
Cross-lingual and
Multilingual Automatic
Speech Recognition for
Scandinavian Languages

Rafal Černiavski

Uppsala University
Department of Linguistics and Philology
Master Programme in Language Technology
Master’s Thesis in Language Technology, 30 ects credits
June 23, 2022

Supervisors:
Assistant Professor Sara Stymne, Uppsala University
Carl Dehlin, Conversy



Abstract

Research into Automatic Speech Recognition (ASR), the task of transforming
speech into text, remains highly relevant due to its countless applications in in-
dustry and academia. State-of-the-art ASR models are able to produce nearly
perfect, sometimes referred to as human-like transcriptions; however, accurate
ASR models are most often available only in high-resource languages. Further-
more, the vast majority of ASR models are monolingual, that is, only able to
handle one language at a time. In this thesis, we extensively evaluate the qual-
ity of existing monolingual ASR models for Swedish, Danish, and Norwegian.
In addition, we search for parallels between monolingual ASR models and the
cognition of foreign languages in native speakers of these languages. Lastly, we
extend the Swedish monolingual model to handle all three languages.

The research conducted in this thesis project is divided into two main sec-
tions, namely monolingual and multilingual models. In the former, we analyse
and compare the performance of monolingual ASR models for Scandinavian
languages in monolingual and cross-lingual settings. We compare these results
against the levels of mutual intelligibility of Scandinavian languages in native
speakers of Swedish, Danish, and Norwegian to see whether the monolingual
models favour the same languages as native speakers. We also examine the
performance of the monolingual models on the regional dialects of all three
languages and perform qualitative analysis of the most common errors. As for
multilingual models, we expand the most accurate monolingual ASR model
to handle all three languages. To do so, we explore the most suitable settings
via trial models. In addition, we propose an extension to the well-established
Wav2Vec 2.0-CTC architecture by incorporating a language classification com-
ponent. The extension enables the usage of language models, thus boosting the
overall performance of the multilingual models.

The results reported in this thesis suggest that in a cross-lingual setting,
monolingual ASR models for Scandinavian languages perform better on the
languages that are easier to comprehend for native speakers. Furthermore, the
addition of a statistical language model boosts the performance of ASR models
in monolingual, cross-lingual, and multilingual settings. ASR models appear to
favour certain regional dialects, though the gap narrows in a multilingual setting.
Contrary to our expectations, our multilingual model performs comparably
with the monolingual Swedish ASR models and outperforms the Danish and
Norwegian models.

The multilingual architecture proposed in this thesis project is fairly simple
yet effective. With greater computational resources at hand, further extensions
offered in the conclusions might improve the models further.



Contents

Acknowledgments 5

1. Introduction 6
1.1. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Scandinavian Languages 8
2.1. Linguistic Properties of the Scandinavian Languages . . . . . . . . . 8
2.2. Dialects of Scandinavia . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1. Swedish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2. Norwegian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3. Danish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. Mutual Intelligibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. Scandinavian Languages for Multilingual Research . . . . . . . . . . 12

3. Theoretical Background 13
3.1. Automatic Speech Recognition . . . . . . . . . . . . . . . . . . . . . 13

3.1.1. Statistical ASR . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2. Neural ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2. Wav2Vec 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3. ASR across Domains, Accents/Dialects, and Languages . . . . . . . 18
3.4. Multilingual ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4. Methodology 22
4.1. Monolingual Scandinavian ASR Models . . . . . . . . . . . . . . . . 22

4.1.1. Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 23

4.2. Multilingual Scandinavian ASR Model . . . . . . . . . . . . . . . . . 24
4.2.1. Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 26

4.3. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1. Common Voice (CV) . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2. Nordisk Språkteknologi (NST) . . . . . . . . . . . . . . . . . 27
4.3.3. Dataset Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.4. Text and Audio Pre-processing . . . . . . . . . . . . . . . . . 29

4.4. Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.1. Swedish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.2. Norwegian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.3. Danish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.4. English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.5. Trial Multilingual Models . . . . . . . . . . . . . . . . . . . . 31

4.5. Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.1. Word Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.2. Character Error Rate . . . . . . . . . . . . . . . . . . . . . . 32
4.5.3. Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . 33

3



5. Results and Discussion 34
5.1. Monolingual Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1. Zero-shot Transferability and Mutual Intelligibility . . . . . . 34
5.1.2. Performance across the Regional Dialects . . . . . . . . . . . 36
5.1.3. Qualitative Analysis of Errors . . . . . . . . . . . . . . . . . . 38

5.2. Multilingual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.1. Trial Multilingual Models . . . . . . . . . . . . . . . . . . . . 40
5.2.2. Language Classification Module . . . . . . . . . . . . . . . . . 42
5.2.3. Multilingual Scandinavian End-to-end ASR Model . . . . . . 43

6. Conclusions 47
6.1. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A. Model Parameters 57
A.0.1. Monolingual Danish Model . . . . . . . . . . . . . . . . . . . 57
A.0.2. Multilingual Scandinavian Model . . . . . . . . . . . . . . . . 57

B. Complete Results 61
B.1. Monolingual Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.2. Multilingual Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4



Acknowledgments

I would like to express my deepest gratitude to both of my supervisors, Sara Stymne
and Carl Dehlin, for their continuous supervision, support, as well as countless
and priceless pieces of advice. I highly cherish the opportunity to work with and
learn from you. I would also like to thank Conversy for creating such a pleasurable
environment to write a thesis in. I am also thankful to all the members of the
Department of Linguistics and Philology at Uppsala University whom I had the
opportunity to meet and learn from. This would have been much more difficult, if
possible, without the moral support from family and friends. Lastly, didžiulis ačiū
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1. Introduction
Automatic Speech Recognition (ASR) is the task of transforming speech into text.
The task involves processing input in the form of auditory data, which is ultimately
converted into and outputted as textual data. Modern ASR systems power conve-
nient human-computer interaction through voice input, offer a cheap alternative for
tedious and costly transcription work, and make it possible to retrieve information
from spoken data (Furui, 1999). In Natural Language Processing (NLP), ASR is
not only a major field in itself but also a tool used to conduct research into spoken
language. For instance, textual representations of auditory data enable named entity
recognition (NER) in speech (Caubrière et al., 2020). In addition, it has been argued
that ASR has the potential to become an invaluable tool in language teaching (Car-
rier, 2017), with a recent study revealing that students who use ASR-based tools
to learn English as a foreign language tend to acquire a more extensive vocabulary,
have lower speaking anxiety, and even enjoy the learning process more as compared
to traditional classroom teaching (Bashori et al., 2021). The benefits of ASR systems
are thus increasingly enjoyed in business, computational linguistics, education, and
numerous other fields.

The success of ASR systems can be partially accredited to their outstanding ac-
curacy. The leaderboard of the LibriSpeech benchmark (Panayotov et al., 2015a)
for English ASR may serve as a vivid example. A study by Amodei et al. (2016)
estimates that the word error rate (WER), a standard ASR performance metric cov-
ered in Section 4.5.1, in human-produced transcriptions on the benchmark is roughly
5.83%. For comparison, DeepSpeech 2 (Amodei et al., 2016), an End-to-End ASR
model, achieves a WER of just 5.33% on clean test set, though it is outperformed
by humans on noisy data (13.25% versus 12.69%). Since the introduction of Deep-
Speech 2, the field of ASR has progressed even further, as the current leaderboard
of the benchmark contains ten models with a WER below 2%1.

Despite the considerable accuracy in high-resource languages, ASR models are
currently unavailable for the vast majority of the world’s languages. Arguably the
principal reason is the lack of training data to train such models. Deep Neural
Networks (DNN)-based models, such as the aforementioned DeepSpeech 2, largely
rely on the availability of substantial training datasets in order to reach high quality.
With virtually no annotated data being available in most languages, DNN models
are simply not viable. Another drawback of most ASR models is their ability to
process just one language. As argued by Cohen et al. (1997), monolingual ASR
models are unfeasible for bilingual communities and multi-cultural environments
where languages are often used interchangeably.

In this thesis, we explore the possibility of addressing both limitations by training
multilingual ASR models. We choose to examine the case of the Scandinavian lan-
guages, namely Swedish, Danish, and Norwegian due to the considerable similarities.
According to Smith et al. (2018) and Wu and Dredze (2019), shared typological
features and other similarities between languages have been proven to boost the
quality of multilingual models. We firstly take a closer look at the quality of mono-
lingual Scandinavian ASR models in search of parallels between the performance of

1Availableat:https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean; Last
accessed: February 20th, 2022

6

Available at: https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean


ASR models in a cross-lingual setting and the cognition of Scandinavian languages
in native speakers. As such, we explore the success of zero-shot transfers across
monolingual ASR models for Swedish, Danish, and Norwegian to learn whether the
patterns resemble the mutual intelligibility of the three languages. In addition, we
compare the performance of monolingual ASR models across the dialects and per-
form qualitative analysis of the most common errors made by the models. We utilize
the gathered insight about the performance of monolingual models to train a joint
multilingual ASR model for the Scandinavian languages: a single end-to-end system
able to transcribe Swedish, Danish, and Norwegian. Lastly, we evaluate the multilin-
gual model on its ability to recognize and transcribe the three languages and their
regional dialects.

1.1. Research Questions
The research questions tackled in this thesis are the following:

1. Are monolingual Wav2Vec 2.0-based ASR models transferable across Scandi-
navian languages?

2. Are there parallels between zero-shot transferability of monolingual ASR mod-
els and mutual intelligibility of Swedish, Danish, and Norwegian?

3. Are Wav2Vec 2.0-based ASR models biased towards one of the dialects of their
target language?

4. Can a monolingual Wav2Vec 2.0-based ASR model be extended to handle all
three Scandinavian languages without significant loss of quality?

1.2. Outline
We firstly provide a brief overview of linguistic properties and dialect varieties of
the Scandinavian languages in section 2. We then offer a theoretical background
on monolingual and multilingual Automatic Speech Recognition models throughout
the years in Section 3. In Section 4, we describe the methodology pursued in this
thesis alongside the experimental settings, datasets, models, and evaluation metrics.
We present and analyse the results in Section 5. Lastly, we offer conclusions and
possible directions for future work in Section 6.
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2. Scandinavian Languages
The term Scandinavia is a subject for an ongoing debate in terms of what is and
what is not part of Scandinavia. As formulated by Sanders (2021), the ambiguity
stems in part from the discourse in which the term is used. The geographic point
of view, for instance, draws the boundaries of Scandinavia along the Scandinavian
peninsula (Wabakken et al., 2001). In this regard, Scandinavia is considered to
be along the modern borders of Sweden and Norway. Sociologists, historians, and
anthropologists, on the other hand, often extend the term to also include Denmark
(Jensen et al., 2017; Lindahl-Jacobsen et al., 2004; Robinson, 2003). Arguably the
most broad is the definition used in linguistics, as it includes the countries whose
main official language originate from Old Norse (Sanders, 2021). Such definition
of Scandinavia generally includes Sweden, Norway, Denmark, and Iceland. Lastly,
Finland, a neighbouring Nordic country, is sometimes included into the definition as
well (Nygård et al., 2017). The definitions of Scandinavia, as well as Scandinavian
languages, are thus ambiguous. This thesis abstains from taking a stance on the
boundaries of Scandinavia. The definition of Scandinavian languages followed in
this thesis is limited to Swedish, Danish, and Norwegian (Bokmål written standard)
simply due to the scope of the thesis as well as limited resources in Icelandic and
Faroese.

2.1. Linguistic Properties of the Scandinavian Languages
Haugen (1982) states that the Scandinavian languages as well as the region itself
can be analysed as a single speech continuum. This is likely due to the fact that the
development of Scandinavian languages has largely been concurrent and influenced
by the historical ties between the countries of Scandinavia. As such, Swedish, Danish,
and Norwegian originate from Old Norse and belong to the North Germanic branch
of the Indo-European languages. According to Harbert (2006), the similarity of the
North Germanic branch to other Germanic languages is evident from features such as
verb fronting, definite and indefinite articles, and the formation of perfect tense from
auxiliary have and past participle. The similarities between Swedish, Danish, and
Norwegian, however, stretch far beyond the general features of Germanic languages.

The three Scandinavian languages share numerous aspects of grammar and syntax,
while phonetics and phonology are more distinctive. Examples of the similarities in
the grammar of the three languages include morphologically marked definiteness
(with the definite article being attached to the root) (Skrzypek, 2009) and the
absence of a morphological case system in nouns, as they usually only appear in
either nominative or genitive (Cinque and Kayne, 2005). In terms of syntax, the
three languages follow the verb-second rule, which allows for no more than one
phrase to precede the main verb (Cinque and Kayne, 2005). In addition, a general
Subject-Verb-Object (SVO) structure of clauses is the most common across all three
languages (Van Riemsdijk, 2011). The differences between the phonology and pho-
netics of the Scandinavian languages are often viewed as most significant. This is
mostly due to the fact that the pronunciation in Danish differs greatly from Swedish
and Norwegian, since, according to Grønnum (1998), spoken Danish has undergone
rapid change, which brought reduction of post-tonic syllables (Grønnum, 1998), less
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distinctive tonal accent as compared to Swedish and Norwegian (Riad, 2006), and
replacement of plosives with approximants (Basbøll, 2005). The Scandinavian lan-
guages thus share numerous similarities in terms of linguistic properties that are
most evident from written language.

2.2. Dialects of Scandinavia
The view of Scandinavian languages as a single speech continuum implies a lack
of explicit language borders separating the Scandinavian languages, as the three
languages, as well as the societies, share roots and history. Nevertheless, differences
can be observed not only across the languages, but also within them. Sahlgren et al.
(2021) argue that the divergence between some dialects of Swedish, Danish, and
Norwegian are arguably as major as the ones between the languages. For a better
overview, the following sections briefly describe the dialects of Swedish, Norwegian,
and Danish.

2.2.1. Swedish

Figure 2.1.: The dialects of Swedish in Sweden according to Wessén (1954), adapted from
Leinonen (2010)

The classification of the Swedish dialects proposed by Wessén (1954) distinguishes
six groups: Gotland dialects, Norrland dialects, Svealand dialects, Götaland dialects,
South Swedish dialects, and Finland-Swedish dialects. An approximate representa-
tion of regions where these and other dialects are spoken in Sweden is shown in
Figure 2.1.

As argued by Leinonen (2010), the division is based on sentence intonation,
vowel pronunciation, and distinct pronunciation of consonants. Arguably starkest
are the distinctions between South Swedish dialects and East-Central Swedish of
the Svealand group, which is often considered to be the standard of spoken Swedish.
Schötz and Bruce (2009) observes that the sentence intonation in standard Swedish
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is phrase-initial and rising, whereas the intonation in South Swedish dialects is var-
ied. Elert (2000) also reports that the long vowels in standard Swedish are instead
pronounced as rising diphthongs in South Swedish dialects. Lastly, apical /r/ is com-
mon in most Swedish dialects, except for South Swedish dialects, where dorsal /r/
is used instead.

