
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2022

Intelligent drone swarms
Motion planning and safe collision
avoidance control of autonomous drone
swarms

Adam Åsbrink and Hilding Gunnarsson

Master of Science Thesis in Electrical Engineering

Intelligent drone swarms: Motion planning and safe collision avoidance
control of autonomous drone swarms

Adam Åsbrink and Hilding Gunnarsson

LiTH-ISY-EX--22/5474--SE

Supervisor: Daniel Arnström
isy, Linköpings universitet

Markus Andersson
Saab Dynamics AB

Examiner: Daniel Axehill
isy, Linköpings universitet

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2022 Adam Åsbrink and Hilding Gunnarsson

Abstract

The use of unmanned aerial vehicles (UAV), so-called drones, has been growing
rapidly in the last decade. Today, they are used for, among other things, monitor-
ing missions and inspections of places that are difficult for people to access. To
efficiently and robustly execute these types of missions, a swarm of drones may
be used, i.e., a collection of drones that coordinate together. However, this intro-
duces new requirements on what solutions are used for control and navigation.
Two important aspects of autonomous navigation of drone swarms are formation
control and collision avoidance.

To manage these problems, we propose four different solution algorithms.
Two of them use leader-follower control to keep formation, Artificial Potential
Field (APF) for path planning and Control Barrier Function (CBF)/Exponential
Control Barrier Function (ECBF) to guarantee that the control signal is safe i.e.
the drones keep the desired safety distance. The other two solutions use an opti-
mal control problem formulation of a motion planning problem to either gener-
ate open-loop or closed-loop trajectories with a linear quadratic regulator (LQR)
controller for trajectory following. The trajectories are optimized in terms of time
and formation keeping. Two different controllers are used in the solutions. One
of which uses cascade PID control, and the other uses a combination of cascade
PID control and LQR control.

As a way to test our solutions, a scenario is created that can show the utility
of the presented algorithms. The scenario consists of two drone swarms that will
take on different missions executed in the same environment, where the drone
swarms will be on a direct collision course with each other. The implemented
solutions should keep the desired formation while smoothly avoiding collisions
and deadlocks. The tests are conducted on real UAVs, using the open source
flying development platform Crazyflie 2.1 from Bitcraze AB. The resulting trajec-
tories are evaluated in terms of time, path length, formation error, smoothness
and safety.

The obtained results show that generating trajectories from an optimal con-
trol problem is superior compared to using APF+leader-follower+CBF/ECBF. How-
ever, one major advantage of the last-mentioned algorithms is that decision mak-
ing is done at every time step making these solutions more robust to disturbances
and changes in the environment.

iii

Acknowledgments

We would like to give our warmest appreciation to our supervisor Daniel Arn-
ström who’s insight and knowledge into the subject matter steered us every week
through this project. Markus Andersson, for providing support, valuable reviews
and most importantly, making us feel welcomed at Saab Dynamics. We are grate-
ful to all employees at GNC for fun coffee and lunch breaks and a special thanks
to Thorbjörn Crona for letting us do our master’s thesis at Saab Dynamics and
Kristoffer Bergman, the originator of the project. Finally, a big thanks to our ex-
aminer, Daniel Axehill, for helping us with all practicalities regarding our thesis.

Linköping, May 2022
Adam Åsbrink and Hilding Gunnarsson

v

Contents

Notation ix

1 Introduction 1
1.1 Background . 1
1.2 Problem formulation . 2

2 System Overview 5
2.1 Hardware . 5

2.1.1 UWB positioning system . 6
2.1.2 Flow deck . 6

2.2 Software . 6
2.2.1 Robot Operating System (ROS) 7

2.3 Control architecture . 7
2.3.1 Control architecture 1 . 7
2.3.2 Control architecture 2 . 8

2.4 Model of the system . 9
2.4.1 Single integrator model . 9
2.4.2 Quadcopter model . 9

2.5 System identification . 12
2.5.1 Identification of τφ,τθ Kφ and Kθ 12
2.5.2 Identification of λ . 13
2.5.3 Time delay . 18
2.5.4 Global yaw angle . 18

3 Control 21
3.1 PID . 21
3.2 Cascade control . 22
3.3 Linear Quadratic Regulator (LQR) 22

3.3.1 LQR with time delay . 23
3.3.2 Choosing weight matrices 23

3.4 Formation control . 27
3.4.1 Leader follower displacement control 27

vii

viii Contents

4 Safety 29
4.1 Control Barrier Function (CBF) . 29

4.1.1 Definition . 29
4.1.2 Implementation . 30

4.2 Exponential Control Barrier Function (ECBF) 31
4.2.1 Definition . 31
4.2.2 Implementation . 31

5 Guidance 33
5.1 Artificial potential fields . 33

5.1.1 Theory . 33
5.2 Optimal motion planning . 35

5.2.1 Problem formulation . 35
5.2.2 Implementation . 36

6 Solutions to problem formulation 39
6.1 APF+Leader-follower+PID+CBF . 40
6.2 APF+Leader-follower+LQR+ECBF 41
6.3 Open-loop motion planning+LQR 42
6.4 Closed loop Motion planning+LQR 43

7 Results 45
7.1 APF+Leader-follower+PID+CBF . 46

7.1.1 Detailed presentation of a typical test run 46
7.1.2 Statistics from all test runs 49

7.2 APF+Leader-follower+LQR+ECBF 50
7.2.1 Detailed presentation of a typical test run 50
7.2.2 Statistics from all test runs 52

7.3 Open-loop motion planning + LQR 53
7.3.1 Detailed presentation of a typical test run 53
7.3.2 Statistics from all test runs 55

7.4 Closed-loop motion planning+LQR 56
7.4.1 Detailed presentation of two typical test runs 56
7.4.2 Statistics from all test runs 60

7.5 Summary of results . 61

8 Discussion 63
8.1 Results . 63
8.2 Limiting factors to performance . 65
8.3 Potential improvements . 65

9 Conclusions and further work 67
9.1 Answers to the problem formulation 67
9.2 Conclusions . 68
9.3 Further work . 68

Bibliography 69

Notation

Abbreviations

Abbreviation Meaning

APF Artificial Potential Field
CBF Control Barrier Function

ECBF Exponential Control Barrier Function
LF-control Leader Follower control

LQR Linear Quadratic Regulation
MAV Micro Aerial Vehicle
MPC Model Predictive Control

MMSE Minimum Mean Square Error
MSE Mean Squared Error

PID controller Proportional Integral Derivative controller
QP-problem Quadratic Programming problem

ROS Robot Operating System
TCAS Traffic Alert and Collision Avoidance Systems
UAV Unmanned Aerial Vehicle
UWB Ultra-Wideband

ix

1
Introduction

The aim for this thesis is to implement formation control with efficient guidance
while guaranteeing safety for a swarm of drones. The master thesis is a collabo-
ration between Linköping University and Saab Dynamics AB. This chapter intro-
duces the problem and provides an outline of the thesis.

1.1 Background

The application of unmanned aerial vehicles (UAVs), so-called drones, has grown
rapidly in the last decade. Today, they are used for, among other things, monitor-
ing missions and inspections of places that are difficult for people to access. To
efficiently and robustly execute these types of missions, swarms of drones can be
used. However, it places new demands on what solutions are used for control and
navigation of the individual drones. The particular drone used in this project is
the Crazyflie 2.1 from Bitcraze AB [6] which is a very small and lightweight UAV
also known as a micro aerial vehicle (MAV). The advantages of using MAVs are
their agility and ability to move through narrow spaces. There are also several
advantages of using a MAV instead of a UAV in research projects because of easier
testing and portability [1].

Formation control of drone swarms are typically divided into three different
approaches: leader-follower approaches, behavior based approaches and virtual
structures. This project will focus on a leader-follower approach which means
that one drone in the swarm are designated as the leader and the other drones
are followers. A well performing formation control is when the relative displace-
ment of each drone do not change, i.e., the formation keeps a desired formation.
By controlling the movement of the leader, the whole formation will follow suit
[27].

1

2 1 Introduction

To effectively avoid obstacles and reach a desired target, guidance or path
planning algorithms need to be implemented. One common approach for UAVs is
to use so called artificial potential fields (APFs), which are widely used because of
their simplicity, computational efficiency and smooth trajectory generation [23].
The APF algorithm can be likened to a magnetic field where each neighbouring
drone can be seen as a repulsive magnet and the desired target can be seen as an
attracting magnet. The resultant force from the magnets guides each drone to a
desired target while avoiding other drones.

The last step to a well performing system is to guarantee safety for each drone
in every time step, i.e., that the drones do not collide with each other. For this the-
sis a control barrier function (CBF) was used. From formation control and guid-
ance, each drone gets a nominal control signal and in the last step a quadratic
programming problem is formulated that minimizes the error between the con-
trol signal and the nominal control signal that satisfies safety constraints from
the control barrier function. CBF is a mathematical way of ensuring that a set of
states is forward invariant, which means that if a safe set of states is defined, CBF
ensures that the drones always remains within this safe set [28]. An extension to
CBF called exponential control barrier function (ECBF) is also used.

This thesis will begin with an overview of the system including hardware,
software as well as a model of the system in Chapter 2. Secondly, the theory and
implementations for control, safety and guidance are presented in their respec-
tive chapters, namely Chapter 3, 4, and 5. Four different solutions to the problem
formulation will be presented in Chapter 6 and in Chapter 7, the results will be
presented. Lastly in Chapter 8, the results will be discussed and in Chapter 9,
conclusions and potential improvements are presented.

1.2 Problem formulation

This thesis aims to investigate existing solutions and develop algorithms that can
be used for collision-safe control and motion planning of drone swarms. As a
way to rationalize the aims of this thesis, a scenario is created that can show
the utilization of the presented algorithms. The scenario consists of two drone
swarms that will take on different missions executed in the same environment,
where the drone swarms will be on a direct collision course with each other. This
should be implemented and tested on the quadcopter Crazyflie 2.1. To simplify
the problem and avoid turbulent air beneath each drone, the motion of the drones
is constrained to the horizontal plane. The performance of the solutions will be
evaluated on five aspects

• Time - How fast do the swarms finish their respective missions?

• Path length - How long are the resulting paths?

1.2 Problem formulation 3

• Smoothness - Do the collision avoidance algorithms and control of the drone
result in smooth and smart trajectories?

• Safety - Do the drones maintain a safe distance from each other?

• Formation keeping - Is the desired formation kept during the mission?

2
System Overview

This chapter provides an overview of the hardware, software and a model of the
Crazyflie.

2.1 Hardware

The platform is a Crazyflie 2.1, shown in Figure 2.1, from the Swedish company
Bitcraze.

Figure 2.1: Crazyflie 2.1 quadcopter from Bitcraze.

This is an open source quadcopter that weighs only 27 grams and is there-
fore well suited for research projects on drone swarms. Lots of research has
been made using the platform and thorough documentation makes it easy to get
started. Extensions to the quadcopter can be added such as a positioning system

5

6 2 System Overview

as well as decks to improve the versatility and performance. In this work the
ultra-wideband (UWB) positioning system called Loco and the Flow deck was
used [6]. The Flow deck measures distance to the ground and velocity which
improves the position and velocity estimation significantly compared to only us-
ing Loco. The precision of combining Loco and a Flow deck is in the range of
centimeters [6]. For communication between a computer and Crazyflies, Bitcraze
provides the "Crazyradio PA" which is a long range USB based radio dongle [7].
The computer used in this thesis is the Dell Latitude 5520 with processor Intel
core i7 and RAM 16GB.

2.1.1 UWB positioning system

UWB is a quite new radio technology that have several applications, including
positioning. The UWB localization works similarly to GPS, but with shorter range
and better precision [2]. The setup used in this thesis is eight UWB anchors
placed in the room at known positions, forming a global reference frame. Each
crazyflie has a UWB node onboard which communicates with the anchors and
estimates its position with respect to the global frame [6]. An example setup
with two anchors is shown in Figure 2.2.

