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Abstract
Maintenance of medical equipment plays an important role in ensuring the healthcare quality
so that the care can be conducted with minimal risk. Preventive maintenance is performed
to maintain the equipment in satisfactory operating condition, while corrective maintenance is
made when there is an unpredicted maintenance requirement. This study aims to determine
what effect preventive maintenance has on corrective maintenance. A correlation analysis, re-
gression analysis and survival analysis are performed on work-order data from 2000-2021. The
results obtained indicate that increasing the number of preventive maintenances made to med-
ical equipment will decrease the number of corrective maintenances required for the medical
equipment.

Keywords: Correlation Analysis, Regression Analysis, Survival Analysis, Medical equip-
ment, Corrective Maintenance, Preventive Maintenance, Least squares, Cox Proportional Haz-
ards model



Sammanfattning
Statistisk analys av förebyggande och avhjälpande underhåll för medicin
teknisk utrustning
Underhåll av medicin teknisk utrustning har en viktig roll för att säkerställa sjukvårdens kvalitet
och att vården kan bedrivas med minimal risk. Förebyggande underhåll utförs i syfte att bevara
utrustningen i tillfredställande skick medan avhjälpande underhåll utförs när det uppstår ett
oförutsägbart underhållsbehov. Syftet med denna studie är att bestämma vilken effekt förebyg-
gande underhåll har på avhjälpande underhåll. En korrelations analys, regressionsanalys och
överlevnadsanalys utförs på arbetsorderdata från 2000-2021. De erhållna resultaten indikerar
att ett ökande antal förebyggande underhåll på medicinsk teknisk utrustning kommer att minska
antalet avhjälpande underhåll som krävs för den medicinsk tekniska utrustningen.
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1 Introduction
1.1 About the Centre for Biomedical Engineering and Radiation Physics

at the University Hospital of Umeå
The Centre for Biomedical Engineering and Radiation Physics (CMTS) at the University Hospi-
tal of Umeå (NUS) conducts research, development, and education in collaboration with Umeå
University (Region Västerbotten 2022). CMTS has a department of Biomedical Engineering
(MT) which is responsible for acquiring, installing and maintaining of medical equipment. The
medical technicians at MT control that they have received the correct medical equipment and
that the performance of the medical equipment is sufficient. The suppliers or the medical tech-
nicians conduct the maintenance of the medical equipment. The maintenance is done to prevent
future deviation or malfunction and repair sudden incidents, malfunctions or deviations. The
two different types of maintenance are defined below.

• Corrective maintenance (CM). This type of maintenance is made when there is an unpre-
dicted maintenance requirement or an incident, failure or malfunction that forces prompt
attention and change in the maintenance schedule1.

• Preventive maintenance (PM). This type of maintenance is executed on non-failed systems
to prevent future failures and to maintain it in satisfactory operating condition (Pecht &
Kang 2018, 729).

The preventive maintenance of medical equipment is executed according to an interval provided
by the supplier (Sveriges Kommuner och Landsting, 2009). The maintenance plays an impor-
tant role in ensuring healthcare quality so that the care can be conducted with minimal risk
(Revenäs and Derneborg 2019, 77). However, resources are sometimes limited, and there is
not enough time to execute preventive maintenance according to the schedule provided by the
supplier. In these cases, medical staff follow a ranking index that depends on a model called
’Prioritisation model for Preventive Maintenance’ PMFU (Sveriges Kommuner och Landsting,
2009). This model prioritises medical equipment depending on risk, maintenance requirements,
and Business-critical functions, resulting in a prioritisation value on a scale from 1 to 30(Sveriges
Kommuner och Landsting, 2009). In case of additional limitations on time and resources, the
hospital staff can deviate from this ranking-index and calculate their PMFU-value to get a new
prioritisation value2.

1.2 Problem background
There is a perception at MT that employees value the effects of preventive maintenance on life
expectancy of the medical equipment highly2. However, the effect of preventive maintenance
on the life expectancy has not been examined. Neither has it been proven that preventive
maintenance significantly impacts life expectancy. The total cost of service and support in the
hospital year 2020 amounted to about 123 million SEK1. Since the cost for service and support
is high, it is valuable to examine whether the maintenance is significant and how much effect it
has on the life expectancy of the medical equipment.

1.3 Problem Description
The purpose of the project is to evaluate the current preventive maintenance to determine how
the knowledge and time of the medical technicians can be utilised. The goal is to determine
whether preventive maintenance affects corrective maintenance. If there is an effect, a secondary

1Arrefalk, Jonas; Project manager at CMTS. 2022. Meeting 19 Jan
2Arrefalk, Jonas; Project manager at CMTS. 2022. Meeting 26 Jan
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goal is to determine how significant this effect is for all the different medical equipment. If the
time constraints allow, there is an additional goal to build a model that predicts when preventive
maintenance should be executed for each medical equipment respectively.

The main task of this thesis work is to answer the primary question. If the time constraint
allows for further investigation, the secondary questions are evaluated.

1.3.1 Primary Question

Does recurring preventive maintenance result in less corrective maintenance?

1.3.2 Secondary Questions

• Has the deviation from national prioritisation of preventive maintenance affected the num-
ber of corrective maintenance or deviations?

• Does recurring preventive maintenance result in less deviations in healthcare?

1.4 Limitations
This project performs a correlation, regression, and survival analysis of the historical main-
tenance data provided by the university hospital of Umeå. Correlation alone cannot answer
whether preventive maintenance causes less number of corrective maintenance. This fundamen-
tal question requires performing controlled experiments on the equipment to get sensor data
from the different equipment. Performing physical experiments is beyond the scope of this work
due to the time constraint. Data with insufficient information about medical equipment will be
left out. Therefore, medical equipment with too few observations or insufficient information on
unscheduled- or preventive maintenance is left out of the model. The Biomedical Engineering
department changed its computer system in the year 19993. Consequently, the data used to
solve this problem will be limited to observations logged after 2000-01-01.

1.5 Related Works
Che-Ani and Ali (2019) studied the relationship between corrective- and preventive maintenance
in medical equipment. They work with a similar data set as we do. They have access to work-
orders and perform a correlation analysis to make conclusions. Che-Ani and Ali (2019) use
information about the asset per year. Their approach in the correlation analysis is used when
choosing method for the correlation analysis in this study.