2.2.2. Norwegian
The Norwegian language and its dialects are arguably the most diverse out of the
three Scandinavian languages. Influenced by the political and socio-economic situa-
tion in Norway, the Norwegian language has two written norms, Nynorsk and Bok-
mål, which are sometimes recognized as different languages (Kristoffersen, 2000a).
According to Kristoffersen (2000b), a traditional division of the Norwegian dialects
differentiates between four varieties: Nordnosk (North Norwegian), Trøndersk (Trøn-
der Norwegian), Austnorsk (East Norwegian), and Vestnorsk (West Norwegian). Nei-
ther dialect is the official standard; however, Austnorsk (also referred to as Urban
East Norwegian) and more specifically Bokmål are considered to be the unofficial
national standard, as they are spoken by the majority (Kristoffersen, 2000a). The
mapping of the dialects across the regions of Norway is visualized in Figure 2.2.

Johannessen et al. (2020) name retroflex flap as well as tonal accent patterns and
syllabic melody as some of the most distinctive differences between the Norwegian
dialects. Kristoffersen (2000a) notes that retroflex flaps are common in Austnorsk,
yet generally avoided in other dialects. The author also reports that a distinction
can be made between Trøndersk with Nordnosk and the other two dialect groups
in terms of the syllabic melody in the pronunciation. In Trøndersk and Nordnosk,
words with two syllables are often pronounced with the melody and tone common
to mono-syllabic words, which is generally not the case in Austnorsk and Vestnorsk;
Kristoffersen (2000a) believes this to be caused by the dropping of vowels at the end
of such words, which is also common in Trøndersk and Nordnorsk.

Figure 2.2.: The dialects of the Norwegian language in Norway according to Mæhlum and
Røyneland (2012)

10



2.2.3. Danish
In contrast to Swedish and Norwegian, modern Danish is highly homogeneous. Ac-
cording to Basbøll (2005, p. 13), Danish is one of the most standardized languages,
and the local dialects are experiencing extinction. As argued by the author, stan-
dard Danish is spoken throughout Denmark; nevertheless, regions tend to have local
features that make the speech distinctive. As such, stød distinguishes six regional
varieties of Danish corresponding to six towns and cities: Copehnagen, Næstved,
Bornholm, Aalborg, Tønder, Sønderborg. Approximate locations of the regions are
visualized in Figure 5.2.

Differences across the regional standards often include presence or lack of stød as
well as divergent prosodic stress patterns. Grønnum et al. (2013, p. 67) defines stød
as ‘kind of creaky voice i.e. non-modal voice with aperiodic vibrations and irregular
amplitude’. The phenomenon is often said to highly resemble glottal stop. In Figure
5.2, the regions above the line, namely Aalborg, Tønder, Næstved, and Copenhagen,
use stød, whereas Sønderborg and Bornholm do not. In addition, Grønnum et al.
(2013) reveals divergent tone patterns following stressed vowels; prosodic stress most
often raises after a stressed vowel in the Copenhagen standard, drops and then raises
resembling a V-shape in the Bornholm variant, and steadily drops in other regional
standards.

Figure 2.3.: Approximate mapping of the regional standards of Danish in Denmark. Adapted
from Clausen and Kristensen (2015)

2.3. Mutual Intelligibility
Due to the close historical ties and numerous shared features, the three languages
are often considered to be some of the most vivid examples of mutually intelligi-
ble languages. The mutual intelligibility though differs both across and within the
languages. According to Grønnum (1998), the Scandinavian languages are highly
mutually intelligible in the written form; however, when it comes to spoken lan-
guage, speakers of Swedish and Norwegian may struggle to understand Danish. The
results of the study conducted by Gooskens (2007) confirm the hypothesis, as the
level of comprehension between Danish and Swedish was found to be not mutual.
Danes were able to answer over 50% of the questions asked in Swedish, whereas
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Swedes managed to answer only slightly over 24% of questions in Danish on av-
erage (Gooskens, 2007). For comparison, Danes reportedly answered roughly 57%
questions in Norwegian, whereas Swedes managed to answer more than 82% asked
in Norwegian. Lastly, Norwegians scored over 75% on Danish and roughly 89% on
Swedish. The mutual intelligibility of spoken language across the Scandinavian lan-
guages in the spoken form thus seems strongest between Swedish and Norwegian,
and weakest between Swedish and Danish. Similar patterns were also previously
reported by Delsing (2005).

In addition, Gooskens (2007) and Delsing (2005) argue that the comprehension
levels vary across the regions of each country. Delsing (2005) reports that most
notable is the variance in the comprehension of Danish across Swedes. More specifi-
cally, the study revealed that Swedes who live in Malmö, a city located in the South
of Sweden right across the Öresund bridge from Denmark, understand the Danish
language significantly better than Swedes living in Stockholm, the capital city of
Sweden roughly in the Center and on the East coast of the country. Similarly, Dels-
ing (2005) observes better comprehension of Swedish in Norwegians from Oslo, the
capital that is relatively close to Sweden, over Bergen, which is the second-largest
city located in the West of Norway. When it comes to Danes, the comprehension
of Swedish and Norwegian are comparable across Copenhagen, the capital, and
Aarhus, though citizens of the latter appear to understand Norwegian better than
the citizens of the capital.

The three observations seem to suggest that a closer geographic placement of
the city leads to better exposure to other Scandinavian languages and thus better
comprehension in the citizens. Similar conclusion was made by Gooskens (2007). The
author reports signs of correlation between the mutual intelligibility levels and lexical
as well as phonetic distances, which are based on the geographic distances between
the regions across the three countries. It however remains an open question whether
the relationship between the geographic location and the mutual intelligibility is
causal.

2.4. Scandinavian Languages for Multilingual Research
The Scandinavian languages are some of the most suitable candidates for multi-
lingual research. Firstly, the languages are relatively similar in both spoken and
written forms. The three languages share comparable phonesets, or sets of phonetic
units used in speech, as well as identical alphabets with the exception of two letters
which are the same in Danish and Norwegian yet different in Swedish. These simi-
larities allow avoiding numerous technical issues one might face while working with
languages that have different numbers of characters or even completely different
scripts. Secondly, shared roots of the three languages enable inherent multilingual
cues extending across Swedish, Danish, and Norwegian. The numerous similarities
mentioned in Section 2.1 and most notably a largely similar lexicon make it possible
for the native speakers of the three languages to be able to communicate with each
other without a mediator language, such as English. With these and other argu-
ments in mind, Sahlgren et al. (2021) make a case in favour of multilingual models
suited for all Scandinavian languages (also including Icelandic and Faroese) in order
to use computational resources more efficiently, to ensure transparency, and equal
access to powerful models across the region.
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3. Theoretical Background

This section is divided into six parts. It firstly describes the research area of Auto-
matic Speech Recognition (ASR) in Section 3.1, followed by an overview of statistical
(3.1.1) versus neural ASR models (3.1.2). Section 3.2 addresses the architecture and
framework of Wav2Vec 2.0. Section 3.3 offers a summary of the domain, accent, and
language-based research on Wav2Vec 2.0. Lastly, Section 3.4 provides an overview
of research focused on multilingual ASR.

3.1. Automatic Speech Recognition
Automatic Speech Recognition (ASR) is a complex multimodal task that facilitates
signal processing and language modelling. The goal of the task is to transcribe; that
is, to transform speech into text. Due to the lack of inherent connection between the
two modalities, traditional ASR models rely on extensive external knowledge about
signal processing, language modelling, and the parallels connecting them. As such,
the sources of knowledge often include lexicons of existing words in the language,
a phoneset or a set of phonemes, a language model, and possibly numerous other
tools, databases, and rules (Povey et al., 2011).

In most simple terms, an ASR tool receives an input in the form of an audio
signal, usually, an audio file, which it encodes and extracts the auditory features
from; afterwards, an ASR model maps the auditory features to either characters,
morphemes, or words, thus resulting in a transcription of the audio. In traditional
ASR systems, this is achieved by passing the input through a handful of modules
that are responsible for discrete aspects of signal processing or language modelling.
Benesty et al. (2008) list four components that are common in traditional ASR sys-
tems, namely a feature extraction module, an acoustic model, a language model, and
a hypothesis search module. The main purpose of the feature extraction module is
to transform the audio signal from a file-specific encoding (e.g. wav) to discrete nu-
meric representations; however, as noted by Benesty et al. (2008), the module can
also remove noise and channel distortion among other tasks. The acoustic model
then uses the encoded numeric representations of auditory signals to deduce the
phonemes or other phonetic units that make up the encoded speech. In other words,
it transforms the encoded numeric representations of sounds into representations of
characters, morphemes, phonemes, or words. The language model component stores
the knowledge about word or character co-occurrence patterns in the language that
is being transcribed. Lastly, the hypothesis search module combines the predictions
made by the acoustic model with the knowledge about the language from the lan-
guage model and outputs the most likely text corresponding to the audio signal,
which was the initial input. A visualization of the modules and their interaction can
be seen in Figure 3.1 below.

3.1.1. Statistical ASR
There are numerous divergent implementations of each of the four components of
traditional ASR models. In the traditional view of ASR, most of the components
employ statistical methods. Sen et al. (2018) name Linear Prediction Coding (LPC),
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Figure 3.1.: Common architecture of traditional ASR models (Benesty et al., 2008)

Mel-Frequency Cepstral Coefficient (MFCC), Perceptual Linear Prediction (PLP),
and Discrete Wavelet Transform (DWT) as some of the numerous techniques used
in the feature extraction step. The four methods combine the theory of auditory cog-
nition and mathematics resulting in an effective sound encoding and discretization.
The variety of techniques can in part be explained by the diversity of applications
of the feature extraction module, as, in addition to the transformation of audio into
numeric representations, it can be used to, for instance, extract phonetic features of
the speaker. Such features are mainly used in speech classification or speaker iden-
tification tasks; however, as noted by Sen et al. (2018), the aforementioned features
are key components of the raw audio and thus need to be accurately processed in
the module to ensure high-quality discrete numeric representation. This is relevant
to the task because the pronunciation of a word speech in low and high pitch should
ideally receive a similar numeric representation by the feature extraction module.
When it comes to the acoustic model component, Benesty et al. (2008) refer to
Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM) as some of
the most conventional solutions in traditional ASR. The acoustic features encoded
by the feature extraction module most commonly constitute a large set of numeric
representations of individual sounds much shorter than most phonemes. According
to Benesty et al. (2008), a combination of GMMs and HMMs offers a probabilistic
solution for such problem, as the former can be said to accurately classify individual
sounds, while the latter groups them into phonemes or potentially longer sequences.
As for the language model component, the canonical probabilistic approach employs
n-grams, a frequency-based co-occurrence rate of linguistic units, most often words.
As argued by Habeeb et al. (2021), n-grams are especially effective in eradicating
grammatical errors and choosing between alternative spellings, which can pose a
challenge to even state-of-the-art ASR models. Lastly, the hypothesis search mod-
ule of a traditional ASR model ranges from linear tree lexicons (Ortmanns and Ney,
2000) that decode each word as a unit in isolation to stack decoding (Sturtevant,
1989), which models lengthy sequences whilst potentially also evaluating partial
hypotheses. In traditional ASR, hypothesis search is exceptionally computationally
demanding and the choice of the module implementation is thus often influenced
by the access to (or lack of) computational power. Overall, the combinations of
component implementations in traditional statistical ASR are numerous. The im-
plementation of a model is commonly tailored to the availability of the resources
needed to train each component as well as computational resources.

3.1.2. Neural ASR
Contrary to the distribution and probability theory used in statistical ASR, neural
ASR models exploit the ability of modern technology to learn countless features
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as well as the connections between these features through Deep Neural Networks
(DNNs) and other deep learning strategies. Similarly to the applications in other Nat-
ural Language Processing (NLP) tasks, neural ASR models tend to require copious
amounts of training data to achieve competitive results (J. Li et al., 2018; Perero-
Codosero et al., 2022). However, if the data is available, deep learning methods such
as DNNs contribute to considerable improvements in ASR systems by enhancing
individual components (Dahl et al., 2012) and enabling end-to-end models (Wang
and G. Li, 2019).

A common application of deep learning strategies in ASR is an extension to the
aforementioned GMM-HMM acoustic model with the addition of Recurrent Neural
Networks (RNNs). As formulated by Kamath et al. (2019), Deep Neural Networks,
unlike GMMs, effectively learn non-linear features. Tanaka et al. (2019) add that
such ability enables the HMMs to then draw accurate parallels across frame-level
context-dependent states. To paraphrase, a hybrid DNN and HMM acoustic model
makes it possible for an ASR model to learn the cues linking the modalities of
speech and text through countless frame-level patterns that add up to sequences
such as phonemes and words. A somewhat more recent neural re-consideration
of conventional ASR components can be observed in the language model module.
There appears to be an increasing interest in replacing the reliance on n-grams with
Transformer-based language models such as BERT (Lee et al., 2021; Yu and Chen,
2021). In brief, the Transformer architecture makes use of self-attention, a technique
to shift the attention of the model towards more relevant elements regardless of their
position in the sequence (Vaswani et al., 2017). Therefore, as opposed to the n-sized
windows in n-grams, Transformer-based language models learn the contextual cues
between virtually all linguistic units it encounters. In ASR, contextual embeddings
prove to be exceptionally useful for transcription in a domain the model has not
been trained on, for Transformer language models such as BERT operate on sub-
word level and can therefore construct words even if they have never encountered
them during training. The Transformer architecture has also seen applications in
other components of ASR models, such as the encoder (Baevski et al., 2020) and
acoustic model (Haidar et al., 2021), resulting in faster inference and lower error
rates.

As argued by Kamath et al. (2019), advancements in neural ASR brought about
by deep learning methods such as DNNs and Attention contributed to a shift in the
architecture of ASR models towards end-to-end models. Traditional ASR models are
complex and difficult to produce, as every component is mostly trained or compiled
individually (Wang and G. Li, 2019). This requires considerable knowledge about
the language, the data one has to work with, and the structure of the component
in addition to the technical knowledge needed to build or train the component in
question. End-to-end ASR models offer a convenient solution for most of these chal-
lenges. The term end-to-end denotes the simplified structure of neural ASR models
where the transformation of speech into text is carried out without intermediate
states and all the individual components of a traditional ASR model are combined
in a single neural network pipeline (B. Li et al., 2020). In other words, the speech is
virtually mapped directly to the corresponding text without having to firstly map
speech representations to, for example, phonemes. Wang and G. Li (2019) argue
that such pipeline is more straightforward for both development and use, as the
neural networks learn direct relations between speech and text. B. Li et al. (2020)
further elaborates that end-to-end models have less parameters overall, making the
ASR systems less computationally demanding and thus more accessible on all sorts
of devices.

Considering the numerous advantages of end-to-end models, it can be argued that
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end-to-end architecture has become the standard for modern ASR models. The
architecture is common among ASR models that dominate the ASR benchmarks
such as LibriSpeech (Panayotov et al., 2015b). Most notable examples are Wav2Vec
(Schneider et al., 2019) and its successor Wav2Vec 2.0 (Baevski et al., 2020). Further
enhanced by several extensions and training strategies such as masked language
modelling (Y.-A. Chung et al., 2021) and self-training (Xu et al., 2021), the latter
currently holds the five best word error rates on the LibriSpeech benchmark1 in
English. The following section provides and overview of the architecture.