Figure 2.2: Loco positioning system.

2.1.2 Flow deck

The Flow deck measures both the distance to the ground and the velocity in its
body frame. The distance measurement is based on a time of flight ranging sensor
which measures the round trip time of an artificial light signal, i.e. a laser [11].
The optical flow sensor measures movement relative to the ground, which is used
to estimate the velocity in its body frame [6].

2.2 Software

The software platform chosen for this project was Crazyswarm [19]. The other op-
tion was to use Bitcraze Python API. However, one major advantage with Crazyswarm
was the simple but helpful simulation environment. One other difference com-
pared to Bitcraze Python API is that Crazyswarm is built upon ROS (Robot Op-
erating System) with a Python API as a thin wrapper around the ROS interface.

2.3 Control architecture 7

Included in Crazyswarm is communication with the drones, position estimation
as well as a Python API for among other things sending commands and getting
the position estimation of the drones. During the project there was also a need
for solving optimal control problems and for this the software tool CasADi was
used. CasADi is an open-source software tool for solving optimization problems
and optimal control problems [3].

2.2.1 Robot Operating System (ROS)

On a high level, "ROS is an open-source, meta-operating system for your robot"
[24]. It includes functionalities as message passing between processes, tools and
libraries for writing code as well as implementation for commonly used function-
alities. ROS is a framework for distributed processes and makes it easy to design,
integrate and communicate between the individual processes. Therefore it is suit-
able for large systems such as swarm applications.

2.3 Control architecture

Two different control architectures were used to control the drones. Schematics
of the architectures are shown in Figure 2.3, and Figure 2.4. In both cases, there
is a Kalman filter on board the drone which estimates position, velocity, accel-
eration, attitude and attitude rate of the drone based on sensor measurements.
The estimations are used both locally in the feedback loops on the drones, and
for navigation and control on the PC. All communication between the drones
and the PC are by radio. The second control architecture has a linear quadratic
regulator (LQR) controller implemented to output desired attitude commands to
improve upon the PID controller in the first control architecture. A more detailed
description of the controller is given in Chapter 3.

2.3.1 Control architecture 1

In the first control architecture, velocity commands are sent to the drones, and
position estimates are collected from the drones. This control architecture is
used for its simplicity in solution "APF+Leader-follower+PID+CBF", described
in Chapter 7.

8 2 System Overview

Figure 2.3: Schematics of control architecture 1. Velocity commands are
sent to the drones, and position estimates are collected from the drones. In
the figure, "Solution" refers to the solution APF+Leader-follower+PID+CBF,
described in Chapter 7.

2.3.2 Control architecture 2

This slightly more advanced control architecture uses attitude and thrust com-
mands to the drones, and collects an estimate of the position, velocity and atti-
tude. This control architecture is used in solution "APF+Leader-follower+LQR+ECBF"
as well as the motion planning solutions, described in Chapter 7. Compared to
control architecture 1, the velocity PID on the onboard controller is bypassed and
more information about the state of a drone is collected.

Figure 2.4: Schematics of control architecture 2. Attitude and thrust com-
mands are sent to the drones, and an estimate of the position, velocity and
attitude are collected from the drones. In the figure, "Solution" refers to ei-
ther the solution APF+Leader-follower+LQR+ECBF or one of the two motion
planning solutions, described in Chapter 7.

2.4 Model of the system 9

2.4 Model of the system

The solutions to the problem formulation will build upon two different linear mo-
tion models. The first model is the single integrator model, used for its simplicity.
The second model is a quadcopter model which capture more of the true system
dynamics, at the expense of being more complex. Since the problem is simplified
to two dimensions, only movement along the x and y axes is considered in the
models.

2.4.1 Single integrator model

For the first control architecture, a single integrator model was used where it is
assumed that the drone velocity can be controlled instantly with velocity com-
mands. As the Crazyflies were solely controlled by cascaded PIDs the model was
only needed to formulate a control barrier function. The control architecture can
be seen in Figure 2.3 and the state-space model is:

[
ẋ1
ẋ2

]
=
[
1 0
0 1

]
u, x =

[
Px
Py

]
, u =

[
Vx
Vy

]
, (2.1)

where P is the position of a drone and V is the velocity of a drone.

2.4.2 Quadcopter model

In the second control architecture from Figure 2.4, where pitch, roll and thrust
were the control signals, a more complex model was used that also took into ac-
count the dynamics of the system. The dynamics in z (vertical axis) was not mod-
eled, as the thrust was controlled by a PID controller. However, as the pitch and
roll commands were controlled by a LQR controller, the model had to be suffi-
ciently precise. The model that was used was inspired from [18] where they used
a similar model to control a quadcopter with linear MPC. Some slight changes
were made to the model to better fit the implementation in this thesis. The model
can be seen below.



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6


=



0 0 1 0 0 0
0 0 0 1 0 0
0 0 −λ 0 g 0
0 0 0 −λ 0 −g
0 0 0 0 − 1

τφ
0

0 0 0 0 0 − 1
τθ


x+



0 0
0 0
0 0
0 0
Kφ

τφ
0

0 Kθ
τθ


u, x =



Px
Py
Vx
Vy

φ
θ


, u =

[
φcmd
θcmd

]
(2.2)

The derivative of Px and Py is self explanatory from the state-space model.
The derivative of Vx and Vy is under three assumptions. The first is that the ac-
celeration in z is zero, in other words that the Crazyflie is hovering. This applies

10 2 System Overview

to our system since the Crazyflies have a constant z position. The second assump-
tion is that the yaw angle is zero which means that the body frame is in line with
the global frame according to Figure 2.5.

Figure 2.5: The global coordinate system G and the body coordinate system
B is assumed to be aligned.

To achieve this alignment two things are done. First the Crazyflie is lined up
with the global coordinate system as close as possible before start; secondly the
true angle between the global coordinate frame and the body coordinate frame is
estimated during flight and accounted for before sending the attitude commands.
The estimation of the angle, called global yaw angle, is described in Section 2.5.4.
The third assumption is that pitch and roll are small enough that cosines of the
angles can be approximated as one and sines of the angles can be approximated
as the angles in radians. This is the well-known small angle approximation. The
derivative of Vx and Vy was found by modeling the forces on the Crazyflie during
flight and deriving the equilibrium equations in x, y and z.

From Figure 2.6 the equilibrium equations in x and z are:

Fz = Ft cos(φ) −mg ≈ Ft −mg = 0 =⇒ Ft = mg (2.3)

Fx = Ft sin(φ) − Fd ≈ Ftφ − λvx (2.4)

The equations are under the assumptions of no acceleration in z, small angles
and that the body coordinate system is aligned with the global coordinate system.
Since Fx = max, the acceleration in x is:

Fx = max = mgφ − λvx =⇒ ax = gφ − λvx
m

=⇒ ax = gφ − λvx. (2.5)

2.4 Model of the system 11

Figure 2.6: The modeled forces on the crazyflie during flight. Ft is the total
force from the rotors, Fd is the drag force and mg is the gravitational force.

Because both λ and m are constants, λ
m is seen as one constant, λ. Since the

Crazyflie is symmetrical, the same equations for x also apply in y by exchanging
the pitch angle to the roll angle. This yields

ay = gθ − λvy . (2.6)

λ is a parameter to describe air resistance. From aerodynamics it is known that
the air resistance correlates to the velocity squared, but since a linear model is
considered this is not applicable. Modelling the air resistance as λv might re-
sult in a significant model error, therefore the influence λ has on the model is
explored in Section 2.5. Lastly, the derivative of pitch and roll are estimated by
fitting a first order system to a step response from commanded pitch/roll to ac-
tual pitch/roll. This was in contrast to [18] who suggested a second order system

12 2 System Overview

to describe the dynamics between actual pitch/roll and commanded pitch/roll.
See Section 2.5 for more details regarding why a first order system was chosen
and how the drag coefficient λ, the first order gains Kφ/θ and the first order time
constants τφ/θ were found.

2.5 System identification

In this section the unknown parameters from the model in (2.2) are estimated.
Another parameter that is estimated, which is not part of the model, is the time
delay between sent commands and received commands.

2.5.1 Identification of τφ,τθ Kφ and Kθ

In this section the parameters τφ,τθ Kφ and Kθ in the state space model (2.2) are
estimated. Because of symmetry it can be assumed that τφ = τθ and Kφ = Kθ .

0 1 2 3

t [s]

-0.5

0

0.5

1

1.5

2

2.5

ro
ll

[d
e

g
]

reference

measured roll angle experiment 1

mean roll angle experiment 1-6

0 1 2 3 4

t [s]

-0.5

0

0.5

1

1.5

2

2.5

ro
ll

[d
e

g
]

reference

mean roll angle

first order system model

Ts = 0.148

0.63 %

of final value

Figure 2.7: Step response for identification of the time constant Ts. The
model is a first order system where the time constant is the time to reach
63% of the final value. The green lines in the figure are the measured pitch
angle for each individual experiment 1-6.

The unit step response from Figure 2.7 is used to estimate the parameters τφ

2.5 System identification 13

and Kφ in (2.2). Row 5 in (2.2) yields

φ̇ = − 1
τφ

φ +
Kφ

τφ
φcmd , (2.7)

which can be rewritten in the Laplace-domain as

φs = − 1
τφ

φ +
Kφ

τφ
φcmd ⇔ φ =

Kφ

1 + τφs
φcmd . (2.8)

This is a first order system, with the step response

φ(t) = Kφ(1 − e
− 1
τφ

t
). (2.9)

Evaluating as t →∞ gives

lim
t→∞

φ(t) = lim
t→∞

Kφ(1 − e−t)φcmd(t) = lim
t→∞

Kφφcmd(t). (2.10)

Hence we can identify Kφ as the final value in Figure 2.7, which is estimated to
be the same as the reference value. Thus Kφ = 1.

Evaluating in t = τφ gives

φ(τφ) = (1 − e−1)φcmd(τφ) ≈ 0.63φcmd(τφ). (2.11)

Hence we can identify τφ from Figure 2.7 as the time to reach 63% of the final
value. Thus τφ ≈ 0.148 s.

2.5.2 Identification of λ

In this section, the parameter λ from the state space model (2.2) is estimated.

The third equation in (2.2) yields

ẋ3 = −λVx + gφ, (2.12)

where ẋ3 is the acceleration in the x-direction, denoted ax. The term −λVx should
capture the dynamics of air drag. This can be compared with well known equa-
tions for modelling air drag, where Newton’s second law

F = ma (2.13)

and the drag

FD =
1
2
CdρAV

2, (2.14)

gives the deceleration term

aD =
1
m
CdρAV

2 = CV 2, (2.15)

14 2 System Overview

where C is a constant. By comparing the −λV term from (2.12) with aD from
(2.15), λ is expected to have the following behaviour

λ(V) = CV , (2.16)

which means that λ will vary linearly with the velocity. This relation will now be
investigated using measured flight data.

Flight data was generated using a sine wave reference trajectory with increas-
ing frequency, shown in Figure 2.8. The trajectory is designed to capture the
dynamics at both low and high velocities.

Figure 2.8: Reference trajectory for λ identification. Sine wave with increas-
ing frequency and slow constant velocity in the y-direction.

Using the model in (2.2) and flight data measurements of the velocity Vk and
pitch φk , a prediction of the velocity for the next time step V̂k+1(Vk , φk , λ) can
be made. The quality of the prediction can be evaluated using the mean squared
error (MSE)

MSE =
1
n

n∑
k=1

(Vk − V̂k)2, (2.17)

which is the average squared difference between the estimated values and the
actual value. The MSE evaluated for different λ is shown in Figure 2.9.