There are literature that study the remaining useful life (RUL) estimate. RUL is a form of
survival analysis that can be useful to model the life of the assets. Liao, Zhao and Guo (2006)
show that the RUL models can provide accurate predictions of the RUL. Their study uses lo-
gistic regression and Cox proportional hazards model to measure the RUL of bearings which
is a widely used mechanical element. However, in their study, they have access to sensor data
that can provide knowledge about the well-being of the machinery. The data accessed in this
project did not provide this information. Huang et al. (2015) perform a literature review of RUL
in equipment and machinery. They focus on the support vector machine based estimation of
RUL. Zhu, Chen and Peng (2019) investigate the RUL of machinery and present a deep feature
learning method for RUL estimation. They use time-frequency representation and multiscale
convolutional neural network. Their study provides a CNN-based method that show enhanced
performance in the prediction accuracy of the remaining useful life.

3Arrefalk, Jonas; Project manager at CMTS. 2022. Meeting 21 Jan
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1.6 Data
The data consist of 412 216 work orders, where each work order or observation has 23 features.
These features, together with their description, are found in Table 1. After discovering many
faulty values of the feature INSTALLDATE, another data set was extracted from the NUS data
system. This data set contained the install-date from a different database and the latest work
made for each asset. This data set consists of approximately 204 000 observations. Due to
secrecy in healthcare, the data is anonymous before extraction. There is no personal data, only
information concerning the equipment. There is, for example, information about what type of
event that occurred but not what caused the event.

Table 1: Features from the workorder data set with description and comments.

Variable name Description Comment
WONUM work-order number Unique for observations. No observations with the same WONUM.
WORKTYPE Workorder-type 31 valid types. Exists ‘old’ types that are uninterpretable.
LOCATION Location of asset Code for location.
LOCATION_DESCRIPTION Description of location Description of coded location.
ASSETNUM Asset Number Unique for each asset. Exists more than one observation with the same Asset-number.
ASSET_DESCRIPTION Description of asset Description of type of asset. Not unique for assets.
MANUFACTURER Name of manufacturer
PLUSCMODELNUM Model-name of asset The manufacturers model-number of the asset.
PLUSCVENDOR Service Vendor name Company responsible for service.
INSTALLDATE Date of installment Installment of asset.
PURCHASEPRICE Purchaseprice Purchase-price of asset (SEK).
PMNUM Serialnumber of asset Only exists for observations of type ’Preventive Maintenance’.
WOPRIORITY Proirity of asset at NUS When worktype 500 or 501: PMFU-value (1-30) created by NUS
ALNVALUE National proirity of asset PMFU-value (1-30) from national PMFU-index.
REPORTDATE_ Report date of WO Date of work-order created. Often 30 days before target completedate.
TARGSTARTDATE_ Target startdate of WO
TARGCOMPDATE_ Target completedate of WO
SCHEDSTART_ Scheduled startdate of WO
SCHEDFINISH_ Scheduled finishdate of WO
ACTSTART_ Actual startdate of WO
ACTFINISH_ Actual finishdate of WO
WO_STATUS Status of Work-order

1.7 Outline
This thesis is organised as follows: Section 2 reviews some basic notations in statistics that
provide the theoretical background needed to describe the method used, how the results are
generated, and how they can be interpreted. Section 3 presents the methods used, how the data
is handled and how the results are produced. Section 4 presents the results from the chosen
methods and how the results can be interpreted. Finally, Section 5 presents our findings and
concludes our results. These sections are divided into three parts: the correlation analysis, the
regression analysis, and the last part concerning the survival analysis.

3
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2 Theory
This section presents the theoretical background used or relevant to the problem and the methods.
We divide this section into four parts. We begin by defining some basic notions needed in this
study and establishing the notation. Then, we present the theory in three subsections concerning
correlation analysis, regression analysis and survival analysis.

Shapiro-Wilk test

The Shapiro-Wilk test can be used to identify whether a population being sampled is normally
distributed. The test compares the ordered sample values with the corresponding order statistics
from the normal distribution, whose probability density function f is given by

f(x) = 1
σ

√
2π

exp ((x − µ)2

2σ2 ) (1)

where −∞ < x < ∞, µ is the mean and σ is the variance . The normal distribution is denoted
by N(µ, σ2). In case of a Shapiro-Wilk test, the test statistic, W, is given by

W =
(
∑n

i=1 aix(i))2∑n
i=1(xi − x̄)2

where x(i) are the ordered random sample values of n observations, and ai are constants gener-
ated from the means, variances, and covariances from a normally distributed sample. The null
hypothesis of this test is that the population is normally distributed.The alternative hypothesis
is that the population is not normally distributed.

H0 : The data is normally distributed

H1 : The data is not normally distributed

Small values of the test statistic, W, indicate that the sample is not normally distributed and
hence the null hypothesis can be rejected. Larger values of the test statistic indicate that you
cannot reject the null hypothesis. For further information, see original article by Shapiro and
Wilk (1965).

Outlier
An outlier is an observation that differs significantly from other observations in a set of data.
There are various indicators and methods for identifying an outlier. For data from a normal
distribution, the Grubbs test can be performed to detect outliers. The test statistics is

G = maxi=1,..,N |Yi − Ȳ |
s

(2)

where Ȳ is the sample mean, and s is the standard deviation. The null and alternative hypoth-
esis are:

H0 : there are no outliers in the data set

H1 : There are outliers in the data set.

The null hypothesis is rejected if the test statistic

G >
n − 1√

n

√√√√ t2
α/(2n),n−2

n − 2 + t2
α/(2n),n−2

4
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where t2
α/(2n),n−2 denotes the upper critical value of the t-distribution with f = n − 2 degrees

of freedom and a significance level of α
(2n) . (Grubbs 1950)

2.1 Correlation
Correlation denotes the relationship or the association between two or more variables. It mea-
sures the strength of an association between variables and their direction. The correlation
coefficient ranges from -1 to +1. A correlation coefficient with a value of +1 suggests that
the variables are perfectly related in a positive manner while a value of -1 suggests that the
variables are perfectly related in a negative manner. A zero correlation indicates that there no
linear relationship between the two variables.