3.2. Wav2Vec 2.0
In 2020, Baevski et al. (2020) proposed Wav2Vec 2.0, a novel signal processing
framework that is capable of learning accurate speech representations with no su-
pervision. A visual representation of the architecture of Wav2Vec 2.0 can be seen
in Figure 3.2 below. The framework firstly uses convolutional neural networks to
transform input (X) in the form of raw audio into latent speech representations
(Z ). The encoded speech representations are then quantized; that is, the continuous
set of sounds captured in the latent space is transformed into a smaller, discrete
set (Q). Quantization of speech representation can arguably be compared to the
comprehension of speech units by the human brain, as the set of sounds in every
language is defined with a finite set of phonetic units, such as the International
Phonetic Alphabet (IPA). As reported by Baevski et al. (2020), quantization results
in more accurate contextual representations (C ). The context representations are
learned by passing the encoded inputs to a Transformer architecture, where certain
portions of the audio are masked and have to be reconstructed from a set of real
quantized representation and a set of distractors, together referred to as codebooks.

Figure 3.2.: The architecture of Wav2Vec 2.0 (Baevski et al., 2020)

The Wav2Vec 2.0 architecture learns extensive contextual representations of speech
units by jointly minimizing contrastive loss and diversity loss. More specifically,
Baevski et al. (2020) define the objective function as

L = L𝑚 + 𝛼L𝑑 (3.1)

where L𝑚 is the contrastive loss, 𝛼 is diversity penalty, and L𝑑 is the diversity loss.
Contrastive loss can be defined as the task where the model has to recognize the

1https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean; Last accessed:
February 20th, 2022
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true quantized representation from a set of one true quantized representation and a
number distractors, which are other masked segments of the same sequence. To give
an example, if an entry passed to the model corresponds to the pronunciation of the
phrase colourless green ideas, the model might mask the segments corresponding to
co, rl, re, and ea, and, in turn, try to predict the right segment for _olourless from
a set consisting of the true segment (co), and a set of distractors (rl, re, ea). More
formally, the contrastive loss function can be defined as

L𝑚 = − log
exp(𝑠𝑖𝑚(𝑐𝑡 , 𝑞𝑡 )/𝑘)∑
𝑞̃ exp(𝑠𝑖𝑚(𝑐𝑡 , 𝑞)/𝑘)

(3.2)

where 𝑐𝑡 is a context speech representation predicted by the Transformer, 𝑞𝑡 is the
quantized speech representation at time step 𝑡 , and 𝑘 is the number of distractors.

Baevski et al. (2020) introduce diversity loss to ensure that the model makes
use of as many of the the learned quantized representations as possible. As such,
diversity loss is defined as

L𝑑 =
1

𝐺𝑉

𝐺∑
𝑔=1

𝑉∑
𝑣=1

𝑝𝑔,𝑣 log𝑝𝑔,𝑣 (3.3)

where 𝑉 is the number of entries in 𝐺 codebooks, and 𝑙 is the mean softmax
distribution over the entries from each codebook 𝑝𝑔.

The main objective of the aforementioned Wav2Vec 2.0 framework is to accurately
encode speech signals into quantized and contextualized representations; in other
words, it mainly serves as an encoder. The term Wav2Vec 2.0 is, however, often
used to refer to end-to-end models that, among other things, perform ASR. This is
made possible by combining a Wav2Vec 2.0 encoder with a Connectionist Temporal
Classification (CTC) decoder head, which transforms the encoded representations
(stored as values) into characters, resulting in text. CTC (Graves et al., 2006) can be
very roughly summarized as a sequence modelling algorithm that enables mapping
between sequences of different lengths. This is of utmost importance when working
with two different modalities, as is the case in ASR. In most, if not all languages,
the lengths of text and speech sequences are independent, as one letter does not
necessarily correspond to one phoneme, the smallest phonetic unit (consider, for
instance, the word queue and its pronunciation annotation in IPA, namely /kju:/ ).
Moreover, some phonemes are pronounced longer than others even if they correspond
to the same grapheme, the smallest graphological unit (for instance, both /2/ (short
a) and /a:/ (long a) generally correspond to the grapheme a). CTC breaks away
from the pre-condition of equal lengths by firstly predicting the token sequences
(with tokens corresponding to letters), merging the repetitions, and removing the
grapheme boundary markers. As formulated by Hannun (2017), when used for ASR,
CTC is an algorithm that learns to infer the most likely sequence of graphemes given
the encoded sequence of sounds by minimizing CTC loss (Graves et al., 2006).

CTC is an efficient complement to the Wav2Vec 2.0 framework; unsurprisingly, a
successful combination of the two leads to state-of-the-art ASR performance in a va-
riety of settings. The initial combination of Wav2Vec 2.0 encoder with CTC decoder
was proposed by Baevski et al. (2020) already in the original Wav2Vec 2.0 paper.
Somewhat resembling the traditional ASR models, both components require train-
ing, which is carried out individually. The authors thus proposed different names
for the two training procedures; namely, they referred to the process of training the
Wav2Vec 2.0 encoder as pre-training, whereas they use the term fine-tuning to refer
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to the training of the CTC decoder. In their initial study, Baevski et al. (2020) pre-
trained the model on 960 hours2 of unlabeled data. Afterwards, they fine-tuned the
CTC decoder on annotated data of different sizes to predict characters, ultimately
transforming the voice input into text. The results demonstrated competitive per-
formance and resembled those of semi-supervised (Synnaeve et al., 2019) and fully
supervised (Gulati et al., 2020) models which require extensive additional data in
the form of acoustic and language models. In addition, with just 10 minutes of an-
notated data, the authors of Wav2Vec 2.0 reached solid performance: 9.1 and 15.6
Word Error Rate (WER) on the clean versus other subsections of the LibriSpeech
benchmark (Panayotov et al., 2015a).

The excellent quality of a Wav2Vec 2.0-based model even in low-resource set-
tings is, however, not the only reason why the framework seems to have taken over
modern ASR. Arguably of equal importance is the potential of Wav2Vec 2.0 to be
further extended, enhanced, and combined with other tools and models. This can
be observed from the original paper as well, where Baevski et al. (2020) proposed a
so-called Large setup for the encoder, which increases the number of Transformer
blocks, attention heads, model dimensions, and inner dimensions in the encoder.
The authors also demonstrated the possibility of enhancing the CTC character-level
decoder with n-grams and Transformer language models. Both extensions require
additional resources in the form of computing power or data; however, they lead to
considerable improvements as compared to the Base model with no extensions.

3.3. ASR across Domains, Accents/Dialects, and Languages
Wav2Vec 2.0 has drawn tremendous amount of attention from the NLP community,
as research into Wav2Vec 2.0 has evidently become a direction in ASR in itself. The
direction of such research is fruitful for the ASR community because it often devi-
ates from the pursuit of new state-of-the-art and instead focuses on aspects such
as more efficient usage of data as well as the feasibility of models for low-resource
languages. As such, one of the arguments made by Baevski et al. (2020) in favour of
Wav2Vec 2.0 is the ability to pre-train the model on unlabeled data. This has been
further extended by Hsu et al. (2021), who proved that the speech features learned
during the pre-training step transfer across domains relatively effectively. Nonethe-
less, in-domain pre-training on unlabeled data leads to consistent and substantial
improvement in the performance of a Wav2Vec 2.0-based ASR model. Furthermore,
Hsu et al. (2021) revealed that exposure to more domains in the pre-training step
increases the robustness of the model and thus betters the performance even in an
out-of-domain setting. Similarly, Turan et al. (2020) investigated the effects of ex-
posing the model to different dialects of a language in both the pre-training and
fine-tuning steps. In their experiments, the authors used a dataset with 21 dialects
of English, both native and non-native, for pre-training and fine-tuning a Wav2Vec
2.0 model. As reported by Turan et al. (2020), such approach enabled the model to
learn accent-invariant features, leading to a consistent improvement over all accents
of English. It can therefore be argued that Wav2Vec 2.0 models benefit from the
diversity in the training data, as exposure of models to other domains and accents
improves the speech recognition capabilities.

Exposure of a Wav2Vec 2.0-based model to multiple languages in the pre-training
step has also been proven to be an effective approach. Multilingual language models
such as XLM (Conneau and Lample, 2019) and mBERT (Devlin et al., 2019) are
eminently suitable for multilingual and cross-lingual NLP tasks; nevertheless, when

2Alternatively 860 hours in certain setups
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it comes to monolingual settings in high-resource languages such as English, mono-
lingual counterparts such as BERT generally appear to be more effective Conneau
et al. (2021) and Conneau and Lample (2019). According to Conneau et al. (2021),
this is not necessarily the case with ASR models. The authors pre-trained a model
on a combination of 53 languages (thus the name XLSR-53) and compared it against
a model trained on monolingual data only, with the same amount of training data
and training time. The WER achieved by the multilingual model was at least 2 times
lower on all ten languages that it was tested on, e.g. 2.9 (XLSR-53) vs 6.8 (Monolin-
gual) WER on Spanish, 63.6 (XLSR-53) vs. 12.2 (Monolingual) WER on Swedish.
Conneau et al. (2021) additionally experimented with fully multilingual model that
was both pre-trained and fine-tuned on ten languages. When compared to the mono-
lingual baselines (pre-trained and fine-tuned only in the target language), the results
differ across the languages. In the case of Spanish, the fully multilingual model per-
formed worse than the monolingual baseline and the XLSR-53 setup (9.4 versus 6.8
and 2.9 WER respectively); when it comes to Swedish, the XLSR-53 model was
also observed to be most accurate (12.2 WER), yet the fully multilingual model
(21.0 WER) outperformed the monolingual baseline (63.6 WER). The deviations
can perhaps be linked to the differences in the sizes of data per language used for
pre-training. Similarly to the conclusions drawn by Bhable and Kayte (2020), in
relatively high-resource settings, e.g. Spanish with 168 hours, the fully multilingual
setup likely introduced noise, whereas for low-resource languages, e.g. Swedish with
just 3 hours, the monolingual data were insufficient to train an accurate monolingual
model (thus a WER of 63.6), and data in other languages seemed to compensate
the deficit.

3.4. Multilingual ASR
The developments in the field of Automatic Speech Recognition have continuously
kindled interest in the multilingual aspect of ASR. The primary goal of multilingual
ASR is being able to accurately handle two or more languages with a single system.
In light of this, a canonical architecture of multilingual ASR models has a language
identification component stacked on top of multiple monolingual models. In other
words, a classification model firstly aims to correctly identify which language is
being spoken, and then forward the speech input to the corresponding monolingual
model. Such architecture has been proposed by D.-C. Lyu and R.-Y. Lyu (2008),
Mabokela and Manamela (2013), and Barroso et al. (2010). Due to its simplicity
and effectiveness, the architecture remains a common solution for numerous non-
language-specific ASR models in the industry (Liu et al., 2021). As pointed out by
D.-C. Lyu and R.-Y. Lyu (2008), the architecture also excels at accurately processing
instances of code-switching, which is the phenomenon of switching between two or
more languages on a phrase or sentence level as one speaks. The classification-based
architecture is thus a relatively common solution for multilingual ASR in that it
builds upon and overcomes some of the main limitations of the monolingual systems.
However, the practicality of such architecture is questionable.

Firstly, classification-based multilingual ASR is costly in terms of computational
resources. This is mainly due to the fact that multiple systems, a classifier and
several speech-to-text engines, are ran in parallel. Perhaps even more challenging is
the requirement of multiple accurate monolingual ASR systems, as they generally
require copious amounts of training data (Hannun et al., 2014; Schultz and Waibel,
2000). Adding an additional monolingual model thus linearly increases the amount
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of data needed to produce such multilingual ASR system, which further increases
the computational costs.

An alternative solution for multilingual ASR systems involves combining some of
the components of monolingual models, while others remain detached. In traditional
ASR, multilingual approaches tend to rely on modifying or extending the acoustic
model across multiple languages. As such, Lin et al. (2009) merge phone models
and phonetic representations across multiple languages, whereas Bhable and Kayte
(2020) use Subspace Gaussian Mixture Models (SGMM) with shared parameters,
which are then joined through HMMs. The results achieved by such models are
mixed; the first approach appears to be only effective in low-resource setting, yet
harmful for resource-rich languages such as English. The second approach, however,
reportedly improved the performance on all languages involved.

Shared acoustic models have also drawn attention in the field of neural ASR.
Here, the multilingual structure of a model can be achieved through shared hidden
layers, as described by Benesty et al. (2008). Implementations of such architecture
have been proposed by Huang et al. (2013) and Heigold et al. (2013). As shown in
Figure 3.3, such architecture commonly has a shared input layer as well as hidden
layers that jointly learn acoustic features. The softmax layers, which constitute the
decoder of such model, are, however, individual for every language. This is done
to encourage the model to use language-specific structures when outputting the
transcription. Benesty et al. (2008) argues that the benefits of this architecture
are numerous. Most notably, the data in foreign languages improves the model’s
ability to generalize and reduces its bias. Furthermore, it makes it possible for the
model to deduce common cues shared across languages and thus aids the model’s
learning of low-resource languages. The results reported by Huang et al. (2013) seem
to support these claims, for a model with shared hidden layers reduced the WER
over monolingual DNN baselines by at least 3% on average across French, German,
Spanish, and Italian, all of which are relatively high-resource languages.

Figure 3.3.: The architecture of a multilingual ASR model with shared hidden layers (Benesty
et al., 2008; Huang et al., 2013)

It can be argued that most straightforward is the multilingual integration in end-
to-end models. Without any additional pre-processing or multilingual resources, end-
to-end models can be directly trained on multiple languages at once. An example of
such approach has been proposed by Conneau et al. (2021). The authors used the
aforementioned Wav2Vec 2.0 framework to jointly pre-train and fine-tune a multi-
lingual model on 10 languages at once. Full integration did not, however, lead to
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best results. Most notable improvements were observed with the previously men-
tioned XLSR-53 approach, where only the pre-training step was carried out jointly,
whereas the fine-tuning was carried out in isolation. Evidently, joint training on all
ten languages introduces substantial noise due to the typological differences between
the languages. Pratap et al. (2020) report somewhat similar observations with a
sequence-to-sequence ASR model: the improvements in terms of the word error rate
differ substantially across languages, as low-resource languages benefit the most, and
high-resource languages lag behind monolingual baselines. Nevertheless, Pratap et al.
(2020) introduce a mostly universally-functional solution involving input language
embedding as well as script-based language clusters. The language-based embedding
is a 10-dimensional vector that encodes the features of a language and is fed to the
encoder along with the input. A language cluster, on the other hand, is a simple
grouping of languages based on their script, which determines which languages will
be jointly learned by the ASR model. As with other multilingual approaches, this
benefits low-resource languages. However, the authors reported up to almost 50%
increase in the word error rates for high-resource languages.

To summarize, multilingual ASR is an active research topic that has seen ap-
proaches ranging from monolingual systems joined by a classifier to fully connected
multilingual end-to-end models. Following the work of Conneau et al. (2021) and
Pratap et al. (2020), current multilingual ASR models almost exclusively benefit
low-resource languages. In addition, fully connected multilingual models suffer from
noise when handling typologically different languages that, for instance, use different
scripts.
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4. Methodology

In this thesis project, we firstly analyse the performance of monolingual ASR models
for the Scandinavian languages. We then train and evaluate a multilingual end-to-
end ASR model for Swedish, Danish, and Norwegian. The research conducted in
this thesis project can be divided into two parts and sets of experiments, namely
monolingual and multilingual.

This section firstly covers the experimental settings alongside the hypotheses
for monolingual (4.1) and multilingual (4.2) models. Section 4.3 describes the two
datasets used in this research. Section 4.4 covers the models used. Section 4.5 ad-
dresses the evaluation metrics and practices used in this project.

