satisfies the strong main assumption that F satisfies the
SC-assumption and

(4.1) γ < α−.

Here α− is the lower Lyapunov exponent of the matrices Mj with respect
to µ.
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It has been shown [22, 18] that the Sierpiński gasket with standard har-
monic structure and uniform self-similar measure satisfies the even stronger
inequality,

(4.2) γα+ < α2
−.

For the standard harmonic structure on the Sierpiński gasket the resis-
tance scaling factors are all 3/5. Sabot showed in [16] that for small pertur-
bations of these factors there is a unique harmonic structure on the Sierpiński
gasket, see also [17]. Since the harmonic restriction mappings depend contin-
uously on the resistances, (4.2) implies that for small enough perturbations
of the harmonic structure the Sierpiński gasket, with a self-similar measure
not far from being uniform, will still satisfy the strong main assumption.

For a non-junction point x ∈ F , let Grad [x]nf = M−1
[x]n

PHHf[x]n. The

gradient of f at x is defined as

(4.3) Gradxf = lim
n→∞

Grad[x]nf,

if the limit exists. In [20] the gradient were defined for sequences ω ∈ Ω, so
at junction points there are several “directional” gradients defined, but for
non-junction points Gradxf is defined unambiguously.

Immediately from the definition we have

Proposition 4.1. If h ∈ H then Gradxh exists for all x and Gradxh = h.

In [20, Theorem 1] the following estimate was proved for any harmonic
structure on a p.c.f. fractal.

(4.4) ‖Grad[x]n+1
f − Grad[x]nf‖ � C‖∆f‖∞r[x]nµ[x]n‖M

−1
[x]n

‖.

It implies the following theorem.

Theorem 5. There exists a constant C such that for any f ∈ Dom∆ with
‖∆f‖∞ < ∞ and any x ∈ F \ V∗ with

(4.5)
∑
n�1

r[x]nµ[x]n‖M
−1
[x]n

‖ < ∞,

Gradxf exists and

(4.6) ‖PHHf − Gradxf‖ � C‖∆f‖∞
∑
n�1

r[x]nµ[x]n‖M
−1
[x]n

‖.

Also, for any n > 0

(4.7) ‖PHHf − Grad[x]nf‖ � C‖∆f‖∞

n∑
k=1

r[x]kµ[x]k‖M
−1
[x]k

‖.

From Theorem 5 we can immediately deduce the following lemma.

Lemma 4.2. If (F, µ) satisfies the strong main assumption, then for any
function f ∈ Dom ∆µ, Gradxf exists for µ-almost all x ∈ F .
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Proof. The upper Lyapunov exponent of the matrices M−1
j with respect

to the measure µ is 1/α− and so the series (4.5) converges exponentially
µ-almost everywhere. �

The next lemma uses central limit theorem and large deviations results
for products of random matrices. We will use it to show that Gradxf is a
unique function in H that best approximates f in neighborhoods of x.

Lemma 4.3. Suppose (F, µ) satisfies the strong main assumption. Then
for any ε > 0

(4.8)
∑
k�n

r[x]kµ[x]k‖M
−1
[x]n,k

‖o
(
(γ + ε)n

)
n→∞

for µ a.e. x.

Proof. By the Borel-Cantelli lemma it is enough to show that for any δ > 0

(4.9)

∞∑
n=1

µ
{
x : (γ + ε)−n

∑
k�n

r[x]kµ[x]k‖M
−1
[x]n,k

‖ > δ
}

< ∞.

Since lim
n→∞

1
n

log(r[x]nµ[x]n) = log γ for µ a.e. x, it is enough to show that

(4.10)
∞∑

n=1

µ

x :

(
γ

γ + ε

)n ∑
k�n

r[x]n,k
µ[x]n,k

‖M−1
[x]n,k

‖ > δ


=

∞∑
n=1

µ

{
x :

(
γ

γ + ε

)n ∞∑
k=1

r[x]kµ[x]k‖M
−1
[x]k

‖ > δ

}

=

∞∑
n=1

µ

{
x :

∞∑
k=1

r[x]kµ[x]k‖M
−1
[x]k

‖ > δ

(
γ + ε

γ

)n (
1 − β

β

) ∞∑
k=1

βk

}
< ∞,

where we assume that 1 > β > γ
α−

is a fixed number. Thus, it is enough to

show that

(4.11)

∞∑
n=1

∞∑
k=1

µ

{
x : r[x]kµ[x]k‖M

−1
[x]k

‖ > δ

(
γ + ε

γ

)n (
1 − β

β

)
βk

}

=
∞∑

k=1

∞∑
n=1

µ

{
x : log

(
r[x]kµ[x]k‖M

−1
[x]k

‖
)
− k log

(
γ

α−

)
> c0 + nc1 + kc2

}
< ∞,

where c1, c2 > 0. The last inner sum can be estimated from above by

(4.12)
1

c1

∫
Ak

ak(x) dµ(x) �
1

c1

√
µ(Ak)‖ak(x)‖L2

µ

where

(4.13) ak(x) = log
(
r[x]kµ[x]k‖M

−1
[x]k

‖
)
− k log

(
γ

α−

)



20 ANDERS PELANDER AND ALEXANDER TEPLYAEV

and

(4.14) Ak =

{
x : log

(
r[x]kµ[x]k‖M

−1
[x]k

‖
)
− k log

(
γ

α−

)
> c0 + kc2

}
.