2.5 System identification 15

0 20 40 60

t [s]

-10

0

10

p
it
c
h

 [
d

e
g

]

0 20 40 60

t [s]

-2
0
2
4

x
 v

e
l
[m

/s
]

0 20 40 60

t [s]

0

0.01

0.02

x
 v

e
l
[m

/s
] Squared error (SE), = 0.00

MSE: 0.0004384

0 20 40 60

t [s]

-2
0
2
4

x
 v

e
l
[m

/s
]

0 20 40 60

t [s]

0

0.01

0.02

x
 v

e
l
[m

/s
] Squared error (SE), = 0.10

MSE: 0.0004165

0 20 40 60

t [s]

-2
0
2
4

x
 v

e
l
[m

/s
]

0 20 40 60

t [s]

0

0.01

0.02
x
 v

e
l
[m

/s
] Squared error (SE), = 0.20

MSE: 0.0004054

0 20 40 60

t [s]

-2
0
2
4

x
 v

e
l
[m

/s
]

0 20 40 60

t [s]

0

0.01

0.02

x
 v

e
l
[m

/s
] Squared error (SE), = 0.30

MSE: 0.0004050

0 20 40 60

t [s]

-2
0
2
4

x
 v

e
l
[m

/s
]

0 20 40 60

t [s]

0

0.01

0.02

x
 v

e
l
[m

/s
] Squared error (SE), = 0.40

MSE: 0.0004150

0 20 40 60

t [s]

-2
0
2
4

x
 v

e
l
[m

/s
]

0 20 40 60

t [s]

0

0.01

0.02

x
 v

e
l
[m

/s
] Squared error (SE), = 0.50

MSE: 0.0004064

Figure 2.9: Predicted velocity V̂k+1(Vk , φk , λ), for λ = 0.0, 0.1, ..., 0.5.

Now finding the best constant λ can be formulated as finding the argument
that minimizes the MSE

λ∗ = arg min
λ

MSE. (2.18)

Resulting in a minimum mean square error (MMSE) estimator V̂k+1(Vk , φk , λ
∗).

In Figure 2.10 a minimum is seen for λ = 0.25.

16 2 System Overview

Figure 2.10: Finding the optimal constant λ∗ for the given trajectory.

The trajectory has an average absolute x-velocity |V̄x | of 0.56 m/s. Since the
velocity varies over the trajectory, the minimization can be made on a shorter
time span of the trajectory, resulting in the optimal λ for the average velocity of
that time span, λ∗(V). The optimal λ for 11 different time spans for the trajectory
shown in Figure 2.8 are plotted as blue crosses in Figure 2.11.

Figure 2.11: Finding the optimal λ on shorter time spans of the trajectory
with different average velocities. A linear model λ(V) (red) can be fitted to
the data points (blue), and discretized (black).

As expected from (2.16), λ can be represented as a linear function of the ve-
locity:

2.5 System identification 17

λ(V) = 0.33V + 0.027 . (2.19)

Since the model is used to calculate the LQR gain matrix K , described in Sec-
tion 3.3, the best solution would be to evaluate λ(V) in every iteration and then
calculate K . However, to reduce the complexity of the implementation, λ(V) can
be discretized for some set of velocities, and a corresponding set of gain matrices
K(V) can be calculated in advance. The discretized λ(V), shown in Figure 2.11,
is rounded up or down to the nearest discretized step, and saturated for V > 0.9,
described mathematically as

λd(V) =

λ(0.1k + 0.05), 0.1k < V ≤ 0.1(k + 1) , k = 0, ... , 9
λ(0.95), V > 0.9 .

(2.20)

For each velocity there will be a corresponding LQR gain matrix

K = K(λd(V)). (2.21)

In the quadcopter model, the states of the x and y directions are independent,
which means that the first and second row of the K matrix can be separated. The
first row of the K matrix will be based on the x-velocity, and the second row will
be based on the y-velocity

K(V) =
[
K(1,∗)(Vx)
K(2,∗)(Vy)

]
. (2.22)

In Table 2.1 the quality of some predictors V̂ using different implementations
of λ is compared. The λd(VMA) predictor uses the moving average (MA) velocity
of the last 7 seconds, acting as a low-pass filter on the velocity.

Table 2.1: Comparison of predictors V̂ using different selections of λ.

λ MSE 10−3 Relative MSE change compared to MSE(λ = 0.25)

λ = 0.0 0.4384 +8.54 %
λ = 0.5 0.4355 +7.82 %
λ = 0.1 0.4165 +3.12 %
λ = 0.4 0.4150 +2.74 %
λd(V) 0.4065 +0.64 %
λ = 0.2 0.4054 +0.37 %
λ = 0.3 0.4050 +0.27 %
λ = 0.25 0.4039 0.0 %
λd(VMA) 0.4036 -0.07 %

The quality of the predictors is relatively similar for fixed λ between 0.2 and
0.3, and the functions λ(V), with a relative difference of less than 1%. But a large
deviation in λ from the optimal value results in severe prediction errors. Using a
fixed λ of 0.25 is arguably good enough for most trajectories, but using the func-
tion λ(V) could be more accurate where the average velocity is very high or low,

18 2 System Overview

where λ = 0.25 is deviating much from the optimal λ value. Using λd(VMA) the
performance is marginally better compared to λd(V). Since the optimal lambda
was generated using the average velocity of a small part of the trajectory, the
model is slightly better fitted to the moving average than the instantaneous veloc-
ity.

2.5.3 Time delay

There are two perspectives on what the time delay of the system is. The first is the
time it takes from sending commands until the drone is receiving the commands,
and the second one is the time it takes from the drone sending its current states
until the drone is receiving the commands. In the perspective of the controller,
the second one is more interesting since the control signal from the state feed-
back controller is based on the latest update of the state. If there is a significant
time delay between the time the drone sends its current state until the time the
drone receives the commands, the current state would be different in compari-
son to the state that the control signal is based on. However, this time delay is
difficult to measure, which leads us to use the first time delay mentioned. This
time delay can be known by measuring the time delay from sent commands until
the system reacts. This is done by a simple step response which can be found
above in Figure 2.7. A close up of the step response shows that this time delay is
approximately 33 ms.

0.8 0.9 1 1.1 1.2 1.3 1.4

time [s]

0

0.5

1

1.5

2

m
e
a
n
 r

o
ll

a
n
g
le

 [
d
e
g
]

T
DT

 = 0.033

Figure 2.12: Identification of time delay TDT

2.5.4 Global yaw angle

As stated in Section 2.4 an assumption about the system is that the body frame is
aligned with the global frame. Even though each drone is aligned with the global
frame before start a small error can easily occur. This error in angle is, in this
thesis, called global yaw angle and is estimated during the flight. If the drone

2.5 System identification 19

is aligned with the global frame, then the global acceleration vector of the drone
and the body attitude vector should align. However, if not, the angle between
global acceleration vector and the body attitude vector is the measured global
yaw angle.

Figure 2.13: Measurement of global yaw angle. Acc_g is the acceleration
vector in the global frame and att_b is the attitude vector in the body frame.

The estimated global yaw angle is updated with the error in measurement
times a constant K as

yawestimated = yawestimated + K(yawmeasured − yawestimated). (2.23)

If the estimation of the global yaw angle was critical, a Kalman filter would pro-
vide a better estimation. Because of simplicity this filter was used, with a conser-
vative K . The global yaw angle is used to rotate the desired attitude command
vector with the rotation matrix:

[
cos(yaw) -sin(yaw)
sin(yaw) cos(yaw)

]
.

3
Control

As described in Section 2.3, the onboard controller of the drone is using cascade
control with PIDs that either goes from global velocities to motor speed or from
attitude and thrust in its body frame to motor speed. In the second control ar-
chitecture an LQR controller is implemented that outputs desired attitude in the
body frame. The LQR controller replaces one PID controller from the first con-
trol architecture. This section will begin by describing how a PID controller as
well as cascade control works and secondly, in detail, present the implemented
LQR controller. Finally the implemented formation control is described.

3.1 PID

A PID is the most common controller. Its advantages lies in that there is no need
of any knowledge of the system to implement a PID controller, even though it
can be advantageous when, for example, analyzing stability. A PID controller
has three parts: a proportional (P) part, an integral (I) part and a derivative (D)
part. The mathematical expression for the resulting control law is

u(t) = Kpe(t) + Ki

t∫
0

e(τ)dτ + Kd
d
dt

e(t), (3.1)

where the error e(t) is the difference between a measured output signal and a
reference signal, and u(t) is the control signal used as input to the system. A PID
controller aims to make the error e(t) as small as possible. The proportional part
is the base of the PID controller and higher values of Kp lead to a faster response
to an error however, sometimes this can lead to oscillatory behaviour. Therefore
a derivative part is added that aims to slow down the rate of change of the error.
The integral part is added to remove steady-state errors [10].

21

22 3 Control

3.2 Cascade control

Cascade control is simply having several controllers in a serial connection where
the reference signal to each controller is the output signal from the previous con-
troller. This is used to maximize the information about the system and is used
in the onboard controller on the Crazyflie (see Figures 2.3 and 2.4). Instead of
having one PID controller to go from desired global velocities to power distribu-
tion to each motor, there is a cascade of PIDs which utilizes information about
estimated velocities, attitude and attitude rate, which otherwise would not have
been used. The idea is that since more information about the system is used, the
controller will be better [10].

3.3 Linear Quadratic Regulator (LQR)

A linear quadratic regulator (LQR) is an optimal controller based on state feed-
back. The control signal u(t) depends on the current states x and a gain matrix
K that describes how each state contributes to the control signal. In other words
the control law is given by

u(t) = −Kx. (3.2)

In the more common case when there is a state reference, the control signal is
given by

u(t) = K(xref − x) = Ke. (3.3)

The LQR controller is based upon the following optimization problem:

min
u

1
2

∞∫
0

eTQe + uT Ru

s.t. ẋ = Ax + Bu,

(3.4)

where Q is a real positive-definite or positive-semidefinite symmetric matrix and
R is a positive-definite symmetric matrix. A and B describe the linear dynamics
of the system. The gain matrix K is given by

K = R−1BT P , (3.5)

where P is the real symmetric matrix solution to the the Riccati equation

AT P + P A − P BR−1BT P + Q = 0. (3.6)

LQR gives an optimal gain matrix based on a model of the system and a cost
function. The cost function is determined by the state error as well as the size
of the control signals subjected to weight matrices given by the user. The first
weight matrix Q determines how much impact the state error will have on the
cost function and the second weight matrix R determines how much impact the
size of the control signal will have on the cost function. For example, to avoid
large control signals the user can increase the element values of the R-matrix.

3.3 Linear Quadratic Regulator (LQR) 23

Tuning of the weight matrices Q and R are described in Section 3.3.2. A precise
model of the system is important to achieving good results from the LQR prob-
lem.

3.3.1 LQR with time delay

To compensate for the time delay, from the time the commands are sent to the
time the commands are received, an extension to LQR that is based on Smith pre-
diction theory can be implemented. With time delay compensation the control
signal is given by [29]

uk = −K(Fdxk +
d∑
i=1

F i−1Guk−1), (3.7)

where K is the gain matrix obtained from the LQR problem and F,G is the matri-
ces that describes the system in discrete time as

xk+1 = Fxk + Guk . (3.8)

To go from continuous time to discrete time the F and G matrices are given by [9]

F = eATs

G =

Ts∫
0

eAtBdt,
(3.9)

where A and B describe a continuous time system and Ts is the sampling time.
By using a first order Taylor expansion the following discrete time matrices were
found:

F = I + ATs

G = (ITs +
AT 2

s

2
)B.

(3.10)

More details regarding the time delay of the system can be found in Section 2.5.

3.3.2 Choosing weight matrices

The weight matrices of the LQR controller, Q and R, where tuned with a trial
and error approach, where the aim is to design an LQR controller to perform an
efficient control with a minimum error in desired position.

The LQR state feedback controller is designed to stabilize the system and min-
imize the cost function from (3.4) where Q and R can be defined as diagonal
matrices

Q =


q1 0 . . . 0
0 q2 0 0
... 0

. . . 0
0 0 0 q6

 ,

24 3 Control

R =
[
r1 0
0 r2

]
.