4.1. Monolingual Scandinavian ASR Models
As explored by Delsing (2005) and Gooskens (2007), the spoken language compre-
hension levels differ across the native speakers of Swedish, Danish, and Norwegian.
Both authors suggest that the extent of comprehension is affected by one’s native
language as well as their exposure to other Scandinavian languages, or lack thereof.
The first aim of this research is to explore whether similar patterns can be observed
in the monolingual ASR models for Swedish, Danish, and Norwegian.

Research into comprehension of foreign languages where the subjects of study have
received no education in that foreign language highly resembles zero-shot transfer
setting for models. In zero-shot setting, a model trained on one language or task is
used to process data in another language or perform a different task. An example
of such setting is explored by Wu and Dredze (2019), who use an English part of
speech tagging model to tag sequences in French.

Zero-shot transfer is especially effective for low-resource languages, for which the
training data is sparse. Prior research also suggests that the success of zero-shot
transfers depends on the quality of features learned from the source language or
languages (Lauscher et al., 2020). On the other hand, the transferability of the
learned features in zero-shot settings also depends on how similar the source and
target languages are in their typologies, vocabulary overlap, and other aspects (Wu
and Dredze, 2019). As covered in Section 2, the Scandinavian languages are alike
in a range of aspects varying from the alphabet to grammar. We therefore seek
to investigate whether these similarities enable successful cross-lingual zero-shot
transfers of the monolingual ASR models. We also investigate whether differences
in the performance of ASR models on Scandinavian languages correlate with the
cross-lingual comprehension levels in native speakers of the Scandinavian languages.

In order to learn whether the monolingual ASR models for Swedish, Danish, and
Norwegian are mutually transferable, we additionally compare their performance
against an accurate English model. By doing so, we seek to ensure that the good or
poor performance of the monolingual models stems from the language it was trained
on rather than the overall quality of the model. In addition, we compare the perfor-
mance of the models across the regional dialects of the Scandinavian languages. We
seek to learn whether monolingual ASR models are biased towards certain regional
dialects; that is, if they perform better on certain regional dialects than on others.
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Lastly, we evaluate the effectiveness of complementing monolingual ASR models
with statistical language models across all regional dialects and in a cross-lingual
setting. 4-gram and 5-gram language models have been proven to consistently boost
the performance of ASR models in monolingual settings (Baevski et al., 2020; Tian
et al., 2022). It has also been studied from the perspective of in-domain and out-
of-domain language model applicability (Håkansson and Hoogendijk, 2020). To the
best of our knowledge, the applicability of n-grams language models for cross-lingual
ASR is yet to be studied. We assume that n-grams, and likely other types of language
models, are highly effective in cross-lingual settings because they offer knowledge
about the target language, which the ASR models are not exposed to.

4.1.1. Hypotheses
We hypothesize that the monolingual Wav2Vec 2.0-based ASR models for the Scan-
dinavian languages partially exhibit patterns similar to native speakers in terms
of the comprehension of other Scandinavian languages. In addition, we expect to
find bias in the monolingual ASR models towards one regional dialect. We also
believe that the language-specific supervision offered by a 4-gram language model
substantially enhances the performance of ASR models in both monolingual and
cross-lingual settings. More specifically, our hypotheses are the following:

(Mono1): The Swedish ASR model performs better on Norwegian than on Danish;

(Mono2): The Danish ASR model performs better on Norwegian than on Swedish;

(Mono3): The Norwegian ASR model performs better on Swedish than on Danish;

(Mono4): The English ASR model performs worse than the Swedish, Danish, and
Norwegian models on all three Scandinavian languages;

(Mono5): In-domain 4-gram language model contributes towards improving the
performance of all ASR models;

(Mono6): Monolingual ASR models favour one dialect of the target language;

4.1.2. Experimental Setup
We investigate the cross-lingual comprehension of monolingual ASR models for
the Scandinavian languages in two settings. Firstly, we locate the most accurate
Wav2Vec 2.0-based ASR models for Swedish and Norwegian Bokmål available on
Hugging Face. No Danish end-to-end ASR model was available on the platform, so
we fine-tune one ourselves. All three models are described in greater detail in section
4.4. We then evaluate the ability of the three models to transcribe data in all three
languages; that is, each model is tested on Swedish, Danish, and Norwegian.

In the first setting, we retain the parameters of model decoders unchanged with
the exception of the vocabulary (set of legal characters): we replace the character æ
with ä and ø with ö while testing the Danish and Norwegian models on Swedish, and
vice versa in the opposite direction. These replacements allow us to ensure that the
vocabulary of each model contains all the characters used in the target language. In
the second setting, we provide language-specific supervision by boosting the decoders
of the monolingual models with statistical language models in the target language.
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We use 4-gram1 language models which we compile with the KenLM 2 library on the
train subsets of the NST datasets described in Section 4.3. We keep the standard
parameters in both the language model and decoder. For comparison, we transcribe
the Swedish, Danish, and Norwegian test sets using a monolingual ASR model in
both settings, without any modifications to the vocabulary of the model.

We split up the entries in the three test sets according to the regional dialects
the speakers belong to, combine the entries with the same regional dialect, and
compute word and character error rates (the metric is explained in Section 4.5 per
each regional dialect. Lastly, we use the 𝑎𝑠𝑟_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 library to compile the most
common transcription errors in all monolingual and cross-lingual settings.

4.2. Multilingual Scandinavian ASR Model
Multilingual training is often beneficial only to low-resource languages (Conneau
and Lample, 2019; Devlin et al., 2019). As proven by Conneau et al. (2021), the
case of multilingual ASR is slightly different, for a jointly pre-trained encoder can
boost the performance of a multilingual model. Nevertheless, a joint decoder, i.e.
one trained on several languages, leads to worse performance across most if not all
languages (Conneau et al., 2021). It should be noted that the authors pre-trained
and fine-tuned their multilingual model on ten highly divergent languages: Spanish,
French, Italian, Kyrgyz, Dutch, Russian, Swedish, Turkish, Tatar, and Chinese. It
is possible that the poor performance of their multilingual end-to-end model is, on
part, due to the noise introduced from using ten highly divergent languages. In the
case of syntactic parsing, multilingual models excel when the languages a model is
trained on are similar. For instance, Smith et al. (2018) observed that joint training
on Estonian, Finish, and North Sami treebanks leads to considerable improvements
on all three languages in sentence and word segmentation, part-of-speech tagging,
annotation of morphological features, and dependency parsing. Furthermore, Smith
et al. (2018) report that joint training of Swedish, Danish, Norwegian, and Faroese
mostly boosted the performance on all four languages as compared to monolingual
baselines. We therefore suspect that if multilingual end-to-end ASR models are to
be trained on typologically similar languages, they could demonstrate performance
comparable to monolingual baselines.

We identify the inability to use language models in multilingual ASR models as
a major drawback. To address this, we propose a novel architecture for multilin-
gual ASR models, which is shown in Figure 4.1. Our modification to the standard
Wav2Vec 2.0 model with CTC decoder involves adding language classification com-
ponent. The additional component predicts the language from the encoded values
and allows to boost the CTC decoder with the appropriate language model. The us-
age of the classification module as well as language models is though optional, as the
proposed architecture has two settings. The first setting uses the default Wav2Vec
2.0 encoder and CTC decoder, with the latter being fine-tuned on the three Scandi-
navian languages, yet no language model. In the second setting, the information is
firstly encoded through Wav2Vec 2.0 encoder, forwarded to the language classifica-
tion module, and then decoded with the corresponding language model in the CTC
decoder.

Lastly, we believe that the existing monolingual ASR models can be used to
initialize multilingual models. Monolingual models already have high accuracy on

1We stick to 4-gram rather than 5-gram due to technical constraints, as the library was failing to
produce a 5-gram language model for Swedish.

2https://github.com/kpu/kenlm
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one of the languages; hence, the task becomes one of training a model to additionally
transcribe in two more languages while retaining the ability to transcribe in the
language the monolingual model is trained on. We first explore this idea by training
multiple trial models and comparing their result against monolingual baselines as
well as against a multilingual ASR model trained from scratch. We then choose the
most effective setting to train our final multilingual model.

Figure 4.1.: The proposed multilingual, language-aware end-to-end ASR architecture with a
language classification component. The images for the encoder and decoder com-
ponents are borrowed from Baevski et al. (2020) and Graves et al. (2006) respec-
tively.

4.2.1. Hypotheses
We hypothesize that the numerous similarities between Swedish, Danish, and Nor-
wegian enable effective joint multilingual training. As such, we expect the approach
with initializing the multilingual model with a monolingual one to outperform the
training from scratch, since it allows to leverage the existing high quality of the
model on one of the languages. We though expect the multilingual models to per-
form worse than the monolingual baselines. Our hypotheses can be formulated as
follows:

(Multi1): Among the trial models, monolingual baselines are expected to achieve
best results;

(Multi2): A multilingual model can be extended to handle all three languages by
additionally fine-tuning it on the remaining two languages;

(Multi3): Without additional exposure to the data a monolingual model is trained
on, i.e. by additionally fine-tuning the monolingual model only on the other two
languages, the monolingual-turned-multilingual model’s ability to transcribe
its initial target language will degrade significantly;

(Multi4): The performance of the multilingual model across the dialects of Swedish,
Danish, and Norwegian is less skewed than that of monolingual models.

(Multi5): Without the language classification module and language-specific lan-
guage models, the multilingual ASR model is likely to make cross-lingual
errors; for instance, it is likely to predict Norwegian words with a Swedish
spelling.
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4.2.2. Experimental Setup
We explore two approaches for training multilingual ASR models for the Scandina-
vian languages. Firstly, we train a multilingual decoder from scratch on all three lan-
guages at once. For the encoder, we use the available pre-trained VoxRex Wav2Vec
2.0 encoder trained for Swedish. We randomly initialize the decoder with parame-
ters identical to those of the Wav2Vec 2.0 large VoxRex model described in section
4.4.1, as these parameters have reportedly led to good results for multiple ASR
models published on the Hugging Face platform, whereas a grid search of the hyper-
parameters for Wav2Vec 2.0 models is computationally heavy. We then fine-tune the
decoder with a shared vocabulary on a subset of 15,000 randomly chosen samples
from each language, 45,000 samples in total, for 5 epochs.

In the second approach, we attempt second language acquisition in an ASR model;
that is, we further fine-tune the monolingual Wav2Vec 2.0 large VoxRex Swedish
model to see whether it can acquire a second and third language. We choose the
Swedish model since it has been trained for most updates and has the lowest WER
in its target language. We attempt three settings: firstly, we fine-tune the Swedish
model on 15,000 randomly sampled entries per language in Danish and Norwegian,
without feeding it any Swedish data. In the second setting, we feed it with 15,000
entries per language in Danish and Norwegian, and 7,500 entries in Swedish. In
the third setting, we fine-tune the model on 15,000 entries in each language. In all
settings, we fine-tune the model for 5 hours with early stopping at 24 hours.

In all approaches, we use CTC loss as the objective function. We evaluate the
model on a held-out validation dataset of 2,000 entries per language every 1,000
updates. We then compare the performance of the multilingual models across all
three languages to select the most suitable approach, which we adopt to fine-tune
the final multilingual model for three days. We also compare the performance of mul-
tilingual models to monolingual baselines trained with the exact same parameters
and settings, but on one language at a time.

As for the classification component, we randomly initialize a linear layer which we
then train to predict the language label from the encoded audio representations. We
train the classifier on randomly selected and shuffled 15,000 entries from the train
set per language. We train the classifier for two days with the following parameters:
train and evaluation batch sizes of 4, 2 gradient accumulation steps, learning rate of
1e-4, mean pooling, and maximum number of epochs set to 100. We then individually
evaluate the classification module on a combination of all three test sets.

Lastly, add the classification module to the multilingual ASR model by re-routing
the output of the encoder to the classification module. The module predicts the
language and selects the correct language model to further boost the decoder of the
ASR model. We evaluate the performance of the proposed architecture across the
test sets for all three languages.

4.3. Datasets
4.3.1. Common Voice (CV)
Common Voice (Ardila et al., 2020) is an open-source multilingual dataset of speech
and text pairs. The data is gathered by volunteers who are offered to contribute
by submitting text, speech, or both. The submitted texts and recordings are addi-
tionally validated. At present, the dataset contains 18,243 hours of recordings and
their corresponding texts, 14,122 hours of which have been validated. The recently
released 8.0 version contains data in 87 languages including numerous low-resource
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languages, such as Votic, Erzya, and Baasa. The distribution of the data across
the languages is though highly skewed, as English, German, and French constitute
roughly 29% of all the validated hours available in the dataset. When it comes to the
Scandinavian languages, CV 8.0 contains data in Swedish, Danish, and Norwegian
Nynorsk, yet amount of data available per language, which is shown in Table 4.1,
differs greatly. Nevertheless, the majority of these data are manually verified and
thus high-quality. Furthermore, data in Swedish, Danish, and Norwegian available
in CV 8.0 mirror or even exceed the amounts of data available in most low-resource
languages.

Language Overall Validated
Swedish 48 40
Danish 6 6
Norwegian Nyrorsk 0.38 0.3

Table 4.1.: Hours of data per language available in the Common Voice 8.0 dataset.

4.3.2. Nordisk Språkteknologi (NST)
NST is an extensive ASR dataset available in Swedish, Danish, and Norwegian Bok-
mål. The data consist of speech and transcription pairs manually compiled, mainly
for the purpose producing ASR models. Data additionally include transcribed tele-
phone conversations as well as recordings and transcriptions with the recordings
of conversations at an office. The data has been manually validated for the most
part, and the audio quality is high despite being recorded in early 2000s. Most
recordings in the dataset are available in two channels recorded with two separate
microphones, one placed right next to the speaker, and one across the room. The
dataset also includes richly annotated metadata for every speaker, disclosing their
age, gender, region of birth, and regional dialect. The region of birth and regional
dialect indicate the geographic region a speaker was born in and the regional dialect
they speak; both pieces of information were self-reported by the speaker.

Following a recent modernisation of the dataset, it is now available in a reader-
friendly format; however, the modernisation of the Swedish test set is still in progress.
To avoid possible errors in parsing the old versus new version of the dataset, 20%
of the Swedish train set with no overlap are used as the test in this study, and
the original test set is omitted. In addition, due to an already large dataset and
lack of notable differences between the audio recorded with two microphone, the
second channel, namely the audio recorded with a distant microphone, is omitted.
The amounts of data in each language used in this study are shown in Table 4.2
below.

Language Train Test
Swedish 303.7 73.2
Danish 126.9 77.1
Norwegian Bokmål 436.3 115.3

Table 4.2.: Hours of data per language in the NST dataset.

The regional dialects represented in the dataset as well as amounts of data avail-
able in the dataset per dialect are reported in Tables 4.3, 4.4, and 4.5 below. The
variables region of birth and regional dialect match in most cases; yet for cases
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where the region of birth differed from the self-reported regional dialect, the latter
was chosen for the dialect label. All audio and text pairs were discarded where both
the region of birth and regional dialect were unspecified or specified as ’other’.

The regions of birth and regional dialects reported in the dataset differ from the
dialectal boundaries drawn by linguists, which are addressed in Section 5.1.2. It is
therefore debatable whether the dataset is representative of the dialectal varieties of
the Scandinavian languages. It is, however, representative of the major regions and
the language variety spoken in that region, which corresponds to the term regiolect.
As shown in section 5.1.2, the dialects of the Scandinavian languages can, for the
most part, be mapped to a certain region. Therefore, the terms dialect and regiolect
are henceforth used synonymously in this thesis.