Correlation analysis should not be used when data is repeated measures of the same variable
from the same individual at the same or varied time points. Spearman’s correlation coefficient
is more robust to outliers than the Pearson’s correlation coefficient (Gogtay & Thatte 2017)

Karl Pearson Correlation Coefficient

The Karl Pearson’s product-moment correlation coefficient, r, is a measure of the strength of
a linear association between two variables. If n pairs of random variables X and Y in a ran-
dom sample are denoted by (x1, y1), (x2, y2), ..., (xn, yn), then the sample correlation coefficient
between X and Y is given by

r(x, y) = σxy√
σxσy

(3)

where

σxy =
n∑

i=1

(xi − x̄)(yi − ȳ)
n

σx =
√∑ (xi − x̄)2

n

where x̄ is the sample mean of x and σy is defined analogously to σx. The correlation coefficient
can take any value from -1 to 1. (Upton & Cook 2014)

Spearman’s rank correlation

The Spearman’s correlation, ρ, measures the strength and direction between two ranked vari-
ables. The correlation is given by:

ρ = 1 − 6
∑

d2
i

n(n2 − 1) (4)

where di is the difference in paired ranks and n is the number of cases. (Laerd, n.d.) The
Spearman correlation can be used when the assumptions of the Pearson correlation are violated
(Gogtay & Thatte 2017). Spearman’s method assesses the monotonic relationship between vari-
ables, while Pearson’s method determines the linear relationship between two variables (Laerd,
n.d.). A monotonic function implies that the relationship is constantly increasing or decreasing.
Spearman’s correlation is therefore less restrictive compared to Pearson’s (Laerd, n.d.).

2.2 Regression
While correlation analysis can identify relationships between variables, regression analysis can
model the relationship between the response variable and one or several other explanatory vari-
ables. Regression analysis can be used to predict the response variable by using the explanatory

5
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variables. In regression models, the expected value of one variable Y is presumed to be depen-
dent on one or more other variables. The variable Y is variously known as the response variable.
The x-variables are variously known as predictor variables or explanatory variables.

Simple linear regression model

The simple linear regression model is the simplest of all statistical regression models. The model
states that the response variable Y is related to the explanatory variable X by

Y = α + βX + ϵ (5)

where the parameters α and β correspond to the intercept and the slope of the line and ϵ denotes
a random error. (Upton & Cook 2014)

Least squares method

Least squares method is the process of estimating the unknown parameters of a model by
minimising the residual sum of squares(RSS). If every observation is given equal weight, then this
is ordinary least squares (OLS). With n pairs of observations (x1, y1), . . . , (xn, yn), the ordinary
least squares estimates are the values for α and β that minimise the following expression

n∑
j=1

(yj − α − βxj)2 (6)

Multiple linear regression model

Multiple linear regression model is an extension of the simple linear regression model. For p
number of X -variables and n observations, the model is

E(Yj) = β0 + β1x1j + β2x2j + ... + βpxpj , j = 1,2,...,n (7)

where β0, β1, .., βp are unknown parameters. An equivalent presentation is

Yj = β0 + β1x1j + β2x2j + ... + βpxpj + ϵj , j = 1,2,...,n (8)

where ϵj are random errors. In matrix terms the model is expressed as

E(Y ) = Xβββ (9)

where Y is the n × 1 column vector of random variables, βββ is the (p + 1) × 1 column vector of
unknown parameters, and X is the n × (p + 1) design matrix. This can also be expressed as

YYY = XXXβββ + ϵϵϵ (10)

where ϵ is an n×1 vector of random errors. In practice the explanatory variables may be related
as in the general polynomial regression model expressed as

Yj = β0 + β1x1j + β2x2
1j + ...βpxp

1j + ϵj , j = 1,2,..,n (11)

Usually it is assumed that the random errors, and hence the Y-variables, are independent and
have common variance σ2. In this case, the ordinary least squares estimates are obtained.
(Upton & Cook 2014)

6
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Adjusted R2

The adjusted R2 is similar to R2 and accounts the number of explanatory variables in the models
that may vary in the model. Adjusted R2 is given by

Adjusted R2 = 1 − RSS(n − 1)
TSS(n − p − 1) = 1 −

(
∑n

j=1(yj − E(yj))2)(n − 1)
(
∑n

j=1(yj − ȳ)2)(n − p − 1)
(12)

(Upton & Cook 2014)

Mean absolute error (MAE)

If y1, y2...yn are n observed values and ŷ1, ŷ2...ŷn are the corresponding predicted values by some
model, then the mean absolute error is

MAE = 1
n

n∑
j=1

|yj − ŷj | (13)

Mean square error(MSE)

The mean square error is given by

MSE = 1
n

n∑
j=1

(yj − ŷj)2 (14)

and the root mean square error (RMSE) is given by taking the root of the mean squared error.
(Upton & Cook 2014)

2.2.1 Residual Standard Error (RSE)

The residual standard error (RSE) is calculated as:

RSE =

√
nMSE

df

where MSE is the mean square error and df is the degrees of freedom (calculated as the number
of observations - number of model parameters). The smaller the RSE, the better a regression
model fits the observed values.

Akaike’s information criterion (AIC)

AIC is an index used to aid in choosing between competing models. Its definition is

AIC = −2Lm + 2m (15)

where Lm is the maximised log-likelihood and m is the number of parameters in the model. AIC
takes into account the statistical goodness of fit and the number of parameters that have to be
estimated to achieve this particular degree of fit. Lower values of AIC indicate the preferred
model with the fewest parameters that still provide an adequate fit to the data. (Everitt 2002)

Collinearity

Collinearity indicates situations where the explanatory variables are related by a linear function.
Collinearity can be a problem and it can be hard to interpret the model since the regression
coefficients have influence of other variables. Approximate collinearity can also be a problem
when estimation regression coefficients.(Everitt 2002)

7
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Backward selection

Selection methods are used for selecting a subset of explanatory variables when conducting a
regression analysis. One of the most commonly used selection methods is backward elimination.
The criterion used for assessing whether a variable should be removed from an existing model
in backward elimination is the change in the residual sum-of-squares produced by the exclusion
of the variable. An ‘F -statistic’ known as the F-to-remove is calculated as

