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Abstract

The use of unmanned aerial vehicles (UAV), so-called drones, has been growing
rapidly in the last decade. Today, they are used for, among other things, monitor-
ing missions and inspections of places that are di Cculk for people to access. To
e [ciehtly and robustly execute these types of missions, a swarm of drones may
be used, i.e., a collection of drones that coordinate together. However, this intro-
duces new requirements on what solutions are used for control and navigation.
Two important aspects of autonomous navigation of drone swarms are formation
control and collision avoidance.

To manage these problems, we propose four dilerknt solution algorithms.
Two of them use leader-follower control to keep formation, Artificial Potential
Field (APF) for path planning and Control Barrier Function (CBF)/Exponential
Control Barrier Function (ECBF) to guarantee that the control signal is safe i.e.
the drones keep the desired safety distance. The other two solutions use an opti-
mal control problem formulation of a motion planning problem to either gener-
ate open-loop or closed-loop trajectories with a linear quadratic regulator (LQR)
controller for trajectory following. The trajectories are optimized in terms of time
and formation keeping. Two di [erknt controllers are used in the solutions. One
of which uses cascade PID control, and the other uses a combination of cascade
PID control and LQR control.

As a way to test our solutions, a scenario is created that can show the utility
of the presented algorithms. The scenario consists of two drone swarms that will
take on di Lerknt missions executed in the same environment, where the drone
swarms will be on a direct collision course with each other. The implemented
solutions should keep the desired formation while smoothly avoiding collisions
and deadlocks. The tests are conducted on real UAVs, using the open source
flying development platform Crazyflie 2.1 from Bitcraze AB. The resulting trajec-
tories are evaluated in terms of time, path length, formation error, smoothness
and safety.

The obtained results show that generating trajectories from an optimal con-
trol problem is superior compared to using APF+leader-follower+CBF/ECBF. How-
ever, one major advantage of the last-mentioned algorithms is that decision mak-
ing is done at every time step making these solutions more robust to disturbances
and changes in the environment.
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Introduction

The aim for this thesis is to implement formation control with e cient guidance
while guaranteeing safety for a swarm of drones. The master thesis is a collabo-
ration between Linkdping University and Saab Dynamics AB. This chapter intro-
duces the problem and provides an outline of the thesis.

1.1 Background

The application of unmanned aerial vehicles (UAVS), so-called drones, has grown
rapidly in the last decade. Today, they are used for, among other things, monitor-
ing missions and inspections of places that are di cult for people to access. To
e ciently and robustly execute these types of missions, swarms of drones can be
used. However, it places new demands on what solutions are used for control and
navigation of the individual drones. The particular drone used in this project is
the Crazy ie 2.1 from Bitcraze AB [6] which is a very small and lightweight UAV
also known as a micro aerial vehicle (MAV). The advantages of using MAVs are
their agility and ability to move through narrow spaces. There are also several
advantages of using a MAV instead of a UAV in research projects because of easier
testing and portability [1].

Formation control of drone swarms are typically divided into three di  erent
approaches: leader-follower approaches, behavior based approaches and virtual
structures. This project will focus on a leader-follower approach which means
that one drone in the swarm are designated as the leader and the other drones
are followers. A well performing formation control is when the relative displace-
ment of each drone do not change, i.e., the formation keeps a desired formation.
By controlling the movement of the leader, the whole formation will follow suit
[27].



2 1 Introduction

To e ectively avoid obstacles and reach a desired target, guidance or path
planning algorithms need to be implemented. One common approach for UAVs is
to use so called arti cial potential elds (APFs), which are widely used because of
their simplicity, computational e  ciency and smooth trajectory generation [23].
The APF algorithm can be likened to a magnetic eld where each neighbouring
drone can be seen as a repulsive magnet and the desired target can be seen as an
attracting magnet. The resultant force from the magnets guides each drone to a
desired target while avoiding other drones.

The last step to a well performing system is to guarantee safety for each drone
in every time step, i.e., that the drones do not collide with each other. For this the-
sis a control barrier function (CBF) was used. From formation control and guid-
ance, each drone gets a nominal control signal and in the last step a quadratic
programming problem is formulated that minimizes the error between the con-
trol signal and the nominal control signal that satis es safety constraints from
the control barrier function. CBF is a mathematical way of ensuring that a set of
states is forward invariant, which means that if a safe set of states is de ned, CBF
ensures that the drones always remains within this safe set [28]. An extension to
CBF called exponential control barrier function (ECBF) is also used.