Region of birth and regional dialect match in most cases; yet for cases where the
region of birth differed from the self-reported regional dialect, the latter was chosen
for the dialect label. All audio and text pairs were discarded where both the region
of birth and regional dialect were unspecified or specified as ’other’.

Table 4.3.: The size of the Swedish subset of the NST dataset. The number of hours is rounded
to one decimal place. The names of regions are directly adopted from the dataset.

Train Test
Hours Speakers Hours Speakers

Norrland 44.0 109 10.7 26
Stockholm med omnejd 42.3 137 11.7 6
Västra sydsverige 38.1 97 10.2 28
Mellansverige 30.7 87 9.7 26
Göteborg med omnejd 29.9 97 6.7 43
Västergötland 27.6 72 5.5 14
Östergötland 25.5 66 4.8 11
Östra sydsverige 25.3 61 6.3 16
Dalarna med omnejd 23.6 62 5.1 13
Västsverige 16.6 45 2.4 7

Total 303.7 833 73.2 190

Table 4.4.: The size of the Danish subset of the NST dataset. The number of hours is rounded
to one decimal place. The names of regions are taken directly from the dataset.

Train Test
Hours Speakers Hours Speakers

Storkøbenhavn 29.5 185 27.8 20
Fyn 17.1 88 8.5 7
Vest- og Sydsjælland 16.7 87 9.2 6
Vestjylland 16.5 87 6.9 5
Nordjylland 16.0 82 8.1 6
Østjylland 15.5 86 8.9 7
Sønderjylland 15.2 82 7.6 6
Total 126.4 697 77.1 57
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Table 4.5.: The size of the Norwegian subset of the NST dataset. The number of hours is
rounded to one decimal place. The names of regions are directly adopted from the
dataset.

Train Test
Hours Speakers Hours Speakers

Bergen og Ytre Vestland 54.0 110 8.3 6
Oslo-området 52.1 128 25.3 24
Ytre Oslofjord 49.2 116 7.3 6
Sør-Vestlandet 46.3 98 10.3 7
Trøndelag 39.4 92 9.3 8
Sørlandet 38.7 96 9.0 6
Voss og omland 33.6 85 9.4 6
Hedmark og Oppland 31.3 86 8.5 9
Nordland 31.0 74 8.8 6
Sunnmøre 30.6 65 9.3 7
Troms 30.2 65 9.6 5
Total 436.3 1015 115.3 90

4.3.3. Dataset Usage
We use the CV dataset for validation of trial models in different settings. More
specifically, we use the data to evaluate the multilingual models during training. To
reduce the computational costs, we limit the size of the dataset to 2,000 randomly
sampled entries per language, amounting to just over an hour of data per language.
For Norwegian, we use a random held out sample of 2,000 entries from the NST
training subset instead. This is to ensure that the training, evaluation, and testing
subsets contain the same language variety, namely Norwegian Bokmål.

We use the NST dataset to both train and evaluate the models. When it comes
to the latter, we use the entire test sets in the the three languages. For training,
we randomly sample smaller portion of the train subsets due to limited access to
computational power as well as space constraints. More specifically, we train the
monolingual Danish ASR model on 30,000 random entries from the Danish train
subset. Samples of training data for the multilingual models are limited to 15,000
random entries per language.

4.3.4. Text and Audio Pre-processing
Wav2Vec 2.0-based ASR models are highly susceptible to changes in the sampling
rate of the audio as well as the vocabulary (character set) that constitutes the
data. This is due to the fact that Wav2Vec 2.0-based models are trained to map
audio signals of specified dimensionality to a pre-defined set of characters. Should
the sampling rate differ from the one encountered in training, the model’s encoder
would likely fail to interpret the dimensionality of the data. Similarly, a trained
Wav2Vec 2.0 model is unable to predict characters that are outside of its vocabulary.
To accurately evaluate the performance of an ASR model, it is therefore crucial to
ensure that the sampling rate and the vocabularies match across the train and test
set.

To address the above, we additionally pre-process both audio and text. We down-
sample the audio files from the CV dataset to 16 kHz, which is the standard sampling
rate for Wav2Vec 2.0 ASR models. Lower sampling rate generally leads to lower au-
dio quality; nevertheless, a lower sampling rate also requires less computational
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power, which allows for more efficient training. We carry out downsampling using
the built-in resampling feature available in the Hugging Face Dataset class. As for
the text, we lowercase all characters and remove all non-alphanumeric characters,
such as punctuation markers. We keep the numerals in the data unchanged, as ex-
cluding numerals from the transcription yet leaving it in the audio would distort the
alignment of the data.

4.4. Models
The quality of ASR models trained with Wav2Vec 2.0 largely depends on the avail-
ability of training data as well as computational resources. The amount of data
described in 4.3 is considerable and sufficient to train accurate models; however, the
access to computational resources devoted to this thesis was limited, as at most 1
GPU was available at all times. In light of this, whenever possible, we use the mod-
els available on Hugging Face instead of training all models from scratch. As such,
we directly adopt five open-source models from Hugging Face: Swedish pre-trained
model, Swedish end-to-end model, Norwegian end-to-end model, Danish pre-trained
model, and English end-to-end model. These models, alongside the multilingual trial
models, are further discussed in the following subsections.

4.4.1. Swedish
We use two Swedish ASR models: a pre-trained model and an end-to-end model.
Firstly, we use large VoxRex (version C)3 (Malmsten et al., 2022) as the pre-trained
Wav2Vec 2.0 model for Swedish. As reported by the authors, the model has been
pre-trained for 400,000 updates on 10,000 hours of Swedish radio records and 1,500
hours of data owned by the National Library of Sweden. For the end-to-end model,
we use Wav2vec 2.0 large VoxRex Swedish (C)4, which a fine-tuned version of the
pre-trained model. The end-to-end model has been fine-tuned for 120,000 updates on
a combination of the CV and NST datasets. The model demonstrates outstanding
performance as, with a 5-gram language model, it achieves a WER of 3.73% on the
Swedish test subset of CV. Both models are trained, maintained, and shared by the
National Library of Sweden. To the best of our knowledge, the two models are the
best pre-trained and end-to-end models for Swedish at the moment of writing this
thesis.

4.4.2. Norwegian
We use an end-to-end Norwegian ASR model trained and shared by the National
Library of Norway, namely the Norwegian Wav2Vec2 Model - 1B Bokmål 5. As
reported by the authors, the model is fine-tuned on top of the Swedish large VoxRex
for roughly 18,560 updates on the Norwegian Parliamentary Speech Corpus. When
boosted with an in-domain 5-gram language model, the model achieves a WER of
12.22% on the test subset of the NPSC dataset. To the best of our knowledge, this
is state-of-the-art end-to-end ASR model for Norwegian Bokmål.

3Available at: https://huggingface.co/KBLab/wav2vec2-large-voxrex; Last accessed: May 9th,
2022

4Available at: https://huggingface.co/KBLab/wav2vec2-large-voxrex-swedish; Last accessed: May
9th, 2022

5Available at: https://huggingface.co/NbAiLab/nb-wav2vec2-1b-bokmaal; Last accessed: May
9th, 2022
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4.4.3. Danish
We use a pre-trained ASR model for Danish trained and made public on Hugging
Face by Alvenir.ai6. As reported by the authors, the model has been pre-trained on
roughly 1,300 hours of audio books and podcast recordings. The number of updates
and epochs are not reported. Since no end-to-end Wav2Vec2.0 Danish models were
available at the moment of writing the thesis, we train such model ourselves. We
combine the aforementioned pre-trained Danish model with a randomly initialized
CTC decoder, which we then train on one GPU for roughly 5,800 updates (10 epochs)
on randomly sampled 20% of the Danish NST train set. We retain the parameters
of the pre-trained model for the encoder. In the decoder, we set the batch size to 10,
gradient accumulation steps to 3, learning rate to 1e-4, and weight decay to 0.005.
The complete parameters of the Encoder and Decoder modules are shown in Tables
A.1 and A.2 in the appendix. With a 4-gram language model, the end-to-end Danish
ASR model achieves a WER of 13.82% on the Danish NST test set.

4.4.4. English
We use an end-to-end English ASR model proposed in the original Wav2Vec 2.0
paper (Baevski et al., 2020), namely Wav2Vec 2.0 base 960h, which we accessed
from Hugging Face7. According to Baevski et al. (2020), the model is both pre-
trained and fine-tuned on 960 hours of data (roughly 250,000 samples) from the
Librispeech dataset for 400,000 training steps. The model is then fine-tuned on 100
hours of same data for an unreported number of updates. With a 5-gram language
model, the end-to-end English model achieves a WER of 3.4% and 8.0% on the
Librispeech clean versus other test set respectively.

4.4.5. Trial Multilingual Models
We examine the most suitable multilingual setting by training four trail multilingual
models and three monolingual baselines. Our experiments involve training only the
CTC decoder component of the model. Due to the demanding nature of pre-training
a Wav2Vec 2.0 encoder, we use the large VoxRex (version C) pre-trained model for
Swedish (Malmsten et al., 2022) in all setting. In the most straightforward approach,
we fine-tune a multilingual model from scratch on 15,000 randomly sampled entries
from the NST test set in each language. We further refer to this model as From
Scratch DA+NO+SE. In the remaining multilingual approaches, we initialize the
multilingual models from Wav2vec 2.0 large VoxRex Swedish (C), which is both
pre-trained and fine-tuned on Swedish. We attempt additionally fine-tuning the
Swedish model on 15,000 entries in Danish and Norwegian (Retraining DA+NO),
15,000 entries in Danish and Norwegian as well as 7,500 entries in Swedish (Re-
training DA+NO+SE_half ), and 15,000 entries per language in all three languages
(Retraining DA+NO+SE_full). Lastly, we train monolingual baselines by initializ-
ing a CTC decoder on top of the large VoxRex (version C) pre-trained Swedish
model and fine-tune it on 15,000 entries in the corresponding language. All trial
models are trained for 24 hours but not more than 5 epochs. The results of the trial
models are covered in Section 5.2.1.

6Available at: https://huggingface.co/Alvenir/wav2vec2-base-da; Last accessed: May 9th, 2022
7Available at: https://huggingface.co/facebook/wav2vec2-base-960h; Last accessed: May 9th, 2022
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4.5. Evaluation metrics
We evaluate the performance of ASR models using Word Error Rate (WER), Charac-
ter Error Rate (CER) and qualitative analysis of the errors. We estimate WER and
CER using the Hugging Face implementation of the metrics, whereas we conduct
qualitative analysis using the asr-evaluation toolkit8.

4.5.1. Word Error Rate
Word Error Rate (WER) is an ASR evaluation metric that estimates the number
of errors in transcription relative to the number of words. The calculation of WER
is shown in equation 4.1, where three types of errors, namely substitutions (S),
insertions (I ), and deletions (D) are summed and divided by the number of tokens
in the reference (N, usually words or characters).

𝑊𝐸𝑅 =
𝑆 + 𝐼 + 𝐷

𝑁
(4.1)

Substitution is an instance when the spelling of a word predicted by the model
deviates from the reference transcription. Insertion is an erroneous prediction of an
additional word that is absent in the reference transcription. Lastly, deletion is a type
of error that occurs when a word present in the reference transcription is omitted
in the predicted transcription. Examples of word-level substitution, insertion, and
deletion are shown in Table 4.6.

Table 4.6.: Word-level examples of Substitution, Insertion, and Deletion.
Reference Prediction WER

Substitution This is an error This is an eror 0.25
Insertion This is an error This is an an one error 0.33
Deletion This is an error This (is an) error 0.5

WER is arguably the most common ASR evaluation metrics used in numerous
benchmarks, such as LibriSpeech (Panayotov et al., 2015c), LibriLight (Kahn et al.,
2020), and TIMIT (Garofolo et al., 1992). As suggested by Ali and Renals (2018),
WER is most accurate when a model is evaluated on at least two hours of data.
All test subsets used in this research, including the distributions of dialects in the
test sets, contain at least two hours of data; therefore, we use WER as the core
evaluation parameter in this research.

4.5.2. Character Error Rate
Character Error Rate (CER) is an ASR evaluation metric that estimates the number
of erroneous characters (letters) relative to the number of correct characters. The
metric is calculated using the same equation as WER (4.1); however, the substitu-
tions, insertions, and deletions occur on a character level. An insertion is thus an
incorrectly predicted character rather than an incorrectly predicted word. Examples
of character-level substitution, insertion, and deletion are shown in Table 4.7.

CER is a common secondary evaluation metric which is often used alongside
WER, as is the case with the aforementioned benchmarks (Garofolo et al., 1992;
Kahn et al., 2020; Panayotov et al., 2015c). CER addresses a major limitation of
the word-level metric, which is that WER penalizes the score equally regardless of
whether there is one or more mistakes in the spelling of a word. In other words, a

8Available at: https://github.com/belambert/asr-evaluation; Last accessed: May 14th, 2022
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Table 4.7.: Character-level examples of Substitution, Insertion, and Deletion. The number of
tokens used in calculating the CER includes spaces. CER scores are rounded to three
decimal places.

Reference Prediction CER
Substitution This is an error This is am error 0.063
Insertion This is an error This is ann errror 0.125
Deletion This is an error Thi(s) is a(n) er(r)or 0.188

completely random sequence of character is considered to be as severe a mistake as a
spelling with just one character off. We therefore use CER as a secondary evaluation
metric for better insight into the quality of predicted transcriptions.

4.5.3. Qualitative Analysis
We additionally supplement the evaluation of the quality of ASR models with brief
qualitative analysis of errors and predicted transcriptions. We report most com-
mon errors and their types (substitutions, insertions, and deletions) alongside their
frequencies. We use the results of qualitative analysis for better overview of the
challenges faced by the models as well as for verification of whether the differences
captured by the WER and CER are indeed errors, or possible alternative spellings.
Lastly, we include examples of the transcriptions predicted by models for better
understanding of whether the evaluation metrics allow to fully judge the quality of
models.
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5. Results and Discussion

This section is divided into two parts, namely Monolingual Models (5.1) and Mul-
tilingual Models (5.2). In the first part, we present and discuss the performance of
the monolingual Scandinavian ASR models in a zero-shot transfer setting (5.1.1),
perform a brief qualitative analysis of some of the most common transcription errors
(5.1.3), and compare their performance across regional dialects (5.1.2). In the second
part, we present and analyse the performance of the trial multilingual models (5.2.1)
and the language classification component (5.2.2), followed by an overview of the
final multilingual model (5.2.3).

5.1. Monolingual Models
5.1.1. Zero-shot Transferability and Mutual Intelligibility
The performance of the monolingual Swedish, Danish, and Norwegian ASR models
across the three languages is reported in Table 5.1. The table also includes the
performance of the English end-to-end model on the three languages for comparison.

Table 5.1.: The performance of the monolingual models on the Scandinavian languages, no
language model versus a 4-gram language model. The percentages are rounded to
two decimal places. The left-most column denotes the language on which the model
was tested.