F = RSSm − RSSm−1
RSSm−1
(n−m−2)

RSSm and RSSm−1 are the residual sums of squares when models with m and m - 1 explanatory
variables have been fitted. The F-to-remove is calculated and compared with a preset term. A
calculated F less than a corresponding F-to-remove leads to a variable being removed from the
current model. In the stepwise procedure, those variables currently in the model are considered
for removal by the backward elimination process.(Everitt 2002)

Bootstrap

Bootstrap is a data-based simulation method for statistical inference The basic idea of the
procedure involves sampling with replacement to produce random samples of size n from the
original data. Each of these samples is known as a bootstrap sample and each provides an
estimate of the parameter of interest. Repeating the process a large number of times provides
the required information on the variability of the estimator and an approximate 95% confidence
interval can, for example, be derived from the 2.5% and 97.5% quantiles of the replicate values.
(Everitt 2002)

2.3 Survival analysis
Survival analysis is used to investigate the time it takes for an event to occur. Typically, it is
used to predict a patient’s lifetime undergoing some sort of treatment and analyse the treatment
impact. Censoring is a type of missing data problem common in survival analysis. It occurs
when you track the subject through the end of the study and the event never occurs. It could
also happen due to the subject dropping out of the study for reasons other than failure, or some
other loss to follow-up. If the sample is censored, you only know that the individual survived
up to the loss to follow-up, but you do not know anything about survival after that.

Kaplan-Meier estimate

The Kaplan-Meier estimate is a nonparametric statistic for estimating the survivor function,
P (t) (the probability that a component survives until time t) from observations of lifetimes when
some observations are censored. A formal Kaplan-Meier estimate is defined by the following:

• Let L1 < L2 < ... < Lk−1 be the distinct observation limits that are less than the age
t = Lk at which P (t) is being estimated. Let nj+1 = n(Lj + 0) be the number of survivors
observed beyond Lj where Lj + 0 means that losses at Lj have been subtracted off,and δj

the number of failures observed in the interval (Lj−1, Lj ], excluding nonzero values of the
left endpoints, with L0 = 0. Then

P̂ (t) =
k∏

j=1
(1 − δj

nj
)

(Kaplan & Meier 1958)

8
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Cox proportional hazards model

The purpose of the model is to evaluate simultaneously the effect of several factors on survival.
The model examines how specified factors influence the rate of a particular event happening at
a particular point in time. This rate is commonly referred as the hazard rate.

The Cox model is expressed by the hazard function denoted by λ(t). This function can be
interpreted as the probability of an event occurring at time t. It can be estimated as:

λ(t; X) = λ0(t)eXβ

where β is a p × 1 vector of unknown parameters and λ0(t) is an unknown function giving
the hazard function for the standard set of conditions X = 0 and t represents the time. The
quantities exp(βi) are called hazard ratios (HR) and are usually obtained by maximum likelihood
estimation.The set of individuals at risk at time t−0 is called the risk set at time t and denoted
R(t); this consists of those individuals whose failure or censoring time is at least t. For the
particular failure at time t(i), conditionally on the risk set R(t(i)), the probability that the
failure is on the individual as observed is

ex(i)β∑
l∈R(t(i)) ex(l)β

Each failure contributes a factor of this nature and hence the required conditional log likelihood
is

L(β) =
k∑

i=1
x(i)β −

k∑
i=1

log[
∑

l∈R(t(i))

ex(l)β ] (16)

For ϵ, η = 1, .., p we can derive the following from equation (21)

∂L(β)
∂βϵ

=
k∑

i=1

(
x(ϵi) −

∑
x(ϵl)e

(xlβ)∑
e(xlβ)

)
(17)

where the sum being over l ∈ R(t(i)). Similarly

∂2L(β)
∂βϵ∂βη

=
k∑

i=1

(
[
∑

xϵlxηle
(xlβ)∑

e(xlβ) ] −
∑

x(ϵl)e
(xlβ)∑

e(xlβ)

∑
x(ηl)e

(xlβ)∑
e(xlβ)

)
(18)

Maximum-likelihood estimates of β can be obtained by the use of equations (22) and (23).
Significance tests about subsets of parameters can be derived in various ways, for example by
comparison of the maximum log likelihoods achieved.

The Cox proportional hazards model makes two assumptions:
• Proportional Hazard assumption - the survival curves for different explanatory variables

must have hazard functions that are proportional over the time t. This means that the
explanatory variable only changes the chance of failure - not the timing of periods of high
hazard.

• Linearity assumption - the relationship between the log hazard and each covariate is linear,
which can be verified with residual plots.

A value of βi greater than zero, or equivalently a hazard ratio greater than one, indicates that
as the value of the i:th covariate increases, the event hazard increases and thus the length of
survival decreases. A hazard ratio above one indicates a covariate that is positively associated
with the event probability, and thus negatively associated with the length of survival.

(Cox 1972)
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Martingale residuals

Martingale residuals can be used to determine the functional form of each of the covariates in
the Cox model. In order to check the linearity assumption, Martingale residuals can be used

rMi
= δi − λ̂0(ti)eXT

i β̂

where λ̂0(ti) is the estimate of the baseline cumulative hazard at ti, and δi is the event indicator
for subject i (Mohammed 2019). The null martingale residuals are computed from a null model,
with no covariates. The null martingale residuals can show the ideal functional form of the
covariates. To find out if the covariates should be of linear form, each covariate is plotted against
the null martingale residuals. Each of the covariates are plotted against the null martingale
residuals. A LOWESS curve is added to the plot. Locally Weighted Scatterplot Smoothing
(LOWESS) is a method of regression analysis which creates a smooth line through a scatterplot.
When curvature is present in the null martingale plot, you might need to add the square or the
logarithm of the covariate to the model. (NCSS Statistical Software, n.d)

Schoenfeld residuals

Schoenfeld residuals are used to check the proportional hazards assumption
• For any subject i ∈ D(tk), which is the set of dk failures at time tk, is the difference

between the covariate for that subject and the weighted average of covariates in the risk
set is Xi − X̄(β, tk).