This thesis will begin with an overview of the system including hardware,
software as well as a model of the system in Chapter 2. Secondly, the theory and
implementations for control, safety and guidance are presented in their respec-
tive chapters, namely Chapter 3, 4, and 5. Four di erent solutions to the problem
formulation will be presented in Chapter 6 and in Chapter 7, the results will be
presented. Lastly in Chapter 8, the results will be discussed and in Chapter 9,
conclusions and potential improvements are presented.

1.2 Problem formulation

This thesis aims to investigate existing solutions and develop algorithms that can
be used for collision-safe control and motion planning of drone swarms. As a
way to rationalize the aims of this thesis, a scenario is created that can show
the utilization of the presented algorithms. The scenario consists of two drone
swarms that will take on di erent missions executed in the same environment,
where the drone swarms will be on a direct collision course with each other. This
should be implemented and tested on the quadcopter Crazy ie 2.1. To simplify
the problem and avoid turbulent air beneath each drone, the motion of the drones
is constrained to the horizontal plane. The performance of the solutions will be
evaluated on ve aspects

« Time - How fast do the swarms nish their respective missions?

 Path length - How long are the resulting paths?
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« Smoothness - Do the collision avoidance algorithms and control of the drone
result in smooth and smart trajectories?

« Safety - Do the drones maintain a safe distance from each other?

» Formation keeping - Is the desired formation kept during the mission?






System Overview

This chapter provides an overview of the hardware, software and a model of the
Crazy ie.

2.1 Hardware

The platform is a Crazy ie 2.1, shown in Figure 2.1, from the Swedish company
Bitcraze.

Figure 2.1: Crazy ie 2.1 quadcopter from Bitcraze.

This is an open source quadcopter that weighs only 27 grams and is there-
fore well suited for research projects on drone swarms. Lots of research has
been made using the platform and thorough documentation makes it easy to get
started. Extensions to the quadcopter can be added such as a positioning system

5
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as well as decks to improve the versatility and performance. In this work the
ultra-wideband (UWB) positioning system called Loco and the Flow deck was
used [6]. The Flow deck measures distance to the ground and velocity which
improves the position and velocity estimation signi cantly compared to only us-
ing Loco. The precision of combining Loco and a Flow deck is in the range of
centimeters [6]. For communication between a computer and Crazy ies, Bitcraze
provides the "Crazyradio PA" which is a long range USB based radio dongle [7].
The computer used in this thesis is the Dell Latitude 5520 with processor Intel
core i7 and RAM 16GB.

2.1.1 UWB positioning system

UWB is a quite new radio technology that have several applications, including
positioning. The UWB localization works similarly to GPS, but with shorter range
and better precision [2]. The setup used in this thesis is eight UWB anchors
placed in the room at known positions, forming a global reference frame. Each
crazy ie has a UWB node onboard which communicates with the anchors and
estimates its position with respect to the global frame [6]. An example setup
with two anchors is shown in Figure 2.2.

Figure 2.2: Loco positioning system.

2.1.2 Flow deck

The Flow deck measures both the distance to the ground and the velocity in its
body frame. The distance measurement is based on a time of ight ranging sensor
which measures the round trip time of an arti cial light signal, i.e. a laser [11].
The optical ow sensor measures movement relative to the ground, which is used
to estimate the velocity in its body frame [6].

2.2 Software

The software platform chosen for this project was Crazyswarm [19]. The other op-
tion was to use Bitcraze Python API. However, one major advantage with Crazyswarm
was the simple but helpful simulation environment. One other di  erence com-
pared to Bitcraze Python API is that Crazyswarm is built upon ROS (Robot Op-
erating System) with a Python API as a thin wrapper around the ROS interface.
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Included in Crazyswarm is communication with the drones, position estimation
as well as a Python API for among other things sending commands and getting
the position estimation of the drones. During the project there was also a need
for solving optimal control problems and for this the software tool CasADi was
used. CasADi is an open-source software tool for solving optimization problems
and optimal control problems [3].

2.2.1 Robot Operating System (ROS)

On a high level, "ROS is an open-source, meta-operating system for your robot"
[24]. It includes functionalities as message passing between processes, tools and
libraries for writing code as well as implementation for commonly used function-
alities. ROS is a framework for distributed processes and makes it easy to design,
integrate and communicate between the individual processes. Therefore it is suit-
able for large systems such as swarm applications.