No LM With LM
Model Test Set WER CER WER CER

Swedish
Swedish 2.19% 0.98% 2.74% 1.07%
Danish 78.58% 39.66% 72.69% 40.67%
Norwegian 61.78% 21.29% 52.06% 19.64%

Danish
Swedish 120.10%1 61.03% 98.93% 56.94%
Danish 19.14% 5.45% 13.82% 4.33%
Norwegian 104.56% 52.59% 90.06% 49.52%

Norwegian
Swedish 83.51% 26.34% 73.82% 24.70%
Danish 83.79% 36.82% 75.05% 36.33%
Norwegian 16.47% 3.62% 12.03% 2.81%

English
Swedish 110.06% 50.26% 93.59% 48.53%
Danish 99.50% 54.11% 88.71% 54.75%
Norwegian 102.52% 49.79% 90.35% 48.22%

1 WER and CER can be above 100% when the number of insertions and/or deletion errors
outnumbers the number of words in the reference.

Analysis of the results with focus on the applicability of zero-shot transferability
of the monolingual ASR models for the Scandinavian languages reveals that the
performance differs greatly depending on the source (model) and target (test set)
language. A monolingual Swedish model achieves a lower WER and CER on Nor-
wegian than on Danish. A Danish model, on the other hand, performs better on
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Norwegian than on Swedish. Lastly, the performance of the Norwegian model is sim-
ilar on Swedish and Danish in terms of WER, with a lower error rate on the former.
The difference is though more noticeable on the CER parameter.

The first three hypotheses for the monolingual models expected the monolingual
ASR models for the Scandinavian languages to follow the mutual intelligibility pat-
terns of native speakers; that is, much like a native speaker of Swedish, a Swedish
ASR model would do better job at transcribing Norwegian than Danish, a Danish
model would perform better on Norwegian than on Swedish, and a Norwegian model
would perform better on Swedish than on Danish. The results appear to support
the three hypotheses, as the performance of monolingual ASR models for the Scan-
dinavian languages seems to match the patterns of mutual intelligibility of native
speakers of the Scandinavian languages reported by Delsing (2005) and Gooskens
(2007). It should be noted that in both studies, the task for native speakers was to
answer questions asked in their non-native language (response was given in their na-
tive language). This task differs from transcription, as transcription arguably does
not necessarily require one to understand the question asked, whereas answering
a question does not require one to know the correct spelling of the words present
in the questions. Nevertheless, albeit the somewhat different natures of the task,
the levels of comprehension of the foreign Scandinavian languages in Scandinavians
seemingly resemble the ability to transcribe the foreign Scandinavian languages in
zero-shot transfer setup for monolingual ASR models.

Comparison of the performance of monolingual Scandinavian models with an En-
glish model offers further insight into the subject. The English model is outperformed
by the Swedish and Norwegian models across all three languages; nevertheless, the
English model appears to perform better on Swedish and Norwegian as compared
to the Danish model, on both parameters. However, when boosted with a language
model, the Danish model outperforms the English counterpart on Norwegian in
terms of WER. The overall applicability of zero-shot transfers for Scandinavian
ASR models is thus questionable. In best setting, namely when the Swedish model
is used to transcribe Norwegian, WER remains above 60% without a language model
and 52% with a language model.

The results do not seem to support the fourth hypothesis for the monolingual
models, which expected the English model to have the poorest performance out of
the four models tested on Swedish, Danish, and Norwegian. More specifically, the
hypothesis breaks with the Danish model. A plausible explanation is the overall
limited fine-tuning of the Danish end-to-end model. As mentioned in the model
description in Section 4.4.3, the decoder is fine-tuned for only 4,000 updates, which
is a relatively low number in comparison to the other models tested in this project.
It could be the case that with further fine-tuning on data in Danish, the model
would perform better not only on Danish, but also on Swedish and Norwegian. In
the case of the English model, which has been fine-tuned for 400,000 steps already,
further fine-tuning on English data is highly unlikely to affect the performance on
the Scandinavian languages.

Lastly, the results reveal the effectiveness of boosting Wav2Vec 2.0-based ASR
models with simple n-gram language models. An in-domain 4-gram language model
appears to improve both WER and CER in most settings. In the case of Danish
and Norwegian ASR models, a language model steadily improves the performance
on both the language a model is trained on and foreign languages. When it comes
to the Swedish model, however, a 4-gram language model evidently hinders the
model’s ability to transcribe Swedish data, as both WER and CER become higher.
A language model nevertheless improves the Swedish models’ ability to transcribe
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Danish and Norwegian. Lastly, an in-domain 4-gram also boosted the performance
of the English model on all three Scandinavian languages.

The fifth hypothesis for monolingual models expected n-gram language models to
improve the performance of ASR models on all languages. The hypothesis cannot
be confirmed, as a 4-gram language model leads to higher WER and CER in the
Swedish ASR model when used on Swedish data. In all other cases, however, the
addition of an n-gram language model leads to improvement. The effectiveness of
n-gram language models for monolingual ASR systems has been vastly researched
(Baevski et al., 2020; Conneau et al., 2021; Håkansson and Hoogendijk, 2020; Khas-
sanov, 2020) and was therefore an expected observation. The steady gains in terms
of the WER and CER in most setting are likely, on part, due to the matching
domains of the train and test sets, which is described by Khassanov (2020) as a
deciding factor of whether a statistical language model is an effective addition to
an ASR model. As seen from the results, the in-domain knowledge seemingly trans-
fers across languages as well. However, the case of the Swedish model suggests that
there might be extent to which statistical in-domain language models are efficient
for ASR models. The Swedish ASR model has extremely low WER and CER to
begin with (2.19% and 0.98% respectively), so a 4-gram language model only mis-
leads the end-to-end model. Arguably, this might be due to the nature of statistical
language models, as it implausible for them to capture all the possible combinations
of tokens, no matter their size. To summarize, statistical language models appear to
be an overall useful addition to ASR models in both monolingual and cross-lingual
settings; however, they might mislead high-quality ASR models.

5.1.2. Performance across the Regional Dialects
The performance of the Swedish end-to-end model across the Swedish regional di-
alects is shown in Figure 5.1, the Danish model on the Danish regional dialects in
Figure 5.2, and the Norwegian model on the Norwegian regional dialects in Figure
5.3. A complete list of the scores obtained in cross-lingual settings (e.g. Swedish
model on Danish regional dialects) and monolingual (Swedish model on Swedish
regional dialects) settings is shown in Table B.4 in the Appendix.

The results reveal that the performance of the monolingual ASR models on the
languages they were trained on varies across the regional dialects. The Swedish
model performs best on Östergötland (1.68% WER and 0.66% CER without a lan-
guage model) and worst on Västra sydsverige (2.35% WER 0.91% CER with a
language model) regional dialects. The observed standard deviation between the
Swedish regional dialects on the WER parameter constitutes 0.202% without a lan-
guage model and 0.240% with a language model. The Danish model performs best
on Fyn (11.13% WER and 3.17% CER with a language model) and worst on Østjyl-
land (15.37% WER and 4.84% CER with a language model) regional dialects. The
standard deviation between the Danish regional dialects on the WER parameter is
estimated at 1.528% without a language model and 1.237% with a language model.
The Norwegian model performs best on Hedmark oh Oppland (10.40% WER and
2.29% CER with a language model) and worst on Bergen og Ytre Vestland (15.20%
WER and 4.03% CER with a language model) regional dialects. The standard devi-
ation on the WER parameter across the regional dialects of the Norwegian language
is roughly 2.211% without a language model and 1.554% with a language model.

The low variance in the quality of the Swedish model across the Swedish regional
dialects may stem from overall high quality of the model. The high variance in the
case of Norwegian, in addition to a poorer quality of the model, may be linked
to the dialect-rich nature of the language, with major differences being present on
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Figure 5.1.: The performance of the monolingual Swedish ASR model across the Swedish re-
gional dialects, no language model versus a 4-gram language model. The numbers
alongside pairs of lines indicate the improvement in the WER made by the addition
of a language model. In the case of Swedish, the addition of a statistical language
model has negative effect on the performance, thus the numbers are negative.

Figure 5.2.: The performance of the monolingual Danish ASR model across the Danish regional
dialects, no language model versus a 4-gram language model. The numbers between
the two lines indicate the difference in the WER made by the addition of a language
model.

spoken and written level (Kristoffersen, 2000a). Most notably, the addition of a
statistical language model consistently improves the quality of transcription in all
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Figure 5.3.: The performance of the monolingual Norwegian ASR model across the Norwegian
regional dialects, no language model versus a 4-gram language model. The numbers
alongside pairs of two lines indicate the difference in the WER made by the addition
of a language model.

regional dialects in Danish and Norwegian. In the case of Swedish, it leads to worse
performance in all dialects.

As seen from Table B.4 in the Appendix, the performance of the monolingual
models in a cross-lingual setting differs as well. Both WER and CER parameters
remain high on all dialects in all cross-lingual settings. It should be noted that the
addition of a statistical language model consistently improve both parameters in
cross-lingual settings on all dialects. The results can be further analysed with focus
on the cross-lingual similarities of the dialects to other Scandinavian languages;
however, such extensive analysis is out of the scope of this thesis.

The last hypothesis for the monolingual models expected the ASR models to be
biased towards one dialect, likely the one they are most exposed to during the train-
ing. While results reveal that not all dialects are transcribed equally successfully,
the evidence is arguably insufficient to confirm the hypothesis. As reported in the
numbers above, The Danish and Norwegian models seem to exhibit striking differ-
ence in the performance across the dialects. Even though it is possible to identify
the regional dialect on which these models perform the best, the difference is ar-
guably insignificant. Furthermore, it cannot be excluded that the difference is due
to skewed representation of the dialects in both train and test set.

5.1.3. Qualitative Analysis of Errors
The most common insertion, deletion, and substitution errors in the transcriptions
of the test produced by monolingual models on their target language are shown in
Table 5.2. Examples of the transcriptions produced by the monolingual models can
be seen in Tables B.1, B.2, and B.3.

The error patterns reveal that the models commit most errors while transcribing
function words – words that ensure grammatical rather than semantic soundness of
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Table 5.2.: A side-by-side comparison of the most common insertion, deletion, and substitu-
tion errors in the transcriptions produced by the Swedish, Danish, and Norwegian
models, with and without language model, on their target languages (e.g. Swedish
on Swedish). The number in the parentheses is the raw frequency of the error. For
substitutions, the token left of the arrow is the target and right of the arrow is the
prediction.

No Language Model With Language Model
Insertion Deletion Substitution Insertion Deletion Substitution

SWEDISH
i (191) i (50) de → det (193) i (170) i (82) de → det (198)
en (25) och (46) det → de (141) mitt (50) och (45) det → de (185)
för (25) det (31) skall → ska (114) en (28) läder (30) skall → ska (128)
det (20) en (39) istället → stället (54) det (19) en (29) skröplig → skröpplig (94)
så (19) att (28) idag → dag (44) att (17) det (28) börje → börjar (79)

DANISH
er (292) i (726) er → af (357) er (376) i (607) er → af (381)
en (238) er (441) af → er (289) i (319) er (411) as → a (288)
i (236) en (219) as → a (245) en (310) at (216) af → er (287)
at (194) af (196) i → e (224) at (244) af (203) åbn → åben (200)
et (109) at (195) e → i (176) for (183) en (163) fra → for (193)

NORWEGIAN
i (271) r (1897) r → er (2196) i (203) e (1305) r → er (1640)
for (187) e (1839) e → er (503) for (201) r (1276) én → en (524)
er (159) s (1138) én → en (493) er (164) i (817) er → r (410)
det (145) t (1106) n → en (421) det (142) t (758) er → har (246)
til (129) i (1060) l → el (328) til (141) s (635) sju → syv (239)

sentences. Examples of such errors include prepositions (i, för, for), pronouns (en,
det, er), and conjunctions (och, så, for). The high frequency of such errors is partially
due to the high frequency of function words in general. C. Chung and Pennebaker
(2007) estimated that roughly every fifth word is a function word in the English
language, with similar frequencies being observable in most other languages. In
addition, function words tend to be short in both pronunciation and spelling. Given
their high frequency and short pronunciation time, it is arguably not surprising that
the models occasionally miss or transcribe erroneously some of the tokens. When it
comes to Norwegian, most frequent errors seem to occur due to the model’s inability
to transcribe individual letters, which are from instances of spelled out words in the
dataset. It is rather plausible that the model is under-exposed to words being spelled
out during training, since, as mentioned in Section 4.4.2, the model is trained on a
different dataset.

It can be argued that not all of the insertions, deletions, and substitutions cap-
tured by the algorithm are errors, and not all errors are classified correctly. The
third most common substitution error in Swedish states that the model incorrectly
transcribes skall as ska, both of which are alternative spellings of the same auxiliary
verb, with the latter being more frequent in modern Swedish. Both words have the
same pronunciation (/ska/ ), so a model is likely to learn whichever spelling is more
frequent in the training data. Nevertheless, most ASR evaluation metrics consider
this to be an error, as the spelling of the reference and prediction do not match.
Furthermore, WER and CER error metrics appear to over-generate the number of
errors in the Scandinavian (and possibly other) languages, as they are unable to
identify instances of incorrect conjunction or disjunction. As a result, the disjunc-
tion of istället into i and stället is considered to be two errors, namely an instance
of substitution of istället with stället and an insertion of i, even though both op-
tions are grammatically correct to begin with. An example of such an error is shown
below:

39



(1) Reference: många talar indianspråk istället för spanska
Prediction: många talar indianspråk i stället för spanska.

Lastly, the analysis of error patterns offers additional insight into the effects of a
language model on the quality of the produced transcriptions. An n-gram language
model causes the Swedish ASR model to under-generate the preposition i, which
leads to more deletion errors, yet fewer insertion errors. In addition, a language
model leads to over-generation of the personal pronoun mitt as well as incorrect
spelling of skröplig. For Danish, a language model leads to a more frequent predic-
tion of function words, such as the preposition i, resulting in fewer deletions yet
more insertion errors of such words. It, however, appears to consistently resolve the
erroneous substitution of i with e. Lastly, when it comes to Norwegian, the addition
of a language model appears to be a very consistent solution for the deletion of one
character tokens, such as e, r, and i, and incorrect substitutions of one character
tokens with two-character words, such as r with er ; however, it increases the number
of erroneous insertions of a few function words, such as for, er, and til. Thus, from an
overview of the most frequent errors, it can be concluded that an n-gram language
model offers a solution to some errors; nevertheless, plausibly due to the nature of
statistical language models, it also causes errors, mostly by over-generating function
words.

5.2. Multilingual Model
We train two components of the multilingual end-to-end Scandinavian ASR model,
namely a CTC decoder and a language classification module. The former are covered
in Section 5.2.1 and the latter in Section 5.2.2. We then combine the two compo-
nents into a single multilingual end-to-end Scandinavian ASR model. The model is
evaluated and discussed in Section 5.2.3.

5.2.1. Trial Multilingual Models
We determine the most suitable settings for the CTC decoder by firstly training
four trial models alongside monolingual baselines. The results achieved by the trial
models are shown in Figures 5.4 and 5.5. It should be noted that we trained the
models with 1,000 warmup steps, which are not visualized in the figures.

The results of the trial models shed light on the optimal data settings and the
effects of bootstrapping the ability to transcribe Danish and Norwegian from an ex-
isting Swedish model. Most noticeable is the degrading performance on the Swedish
data when the model is re-trained only on Danish and Norwegian data. Similarly,
when a smaller portion of data is used for Swedish than for the other two languages,
the model exhibits unstable degrading curve. However, when the model already
fine-tuned for Swedish is re-trained on all three languages with equal proportions
of data, it is able to retain the ability to transcribe the data in Swedish. Slight
decline can still be observed in terms of the performance on Swedish. Nevertheless,
the model reaches nearly identical accuracy as compared to the monolingual set-
ting. Surprisingly, the model trained from scratch performs comparably with the
two aforementioned settings as well.