• The sum of the Schoenfeld residuals over all dk subjects who fail at tk is

r =
∑

i∈R(tk)

δik[Xi − X̄(β, tk)] (19)

where δik = 1 if the subject fails at time tk and zero otherwise, R(tk) is the risk set at tk.
(Mohammed 2019)

2.3.1 Extended Cox

The extended Cox model is not used in this work but included for future works.

If the proportional hazards assumption is not fulfilled, the covariates must be interacted with
a time function. Covariates may change their values over time. Such variables are referred
to as time-dependent covariates. Time-dependent covariates may be used in Cox models with
extreme caution since the standard Cox model typically cannot be used to predict the survival
curve over time. In the case of time-dependent covariates an extended cox model is appropriate.
Let T be the failure time of interest, and let X be a set of possibly time-dependent covariates.
X(t) is used to denote the value of X at time t, and X̄(t) = {X(s) : 0 ≤ s ≤ t} to denote the
history of the covariates up to time t. The conditional hazard function of T given X̄ is

λ(t|X̄) = Pr(T ∈ [t, t + dt)|T ≥ t, X̄(t)] (20)

where (t, t + dt) is a small interval from t to t + dt. Let there be p1 covariates that meet the
proportional hazards assumption and p2 covariates that do not meet the assumption, then the
obtained model is

λ(t, X(t)) = λ0(t)exp[
p1∑

a=1
βaXa +

p2∑
b=p1+1

βbXb +
p2∑

b=p1+1
δbXbgb(t)] (21)

where gb(t) is a time function. Different functions can be used, like: gb(t) = 0, gb(t) = t, gb(t) =
ln(t). (Hartina Husain et al 2018)
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3 Method
This section explains how the problem is approached. The first part explains how the data was
handled and prepared. There are three parts explaining how the correlation analysis, regression
analysis and survival analysis are conducted.

3.1 Motivation and Approach
During the literature study one option is to estimate the remaining useful life(RUL) of the
assets since there is literature in this area. Since all literature on RUL estimation found has
access to sensor data, this was disregarded and a correlation analysis was performed. Che-Ani
and Ali (2019) performed a correlation analysis on a similar data set and problem, therefore
the correlation method in this study is approached in the same way as in Che-Ani and Ali (2019).

After the correlation analysis, a natural next step is to perform a regression analysis. Liao,
Zhao and Guo (2006) analysed the RUL with logistic regression and have access to sensor data.
Since we do not have access to sensor data and want to find a relationship between preventive-
and corrective maintenance, we use a different approach to the regression where we model the
number of corrective maintenance instead of the RUL. Three different approaches to the re-
gression problem are used. The main difference between these approaches is how the data is
represented in the problem.

Most of the literature found on survival analysis was performed to study patient treatments.
For example, Hashim and Weiderpass (2019) conducted a survival analysis to estimate the sur-
vival in cancer patients that undergo treatment and Husain et al (2018) studied the survival in
patients with breast cancer. Our aim is not to study patient treatment or survival probability
of patient’s. Still, if we view the medical equipment in the same way as a patient, then our
problem is similar to the problems Hashim and Weiderpass (2019) and Husain et al. (2018)
has studied. As in the studies of patient treatment and survival probability, our maintenance
equipment have a start of life and an end of life. Maintenance made to the equipment can be
viewed as the treatments done to the patients. Therefor a survival analysis in performed as well.

3.2 Data preparation
The data types in the data set are changed to an appropriate type for all variables. That is,
character for all variables except for the variables of type date and the priority- and price-
variables which are of type integer. The data set with work-orders is merged with the data set
containing a more accurate install-date variable. Non-valid work types are removed and the
observations of the work types that are relevant are kept. A list of all the valid work types can
be found in Appendix. The work types and their corresponding work type codes used in this
project are

500 Preventive Maintenance

603 Corrective Maintenance

700 Settlement

Incomplete observations are removed by only keeping observations where the work-order
status is ’COMPLETE’ or ’CLOSED’. The date-features are investigated and observations with
inaccurate dates are either replaced by another appropriate date or removed. In this project,
observations after 2000-01-01 are used and observations where the asset’s life started earlier
than 2000-01-01 are removed. A feature called group is added to the data set which explains,
for each observation, which type the asset belongs to. The type is determined by the brand and
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the model-number of the asset.

The medical technicians at NUS add the PMFU value manually in their data system when-
ever they decide to deviate from the national prioritisation scale. Therefore, there are missing
values in the original PMFU feature. Since this is done manually, we can assume that whenever
there is a missing value, NUS will use the national prioritisation PMFU value. The missing
values in the PMFU feature are therefore replaced with the value of the national prioritisation
PMFU value and the PMFU difference feature is set to zero in these cases.

3.3 Correlation Analysis
Data modification

The data is modified for the correlation analysis by creating a new data frame with number
of corrective- and preventive maintenance per asset. A feature was added to the data set con-
taining a group number based on the manufacturer and the model of the asset. This feature
is used by identifying assets that are of the same type. Spearman’s and Pearson’s correlation
coefficients were calculated for the ten biggest groups using equation 4 and 3. When referring to
the ten biggest groups, these are the groups that have the largest number of assets hence largest
number of observations. A scatter-plot of the number of preventive- and corrective maintenance
visualises the relationship and colour-coded by group.

After reviewing the results, a different approach is used by integrating a method from a similar
problem found in an article by Che-Ani and Ali (2019). The number of preventive- and correc-
tive maintenance per year was calculated for each asset. Che-Ani and Ali (2019) estimated the
mean of preventive- and corrective maintenance per year in order to calculate the correlation.
Therefore, the mean number of preventive- and corrective maintenance within a group is calcu-
lated for each year. Spearman’s and Pearson’s correlation coefficients are calculated using the
mean per year within a group. The mean per year within each group was visualised in a plot
as well as the correlation coefficients.

Outliers and normality

The Shapiro-Wilk test, q-q plots and Grubbs test are used to identify outliers and check for
normality. In consultation with the supervisor, Jonas Arrefalk at NUS, groups with insufficient
data are replaced with the next biggest group. The maintenance mean per year and correlation
coefficients are calculated and displayed in a scatter plot.The outliers are identified and removed.
After removal and addition of new groups, Spearman’s and Pearsons correlation coefficients are
calculated and displayed in a plot.