2.3 Control architecture

Two di erent control architectures were used to control the drones. Schematics
of the architectures are shown in Figure 2.3, and Figure 2.4. In both cases, there
is a Kalman lter on board the drone which estimates position, velocity, accel-
eration, attitude and attitude rate of the drone based on sensor measurements.
The estimations are used both locally in the feedback loops on the drones, and
for navigation and control on the PC. All communication between the drones
and the PC are by radio. The second control architecture has a linear quadratic
regulator (LQR) controller implemented to output desired attitude commands to
improve upon the PID controller in the rst control architecture. A more detailed
description of the controller is given in Chapter 3.

2.3.1 Control architecture 1

In the rst control architecture, velocity commands are sent to the drones, and
position estimates are collected from the drones. This control architecture is
used for its simplicity in solution "APF+Leader-follower+PID+CBF", described

in Chapter 7.
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Figure 2.3: Schematics of control architecture 1. Velocity commands are
sent to the drones, and position estimates are collected from the drones. In
the gure, "Solution" refers to the solution APF+Leader-follower+PID+CBF,

described in Chapter 7.

2.3.2 Control architecture 2

This slightly more advanced control architecture uses attitude and thrust com-
mands to the drones, and collects an estimate of the position, velocity and atti-
tude. This control architecture is used in solution "APF+Leader-follower+LQR+ECBF"
as well as the motion planning solutions, described in Chapter 7. Compared to
control architecture 1, the velocity PID on the onboard controller is bypassed and
more information about the state of a drone is collected.

Figure 2.4: Schematics of control architecture 2. Attitude and thrust com-
mands are sent to the drones, and an estimate of the position, velocity and
attitude are collected from the drones. In the gure, "Solution" refers to ei-
ther the solution APF+Leader-follower+LQR+ECBF or one of the two motion
planning solutions, described in Chapter 7.
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2.4 Model of the system

The solutions to the problem formulation will build upon two di erent linear mo-
tion models. The rst model is the single integrator model, used for its simplicity.
The second model is a quadcopter model which capture more of the true system
dynamics, at the expense of being more complex. Since the problem is simpli ed
to two dimensions, only movement along the x and y axes is considered in the
models.

2.4.1 Single integrator model

For the rst control architecture, a single integrator model was used where it is
assumed that the drone velocity can be controlled instantly with velocity com-
mands. As the Crazy ies were solely controlled by cascaded PIDs the model was
only needed to formulate a control barrier function. The control architecture can
be seen in Figure 2.3 and the state-space model is:

- # "# "#
X1 1
X2 B 0

0 ., _
g Ui x= (2.1)

where P is the position of a drone and V is the velocity of a drone.

2.4.2 Quadcopter model

In the second control architecture from Figure 2.4, where pitch, roll and thrust
were the control signals, a more complex model was used that also took into ac-
count the dynamics of the system. The dynamics in z (vertical axis) was not mod-
eled, as the thrust was controlled by a PID controller. However, as the pitch and
roll commands were controlled by a LQR controller, the model had to be su -
ciently precise. The model that was used was inspired from [18] where they used
a similar model to control a quadcopter with linear MPC. Some slight changes
were made to the model to better tthe implementation in this thesis. The model
can be seen below.

23 o 1 0o o of §o 03 23
00 1 0 o0 0 o P .
2 y #
0 O g o 0 o ;
3% = 0 0 0 gix+Bo oFux=F Fu= M (22
: o0 o L o K o Y omd
5
X6 0 0 0 O 1 0 K

The derivative of P, and P, is self explanatory from the state-space model.
The derivative of V, and V, is under three assumptions. The rst is that the ac-
celeration in z is zero, in other words that the Crazy ie is hovering. This applies
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to our system since the Crazy ies have a constant z position. The second assump-
tion is that the yaw angle is zero which means that the body frame is in line with
the global frame according to Figure 2.5.

Figure 2.5: The global coordinate system G and the body coordinate system
B is assumed to be aligned.

To achieve this alignment two things are done. First the Crazy ie is lined up
with the global coordinate system as close as possible before start; secondly the
true angle between the global coordinate frame and the body coordinate frame is
estimated during ight and accounted for before sending the attitude commands.
The estimation of the angle, called global yaw angle, is described in Section 2.5.4.
The third assumption is that pitch and roll are small enough that cosines of the
angles can be approximated as one and sines of the angles can be approximated
as the angles in radians. This is the well-known small angle approximation. The
derivative of V, and V, was found by modeling the forces on the Crazy ie during
ight and deriving the equilibrium equationsin  x, y and z.