Here q1, ... , q6 corresponds to the cost of deviation from the desired reference
state xref 1, ... , xref 6, and r1, r2 corresponds to the cost of large attitude control
signals u1 and u2.

To achieve low error in desired position, an initial approach is to use large q1
and q2 to minimize the position error, and small r1 and r2 to not restrict attitude
controls. This works very well in ideal conditions, but experimentally, noise in
the position estimate results in jerky behaviour as small deviations in position
results in large attitude controls. To handle this, r1, r2 are increased until the jerk
is at an acceptable level. For trajectories with fast maneuvers, it can be beneficial
to use the velocity profile of the reference, i.e., increasing q3, q4. The difference
of introducing cost on the velocity reference can be seen by comparing Figure
3.1 and Figure 3.2. However, for relatively slow trajectories, introducing cost on
the velocity does not make any noticeable difference and the tracking errors are
dominated by disturbances, see Figure 3.3 and Figure 3.4. The final values of the
tuning parameters are:

Q =



10 0 0 0 0 0
0 10 0 0 0 0
0 0 9 0 0 0
0 0 0 9 0 0
0 0 0 0 1e-10 0
0 0 0 0 1e-10


,

R =
[
10 0
0 10

]
.

3.3 Linear Quadratic Regulator (LQR) 25

0

Figure 3.1: A fast trajectory reference with cost on position errors, using
tuning parameters q1 = 10, q2 = 10, r1 = 10, r2 = 10 . Fast reference changes
results in overshoot.

Figure 3.2: Fast trajectory with cost on position and velocity errors, using
q1 = 10, q2 = 10, q3 = 9, q4 = 9, r1 = 10, r2 = 10. The velocity reference
reduces the overshoot compared to only position reference.

26 3 Control

Figure 3.3: Slow trajectory with cost on position errors, using q1 = 10, q2 =
10, r1 = 10, r2 = 10. Errors due to disturbances are predominant.

Figure 3.4: Slow trajectory with cost on position and velocity errors, using
q1 = 10, q2 = 10, q3 = 9, q4 = 9, r1 = 10, r2 = 10. The introduced cost on
velocity does not improve the position error for a slow trajectory. Errors due
to disturbances are predominant.

3.4 Formation control 27

3.4 Formation control

Formation control of drone swarms are typically divided into three approaches:
leader-follower approaches, behavior-based approaches and virtual structures.
The leader follower method designates one drone as the leader which will fly
along a predefined trajectory and the other drones as followers which tries to
maintain their relative position and velocity to the leader and the neighbouring
drones. Simplicity in analysis and scalability are the main pros, while a limita-
tion is that the formation is dependent on a single drone [27] [22]. This thesis
will focus on this approach.

Behavior-based methods weigh behaviors such as keeping a certain formation,
obstacle avoidance and trajectory following to determine a final control of each
drone. This approach was developed with inspiration from nature where flocking
can be beneficial to certain animals if it is to avoid predators or find prey. It can
also be seen in birds during long flights to minimize the air resistance. One advan-
tage is that the formation control is decentralized and communication between
drones can be kept to a minimal. However, it is difficult to analyse convergence
of the formation mathematically [4] [16].

The last method is called virtual structure which sees the drone swarm as a
single entity. In rigid body motion, all points maintain their exact relative posi-
tion due to fixed constraints. This concept is used in virtual structure methods
to force the drones to maintain these fixed points in the structure. Each drone
follows a virtual leader to keep a fixed formation with high precision. However
the virtual leader can not make any decisions by itself which is the main disad-
vantage [25] [20].

3.4.1 Leader follower displacement control

A typical displacement-based formation control imposes the following require-
ments on agents:

• Each agent needs a local coordinate system which is aligned to a global
coordinate system and sensing capability of the relative displacements of
their neighbors with respect to the global coordinate system.

• A topology graph that defines the desired displacements from any agent to
the other, which can be characterized by either connectedness or existence
of a spanning tree. [17]

Control law using a single integrator model

Consider the single integrator model where the position p ∈ R
n of drone i is

controlled via the control signal u ∈ Rn:

ṗi = ui , i = 1, ..., N . (3.11)

28 3 Control

If the desired relative displacements p∗i − p∗j between agent i and j are given,
and the objective of the agents is to satisfy the constraint

pi − pj = p∗i − p
∗
j , (3.12)

then the formation control can be solved by implementing the control law [17]

ui = kp
∑
j∈Ni

(pj − pi − (p∗j − p
∗
i)). (3.13)

Implementation

The desired formation is defined by specifying the displacement of each drone to
an origin, as illustrated in Figure 3.5. The origin can be chosen arbitrarily as the
coordinates are only used for calculating the relative displacement between two
drones.

Figure 3.5: The desired formation is defined by specifying the displacement
of each drone to an origin.

The leader of the formation will guide the formation using an external control
signal uref , and the followers will use the displacement control law in (3.13) with
feed-forward of the leader control, resulting in the total control

ui = kp
∑
j∈Ni

(pj − pi − (p∗j − p
∗
i)) + uref . (3.14)

The feed-forward term keeps the movement of the followers synchronized
with the leader, and the displacement control will minimize the formation dis-
placement errors that occur due to initial offsets and disturbances.

4
Safety

Given a nominal control signal, the last step before sending commands to the
drones is to ensure the safety of the control signal. This is done by implement-
ing a control barrier function (CBF). As stated previously, two different control
signals were used. The drones were either controlled by velocity commands or
by attitude commands. For the latter case an extension to CBF were used called
exponential control barrier function (ECBF).

4.1 Control Barrier Function (CBF)

This section will begin by introducing the general definition of a control barrier
function and secondly show the implementation that was used in this work.

4.1.1 Definition

Control barrier function are used to guarantee safety for a system. The general
idea is to create a safe set of states and use CBF to ensure that the set is forward
invariant. That is, if the system starts in the safe set, it will always stay within the
safe set. To give a more precise definition of a CBF, consider a general dynamical
system on control affine form

ẋ = f (x) + g(x)u, (4.1)

where the state x ∈ R
n and u ∈ U , f and g are locally Lipschitz continous. A

locally Lipschitz continous function is a more strict form of a continuous func-
tion which also is limited to how fast it can change. Now, consider a continuously
differentiable safety function h : Rn → R : defining a safe set S as [21]

S = {x ∈ Rn : h(x) ≥ 0}. (4.2)

29

30 4 Safety

There is one more definition before a control barrier function can be formally
defined. That is a continuous function κ : (−b, a) → R for some a, b > 0. This is
called an extended class-K function if it is strictly increasing and κ(0) = 0.

Definition 4.1. h is a CBF if there exists a extended class-K function κ such that

supu∈U ḣ + κ(h) ≥ 0

This will ensure forward invariance of the set S in (4.2) [26]. The derivative
of h is given by [8][26]

ḣ =
dh
dt

=
∂h
∂x

ẋ =
∂h
∂x

(f (x) + g(x)u). (4.3)

4.1.2 Implementation

A control barrier function can be used when using velocity commands, since the
derivative of the h-function is dependent on the control signal, see (4.5). The
model of the dynamics of the system was a simple single-integrator model which
can be seen in (2.1).

The safe set S was set to be all states where the distance to neighbouring
drones was greater or equal to a safety distance Ds in the x-y plane. A CBF was
implemented to make sure that if a drone starts in the safe set, i.e., if the distance
to neighbouring drones is greater or equal to the safety distance Ds, the drone
will always remain in the safe set. A CBF is zero at the boundary of the set S and
greater than zero for all safe states. Therefore an intuitive h is

h = (x − xn)2 + (y − yn)2 − D2
s , (4.4)

where x, y is the global position coordinates of a drone and xn, yn is the global
position coordinates of a neighbouring drone. This function will be equal to zero
when the drones are exactly at the safety distance Ds from each other and greater
than zero when the distance is greater than Ds. From (4.3) the time dependent
derivative of h is:

ḣ = 2(x − xn)vx + 2(y − yn)vy , (4.5)

where vx and vy are the control signals. The extended class-K function κ(h) was
set as:

κ(h) = αh, (4.6)

which follows the definition of an extended class-K function stated above. A
lower value of α gives a more strict control signal to the point that a value of
zero means that any negative derivative of the h-function is forbidden. With α
set to zero the CBF does not allow the drones to move toward each other, which
obviously affects the performance greatly. The value of α was chosen considering
both safety and performance.

4.2 Exponential Control Barrier Function (ECBF) 31

To implement the CBF, a quadratic programming problem was formulated
with the inequality constraints from Definition 4.1. The penalty function was to
minimize the quadratic error between a nominal control signal unom and the con-
trol signal u. The nominal control signal was based on algorithms for formation
control and guidance/path planning, described in Chapter 5. The quadratic pro-
gramming problem was formulated as

uc = argmin
u

(unom − u)2

subject to: ḣ + αh ≥ 0.

4.2 Exponential Control Barrier Function (ECBF)

This section introduces the general definition of an exponential control barrier
function and shows the implementation that was used in this work.

4.2.1 Definition

The definition of ECBF is similar to the definition of CBFs. However, CBFs can
not be used when ḣ does not depend on the control signal. An ECBF can be used
when the second derivative is dependent on the control signal. Consider the same
dynamical system, the same safe set S and the same function h as for the CBF.

Definition 4.2. The function h is a ECBF if there exists a K ∈ R2 that places the

poles of ḧ + KT

[
h
ḣ

]
= 0 and there exists a control signal u ∈ U that satisfies the

inequality
ḧ(t, x) + K[h(t, x) ḣ(t, x)]T ≥ 0, x ∈ S. (4.7)

This ensures forward invariance of set S which means that the system will be safe
[28].

4.2.2 Implementation

An ECBF was implemented when the drones was controlled by LQR. The con-
trol signal from the state feedback is attitude commands, which correlates to the
acceleration of the drone. Since the derivative of h does not depend on the con-
trol signal/acceleration, an ECBF was implemented. The implementation of an
ECBF is approximately the same as for CBF. The same h as in (4.4) and the same
method to construct the problem as a quadratic programming problem were used.
The differences are that another model of the system is used and that a second
derivative of h needs to be calculated. The state-space model from (2.2) was used
with minor changes. The h-function depends on the position of the drones which
means that the derivative will depend on the velocity of the drones and the sec-
ond derivative will depend on the acceleration of the drones. In other words

32 4 Safety

using an ECBF with this h-function requires the acceleration of the drones to be
dependent on the control signal, which is not the case in the model in (2.2). A
simplified model based on (2.2) was therefore created:

ẋ1
ẋ2
ẋ3
ẋ4

 =


0 0 1 0
0 0 0 1
0 0 −λ 0
0 0 0 −λ

 x +


0 0
0 0
g 0
0 −g

 u, x =


Px
Py
Vx
Vy

 , u =
[
φcmd
θcmd

]
. (4.8)

This model assumes that the commanded pitch and roll angles are the actual
attitude for the drone. This assumption neglects the dynamics from commanded
attitude to actual attitude which can be seen in the step response in Figure 2.7.
This is a necessary assumption to make the second derivative of the h-function
depend on the control signal. The derivative of the position is still assumed to be
the measured velocity, which means that the derivative of h is the same as from
(4.5). The second time derivative of h is:

ḧ = 2((x − xn)(−λvx + gφcmd) + (y − yn)(−λvy − gθcmd) + v2
x + v2

y). (4.9)

The inequality constraints in the QP-problem is given by (4.7) with the first and
second derivative of the h-function given above.

5
Guidance

This chapter describes the theory and implementations for collision avoidance
and trajectory planning, which lies at the core for UAV collaborative tasks. In the
civil aviation field, this is referred to as Traffic Alert and Collision Avoidance Sys-
tems (TCAS). In recent years, there has been research on collision avoidance on
UAVs, such as Artificial Potential Field algorithm, ant colony algorithm, genetic
algorithm, geometric optimization, colored petri net, Markov Decision Progress
and the combination and optimization of these algorithms [23]. Two different
solutions to the guidance problem have been explored in this thesis: Artificial
Potential Field (APF) and an optimal control formulation.