3.4 Regression Analysis
For the regression analysis, the least squares method is used to fit a polynomial regression model.
Backward selection is used to eliminate features. Although many features may be included and
presented in the models, the important features to answer the primary and secondary questions
are the preventive maintenance and the difference in PMFU value. Therefore these features are
the ones that is commented and discussed in the result and the discussion part.

Adjusted R2, AIC and RSE are used to compare models. The bootstrap method is used to
construct a 95 % confidence interval of the adjusted R2. To find a model that explains the
observations relatively well, different approaches are used. The main difference between these
approaches is how the data is presented and hence the formulation of the model. Three different
approaches to fitting a polynomial regression model are explained below.
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Model 1

The data is constructed by summarising information about one asset in one row. All infor-
mation available in a lifetime for an asset is represented by one observation. A description of all
variables included in the data set is found in Table 2. We fit a model to estimate the number
of corrective maintenance made to the asset during its lifetime. All features in table 2, except
CM and asset number, are used as explanatory variables as well as their polynomial.

Table 2: Description of variables included in the dataset for model 1.

Variable name Description
Assetnum the assetnumber
Group the name of the group that the asset belongs to
PM total number of preventive maintenance made on the asset during its lifetime
CM total number of corrective maintenance made on the asset during its lifetime.
dif_pmfu difference between the national prioritisation and the hospitals prioritisation
purprice purchase price of the asset
firstPM number of days until the first preventive maintenance occured
time_alive number of days the asset has been alive
PM_timeRatio the number of maintenance made divided with number of days alive

Model 2

Compared to the data set in model 1, the number of maintenance is replaced with the cu-
mulative maintenance at time t. There is an observation for each maintenance made on an asset
in this data set. In Table 2 a description of all variables included in the data set is presented.
We fit a model to estimate the number of corrective maintenance made to the asset at time t.
All features in Table 3, except CM_cumul and assetnumber, are used as explanatory variables
as well as their polynomial.

Table 3: Description of variables included in the dataset for model 2.

Variable name Description
Assetnum the assetnumber, unique in the dataset
Groupname the name of the group that the asset belongs to
PM_cumul total number of preventive maintenance made at time t
CM_cumul total number of corrective maintenance made at time t
dif_pmfu difference between the national prioritisation and the hospitals prioritisation
purprice purchase price of the asset
time t number of days the asset has been alive
PM_timeRatio the number of maintenance made at time t divided with number of days alive at time t.

Model 3

The third approach to the problem is influenced by the method used in the correlation anal-
ysis. The maintenance is grouped by year and which group each asset belong to. The mean
of preventive- and corrective maintenance per year within a group is represented in one obser-
vation. The year-variable is represented by first year alive, second year alive, and so on until
there are no observations within the group for the next year. A description of the variables in
the dataset is found in Table 4 . We fit a model to estimate the mean number of corrective
maintenance made to the asset during year y for group g. All features in Table 4, except CM,
are used as explanatory variables as well as their polynomial.

13



Statistical analysis of maintenance in medical equipment 2022–06–13

Table 4: Description of variables included in the dataset for model 3.

Variable name Description
PM mean number of preventive maintenance during year y in group g.
CM mean number of corrective maintenance during year y in group g.
Groupname name of group g.
Year Year y.
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3.5 Survival Analysis
Survival analysis is typically used in the presence of some sensor data that can provide mea-
surements on the physical conditions and the tear on the assets or well-being of the patient, see
article written by Husain et al. (2018). Unfortunately, we do not have access to such measure-
ments in this experiment. Instead, we conduct a survival analysis with the present work-order
data. We use two different methods: The first one is the Kaplan-Meier Analysis which evolved
into a Cox Proportional Hazards model. The advantage of a Cox model compared to a Kaplan-
Meier is that Kaplan-Meier curves are good for visualising differences in survival between two
categories, but do not work well for assessing the effect of quantitative variables. Cox propor-
tional hazards regression can assess the effect of both categorical and continuous variables, and
model the effect of multiple variables at once.

Since a majority of the observations in the data set are assets still in function, it is an ad-
vantage to use survival analysis since it can handle censored data. This means that the model
uses observations where the event has not occurred yet. In this case, the model uses observations
where an asset is still in function even if we are modelling the probability of failiure.(Mohammed
2019) When referring to an asset being dead or alive, an asset that is in function is the same
thing as it being alive and an asset that is not in function is the same thing as the asset being
dead. The data set used in the regression analysis of model 1 is used for the survival analysis.
A variable, status, is added to the data set which explains if the asset is dead or alive today.
The variable is a factor variable used for the censoring and it can take one of two values ’alive’
or ’dead’.

In the Kaplan-Meier analysis the first corrective maintenance was seen as an event and the
explanatory variable was which group the asset belonged to. The groups are formed based on
whether the asset had a lot of preventive maintenance done to it or not. We create the three
groups as follows:

gmin if the asset has had no preventive maintenance done to it before the first corrective main-
tenance occurred.

gmed if the asset has had one preventive maintenance done to it before the first corrective
maintenance occurred.

gmax if the asset has had more than one preventive maintenance done to it before the first
corrective maintenance occurred.

For the Cox proportional hazards model, the response variable is the probability of the asset
dying after time, t. The estimated risk of failure at time t is derived by maximum likelihood
estimates of β in the expression

h(t) = h0(t)eβ0+β1x1+..+βpxp

The same data set used for the Kaplan Meier analysis is used but an additional variable is added.
Since the response variable is not the number of corrective maintenance made to the asset we
can use this variable as an explanatory variable. Hence, CM_timeRatio is added which repre-
sents the number of maintenance made divided with the number of days the asset has been alive.

To validate the model, the Martingale residuals and the Schoenfeld residuals are calculated
and plotted. The Martingale residuals should not display patterns in the plot for the model to
fulfil the linearity assumption. For each covariate in the model, the scaled Schoenfeld residuals
are plotted against time and a smoothing spline that fits the plot is added together with a 95%
confidence interval. A pattern of systematic deviations from a horizontal line in the plot shows
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an indication that the covariate does not fulfil the proportional hazards assumption. A p-value
to test whether the slope in the plot is equal to 0, i.e horizontal or not, is provided in the plot.
If the p-value is less than 0.05 then the null hypothesis that the slope is equal to zero is rejected
and the covariate in question does not fulfil the proportional hazards assumption.
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4 Result
In this section, examples from the data preparation, representation of the data, and results
from the different methods are presented. In regression and survival analysis, we particularly
focus on preventive- and corrective maintenance features as well as the PMFU feature in our
discussions, as these three features seem to be more relevant to answering the primary and
secondary questions.