From Figure 2.6 the equilibrium equationsin x and z are:
F,=FKcos() mg F mg=0-=) F=mg (2.3)

Fr=Fsin( ) Fg F V oy (2.4)

The equations are under the assumptions of no acceleration in z, small angles
and that the body coordinate system is aligned with the global coordinate system.
SinceF, = ma,, the acceleration in x is:

Fx = ma, = mg Vy 9 a&=g

) =9 Vox: (2.5)
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Figure 2.6: The modeled forces on the crazy ie during ight. F; is the total
force from the rotors, Fy is the drag force and mg is the gravitational force.

Because both and m are constants, . is seen as one constant, . Since the
Crazy ie is symmetrical, the same equations for x also apply in y by exchanging
the pitch angle to the roll angle. This yields

ay=d vy (2.6)

is a parameter to describe air resistance. From aerodynamics it is known that
the air resistance correlates to the velocity squared, but since a linear model is
considered this is not applicable. Modelling the air resistance as v might re-
sult in a signi cant model error, therefore the in uence has on the model is
explored in Section 2.5. Lastly, the derivative of pitch and roll are estimated by
tting a rst order system to a step response from commanded pitch/roll to ac-
tual pitch/roll. This was in contrast to [18] who suggested a second order system
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to describe the dynamics between actual pitch/roll and commanded pitch/roll.
See Section 2.5 for more details regarding why a rst order system was chosen
and how the drag coe cient ,the rstordergains K- and the rstordertime
constants - were found.

2.5 System identi cation

In this section the unknown parameters from the model in (2.2) are estimated.
Another parameter that is estimated, which is not part of the model, is the time
delay between sent commands and received commands.

2.5.1 Identi cation of , K and K
In this section the parameters , K and K in the state space model (2.2) are
estimated. Because of symmetry it can be assumedthat = andK =K .

Figure 2.7: Step response for identi cation of the time constant Ts. The
model is a rst order system where the time constant is the time to reach
63% of the nal value. The green lines in the gure are the measured pitch
angle for each individual experiment 1-6.

The unit step response from Figure 2.7 is used to estimate the parameters
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and K in (2.2). Row 5in (2.2) yields

1 K

= = 4+

cmds (2-7)

which can be rewritten in the Laplace-domain as

1 K K
S = — *— cmd> = 1+ s cmd- (2.8)
This is a rst order system, with the step response
1t
M=K @ e ) (2.9)
Evaluatingast!1l gives
. _ . t _ - .
fim () =1m K @ e’ cmat) =lim K ema(t): (2.10)

Hence we can identify K as the nal value in Figure 2.7, which is estimated to
be the same as the reference value. ThuK =1.

Evaluatingin t =  gives

( )=@ e cma( ) 063 ¢ma( ): (2.11)

Hence we can identify from Figure 2.7 as the time to reach 63% of the nal
value. Thus 0:148 s.

2.5.2 Identi cation of
In this section, the parameter from the state space model (2.2) is estimated.
The third equation in (2.2) yields

X3= Vy+0; (2.12)

where X3 is the acceleration in the x-direction, denoted a,. Theterm V , should
capture the dynamics of air drag. This can be compared with well known equa-
tions for modelling air drag, where Newton's second law

F=ma (2.13)

and the drag
Fo = 5Ca AV 2 (214)

gives the deceleration term

ap = %Cd AV 2 =CV?; (2.15)



14 2 System Overview

where C is a constant. By comparing the V term from (2.12) with ap from
(2.15), is expected to have the following behaviour

(V)=CV; (2.16)

which means that  will vary linearly with the velocity. This relation will now be
investigated using measured ight data.

Flight data was generated using a sine wave reference trajectory with increas-
ing frequency, shown in Figure 2.8. The trajectory is designed to capture the
dynamics at both low and high velocities.

Figure 2.8: Reference trajectory for identi cation. Sine wave with increas-
ing frequency and slow constant velocity in the y-direction.

Using the model in (2.2) and ight data measurements of the velocity Vy and
pitch , a prediction of the velocity for the next time step Vi1 (Vk; «; ) can
be made. The quality of the prediction can be evaluated using the mean squared
error (MSE)

MSE == (Vi Vi)?; (2.17)

which is the average squared di erence between the estimated values and the
actual value. The MSE evaluated for di erent is shown in Figure 2.9.
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