5.1 Artificial potential fields

Artificial potential field algorithms can be used for path planning where the
movement of each agent is determined by two artificial forces. The attractive
force pulls the agent towards the goal, and the repulsive force pushes the agent
away from obstacles in the environment, resulting in the total force

FAP F = Fatt + Frep . (5.1)

5.1.1 Theory

The attractive potential from the goal and the repulsive potential from the obsta-
cles introduced by Khatib [14] is given by

U att =
1
2
ξ((x − xg)2 + (y − yg)2), (5.2)

where x, y and xg , yg are the x- and y-coordinate of the object and the goal, re-
spectively, and ξ is the potential attraction constant. The repulsive potential

33

34 5 Guidance

from each obstacle is

U rep =

1
2kr (

1
ρO
− 1

rO
)2 if ρO ≤ rO

0 if ρO > rO
(5.3)

where kr is the potential repulsive constant, rO is the distance from the radius of
the object to the maximum radius of influence from the repulsion force, and ρO
is the distance between the agent and the obstacle, shown in Figure 5.1.

Figure 5.1: The artificial potential force field. The arrows and colors repre-
sent the direction and magnitude of the resultant force vector exerted by the
field for a given point in the horizontal plane. The force vector is given by
(5.7), (5.8), (5.9) and (5.10).

The force in each point in the potential field is given by the negative gradient
of the potential [13]. This yields

F
rep
O = −∇Urep(x, y) (5.4)

with components in x and y that are given by

F
rep
x (x, y) =

∂Urep(x, y)

∂x
, (5.5)

F
rep
y (x, y) =

∂Urep(x, y)

∂y
. (5.6)

Inserting (5.3) into (5.5) and (5.6) gives the additional force from each obstacle

F
rep
x =

−kr (1 −
ρO
rO

) xor
ρ3
O

if ρO ≤ rO

0 if ρO > rO
(5.7)

5.2 Optimal motion planning 35

F
rep
y =

−kr (1 −
ρO
rO

) yor
ρ3
O

if ρO ≤ rO

0 if ρO > rO
. (5.8)

The same calculation can be made for the attraction force which gives the addi-
tional force from the goal as

Fatt
x = ξ(x − xg) (5.9)

Fatt
y = ξ(y − yg). (5.10)

The implementation of APFs, according to [13] makes the drone move in the
same direction as the resultant force vector. In other words, the resultant force
vector in the potential field is used as the desired velocity for each drone.

v = Fatt +
n∑

j=1

F
rep
j (5.11)

where Fatt is the attractive force and F
rep
j is the repulsive force from each obsta-

cle.

5.2 Optimal motion planning

The meaning of the term optimal motion planning can vary depending on appli-
cation and field of subject [15]. In this thesis the term is used to describe the
problem of finding a feasible and optimal trajectory for one or several swarms of
drones with a known initial and final state. A feasible solution means that the
trajectory does not violate the system dynamics and avoids collision with obsta-
cles. For each time step, each drone also needs to be in a safe state. A state is safe
if the distance to every other drone is greater than or equal to a specified safety
distance.

5.2.1 Problem formulation

First consider a linear dynamic model of the system

xk+1 = f (xk , uk) = Fxk + Guk , (5.12)

where xk ∈ R
n and uk ∈ R

m is the state and control input respectively. These are
subject to constraints

xk ∈ X ⊆ R
n, uk ∈ U ⊆ R

m. (5.13)

The control signal will usually be bounded by a maximum and minimum value.
The constraints on the states are usually defined by the system dynamics, ini-
tial/final constraints and collision avoidance with either static or dynamic obsta-
cles. The states which are occupied by obstacles can be defined as

Xobst(k) = Xs
obst ∪ Xd

obst(k) ⊂ R
n, (5.14)

36 5 Guidance

where Xs
obst are states occupied by static obstacles and Xd

obst are states occupied
by dynamic obstacles. From this definition the free state space can be written as

Xf ree(k) = X \ Xobst(k). (5.15)

From these definitions, the problem formulation can be stated as an optimal con-
trol problem, i.e., compute a sequence of feasible states and control inputs {xk}L−1

k=0,
{uk}L−1

k=0 that moves the system from an initial state xi , to a final state xf , which
minimizes the performance measure Jl [5]:

min
xk

L−1
k=0,uk

L−1
k=0

Jl

s.t. x0 = xi
xL = xf

xk+1 = f (xk , uk), k = 0, ..., L − 1

xk ∈ Xf ree(k), k = 0, ..., L − 1

uk ∈ U, k = 0, ...L − 1

(5.16)

Formulating the motion planning problem as an optimal control problem
makes it easy to put constraints on the state and control input as well as switching
dynamical model and performance measure [5]. There exists several techniques
to solve this optimal control problem, which have been implemented in several
softwares. The details of the solution techniques will not be outlined in this the-
sis. Instead, the next section will discuss how the motion planning problem was
solved using existing software.

5.2.2 Implementation

To solve an optimal control problem in the form (5.16), the software library
CasADi was used with the IPOPT solver. In CasADi an optimal control prob-
lem can be formulated and saved as a function to minimize the computational
time for each time the problem is solved. Input to the function was the initial
and final state, and output was state and control signals for each trajectory. The
outputted states were used as reference to the state feedback for each drone.

The dynamical constraints in (5.16) are given by (5.12). The same F and G ma-
trices as in (3.10) were used which is the discretized form of the state space model
from (2.2). The constraints for the state input are defined by Xf ree(k), which is
the free state space where the drones are allowed to go. The drones are restricted
by the fixed constraints of the room as well as constraints regarding collision
avoidance. i.e., the drones are not allowed to fly into walls and to be closer than
0.5 meters from each other. The constraints on the control input are defined by
U which is a lower and upper bound of the pitch and roll angles for each drone.
This is necessary to avoid overly aggressive or even unstable maneuvers for the
drones. The initial and final state are defined before each flight as the current

5.2 Optimal motion planning 37

position as well as the desired final position of each drone.

Next consider the cost function Jl that defines the performance measurement
of the trajectory. This was a crossroad for two different implementations of the
motion planning problem. However, one thing in common for both implemen-
tations was the inclusion of a cost for formation error. This meant that the com-
puted trajectories kept the formation error to a minimum. Apart from the forma-
tion error, a cost for the final time is included. This yields the cost function:

Jl = WTf +
L∑

j=1

N∑
d=1

(Pleader − Pd + Dd)2, (5.17)

where W is a weight, Tf is the final time, L is number of control steps in the tra-
jectory, N is number of drones, Pleader is the position of leader, Pd is the position
of a drone and Dd is the desired displacement of drone d.

While this worked well, two drawbacks were found using this method. The
first drawback is that the sample time for the computed trajectory is dependent
on the number of control steps, L, as well as the final time Tf . If the state output
from the trajectory should be used as state reference to the drones, it is impor-
tant that the sample time for the trajectory is the same as the sample time for
updating commands to the drones. This could, however, be fixed by resampling
the outputted state and control signal to the correct sample time. Another draw-
back by having the final time as a variable was that the computational time was
quite long (up to several seconds). If the trajectories were to be updated in real
time the computational time had to be lower and therefore another motion plan-
ning problem was formulated where the final time as well as the sample time
was fixed. In this case the cost function was formulated to minimize the distance
to the final state in each time step. With a fixed sample time the computational
time was lowered significantly, approximately by a factor of 10. This gave the
cost function:

Jl =
L∑

j=1

(W (Pleader − Pgoal)2 +
N∑
d=1

(Pleader − Pd + Dd)2) (5.18)

with the same variables as (5.17) and Pgoal is the position of the goal state.

6
Solutions to problem formulation

This chapter provides four different solutions that incorporate the algorithms
and implementations stated in previous chapters to solve the scenario outlined in
Chapter 1. The scenario consists of two drone swarms that will take on different
missions executed in the same environment, where the drone swarms will be
on a direct collision course with each other. This scenario is chosen because of
the simplicity and the inclusion of the fundamental problems in safe collision
avoidance control and motion planning of drone swarms.

39

40 6 Solutions to problem formulation

6.1 APF+Leader-follower+PID+CBF

Figure 6.1: APF is used for collision free guidance. The formation is main-
tained through leader-follower (L-F) control. Lastly the control barrier func-
tion (CBF) guarantees safe control.

The first solution uses the algorithms from leader-follower control, described
in Section 3.4, to keep formation and the algorithms from APF, described in Sec-
tion 5.1, for collision avoidance. This gives a nominal control signal describing
the desired velocity for each drone. A control barrier function makes sure that
the control signal is safe, i.e., guarantees that the drones will not collide. In each
formation there is one leader and the rest are followers. The leader is the one con-
trolling where the formation will go and the followers try to keep their relative
position to the leader. This is the reason only the followers have a block for leader
follower control in Figure 6.1. Important to note is that the followers do not have
an attraction contribution to their resulting desired velocity from the APF. How-
ever, the desired velocity from the leader-follower control can be seen as that
attraction contribution. The velocity contribution from leader follower control
and APF are added before sending that nominal control signal to the block for
control barrier function to guarantee safety. In Figure 6.1 an illustration of the
solution is presented.

A drawback by using velocity commands as control signal in combination
with a control barrier function is during deadlocks when two drones are directly
in front of each other. The closest control signal to the nominal control signal
that is safe will be zero. However if the drone keeps receiving zeros as the veloc-
ity command it will eventually start to drift and potentially crash into another
drone. This was solved by controlling the position of the drone when the control

6.2 APF+Leader-follower+LQR+ECBF 41

signal, desired velocity, was zero. Whenever the control signal was greater than
zero, the drone was once again controlled by the desired velocity.

Another important aspect is how to solve deadlocks. Deadlocks occur when
another drone is blocking the way and the algorithms do not find a way forward
past that drone. The simple way of dealing with this problem is to identify this
scenario and perturb the nominal control signal. With a sufficient amount of
perturbation, the drones will be able to break the deadlock.

6.2 APF+Leader-follower+LQR+ECBF

Figure 6.2: APF is used for collision free guidance. The formation is main-
tained through leader-follower (L-F) control. An exponential control barrier
function (ECBF) guarantees safe control and, lastly, an LQR controller is im-
plemented with attitude as control signals.

The second solution, shown in Figure 6.2, is the same as the first except for a
different control scheme. In this case an LQR controller, described in Section 3.3,
is implemented, which outputs attitude commands, and a PID controller is used
to control thrust to the drone. As state feedback is used, the output from the
leader-follower control and APF are now used as the state reference. The output
of those algorithms is velocity which means that the position reference is given
by integrating the velocity reference. Another difference is that ECBF is used
instead of CBF since the control signal now does not affect the first derivative of
the h-function. This is explained in more detail in Chapter 4.

42 6 Solutions to problem formulation

6.3 Open-loop motion planning+LQR

Figure 6.3: Open-loop motion planning with a LQR controller for trajectory
following.

In the third solution a trajectory is calculated prior to take-off, as described in
Section 5.2, for all drones based on their starting position. The trajectory is op-
timized for safety, time and formation control, which means that the algorithms
from formation control, collision avoidance and safety are not included. The tra-
jectory given by solving the motion planning problem (5.16) contains the desired
states in each time step which are used as state reference to the state feedback.
After take-off the drones tries to get as close to their starting position as possible
in the x-y plane before following the trajectory to minimize any initial error. Ini-
tially, an ECBF was intended to be a part of this solution however since the ECBF
was interfering with the trajectory following it had to be left out. The safety dis-
tance to other drones is still implemented as constraints in the motion planning
problem. However this solution is not particularly robust with respect to changes
in the environment and disturbances. Figure 6.3 provides an illustration of the
solution.

6.4 Closed loop Motion planning+LQR 43

6.4 Closed loop Motion planning+LQR

Figure 6.4: Closed-loop motion planning with a LQR controller for trajec-
tory following.