4.1 Data Preparation
The features installdate, reportdate, targetstartdate, targetcompletedate, schedulestart, sched-
ulefinish, actuallstart, actuallfinish (see Table 1 for definition) are changed to datatype date.
The variables installdate and datemoved_min is compared and since the variable installdate has
more faulty dates, the datemoved_min feature are used as the variable for the start of the life
for the asset. The observations that are not of work-type 500, 603 or 700 are removed form the
data set. Before removing these observations the different work-types are displayed. There are
some observations where the work-type code is added manually and there has been an spelling
mistake. These mistakes are corrected before the work-types is removed.

Figure 1: Data cleaning process of date-variables. Actual finish-date and Installation date of
original data.

Figure 2: Data cleaning process of date-variables. Actual finish-date and Installation date with
replaced dates for non-valid observations.
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Figure 3: Data cleaning process of date-variables. Actual finish-date and Installation date of
observations with install-date after 2000-01-01.

Figure 4: Data cleaning process of date-variables. Actual finish-date and Installation date of
valid observations.

In order to check the validity of the date-variables, the start-of life variable and the date for
the finish of the work were used. The latter variable was used since this variable had the least
missing values compared to the other date-features. In Figure 1, 2, 3 and 4 four different stages
of the data cleaning is displayed. The start of life variable comes from a different database
where there are more valid start of life dates. In Figure 1 the original dates of the assets start
of life and the date whenever there has been work done to the asset is displayed. In Figure
2 the dates where the start of life occurs after a work is done to the asset are changed to the
INSTALLDATE. In Figure 3 all observations that live before 2000-01-01 are removed and the
start of life and the finish of the work made to the asset are plotted. The red line represents
whenever the start of life and the finish of the work is at the same day. Since a work-order
cannot be completed before the start of life for the asset these observations are removed and
displayed in Figure 4. With this date feature the days from start of life to any work done to the
asset is derived. After removing or changing observations, depending on the work-type, date
condition and work-order status, approximately 35 % of the original data is left.
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4.2 Correlation Analysis
The data set used for the correlation analysis is built by summarising corrective- and preventive
maintenance respectively for each of the assets.

Figure 5: Preventive and corrective maintenance maintenance per group, color-coded by groups.

Figure 5 shows the total number of preventive- and corrective maintenance made for the ten
biggest groups during a lifetime for an asset and is color-coded by group. The assets in this data
started their life after 2000-01-01 and some of them have ‘died’ while others still ‘live’. When we
perform the correlation analysis over all groups combined, there does not seem to be a negative
correlation. In other words, we did not find a direct support for the hypothesis that more
preventive maintenance cause less corrective maintenance. When dividing into groups, some of
them (like PHILIPS M3002AIntelliVueX2 shown in red and FRESENIUSKABI ApplixSmart
shown in yellow) show a tendency to a negative correlation while other do not.

Figure 6: Pearson- and Spearman’s correlation coefficients for the 10 biggest groups.

Figure 6 displays Pearson’s and Spearman’s correlation coefficients for the ten biggest groups(in
terms of the number of assets). This correlation is based on the data set above in Figure 5.
The correlation ranges from positive to negative. Groups 1,2,3 and 5 have a positive correlation
between the preventive- and corrective maintenance. For these groups, the correlation suggests
that the more number of preventive maintenance that is made to the asset, the more number
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of corrective maintenance has to be made on the asset. One could argue that a reasonable
explanation for this can be how long the asset has been alive. Higher number of preventive
maintenance can occur when the lifetime of the asset is longer, which could also lead to a high
number of corrective maintenance, leading to a positive correlation.

Figure 7: Mean of preventive- and corrective maintenance per year, divided into groups and
colour-coded by groups.

The mean of number of corrective- and preventive maintenance within a group during a year
is displayed in Figure 7. Here the maintenance is not represented per asset but per group and
the mean per year is plotted. The colors in the plot correspond to each group. Here we can
see that there might be a negative correlation between preventive and corrective maintenance
compared to the results from the data in Figure 5.

Table 5: Pearson- and Spearman’s correlation coefficient, divided into years, for the 10 biggest
groups.

Group Pearson correlation Spearman correlation Number of assets
1 -0.868 -0.938 523
2 -0.578 -0.602 518
3 -0.805 -0.911 323
4 -0.865 -0.896 318
5 -0.043 -0.317 303
6 -0.948 -0.912 282
7 - - 266
8 -0.994 -0.700 253
9 -0.978 -0.752 210
10 -0.978 -0.963 208
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Figure 8: Pearson and Spearman’s correlation coefficient of mean of preventive- and corrective
maintenance per year.

The correlation between the mean of preventive- and corrective maintenance per year is
shown in Table 5 and in Figure 8. After building the new dataset, a quality deficiency was
discovered for group number 7. In Table 5 and in Figure 8 there is no value for the correlation
fro group number 7. The information for this group was integrated in the data-system in 2020
but the assets lived before that. The historical data prior to 2020 was not added to NUS:s
system. Therefore, there was only data for the year 2020 for group 7 and it is not possible to
calculate the correlation coefficients.

4.2.1 Outliers

The normality and outliers in the data are identified and displayed in Table 6. The outliers are
removed and the correlation is displayed in Figure 9.

Table 6: Outliers and normality for dataset with means of maintenance.

Group Outliers Normality
1 No Yes
2 No Yes
3 PM2009 = 2.03, PM2016 = 0.26 PM not normal
4 PM2000 = 2, PM2005 = 1.5 Yes
5 No CM not normal
6 No Yes
7 - -
8 PM2016 = 1, PM2020 = 0.09, CM2016 = 0 CM not normal
9 No CM, PM not normal
10 No Yes

The correlation between preventive and corrective maintenance from the data displayed in
Figure 7 without the outliers displayed in Table 6 is shown in Figure 9.
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Figure 9: Pearson- and Spearman’s correlation coefficient, divided into years, for the 10 biggest
groups without outliers.