When it comes to Norwegian and Danish, all settings lead to steady improvement
over training steps. The monolingual baselines demonstrate clear advantage over
the multilingual models throughout the training. Initializing the multilingual model
from a model already fine-tuned for Swedish seems to be rather effective overall,
as all three re-training settings outperform the multilingual model trained from
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Figure 5.4.: Word Error Rates of the multilingual trial models and a monolingual baseline on
the evaluation set, mapped over training steps. The model IDs are explained in
Section 4.4.5.

Figure 5.5.: Character Error Rates of the multilingual trial models and a monolingual baseline
on the evaluation set, mapped over training steps. The model IDs are explained in
Section 4.4.5.

scratch on both languages. Lastly, re-training the Swedish model on just Danish
and Norwegian appears to be the most effective multilingual setting, likely to the
least amount of cross-lingual noise encountered during training.
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The first hypothesis for multilingual models expected the monolingual baselines
to outperform the multilingual models in all languages. The statement holds true
for Danish and Norwegian, yet the pattern breaks on Swedish. This is likely due
to the overall high quality of the Swedish end-to-end model used to initialize the
multilingual models. Even though its ability to transcribe Swedish degrades due
to additional training on two more languages, it still remains slightly better than
the monolingual baseline. The second hypothesis suggested that monolingual end-
to-end models could be extended to handle multiple languages. The hypothesis
is confirmed, as we the multilingual models initialized from monolingual Swedish
end-to-end model reach quality comparable to that of monolingual models. Finally,
the third hypothesis expected that the ability of a monolingual-turned-multilingual
model to transcribe its initial target language would degrade should it not be exposed
to data in the target language during training. The hypothesis can be confirmed, for
we observed a decline in the ability to transcribe Swedish in the Retraining DA+NO
and Retraining DA+NO+SE_half settings. This suggests that it is essential to
ensure that the model is exposed to training data in all three languages throughout
the training in order to enable accurate performance on the three directions. We
therefore use this setting (Retraining DA+NO+SE_full) for our final end-to-end
model.

5.2.2. Language Classification Module
We train a language classification module on randomly sampled and equally dis-
tributed subsets of the train sets in three languages for 41,000 updates. Evaluation
of the language classification module is shown in Figure 5.6.

(a) Raw counts (b) Normalized

Figure 5.6.: Confusion matrices of the language classifier’s predictions on the test sets from all
three languages.

The overall quality of the classification module is surprisingly high. It is able to
identify the correct language tag with an accuracy of roughly 98%, yet the accuracy
differs greatly depending on the duration of the audio sequence. As shown in Figure
5.7, the accuracy is especially low on very short sequences, approximately up to
1.5 seconds, whereas it is nearly flawless on sequences of at least 5.25 seconds. The
short Sequences mostly contain the pronunciation of just one word or even one
letter. The inability to predict the language from such short sequences might be
linked to the lexical and phonetic similarities between the languages. Due to a
considerable overlap in the lexicon of the three languages, prediction of the language
from just one word might become a challenging task even to a human speaker.
Nevertheless, perhaps because of a lesser overlap in the phonology and phonetics of
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the three languages, the classification module is still able to deduce the language
more accurately than by chance. In addition, the errors made by the classifier appear
more or less systematic, as the module confuses Swedish and Norwegian as well as
Danish and Norwegian roughly ten times more frequently than Swedish and Danish.
This could be due to the fact that the overlap of phonetic features between Danish
and Swedish is smaller than the overlap between Swedish and Norwegian as well as
Norwegian and Danish (Gooskens, 2007).

Figure 5.7.: The accuracy of the language classification module mapped over the quantized
lengths of the entries in the test set.

5.2.3. Multilingual Scandinavian End-to-end ASR Model
The multilingual Scandinavian end-to-end ASR model combines the large VoxRex
(version C) encoder described in Section 4.4.4, jointly fine-tuned CTC decoder
(5.2.1), and the classification module (5.2.2). The complete parameters of the fi-
nal end-to-end model are presented in Tables A.3 and A.4. We further evaluate the
model on its ability to transcribe Swedish, Danish, and Norwegian, alongside its
performance across the dialects of all three languages. Lastly, we perform a brief
qualitative analysis of the most common errors made by the multilingual model in
each language.

Performance on Swedish, Danish, and Norwegian

The performance of the joint multilingual end-to-end model on all three Scandi-
navian languages is shown in Table 5.3 below. The multilingual model is able to
retain the ability to accurately transcribe the data in Swedish with some losses, in
addition to learning to transcribe both Danish and Norwegian. Surprisingly, the mul-
tilingual model outperforms the monolingual counterparts on numerous parameters.
For Danish and Norwegian, the multilingual model significantly outperforms the
monolingual models in terms of WER and CER, regardless of whether it is boosed
by a statistical language model or not. As for Swedish, the multilingual model per-
forms better than the monolingual in terms of CER when a language model is used.

Given that the multilingual model is initialized on top of the Swedish end-to-
end model, the variation in the performance across the languages does not come
as a surprise. The low error rate on Swedish is mainly due to the fact that a high-
quality Swedish end-to-end model is used as the base. The lower error rate on the
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Table 5.3.: The performance of the multilingual end-to-end model versus the three monolingual
end-to-end models described in Section 4.4. A side-by-side comparison of the results
obtained with and without 4-gram language models in both settings. The better
score between the monolingual and multilingual models is marked in bold.

No LM With LM
Test Set Model WER CER WER CER

Swedish Monolingual1 2.19% 0.98% 2.74% 1.07%
Multilingual 4.61% 1.16% 3.26% 0.96%

Danish Monolingual2 19.14% 5.45% 13.82% 4.33%
Multilingual 12.69% 3.74% 10.43% 3.31%

Norwegian Monolingual3 16.47% 3.62% 12.03% 2.81%
Multilingual 9.64% 2.77% 6.51% 2.18%

1 Wav2vec 2.0 large VoxRex Swedish (C) described in Section 4.4.1.
2 Our own monolingual end-to-end ASR model for Danish described in Section 4.4.3.
3Norwegian Wav2Vec2 Model - 1B Bokmål described in Section 4.4.2.

Norwegian as compared to Danish can perhaps be linked to the better performance
of the Swedish model on the Norwegian language even in a zero-shot setting.

The competitive performance of the multilingual model as compared to the mono-
lingual models is an unexpected outcome. There are several plausible explanations
behind such optimistic results. Firstly, when it comes to Norwegian, the monolingual
end-to-end Norwegian model was trained on data in a different domain. The multi-
lingual model, on the other hand, is both trained and tested on the NST datasets,
with the addition of the CV dataset used for validation. It can thus be argued that
the better performance on Norwegian is made possible due to the training on in-
domain data. When it comes to Danish, it is rather likely that the quality of the
model improves simply due to the fact that the model is trained for more updates,
as the monolingual model was trained for 4,000 updates, whereas the multilingual
model is trained for 41,000 updates. In other words, the model is exposed to more
data in general, including more Danish data. It should not be excluded that the joint
training of a multilingual model improves the model’s ability to generalize. Since
the model is constantly exposed to batches of data in all three languages, it is less
prone to overfitting to the training data.

The addition of a language model improves the average WER and CER for all
three languages. Interestingly, in the multilingual setting, a language model no longer
harms the quality of transcription in Swedish, as was the case with the monolingual
model. Perhaps this is because the language model becomes more effective when the
decoder of the ASR model is trained on more varied data.

All in all, the fourth hypothesis, which expected the multilingual model to lag
behind the monolingual models, can be rejected. Despite the potential cross-lingual
noise introduced from additional languages, the multilingual model not only matches,
but also outperforms the monolingual models on Danish and Norwegian.

Performance on the Regional Dialects

The quality of the multilingual ASR model as compared to the monolingual models
across the regional dialects of Swedish, Danish, and Norwegian is shown in Table 5.4.
The improvement in the quality of the multilingual model upon Danish and Norwe-
gian monolingual counterparts leads to better results across all regional dialects of
the two languages. Without the addition of a language model, the multilingual ASR
model is outperformed by the monolingual Swedish model on all dialects. However,
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Table 5.4.: The performance of the monolingual models described in Section 4.1 versus the
multilingual model across the regional dialects of Swedish, Danish, and Norwegian.
The lowest WER per regional dialect is in bold, and the lowest CER is underlined.

MONOLINGUAL MODELS MULTILINGUAL MODEL

No LM With LM No LM With LM

WER CER WER CER WER CER WER CER

Östergötland 1.68% 0.66% 2.34% 0.77% 3.78% 0.85% 2.43% 0.62%
Västra sydsverige 2.35% 0.91% 2.97% 1.02% 7.74% 1.86% 5.21% 1.43%
Östra sydsverige 2.13% 0.85% 2.81% 0.97% 4.81% 1.15% 3.30% 0.91%
Västergötland 2.07% 0.78% 2.65% 0.87% 4.16% 0.93% 2.79% 0.71%
Göteborg med omnejd 2.12% 0.88% 2.63% 0.97% 3.90% 1.00% 2.81% 0.81%
Mellansverige 2.02% 0.76% 2.45% 0.84% 3.85% 0.86% 2.76% 0.70%
Västsverige 1.77% 0.68% 2.59% 0.82% 3.35% 0.73% 2.41% 0.59%
Stockholm med omnejd 1.75% 0.68% 2.28% 0.77% 3.05% 0.67% 2.21% 0.54%
Norrland 2.16% 0.86% 2.74% 0.96% 4.31% 1.05% 3.10% 0.86%
Dalarna med omnejd 1.91% 0.74% 2.16% 0.80% 3.92% 0.88% 2.74% 0.68%

Standard Deviation (𝜎) 0.202% 0.089% 0.240% 0.088% 1.238% 0.317% 0.805% 0.242%

Vest- og Sydsjælland 19.23% 5.31% 13.76% 4.16% 12.81% 3.63% 10.51% 3.17%
Storkøbenhavn 19.54% 5.62% 14.26% 4.52% 13.44% 4.03% 11.10% 3.58%
Østjylland 21.24% 6.08% 15.37% 4.84% 14.00% 4.13% 11.52% 3.64%
Nordjylland 18.73% 5.08% 13.53% 3.98% 12.14% 3.31% 9.92% 2.91%
Sønderjylland 19.76% 6.36% 14.40% 5.27% 12.80% 4.34% 10.49% 3.90%
Fyn 15.83% 4.19% 11.13% 3.17% 10.20% 2.77% 8.27% 2.41%
Vestjylland 18.45% 4.97% 12.98% 3.82% 11.37% 3.16% 9.31% 2.77%

Standard Deviation (𝜎) 1.528% 0.675% 1.237% 0.643% 1.192% 0.531% 1.022% 0.496%

Voss og omland 16.20% 3.43% 11.71% 2.63% 7.19% 1.66% 4.59% 1.17%
Sunnmøre 19.87% 4.36% 14.58% 3.37% 9.28% 2.18% 5.94% 1.54%
Hedmark og Oppland 14.32% 2.99% 10.40% 2.29% 9.33% 2.31% 6.19% 1.70%
Oslo-området 16.53% 5.03% 12.67% 4.39% 10.50% 4.19% 7.85% 3.73%
Ytre Oslofjord 17.36% 3.72% 12.64% 2.91% 11.41% 2.99% 7.67% 2.25%
Nordland 17.61% 3.70% 12.45% 2.81% 9.30% 2.32% 5.87% 1.65%
Trøndelag 14.08% 2.96% 10.34% 2.31% 7.62% 1.83% 4.90% 1.31%
Sør-Vestlandet 20.34% 4.82% 14.85% 3.78% 10.89% 2.79% 7.21% 2.10%
Bergen og Ytre Vestland 21.37% 5.21% 15.20% 4.03% 11.07% 3.10% 6.92% 2.29%
Sørlandet 17.65% 3.69% 12.70% 2.82% 9.78% 2.40% 6.49% 1.76%
Troms 16.79% 3.32% 12.19% 2.57% 7.64% 1.75% 5.10% 1.28%

Standard Deviation (𝜎) 2.211% 0.764% 1.554% 0.677% 1.400% 0.703% 1.066% 0.686%

when boosted by a language model, the multilingual model achieves better CER on
most Swedish regional dialects, and lower WER on Västsverige and Stockholm med
omnejd.

As formulated in the fourth hypothesis for the multilingual models, we expected
the performance of the multilingual model to be more stable across the regional
dialects of the Scandinavian languages. This appears to hold true for Danish and
Norwegian, as the standard deviations between the regional dialects are smaller in
the case of multilingual models. The multilingual setting though leads to a substan-
tial increase in the variance of the performance on the regional dialects of Swedish.
This is mostly due to a single outlier, namely the Västra sydsverige regional dialect,
which appears to be most challenging to both monolingual and multilingual models.
The formulated hypothesis thus cannot be confirmed, as the results differ across
languages.

Qualitative Analysis

The most common errors made by the multilingual model in Swedish, Danish, and
Norwegian are shown in Table 5.5. Examples of the transcriptions produced by
the multilingual model in Swedish, Danish, and Norwegian, with and without a
language model, are show in Table B.5. The preposition i appears to be by far the
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Table 5.5.: A side-by-side comparison of the most common insertion, deletion, and substitution
errors in the transcriptions produced by the multilingual model, with and without a
language model. The number in the parentheses is the raw frequency of the error.
For substitutions, the token left of the arrow is the target and right of the arrow is
the prediction.

No Language Model With Language Model
Insertion Deletion Substitution Insertion Deletion Substitution

SWEDISH
i (183) i (118) det → de (263) i (192) i (95) de → det (237)
det (47) att (41) de → det (261) det (56) och (54) det → de (219)
en (34) är (40) är → er (132) en (36) att (50) skall → ska (119)
är (30) och (38) skall → ska (108) för (31) är (48) är → er (75)
för (28) en (36) ska → skal (101) är (31) en (44) istället → stället (52)

DANISH
er (201) i (358) åbn → åben (238) er (239) i (381) åbn → åben (235)
i (130) er (279) as → a (162) i (174) er (289) as → a (223)
at (130 en (242) det → de (153) en (160) en (221) har → er (172)
en (128) at (167) har → er (140) at (119) at (209) æ → a (146)
det (76) det (165) i → e (139) for (89) af (138) det → de (137)

NORWEGIAN
i (184) i (475) én → en (263) i (137) i (438) har → er (220)
for (104) til (341) ett → et (212) for (101) er (315) et → ett (127)
en (83) er (313) det → de (188) en (96) til (304) én → en (124)
det (65) de (285) og → å (174) og (60) det (286) og → å (122)
of (60) en (236) har → er (173) det (58) excel (242) det → de (111)

most problematic, as it is the most common deletion in all three languages both with
and without a language model. In addition, it is the most common insertion error
in both Swedish and Norwegian, both with and without the addition of a language
model. In the case of Danish, however, the auxiliary verb er is incorrectly inserted
even more frequently than the aforementioned preposition. In addition, the verb is
frequently erroneously deleted by the multilingual model.