Finally, the fourth solution also uses trajectories solving the motion planning
problem in (5.16). However, the trajectories are now updated in real time during
the flight. The updated trajectory will be adjusted to the current position of the
drone, which is beneficial in case a drone gets off course from the initial trajectory.
To run several processes on the computer, one that controls the drones and one
which updates the trajectories, ROS is used. One of the major features in ROS
is to run several processes at the same time and communicate between them.
Because of the computational time of calculating optimal trajectories, when a
new trajectory has been found, the drones most likely will not be at the initial
point of the trajectory. To contend with that problem, whenever the trajectory is
updated, the point on the trajectory closest to the drone is used as starting point.
Figure 6.4 provides an illustration of the solution.

7
Results

In this chapter presents the results from the implementation of the solutions from
Chapter 6 on the hardware presented in Chapter 2. Five identical tests for each
solution have been performed. The tests were done with four drones in two for-
mations and the mission for each leader was to go to the initial position of the
other leader, as illustrated in Figure 7.1.

Figure 7.1: For each solution presented in Chapter 6, the tests were done
with four drones in two formations, where the mission for each leader was
to go to the initial position of the other leader.

45

46 7 Results

To reduce the number of figures, one or two typical tests from each solution
will be presented in detail with plots for paths, formation error and value of con-
trol barrier function. The other test results are presented in tables. The chapter
ends with a comparison of the solutions based on their performance.

The performance of each test is based on five metrics relating to the desired
performance outlined in the problem formulation. The five metrics are:

• Time to finish the mission.

• Distance traveled

• Smoothness of trajectory

• Average formation error

• Unsafe time

Distance traveled is the average distance traveled by one drone. Smoothness of
trajectory is measured as the average angle difference between two adjacent vec-
tors of the trajectory. Given two adjacent vectors u and v the angle difference
is

∆angle = | arctan(
uy
ux

) − arctan(
vy
vx

)|. (7.1)

u is the position vector from point i to point i + 1 on the trajectory and v is the po-
sition vector from point i + 1 to point i + 2 on the trajectory. A completely straight
and smooth trajectory would correspond to ∆angle = 0. Smoothness of the tra-
jectory is defined as the average ∆angle taken over the entire trajectory. This
measurement is inspired from [12] where a similar measurement for smoothness
is used. The average formation error is the average leader-follower displacement
error. Unsafe time is the total time that the distance from one drone to other
drones is less than the safety distance.

7.1 APF+Leader-follower+PID+CBF

The first solution uses APF for guidance, leader follower control to keep forma-
tion and CBF for safety, see details in Section 6.1. In the next section, a typical
test run is presented more thoroughly to give the reader a good intuition of how
the drones behave with this implementation, after which the statistics of the five
test runs are presented.

7.1.1 Detailed presentation of a typical test run

The tests show similar behaviour and metrics, and Test 3 is a good representation
of the most typical behaviour out of the five tests. The resulting path of the
drones are shown in Figure 7.2; Figure 7.3 shows the safety constraint of the CBF,
which should always be positive to satisfy the safety distance between two drones;
Figure 7.4 shows the formation error.

7.1 APF+Leader-follower+PID+CBF 47

Figure 7.2: Drone paths for Test 3. The tests show similar behaviour and
metrics, and Test 3 is a good representation of the most typical behaviour
out of the five tests. The yellow drone is the leader of formation yellow/red,
and the blue drone is the leader of formation blue/cyan. The mission is
for each leader to go to the initial position of the other leader. Solution is
built on the single integrator model and APF, CBF, leader follower control
for maintaining formation and avoiding collisions.

48 7 Results

0 20 40

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 1

h to 2

h to 3

h to 4

0 20 40

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 2

h to 1

h to 3

h to 4

0 20 40

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 3

h to 1

h to 2

h to 4

0 20 40

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 4

h to 1

h to 2

h to 3

Figure 7.3: Value of h-function, defined in (4.4), from Test 3. Theoretically,
the CBF guarantees that the h-function is always positive. "h to x" means
value of h-function to drone x.

0 5 10 15 20 25 30 35

Time [s]

0

0.2

0.4

0.6

0.8

1

E
rr

o
r

[m
]

Formation error for formation: 1

Error to follower 1

0 5 10 15 20 25 30 35

Time [s]

0

0.5

1

1.5

E
rr

o
r

[m
]

Formation error for formation: 2

Error to follower 1

Figure 7.4: Value of formation error from Test 3. The formation error is the
leader-follower displacement error.

7.1 APF+Leader-follower+PID+CBF 49

7.1.2 Statistics from all test runs

In this section, tables are presented of the the performance metrics on all test
runs and a total average score.

Table 7.1: Time to finish the mission.

Time [s]
Test 1 Test 2 Test 3 Test 4 Test 5 Average
26.6 23.3 26.6 36.3 26.7 27.9

Table 7.2: Average distance traveled for one drone.

Distance traveled [m]
Test 1 Test 2 Test 3 Test 4 Test 5 Average
4.13 3.90 3.81 5.40 4.43 4.33

Table 7.3: Smoothness of the trajectory is the average ∆angle for the entire
trajectory.

Smoothness [°]
Test 1 Test 2 Test 3 Test 4 Test 5 Average
44.8 38.3 41.6 38.4 40.9 40.8

Table 7.4: Unsafe time is the total time that the distance between two drones
is less than the safety distance.

Unsafe time [s]
Drone Test 1 Test 2 Test 3 Test 4 Test 5

1 0.0 0.0 0.533 0.633 0.0
2 0.0 0.0 0.433 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.1 0.633 0.0

Average 0.0 0.0 0.267 0.317 0.0 0.117

Table 7.5: Average formation error is the average leader-follower displace-
ment error.

Average formation error [m]
Form
ation

Test 1 Test 2 Test 3 Test 4 Test 5

1 0.357 0.345 0.365 0.418 0.368
2 0.466 0.495 0.566 0.724 0.471
Average 0.412 0.42 0.466 0.571 0.42 0.458

50 7 Results

7.2 APF+Leader-follower+LQR+ECBF

The second solution uses APF for guidance, leader follower control to keep for-
mation, ECBF for safety and a LQR controller to send attitude commands to the
Crazyflie, see details in Section 6.2. Test number 2 of 5 will be presented more
thoroughly.

7.2.1 Detailed presentation of a typical test run

The tests show similar behaviour and metrics, and Test 2 is a good representation
of the most typical behaviour out of the five tests. The resulting path of the
drones are shown in Figure 7.5; Figure 7.6 shows the safety constraint of the CBF,
which should always be positive to satisfy the safety distance between two drones;
Figure 7.7 shows the formation error.

Figure 7.5: Drone paths for Test 2. The tests show similar behaviour and
metrics, and Test 2 is a good representation of the most typical behaviour out
of the five tests. The yellow drone is the leader of formation yellow/red, and
the blue drone is the leader of formation blue/cyan. The mission is for each
leader to go to the initial position of the other leader. Solution is built on the
quadcopter model and APF, ECBF, leader follower control for maintaining
formation and avoiding collisions.

7.2 APF+Leader-follower+LQR+ECBF 51

0 10 20

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 1

h to 2

h to 3

h to 4

0 10 20

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 2

h to 1

h to 3

h to 4

0 10 20

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 3

h to 1

h to 2

h to 4

0 10 20

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 4

h to 1

h to 2

h to 3

Figure 7.6: Value of h-function, defined in (4.4), from Test 2. Theoretically,
the ECBF guarantees that the h-function is always positive. "h to x" means
value of h-function to drone x.

2 4 6 8 10 12 14 16 18 20

Time [s]

0

0.2

0.4

0.6

0.8

E
rr

o
r

[m
]

Formation error for formation: 1

Error to follower 1

2 4 6 8 10 12 14 16 18 20

Time [s]

0

0.5

1

1.5

E
rr

o
r

[m
]

Formation error for formation: 2

Error to follower 1

Figure 7.7: Value of formation error from Test 2. The formation error is the
leader-follower displacement error.

52 7 Results

7.2.2 Statistics from all test runs

Table 7.6: Time to finish the mission.

Time [s]
Test 1 Test 2 Test 3 Test 4 Test 5 Average
16.0 15.6 16.3 20.6 19.0 17.5

Table 7.7: Average distance traveled for one drone.

Distance traveled [m]
Test 1 Test 2 Test 3 Test 4 Test 5 Average
4.19 3.99 4.09 5.43 5.01 4.54

Table 7.8: The smoothness of the trajectory is the average ∆angle for the
entire trajectory.

Smoothness [°]
Test 1 Test 2 Test 3 Test 4 Test 5 Average
34.7 38.5 28.8 35.0 34.5 34.3

Table 7.9: Unsafe time is the total time that the distance between two drones
is less than the safety distance.

Unsafe time
Drone Test 1 Test 2 Test 3 Test 4 Test 5

1 0.067 0.0 0.367 1.4 0.833
2 0.067 0.0 0.333 1.067 0.2
3 0.0 0.0 0.0 0.233 0.133
4 0.0 0.0 0.033 1.3 0.9

Average 0.034 0.0 0.183 1.0 0.517 0.347

Table 7.10: Average formation error. The formation error is the leader-
follower displacement error.

Formation error [m]
Form
ation

Test 1 Test 2 Test 3 Test 4 Test 5

1 0.217 0.186 0.223 0.533 0.370
2 0.549 0.559 0.493 0.462 0.519
Average 0.383 0.372 0.358 0.498 0.444 0.411

7.3 Open-loop motion planning + LQR 53

7.3 Open-loop motion planning + LQR

The third solution solves the motion planning problem from (5.16) which gives
an optimal trajectory for the mission. The trajectory is followed using the LQR
controller, see details in Section 6.3. Test number 1 will be presented in detail.

7.3.1 Detailed presentation of a typical test run

The tests show similar behaviour and metrics, and Test 3 is a good representation
of the most typical behaviour out of the five tests. The resulting paths of the
drones are shown in Figure 7.8; Figure 7.9 shows the safety constraint of the CBF,
which should always be positive to satisfy the safety distance between two drones;
Figure 7.10 shows the formation error.

Figure 7.8: Drone paths for Test 1. The tests show similar behaviour and
metrics, and Test 1 is a good representation of the most typical behaviour
out of the five tests. The yellow drone is the leader of formation yellow/red,
and the blue drone is the leader of formation blue/cyan. The mission is for
each leader to go to the initial position of the other leader. Solution is built
on the quadcopter model and motion planning for maintaining formation
and avoiding collisions.

54 7 Results

36 38 40

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 1

h to 2

h to 3

h to 4

36 38 40

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 2

h to 1

h to 3

h to 4

36 38 40

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 3

h to 1

h to 2

h to 4

36 38 40

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 4

h to 1

h to 2

h to 3

Figure 7.9: Value of h-function, defined in (4.4), from Test 1. For Open-loop
motion planning+LQR, the CBF algorithm is not implemented instead the
safety distance is defined as a constraint in the motion planning problem. "h
to x" means value of h-function to drone x.

35 36 37 38 39 40 41

Time [s]

0

0.2

0.4

0.6

0.8

E
rr

o
r

[m
]

Formation error for formation: 1

Error to follower 1

35 36 37 38 39 40 41

Time [s]

0

0.2

0.4

0.6

E
rr

o
r

[m
]

Formation error for formation: 2

Error to follower 1

Figure 7.10: Value of formation error from Test 1. The formation error is the
leader-follower displacement error.

7.3 Open-loop motion planning + LQR 55

7.3.2 Statistics from all test runs

Table 7.11: Time to finish the mission.

Time [s]
Test 1 Test 2 Test 3 Test 4 Test 5 Average

5.6 5.6 5.6 5.6 5.6 5.6

Table 7.12: Average distance traveled for one drone.