The L2
µ-norm of ak(x) grows polynomially by [4, Lemma V.5.2], while µ(Ak)

decreases exponentially according to [4, Theorem V.6.2], which completes
the proof. �

Theorem 6. Suppose (F, µ) satisfies the strong main assumption and f ∈
Dom ∆µ. Then for any ε > 0 and µ a.e. x

(4.15) f(y) = f(x) + Gradxf(y) − Gradxf(x) + o
(
(γ + ε)n

)
y→x

,

where y ∈ F[x]n.

Proof. The proof follows the same ideas as the proof of Theorem 2, but is
actually simpler. We assume that f = Gu and let un be u multiplied by the
indicator function of F[x]n . For y ∈ F[x]n we have that
(4.16)
G(u−un)(y)−G(u−un)(x)−(GradxG(u−un)(y)−GradxG(u−un)(x)) = 0

since G(u − un) is harmonic on F[x]n . Thus, we have to show that, for
y ∈ F[x]n ,

(4.17) Gun(y) − Gun(x) − (GradxGun(y) − GradxGun(x)) = o((γ + ε)n).

Lemma 2.13 implies that for y ∈ F[x]n ,

(4.18) ‖Gun(y) − Gun(x)‖ � Const µ[x]nr[x]n‖u‖∞ = o((γ + ε)n).

Since, in general, Gradxf[x]n = M[x]nGrad ψ[x]n
(x)f , we have

(4.19) ‖(GradxGun(y) − GradxGun(x))F[x]n
‖∞

= ‖Grad
ψ−1

[x]n

(Gun)[x]n(y) − Grad
ψ−1

[x]n

(Gun)[x]n(x)‖∞,

which by Theorem 5 is bounded by

(4.20) Const ‖∆(Gun)[x]n‖∞
∑
k>n

r[x]n,k
µ[x]n,k

‖M−1
[x]n,k

‖

� Const ‖u‖∞r[x]nµ[x]n

∑
k>n

r[x]n,k
µ[x]n,k

‖M−1
[x]n,k

‖,

where [x]n,k is the word of length k−n defined by [x]n[x]n,k = [x]k for k � n.
The left hand side of (4.17) is thus estimated by

(4.21) Const ‖u‖∞
∑
k�n

r[x]kµ[x]k‖M
−1
[x]n,k

‖,

which is o((γ + ε)n) by Lemma 4.3. �

As an immediate consequence we obtain the following Corollary, which
make it straightforward to prove generic differentiability at points where
Gradxf exists.
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Corollary 4.4. Suppose (F, µ) satisfies the strong main assumption and
f ∈ Dom ∆µ. Then for µ a.e. x

(4.22) f(y) = f(x) + Gradxf(y) − Gradxf(x) + o
(
‖M[x]nh‖

)
y→x

,

for any non-constant h ∈ H.

The same result for Gradxf , or rather the tangent T1(f), on the Sierpiński
gasket was proved in [18, Section 7] under a stronger assumption (4.2).

We can now state the relations between the derivative and the gradient.

Proposition 4.5. Suppose (F, µ) satisfies the strong main assumption, f ∈
Dom ∆µ and h is a non constant harmonic function. Then the following
assertions hold.

(1) For µ a.e. x such that Gradxf = 0, we have that
df

dh
(x) = 0.

(2) For µ a.e. x such that Gradxf �= 0, we have that
df

dGradxf
(x) = 1.

(3) For µ a.e. x

(4.23)
df

dh
(x) =

< Gradxf, h+
x >

< h, h+
x >

.

In particular for µ a.e. x we have

(4.24)
df

dh+
x

(x) =< Gradxf, h+
x >,

(4.25)

∣∣∣∣ dfdh
(x)

∣∣∣∣ =
‖P+

x Gradxf‖

‖P+
x h‖

and df
dh

(x) = 0 if and only if Gradxf ∈ H
−
x .

Proof. The first two statements are obvious from Corollary 4.4. For the
third, we know h /∈ H

−
x for µ a.e. x, and in that case

(4.26) f(y) − f(x) = Gradxf(y) − Gradxf(x) + o
(
‖M[x]nh‖

)
y→x

=
< Gradxf, h+

x >

< h, h+
x >

(h(y) − h(x)) + o
(
‖M[x]nh‖

)
y→x

.

�

As formulated, Theorem 4 on geography is destiny, raises the question
about where the derivative is different from zero. Our next results relates
this to the same question on the gradient.

Lemma 4.6. Suppose (F, µ) satisfies the strong main assumption. Then
for any ε > 0 there is δ(ε) > 0 with lim

ε→0
δ(ε) = 0 such that if

(4.27)
‖∆f‖∞
‖PHHf‖

< ε,
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then

(4.28) µ{x : Gradxf ∈ H
−
x } < δ(ε).