Overall, the most frequent errors made by the multilingual model appear highly
similar to those made by the monolingual models on their target languages reported
in Table 5.2. The model still mostly struggles with function words, namely preposi-
tions, conjunctions, and auxiliary verbs. In addition, some of the most common the
substitution errors are only considered to be errors due to the limited ability of the
evaluation metric to permit alternative spellings of the word, e.g. skall versus ska;
åbn versus åben; én versus en. Interestingly, the multilingual setting also resolves the
inability of the Norwegian model to predict individual characters, mostly occurring
in spelled out words.

As per the fifth hypothesis for multilingual models, it was expected that the mul-
tilingual setting would lead to frequent confusion of the spellings across languages.
Judging from the error patterns, the hypothesis can arguably be rejected, as the
vast majority of errors remain language-specific.
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6. Conclusions

We examined monolingual, cross-lingual, and multilingual models and applications
of ASR systems for Scandinavian languages. We extensively evaluated the perfor-
mance of state-of-the-art Swedish, Danish, and Norwegian Wav2Vec 2.0-based ASR
models on their target language as well as other Scandinavian languages. In addi-
tion, we analysed the effectiveness of statistical language models on the quality of
transcriptions. We also proposed an architecture of a multilingual ASR model for
Scandinavian languages. The proposed architecture incorporates a language classi-
fication module and thus enables the usage of language-specific language models.
Lastly, we trained and evaluated a multilingual ASR model for Swedish, Danish,
and Norwegian.

Key findings offer insight into the applicability of zero-shot transfers and bias to-
wards dialects in ASR models, as well as the effectiveness of a multilingual approach.
We learned that in a zero-shot setting, ASR models trained a Scandinavian language
serve as a better source language than a highly accurate English model, except for
the Danish model. From a practical standpoint, however, zero-shot transferability
of ASR models is questionable, for the quality of the produced transcriptions is
poor. We also found common patterns between the mutual intelligibility levels of
the Scandinavian languages in native speakers and monolingual ASR models. Over-
all, monolingual ASR models perform better on the languages that are easier to
comprehend for native speakers. We identified differences in the performance of
both monolingual and multilingual ASR models across regional dialects of the three
languages. In a multilingual setting, the performance across the regional dialects
is more stable overall. Lastly, we trained an accurate multilingual end-to-end ASR
model for Swedish, Danish, and Norwegian. Lastly, we confirmed that multilingual
ASR models can perform comparably with their monolingual counterparts. Our mul-
tilingual model performed worse than the monolingual Swedish model. Nevertheless,
the multilingual model outperformed the monolingual Danish and Norwegian ASR
models.

The following conclusions can be made in addressing the four research questions
formulated for this thesis project:

1. Are monolingual Wav2Vec 2.0-based ASR models transferable across Scandi-
navian languages?
The word and character error rates observed in a zero-shot setting suggest that
Wav2Vec 2.0-based ASR models are indeed transferrable across Scandinavian
languages. The Swedish and Norwegian ASR models performed better on all
three languages than the English baseline; however, the English baseline out-
performed the Danish model on Swedish and Norwegian. Given the relatively
poor quality of the Danish ASR model, it can be concluded that a high quality
of ASR models serves as a pre-condition for the transferability of ASR models
across the Scandinavian languages.

2. Are there parallels between zero-shot transferability of monolingual ASR models
and mutual intelligibility of Swedish, Danish, and Norwegian?
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Monolingual Scandinavian ASR models, when used in a cross-lingual setting,
exhibit patterns similar to the comprehension levels in native speakers. Sim-
ilarly to native speakers of Swedish, a Swedish ASR model achieves better
results on Norwegian data than on Danish. The Danish model also favours
Norwegian over Swedish, as do native speakers of Danish. Native speakers of
Norwegian reportedly understand the Swedish language better than Danish,
which seems to also be the case with Norwegian ASR models.

3. Are Wav2Vec 2.0-based ASR models biased towards one of the dialects of their
target language?
The performance of Wav2Vec 2.0-based ASR models differs across the regional
dialects of the Scandinavian languages. The degree of variance differs across
the three languages. The Swedish ASR model performed best on the Östergöt-
land regional dialect, the Danish model achieved the lowest error rates on
Fyn, and the Norwegian model performed nearly identically well on Hedmark
oh Oppland and Trøndelag regional dialects. It is though difficult to conclude
whether any of the models is strictly biased towards one dialect, such as the
standard speech. It cannot be excluded that the differences in the observed
performance stem not only from the quality of models, but also the imbal-
ances in the test sets. Thus, more extensive research is required to answer this
question with more confidence.

4. Can a monolingual Wav2Vec 2.0-based ASR model be extended to handle all
three Scandinavian languages without significant loss of quality?
The multilingual Scandinavian ASR model trained and evaluated in this thesis
project outperforms the monolingual models on Danish and Norwegian, and
performs relatively comparably with the monolingual Swedish model. It can
therefore be concluded that monolingual ASR models can be extended to
handle multiple languages. Such practice allows to utilize and extend existing
high-quality monolingual models rather than scraping them and training new
models from scratch. Nevertheless, it cannot be ruled out that this approach
is only viable due to the fact that the Scandinavian languages are highly
similar. In other words, extending a monolingual ASR model to also handle
typologically different language might lead to substantially different results.

We based our research on Swedish, Danish, and Norwegian due to the consider-
able similarities shared between Scandinavian languages. We cannot rule out the
possibility that the positive results observed in the multilingual setting would not
hold should the methodology be applied to other, less similar language groups, such
as the Slavic or Indian languages. Furthermore, we tested the models on compara-
ble datasets from similar domains in the three languages, which might have also
affected the results positively. Further research could explore the methodology in
a more realistic setting. More directions for further research are formulated in the
following subsection.

6.1. Future Work
The work carried out in this thesis can be expanded though both linguistic and
technical aspects. As such, further research could explore the possibility of further
expansion of the multilingual Scandinavian ASR models to also include Faroese
and Icelandic. Alternatively, the models can also be expanded to include a less
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similar language, possibly with a different script, to learn how this would affect the
acquisition of a new language as well as retention of the already learned languages.

From a technical point of view, the possibilities for further research are truly end-
less, given the access to the computational resources. An almost certainly successful
extension could replace the statistical language model with a Transformer-based
language model, as done by Baevski et al. (2020). The Transformer-based language
model can also be turned multilingual, thus eliminating the need for a language
classification module. Furthermore, it would be interesting to learn how exposure
of the model to all three languages in the pre-training step would affect the end
results, as the encoder model used by us is only pre-trained on Swedish. Lastly,
one could exploit the language classification module to enable accurate processing
of code-switching, i.e. instances where a speaker switches from one language to an-
other. This could perhaps be done by training the module to classify smaller chunks
of audio and select the corresponding language model.
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A. Model Parameters

A.0.1. Monolingual Danish Model

Table A.1.: The Encoder parameters of the monolingual Danish model. The parameter names
are from the Hugging Face implementation. The parameters are directly adopted
from the pre-trained model for Danish described in Section 4.4.3.

Parameter Name Parameter

activation_dropout 0.1
apply_spec_augmente True
attention_dropout 0.1
bos_token_id 1
classifier_proj_size 256
codevector_dim 256
contrastive_logits_temperature 0.1
conv_bias False
conv_dim 512, 512, 512, 512, 512, 512, 512
conv_kernel 10, 3, 3, 3, 3, 3, 2
conv_stride 5, 2, 2, 2, 2, 2, 2
ctc_loss_reduction sum
ctc_zero_infinity False
diversity_loss_weight 0.1
do_stable_layer_norm False
feat_extract_activation GeLU
feat_extract_norm group
feat_proj_dropout 0.0
feat_quantizer_dropout 0.0
final_dropout 0.1
hidden_act GeLU
hidden_dropout 0.1
hidden_size 768
initializer_range 0.02
intermediate_size 3072
layer_norm_eps 1e-05
layerdrop 0.1
mask_feature_length 10
mask_feature_prob 0.0
mask_time_length 10
mask_time_prob 0.05
model_type wav2vec2
num_attention_heads 12
num_codevector_groups 2
num_codevectors_per_group 320
num_conv_pos_embedding_groups 16
num_conv_pos_embeddings 128
num_feat_extract_layers 7
num_hidden_layers 12
num_negatives 100
pad_token_id 32
proj_codevector_dim 256
torch_dtype float32
transformers_version 4.11.3
use_weighted_layer_sum False
vocab_size 33

A.0.2. Multilingual Scandinavian Model

57



Table A.2.: The Decoder parameters of the monolingual Danish model. The parameter names
are from the Hugging Face implementation.

Parameter Name Parameter

group_by_length True
learning_rate 0.0001
gradient_accumulation_steps 3
per_device_train_batch_size 10
evaluation_strategy steps
num_train_epochs 10
fp16 True
gradient_checkpointing True
save_steps 500
eval_steps 500
logging_steps 500
weight_decay 0.005
warmup_steps 1000
attention_dropout 0.1
hidden_dropout 0.1
feat_proj_dropout 0.0
mask_time_prob 0.05
layerdrop 0.1
ctc_loss_reduction sum
vocab_size 33
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Table A.3.: The Encoder parameters of the final multilingual model. The parameter names are
from the Hugging Face implementation. The parameters are directly adapted from
the Swedish large VoxRex (version C) pre-trained model, described in Section 4.4.1.

Parameter Name Parameter

activation_dropout 0.05
apply_spec_augmente True
attention_dropout 0.1
bos_token_id 1
classifier_proj_size 256
codevector_dim 256
contrastive_logits_temperature 0.1
conv_bias False
conv_dim 512, 512, 512, 512, 512, 512, 512
conv_kernel 10, 3, 3, 3, 3, 3, 2
conv_stride 5, 2, 2, 2, 2, 2, 2
ctc_loss_reduction mean
ctc_zero_infinity True
diversity_loss_weight 0.1
do_stable_layer_norm True
eos_token_id 2
feat_extract_activation GeLU
feat_extract_norm layer
feat_proj_dropout 0.05
feat_quantizer_dropout 0.0
final_dropout 0.0
hidden_act GeLU
hidden_dropout 0.05
hidden_size 1024
initializer_range 0.02
intermediate_size 4096
layer_norm_eps 0.00001
layerdrop 0.05
mask_channel_selection static
mask_feature_length 10
mask_feature_prob 0.1
mask_time_length 10
mask_time_prob 0.05
mask_channel_selection static
model_type wav2vec2
num_adapter_layers 3
num_attention_heads 16
num_codevector_groups 2
num_codevectors_per_group 320
num_conv_pos_embedding_groups 16
num_conv_pos_embeddings 128
num_feat_extract_layers 7
num_hidden_layers 24
num_negatives 100
output_hidden_size 1024
pad_token_id 32
proj_codevector_dim 256
tdnn_dilation 1, 2, 3, 1, 1
tdnn_dim 512, 512, 512, 512, 1500
tdnn_kernel 5, 3, 3, 1, 1
torch_dtype float32
transformers_version 4.17.0
use_weighted_layer_sum False
vocab_size 46
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Table A.4.: The Decoder parameters of the final multilingual model. The parameter names are
from the Hugging Face implementation.

Parameter Name Parameter
group_by_length True
learning_rate 0.0001
gradient_accumulation_steps 3
per_device_train_batch_size 6
evaluation_strategy steps
num_train_epochs 20
fp16 True
gradient_checkpointing True
save_steps 1000
eval_steps 1000
logging_steps 500
weight_decay 0.005
warmup_steps 500
attention_dropout 0.1
hidden_dropout 0.05
feat_proj_dropout 0.05
mask_time_prob 0.05
layerdrop 0.05
ctc_loss_reduction mean
vocab_size 46
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B. Complete Results

B.1. Monolingual Models

Table B.1.: An example of the transcriptions of a Swedish entry produced by the four mono-
lingual models described in Section 4.1, with and without a Norwegian language
model.

Target samverkande krafter kommer att hålla förändringarna på måttlig nivå

Swedish
Model

no LM samverkande krafter kommer att hålla förändringarna på måttlig nivå
with LM samverkande krafter kommer att hålla förändringarna på måttlig nivå

Danish
Model

no LM sarm hvad et gamte kendaf de gå men op på lo fettaanditingerne boe mort gliniveuer
with LM samt vad e gamle kända e går men opålofetaanditingerne bo mår gliniveuer

Norwegian
Model

no LM sanverkenee krefter kommer at tolde forendringene på måtlig nivå
with LM samverkan krefter kommer torde forendringene på måtlig nivå

English
Model

no LM somver cante craft e comnato la feren dring ana po motlinivo
with LM som var cantecrafte comnatolaferen ring anapomotlinivo

Table B.2.: An example of the transcriptions of a Danish entry produced by the four monolingual
models described in Section 4.1, with and without a Danish language model.

Target hvad synes du om den nye bank der åbnede i går dernede på hjørnet over for kirken

Swedish
Model

no LM värsund storemt nybank doch uppnigår den nu på gönare oc förkering
with LM väsunstemtnybank de uppnigår den nu på gönareocförkering

Danish
Model

no LM hvad synes du om den nye bank der åbnede i går dernede på hjørnet over for kirken
with LM hvad synes du om den nye bank der åbnede i går dernede på hjørnet over for kirken

Norwegian
Model

no LM hva synes dømt ne pank til åpnet e godne de på hjørnet a og for keangn
with LM ve synes dømt nu bank til op god nede på hjørnet og for kan

English
Model

no LM henlibud ililili cuginfor sit out for cavat to pierce corner and wake as he
with LM hen libudilililicugn for sit out for cavatopierce cornerandwake is e

Table B.3.: An example of the transcriptions of a Norwegian entry produced by the four mono-
lingual models described in Section 4.1, with and without a Norwegian language
model.

Target maleriets integritet søkes i dets spesifikke og essensielle egenskaper

Swedish
Model

no LM måleriets integritet sökes i dess pescifike och ecensiella egenskaper
with LM maleriets integritet sökesidesspescifike och censiella egenskaper

Danish
Model

no LM molet eas integritat serkis i des bedste fie oracancia le aiken skar børd
with LM målet eies integritet serkisiedes bedstefieoracancia akenskarbørd

Norwegian
Model

no LM malleriets integritet søkes i det spesifikke og essensielle egenskaper
with LM maleriets integritet søkes i det spesifikke og essensielle egenskaper

English
Model

no LM moloria’s integritate circus in the specific o assincera le egnscopper
with LM moloria’s integritate circus i te specific senter leegnscopper

B.2. Multilingual Models
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Table B.5.: Examples of the transcriptions predicted by the multilingual model in Swedish,
Danish, and Norwegian, with and without a language model in the corresponding
language.

Language Setting Transcription

Swedish
Target samverkande krafter kommer att hålla förändringarna på måttlig nivå
no LM samverkande krafter kommer att hålla förändringarna på måttlig nivå
with LM samverkande krafter kommer att hålla förändringarna på måttlig nivå

Danish
Target hvad synes du om den nye bank der åbnede i går dernede på hjørnet over for kirken
no LM hvad synes du om den nye bank der åbnede i går dernede på hjørnet over for kirken
with LM hvad synes du om den nye bank der åbnede i går dernede på hjørnet over for kirken

Norwegian
Target maleriets integritet søkes i det spesifikke og essensielle egenskaper
no LM maleriets integritet søkes i det spesifikke og essensielle egenskaper
with LM maleriets integritet søkes i det spesifikke og essensielle egenskaper
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