Distance traveled [m]
Test 1 Test 2 Test 3 Test 4 Test 5 Average
2.69 2.63 2.51 2.60 2.66 2.62

Table 7.13: The smoothness of the trajectory is the average ∆angle for the
entire trajectory.

Smoothness [°]
Test 1 Test 2 Test 3 Test 4 Test 5 Average
14.5 13.2 13.8 15.4 11.6 13.7

Table 7.14: Unsafe time is the total time that the distance between two
drones is less than the safety distance.

Unsafe time [s]
Drone Test 1 Test 2 Test 3 Test 4 Test 5

1 0.0 0.0 0.0 0.0 0.167
2 0.0 0.0 0.0 0.0 0.167
3 0.0 0.0 0.6 0.0 1.1
4 0.0 0.0 0.6 0.0 1.1

Average 0.0 0.0 0.3 0.0 0.63 0.186

Table 7.15: Average formation error. The formation error is the leader-
follower displacement error.

Formation error [m]
Form-
ation

Test 1 Test 2 Test 3 Test 4 Test 5

1 0.198 0.182 0.158 0.175 0.213
2 0.155 0.135 0.212 0.148 0.221
Average 0.177 0.159 0.185 0.162 0.217 0.18

56 7 Results

7.4 Closed-loop motion planning+LQR

The fourth solution is similar to the prior solution however this time the trajec-
tories are updated in real time, see details in Section 6.4. Here, two typical be-
haviours are observed. The first behaviour is that the formations go around each
other, and the second behaviour is that the formations take a more direct path,
utilizing the space between two drones. Test number 1 and 4 are presented more
thoroughly to showcase two different paths the drones chose to finish their mis-
sion.

7.4.1 Detailed presentation of two typical test runs

The tests show similar behaviour and metrics, and Test 3 is a good representa-
tion of the most typical behaviour out of the five tests. The resulting path of
the drones are shown in Figures 7.11 and 7.12; Figures 7.13 and 7.14 show the
safety constraint of the CBF, which should always be positive to satisfy the safety
distance between two drones; Figures 7.15 and 7.16 show the formation error.

Figure 7.11: Trajectory for Test 1. Out of the five tests, two typical be-
haviours are observed. The first behaviour is that the formations go around
each other, shown here for Test 1. The yellow drone is the leader of forma-
tion yellow/red, and the blue drone is the leader of formation blue/cyan.
The mission is for each leader to go to the initial position of the other leader.
The solution is built on the quadcopter model and real-time motion plan-
ning for maintaining formation and avoiding collisions.

7.4 Closed-loop motion planning+LQR 57

Figure 7.12: Out of the five tests, two typical behaviours are observed. The
second behaviour is that the formations take a more direct path, utilizing the
space between two drones, shown here for Test 4.

58 7 Results

20 22 24 26

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 1

h to 2

h to 3

h to 4

20 22 24 26

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 2

h to 1

h to 3

h to 4

20 22 24 26

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 3

h to 1

h to 2

h to 4

20 22 24 26

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 4

h to 1

h to 2

h to 3

Figure 7.13: Value of h-function, defined in (4.4), from Test 1. For Closed-
loop motion planning+LQR, the CBF algorithm is not implemented instead
the safety distance is defined as a constraint in the motion planning problem.
"h to x" means value of h-function to drone x.

14 16 18 20

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 1

h to 2

h to 3

h to 4

14 16 18 20

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 2

h to 1

h to 3

h to 4

14 16 18 20

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 3

h to 1

h to 2

h to 4

14 16 18 20

Time [s]

0

1

2

3

4

5

V
a
lu

e
 o

f
h
-f

u
n
c
ti
o
n
 [
m

2
] CBF for drone 4

h to 1

h to 2

h to 3

Figure 7.14: Value of h-function, defined in (4.4), from Test 4. For Closed-
loop motion planning+LQR, the CBF algorithm is not implemented instead
the safety distance is defined as a constraint in the motion planning problem.
"h to x" means value of h-function to drone x.

7.4 Closed-loop motion planning+LQR 59

19 20 21 22 23 24 25 26 27 28

Time [s]

0

0.2

0.4

0.6

E
rr

o
r

[m
]

Formation error for formation: 1

Error to follower 1

19 20 21 22 23 24 25 26 27 28

Time [s]

0

0.2

0.4

0.6

0.8

E
rr

o
r

[m
]

Formation error for formation: 2

Error to follower 1

Figure 7.15: Value of formation error from Test 1. The formation error is the
leader-follower displacement error.

12 13 14 15 16 17 18 19 20 21

Time [s]

0

0.2

0.4

0.6

0.8

E
rr

o
r

[m
]

Formation error for formation: 1

Error to follower 1

12 13 14 15 16 17 18 19 20 21

Time [s]

0

0.2

0.4

0.6

E
rr

o
r

[m
]

Formation error for formation: 2

Error to follower 1

Figure 7.16: Value of formation error from Test 4. The formation error is the
leader-follower displacement error.

60 7 Results

7.4.2 Statistics from all test runs

Table 7.16: Time to finish the mission.

Time [s]
Test 1 Test 2 Test 3 Test 4 Test 5 Average

5.3 6.0 5.3 5.5 6.0 5.6

Table 7.17: Average distance traveled for one drone.

Distance traveled [m]
Test 1 Test 2 Test 3 Test 4 Test 5 Average
2.47 2.69 2.56 2.51 2.75 2.60

Table 7.18: The smoothness of the trajectory is the average ∆angle for the
entire trajectory.

Smoothness [°]
Test 1 Test 2 Test 3 Test 4 Test 5 Average
29.5 27.6 23.1 26.4 19.8 25.3

Table 7.19: Unsafe time is the total time that the distance between two
drones is less than the safety distance.

Unsafe time [s]
Drone Test 1 Test 2 Test 3 Test 4 Test 5

1 0.0 0.0 0.0 0.1 1.0
2 0.0 0.0 0.333 0.4 0.3
3 0.033 2.067 0.0 0.467 0.167
4 0.033 2.067 0.333 0.4 0.7

Average 0.017 1.033 0.167 0.342 0.542 0.42

Table 7.20: Average formation error. The formation error is the leader-
follower displacement error.

Formation error [m]
Form-
ation

Test 1 Test 2 Test 3 Test 4 Test 5

1 0.182 0.213 0.158 0.213 0.207
2 0.215 0.272 0.256 0.123 0.288
Average 0.199 0.242 0.207 0.168 0.248 0.213

7.5 Summary of results 61

7.5 Summary of results

The statistics from all test runs are presented in Table 7.21.
APF+Leader-follower+PID+CBF is the slowest to finish the mission with a high
formation error and poor smoothness, however it also has the least amount of
unsafe time for each drone. APF+Leader-follower+LQR+ECBF is similar to the
first solution although noticeable differences is the faster time to finish the mis-
sion and more unsafe time. Open-loop Motion planning has the best result in all
aspects except the unsafe time where only the first solution surpasses. Closed-
loop Motion planning performs similarly to the third solution, however it has an
inferior performance in regards to smoothness and unsafe time. The results are
discussed in Chapter 8.

Table 7.21: Summary of results for all solutions. The average value of the 5
tests are presented.

Summary of results
- Solution 1 Solution 2 Solution 3 Solution 4

Time [s] 27.9 17.5 5.6 5.6
Distance [m] 4.33 4.54 2.62 2.60

Smoothness [°] 40.8 34.3 13.7 25.3
Formation error [m] 0.458 0.411 0.18 0.213

Unsafe time [s] 0.117 0.347 0.186 0.42

8
Discussion

In this chapter the results from Chapter 7, limiting factors to the performance of
the system and potential improvements will be discussed.

8.1 Results

The only difference between the first and second solution is the controller which
is illustrated in Figures 2.3 and 2.4. A comparison between these two solutions
is therefore equivalent to evaluating the two different control architectures. A
noticeable difference is the much faster time to finish the mission using the LQR
controller which indicates a more aggressive controller compared to the default
controller on the Crazyflie firmware. From the time and trajectory it is clear that
a less aggressive controller results in more time to solve deadlocks. A deadlock
occurs when two drones face each other with the desired velocity directed to-
wards each other. The control barrier function mitigate collision, which results
in drones getting stuck on their path to the goal. During deadlocks the impact
of control barrier function is high, which leads to small reference signals. In this
case an aggressive controller is more likely to give a control signal with sufficient
magnitude to resolve deadlocks. Since formation-keeping is neglected during
deadlocks, the formation error is also slightly higher using a PID controller. In-
terestingly, with a more aggressive controller the trajectories are smoother. This
is probably caused by the indecisiveness during deadlocks causing the desired
velocity to change direction many times. A less aggressive controller is however
better with regards to safety, where the first solution outperforms all other solu-
tions.

The differences between open-loop motion planning and closed-loop motion
planning is more unsafe time for closed-loop motion planning, higher formation

63

64 8 Discussion

error as well as inferior smoothness. This is probably due to the dynamics of
changing trajectory during the flight. As described in Section 6.4 the compu-
tational time of computing a trajectory results in a position error of the drone
relative to the initial point of the trajectory. Even though this is compensated for
by finding the closest point on the new trajectory to the drone, the closest point is
not guaranteed to be close to the drone. This disturbance to the reference trajec-
tory is why closed-loop motion planning performs worse compared to open-loop
motion planning. The advantage with closed loop motion planning is, in theory,
higher robustness to changes in the environment. For example if a formation of
drones do not know how an other formation will fly, a closed-loop motion plan-
ning could, in real-time, change to a safe trajectory while an open-loop motion
planning would lead to collision. High robustness is, however, dependent on that
the motion planning problem from (5.16) can be solved quickly. Less computa-
tional time to solve the motion planning problem would not only increase the
robustness, but also enhance the performance in regards to the performance met-
rics.

The motion planning solutions outperforms the solutions using APF+Leader-
follower+CBF. However, since decision making is done in real time for every time
step, these solutions are much more robust to disturbances and changes in the
environment. One idea prior to testing was to include an ECBF to the motion
planning solutions to guarantee that the control signal was safe. However the tra-
jectory following was affected negatively and a decision was made to exclude any
real time safety measures. The main reason that the motion planning solutions
outperform the solutions using APF+Leader-follower+CBF is that deadlocks are
avoided. The algorithms for APF only looks at each time step separately and
therefore a long-term plan can not be achieved. Solving the motion planning
problem from (5.16) gives a planned trajectory for several seconds in the future,
which allows for smooth avoidance of deadlocks and collisions.

Open-loop motion planning is applicable for a known and controlled envi-
ronment with centralized control for all drones. Closed-loop motion planning
is more robust to changes in the environment however still requires centralized
control of all drones. The solutions using APF+Leader follower+CBF/ECBF do
not require centralized control of all drones neither do they require a controlled
environment. Since decision making is done in real time these solutions are ap-
plicable for unknown and changing environments. Another important aspect is
scalability. Since the computational time of solving the motion planning problem
increases with more drones, the closed-loop motion planning solution does not
scale well. Four drones was probably near the limit with the implementation in
this thesis. The other solutions scale well.

8.2 Limiting factors to performance 65

8.2 Limiting factors to performance

There are three important limiting factors to the performance of the system. The
first factor is the positioning system which has a precision in the range of centime-
ters. Disturbances and errors to the position and velocity estimation will have a
negative affect on the performance of the algorithms.

The second factor, only limiting to the closed-loop motion planning solution,
is computational power. The computational power affects the time to calculate
each trajectory which limits the update frequency of new trajectories. A low up-
date frequency, results in trajectories that are based on the wrong position of
the drones since the drones have moved during the computation process. To de-
crease the computational time for solving optimal control problems it is possible
for some solvers in CasADi to generate C code. Unfortunately this is not possi-
ble using the IPOPT which was used to solve the non-convex problem in (5.16).
In the open-loop motion planning solution the trajectory is computed prior to
take off which means that the computational time is not a limiting factor, at the
cost of not being able to change trajectory to account for a changing environment.