In particular, µ{x : Gradxf �= 0} > 1 − δ(ε).

Proof. For simplicity assume ‖PHHf‖ = 1 and ‖∆f‖∞ < ε < 1
4 . Define Fε

as the set of x such that

(4.29) C
∑
n�1

r[x]nµ[x]n‖M
−1
[x]n

‖ < ε−
1

2 ,

where C is the constant in the estimate (4.4). Then by (4.6) for any x ∈ Fε

we have

(4.30) ‖PHHf − Gradxf‖ �
√

ε,

so Gradxf �= 0 and

(4.31) ρ(DirPHHf,DirGradxf) < 2
√

ε

for all x ∈ Fε. Let V ⊂ P(H) be the set of directions orthogonal to PHHf ,
and let Vε = {v0 ∈ P(H) : infv∈V ρ(v0, v) < ε}. We then have the estimate

(4.32) µ{x : Gradxf ∈ H
−
x } � µ{x ∈ Fε : Gradxf ∈ H

−
x } + 1 − µ(Fε)

� µ{x : Dirh+
x ∈ V2

√
ε} + 1 − µ(Fε)

= ν(V2
√

ε) + 1 − µ(Fε) = δ(ε)

where the measure ν is a µ-invariant measure on P(H) and limε→0 ν(V2
√

ε) =

0 since ν(V ) = 0 [4, Proposition III.2.3]. �

Theorem 7. If (F, µ) satisfies the strong main assumption, then for any
f ∈ Dom ∆µ,

(4.33) Gradxf /∈ H
−
x

for µ a.e. x with Gradxf �= 0.

Proof. For simplicity assume ‖∆f‖∞ < 1. Define Fε as the set of x such
that

(4.34) ‖Gradxf‖ > ε.

Then define Fn,ε as the set of x such that

(4.35) ‖Grad[x]nf‖ > ε

and

(4.36) r[x]nµ[x]n‖M
−1
[x]n

‖ < ε2.

Clearly

(4.37) lim
n→∞

µ(Fε \ Fn,ε) = 0

and

(4.38) lim
ε→0

µ(F0 \ Fε) = 0.
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Then for any x ∈ Fn,ε we have

(4.39)
‖∆f[x]n‖∞

‖PHHf[x]n‖
=

‖M−1
[x]n

‖‖∆f[x]n‖∞

‖M−1
[x]n

‖‖M[x]nGrad[x]nf‖
�

r[x]nµ[x]n‖M
−1
[x]n

‖

‖Grad[x]nf‖
< ε.

Here we can use Lemma 4.6 for each f[x]n together with Gradxf[x]n =

M[x]nGrad ψ[x]n
(x)f and M−1

[x]n
H

−
x = H

−
ψ[x]n

(x), to obtain that

(4.40) δ(ε) > µ{x : Gradxf[x]n ∈ H
−
x }

= µ{x : M[x]nGrad ψ[x]n
(x)f ∈ H

−
x }

= µ{x : Grad ψ[x]n
(x)f ∈ M−1

[x]n
H

−
x }

= µ{x : Grad ψ[x]n
(x)f ∈ H

−
ψ[x]n

(x)}

= µ−1
w µ{y ∈ Fw : Grad yf ∈ H

−
y }.

Therefore,

(4.41) µ{x ∈ Fn,ε : Gradxf ∈ H
−
x }

=
∑

µ{x ∈ Fw : Gradxf ∈ H
−
x } <

∑
µwδ(ε) = µ(Fn,ε)δ(ε),

where the sum is over all w ∈ Wn such that Fw ⊂ Fn,ε. Thus,

(4.42) µ{x ∈ Fε : Gradxf ∈ H
−
x } < lim sup µ(Fε\Fn,ε)+µ(Fn,ε)δ(ε) < δ(ε)

and

(4.43) µ{x ∈ F0 : Gradxf ∈ H
−
x } = 0.

�

We can now formulate geography is destiny with conditions on the gradi-
ent.

Corollary 4.7. Suppose (F, µ) satisfies the strong main assumption, f ∈
Dom ∆µ and h is a non-constant harmonic function. Then

(4.44) lim
n→∞

ρ(Dirf[x]n,Dirh[x]n) = 0

for µ a.e. x where Gradxf �= 0

Proof. Theorem 7, Proposition 4.5 and Theorem 4. �

The next corollary is one more analog of Fermat’s theorem.

Corollary 4.8. Suppose (F, µ) satisfies the strong main assumption. Then
there exists a set F ′ of full µ-measure such that if f = u(g1, . . . , gl) ∈
C1(Dom ∆µ) has a local maximum at x ∈ F ′, then Gradxf = 0.

Proof. The proof is the same as that of Corollary 2.15 and uses Theorem 6.
�

Similarly to Corollary 2.16, we can obtain an analogous corollary for non-
boundary periodic points under the assumption rwµw‖M

−1
w ‖ < 1. The

existence of the gradient in such a case is guaranteed by Theorem 5.
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