The third limiting factor to the system is the communication between the
computer and the Crazyflies. The bandwidth of the radio limits the update fre-
quency of position/velocity/attitude estimations and the frequency of sending
commands to each Crazyflie. Flying several drones at the same time lowers the
bandwidth of the communication which has a negative affect on performance.
With four drones the update frequency of estimations is lowered compared to
one or two drones, although no decrease in performance is observable. However,
this can become a limiting factor if more drones are added to the swarms.

8.3 Potential improvements

Listed below are potential improvements to the work in this thesis.

• A more precise positioning system would lead to significant improvements.
Since the position estimate is used in almost every part of the solutions, any
error will lead to reduced performance.

• To enhance the performance of solution 4 the computational time of com-
puting trajectories needs to be lowered. One solution is to generate C code
to solve the motion planning problem however as for now this is not sup-
ported for the IPOPT solver which means that another solver needs to be
used. Another option is to use a more powerful computer that solves the
motion planning problem faster. The last option is to only define linear con-
straints to the motion planning problem, which requires less computation.

• The quadcopter model is used for the LQR controller, ECBF and to describe
dynamics in the motion planning problem which means that a more precise

66 8 Discussion

model would improve all of those aspects. An interesting way to improve
the model by using data driven system identification.

9
Conclusions and further work

This chapter will answer the problem formulation, derive conclusions and present
further work on the subject.

9.1 Answers to the problem formulation

To solve the problem of collision-safe control and motion planning of drone
swarms, four different solutions is proposed

• APF+Leader-follower+PID+CBF

• APF+Leader-follower+LQR+ECBF

• Open-loop Motion planning+LQR

• Closed-loop Motion planning+LQR

The algorithms were implemented on the hardware Crazyflie 2.1 and evaluated
using the five metrics

• Time to finish the mission

• Distance traveled

• Smoothness of trajectory

• Average formation error

• Unsafe time

67

68 9 Conclusions and further work

The Open-loop Motion planning+LQR had the best performance on almost every
metric, although, requires planning of the trajectory in advance. The Closed-
loop Motion planning+LQR has similar control performance but can run in real-
time updating the trajectory at a frequency of 1 Hz. Lower computational re-
sources is required for the APF+Leader-follower+PID+CBF and the APF+Leader-
follower+LQR+ECBF, where the former is the least complex solution, and the lat-
ter is faster due to the LQR control enabled by more complex system dynamics
modelling.

9.2 Conclusions

Collision-safe control and motion planning of drone swarms requires a collection
of solutions from a widely researched area of motion planning and control. Four
different solutions were implemented and tested on the Crazyflie 2.1 quadcopter
platform. The solutions were divided into three categories, guidance, safety and
control. The solutions based on trajectory generation performed better than the
solutions based on APF for guidance. Quadcopter modelling and LQR control
performed better than the simple single integrator model and PID control, justi-
fying the added complexity to the control structure.

9.3 Further work

The solutions in this thesis use a centralized control structure with reliable and
comprehensive information about the states of the drones. In most aerial swarm
applications, reliable global positions and guidance from a centralized controller
will not be available at all times. Therefore it would be useful to solve the prob-
lem locally on each drone, using relative positions between the drones.

Another aspect is to investigate if the controller can be improved by imple-
menting a model predictive controller (MPC). Especially for solution 3 and 4
since the state reference trajectory is known for the whole mission.

Finally, it would be interesting to extend the algorithms to allow for move-
ment along three axes, instead of two. This might require modelling of the turbu-
lent air caused by the rotors, for the drones to be able to fly beneath each other.

Bibliography

[1] Mohamed Abdelkader, Samet Güler, Hassan Jaleel, and Jeff S Shamma.
Aerial swarms: Recent applications and challenges. Current Robotics Re-
ports, 2(3):309–320, 2021.

[2] Abdulrahman Alarifi, AbdulMalik Al-Salman, Mansour Alsaleh, Ahmad Al-
nafessah, Suheer Al-Hadhrami, Mai A Al-Ammar, and Hend S Al-Khalifa.
Ultra wideband indoor positioning technologies: Analysis and recent ad-
vances. Sensors, 16(5):707, 2016.

[3] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz
Diehl. CasADi – A software framework for nonlinear optimization and op-
timal control. Mathematical Programming Computation, In Press, 2018.

[4] Tucker Balch and Ronald C Arkin. Behavior-based formation control for
multirobot teams. IEEE transactions on robotics and automation, 14(6):926–
939, 1998.

[5] Kristoffer Bergman. Exploiting Direct Optimal Control for Motion Planning
in Unstructured Environments. PhD thesis, Linköping University Electronic
Press, 2021.

[6] Bitcraze. Crazyflie 2.1, . URL https://www.bitcraze.io/products/
crazyflie-2-1/.

[7] Bitcraze. Crazyradio pa, . URL https://www.bitcraze.io/products/
crazyradio-pa/.

[8] Urs Borrmann, Li Wang, Aaron D Ames, and Magnus Egerstedt. Control
barrier certificates for safe swarm behavior. IFAC-PapersOnLine, 48(27):68–
73, 2015.

[9] Gunnarsson Svante Engqvist Martin Lindskog Peter Löfberg Johan m.fl
Glad Torkel, Ljung Lennart. Industriell reglereteknik Kurskompendium.
Institution for automatic control at university of Linköping, 2014.

[10] Ljung Lennart Glad Torkel. Reglerteknik Grundläggande teori. Studentlit-
teratur AB, 2006.

69

https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyradio-pa/
https://www.bitcraze.io/products/crazyradio-pa/

70 Bibliography

[11] Radu Horaud, Miles Hansard, Georgios Evangelidis, and Clément Ménier.
An overview of depth cameras and range scanners based on time-of-flight
technologies. Machine vision and applications, 27(7):1005–1020, 2016.

[12] Ibraheem Kasim Ibraheem and Fatin Hassan Ajeil. Multi-objective path
planning of an autonomous mobile robot in static and dynamic environ-
ments using a hybrid PSO-MFB optimisation algorithm. arXiv preprint
arXiv:1805.00224, 2018.

[13] I Iswanto, A Ma’arif, O Wahyunggoro, and A Imam. Artificial potential
field algorithm implementation for quadrotor path planning. Int. J. Adv.
Comput. Sci. Appl, 10(8):575–585, 2019.

[14] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Autonomous robot vehicles, pages 396–404. Springer, 1986.

[15] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[16] Jonathan RT Lawton, Randal W Beard, and Brett J Young. A decentralized
approach to formation maneuvers. IEEE transactions on robotics and au-
tomation, 19(6):933–941, 2003.

[17] Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-
agent formation control. Automatica, 53:424–440, 2015.

[18] Linnea Persson. Model Predictive Control for Cooperative Rendezvous of
Autonomous Unmanned Vehicles. PhD thesis, KTH Royal Institute of Tech-
nology, 2021.

[19] James A. Preiss*, Wolfgang Hönig*, Gaurav S. Sukhatme, and Nora Aya-
nian. Crazyswarm: A large nano-quadcopter swarm. In IEEE International
Conference on Robotics and Automation (ICRA), pages 3299–3304. IEEE,
2017. doi: 10.1109/ICRA.2017.7989376. URL https://doi.org/10.
1109/ICRA.2017.7989376. Software available at https://github.
com/USC-ACTLab/crazyswarm.

[20] Wei Ren and Randal W Beard. Decentralized scheme for spacecraft forma-
tion flying via the virtual structure approach. Journal of Guidance, Control,
and Dynamics, 27(1):73–82, 2004.

[21] Andrew Singletary, Karl Klingebiel, Joseph Bourne, Andrew Browning, Phil
Tokumaru, and Aaron Ames. Comparative analysis of control barrier func-
tions and artificial potential fields for obstacle avoidance. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
8129–8136. IEEE, 2020.

[22] Nahid Soltani, Aref Shahmansoorian, and Mohammad A Khosravi. Robust
distance-angle leader-follower formation control of non-holonomic mobile
robots. In 2014 Second RSI/ISM International Conference on Robotics and
Mechatronics (ICRoM), pages 024–028. IEEE, 2014.

https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1109/ICRA.2017.7989376
https://github.com/USC-ACTLab/crazyswarm
https://github.com/USC-ACTLab/crazyswarm

Bibliography 71

[23] Jiayi Sun, Jun Tang, and Songyang Lao. Collision avoidance for coopera-
tive uavs with optimized artificial potential field algorithm. IEEE Access, 5:
18382–18390, 2017.

[24] Robot Operating System. Ros/introduction. URL http://wiki.ros.
org/ROS/Introduction.

[25] Kar-Han Tan and M Anthony Lewis. Virtual structures for high-precision co-
operative mobile robotic control. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems. IROS’96, volume 1, pages
132–139. IEEE, 1996.

[26] Li Wang, Aaron D Ames, and Magnus Egerstedt. Safety barrier certificates
for collisions-free multirobot systems. IEEE Transactions on Robotics, 33(3):
661–674, 2017.

[27] Falin Wu, Jiemin Chen, and Yuan Liang. Leader-follower formation control
for quadrotors. In IOP Conference Series: Materials Science and Engineer-
ing, volume 187, page 012016. IOP Publishing, 2017.

[28] Bin Xu and Koushil Sreenath. Safe teleoperation of dynamic uavs through
control barrier functions. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 7848–7855. IEEE, 2018.

[29] Huanshui Zhang, Lin Li, Juanjuan Xu, and Minyue Fu. Linear quadratic
regulation and stabilization of discrete-time systems with delay and multi-
plicative noise. IEEE Transactions on Automatic Control, 60(10):2599–2613,
2015.

http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction

	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	1.1 Background
	1.2 Problem formulation

	2 System Overview
	2.1 Hardware
	2.1.1 UWB positioning system
	2.1.2 Flow deck

	2.2 Software
	2.2.1 Robot Operating System (ROS)

	2.3 Control architecture
	2.3.1 Control architecture 1
	2.3.2 Control architecture 2

	2.4 Model of the system
	2.4.1 Single integrator model
	2.4.2 Quadcopter model

	2.5 System identification
	2.5.1 Identification of , K and K
	2.5.2 Identification of
	2.5.3 Time delay
	2.5.4 Global yaw angle

	3 Control
	3.1 PID
	3.2 Cascade control
	3.3 Linear Quadratic Regulator (LQR)
	3.3.1 LQR with time delay
	3.3.2 Choosing weight matrices

	3.4 Formation control
	3.4.1 Leader follower displacement control

	4 Safety
	4.1 Control Barrier Function (CBF)
	4.1.1 Definition
	4.1.2 Implementation

	4.2 Exponential Control Barrier Function (ECBF)
	4.2.1 Definition
	4.2.2 Implementation

	5 Guidance
	5.1 Artificial potential fields
	5.1.1 Theory

	5.2 Optimal motion planning
	5.2.1 Problem formulation
	5.2.2 Implementation

	6 Solutions to problem formulation
	6.1 APF+Leader-follower+PID+CBF
	6.2 APF+Leader-follower+LQR+ECBF
	6.3 Open-loop motion planning+LQR
	6.4 Closed loop Motion planning+LQR

	7 Results
	7.1 APF+Leader-follower+PID+CBF
	7.1.1 Detailed presentation of a typical test run
	7.1.2 Statistics from all test runs

	7.2 APF+Leader-follower+LQR+ECBF
	7.2.1 Detailed presentation of a typical test run
	7.2.2 Statistics from all test runs

	7.3 Open-loop motion planning + LQR
	7.3.1 Detailed presentation of a typical test run
	7.3.2 Statistics from all test runs

	7.4 Closed-loop motion planning+LQR
	7.4.1 Detailed presentation of two typical test runs
	7.4.2 Statistics from all test runs

	7.5 Summary of results

	8 Discussion
	8.1 Results
	8.2 Limiting factors to performance
	8.3 Potential improvements

	9 Conclusions and further work
	9.1 Answers to the problem formulation
	9.2 Conclusions
	9.3 Further work

	Bibliography