From Figure 8 and9 we can see that group 8 is highly affected by the outliers since the
correlation differs a lot for this group. After evaluating the outliers, together with the supervisor
at NUS, group number 8 was removed due to poor quality. A preventive maintenance schedule
for many of the assets in this group was missing since the frequency of maintenance was manually
changed to zero in 2016. The reason for this change in frequency is not clear and the supervisor
suggests it is a human-error, hence the data for this group is excluded. Group 7 and 8 were
removed and the next biggest groups were added.

Figure 10: Preventive and corrective maintenance with valid group data

The mean number corrective and preventive maintenance within a group without group 7
and 8 and with group 11 and 12 is displyed in figure 10. The correlation of the data displayed
in Figure 10 is shown in Figure 11. The correlation calculated without the outliers is displayed
in Figure 12.

22



Statistical analysis of maintenance in medical equipment 2022–06–13

Figure 11: Correlation between preventive and corrective maintenance where group 7 and 8 is
changed to the next biggest group.

Figure 12: Correlation between preventive and corrective maintenance without outliers and
where group 7 and 8 is changed to the next biggest group.

In Figure 11 and 12, we notice that the correlation is negative for both Spearman’s and
Pearson’s correlation coefficients for all groups. There is not a big difference between the result-
ing two correlation coefficients, except for group number 5 and 7. Since Spearman’s correlation
coefficient is less restrictive compared to Pearson’s, we focus on Spearman’s correlation for group
number 5 and 7. The correlation is not as strong for group number 5 but for the other groups
the correlation is quite strong. The negative correlations shown in Figure 11 and 12 suggest
that increasing number of preventive maintenance made on the asset will decrease the number
of corrective maintenance that has to be done to the asset. The result shown in Figure 11 and
12 differs a lot from the result in Figure 6. An explanation to this can be how the data is
represented. In Figure 11 and 12, the observations used to calculate the correlation include the
mean number of maintenance made per year. In Figure 6 the observations include the mainte-
nance made for one asset from start of life and up until now and in some cases the number of
maintenance made during an entire lifetime. To some extent, this result answers our primary
question but does not give any input to our secondary questions.
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4.3 Regression Analysis
Next, we present the results for the regression analysis. In this part of the study, we removed
the features not included in the model formulation by backward selection.

Model 1

Formulation after backward selection:

E[CM ] = β0 + β1PM + β2time_alive +
10∑

i=2
βi+1gi

where gi is equal to 1 if the observation belong to group number i otherwise it is equal to 0 and
βi is the corresponding coefficient for the respective group.

Table 7: Result of model 1.

Model 1
β0 -0.9
β1 0.22
β2 0.0005
β3 1.1
β4 1.6
β5 -0.6
β6 0.12
β7 0.63
β8 0.1
β9 0.19
β10 1.5
β11 0.51
Adjusted R2 0.3108
AIC 11875
RSE 1.774
R2- 95% CI ( 0.2744, 0.3442)

In Table 7 the coefficient for the preventive maintenance in model 1 is positive. The bootstrap
with its 95 % confidence interval of the variance explained is low at only 27.44 to 34.42 %. A
rule-of-thumb is that the R2 should be at least 50 % for the model to be relevant for explaining
the observations.

Model 2

Formulation after backward selection:

E[CM_cum] = β0+β1PM_cum+β2dif_pmfu+β3time+
10∑

i=2
(βi+2gi)+β13PM_cumul2+β14dif_pmfu2+β15time2
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Table 8: Result of model 2.

Model 2
β0 -0.29
β1 0.35
β2 -0.57
β3 0.00037
β4 0.28
β5 -1.3
β6 -1.2
β7 0.39
β8 -0.88
β9 -0.52
β10 -0.69
β11 -2.02
β12 -0.88
β13 -0.015
β14 -0.006
β15 0.000000035
Adjusted R2 0.3469
AIC 18803
RSE 1.589
R2 - 95% CI (0,3188, 0,3750)

In Table 8 the coefficient for the preventive maintenance in model 2 is positive. The bootstrap
with its 95 % confidence interval of the variance explained is low at only 31.88 to 37.5 %.
Although the R2 value is better for model 2 compared to model 1, the AIC value is bigger for
model 2 indicating that model 1 is a better fit. The RSE is lower and hence better in model 2.
Even if the models can be compared, the variance explained in the models are very low and the
regression models does not explain the observed observations very well. This is an indication
that there is not enough information from the observed observations to explain the response
variable.

Model 3

Formulation after backward selection:

E[ ¯CM ] = β0 + β1 ¯PM + β2year +
10∑

i=2
βi+1gi + β12 ¯PM

2 + β13year2
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Table 9: Result of model 3.

Model 3
β0 0.98
β1 -0.97
β2 0.034
β3 0.15
β4 -0.24
β5 -0.15
β6 -0.046
β7 0.049
β8 -0.31
β9 -0.061
β10 -0.098
β11 -0.053
β12 0.23
β13 -0.0020
Adjusted R^2 0.7106543
AIC -18.38655
RSE 0.2092
R2 95% CI (0.5265, 0.7949)

In Table 9 the coefficient for the preventive maintenance in model 3 is negative. The boot-
strap with its 95 % confidence interval of the variance explained is between 52,65 and 79.49
%. The R2 value is a lot better for model 3 compared to model 1 and 2. The AIC value is
a lot smaller for model 3 indicating that the model is a better fit for the data. The RSE is
lower and hence better in model 3. This model might explain a lot better but it estimates the
mean number of corrective maintenance’s during a year hence we do not get a prediction for one
specific asset. This model estimates the mean number of corrective maintenance during a year
within a group. This could indicate that there are outliers in the data that make it difficult to
estimate the corrective maintenance. However, when removing the outliers in model 1 and 2,
the coefficient corresponding to the preventive maintenance feature is still positive.

From model 3 we can see that the coefficient corresponding to the preventive maintenance
is -0.97. This model suggests that the expected mean number of corrective maintenance that
has to be done to the assets in the group during a year decrease with approximately one mainte-
nance in average if there is an average increase of 1 in number of preventive maintenance made
to the assets in the group. The difference in PMFU feature was not significant in model 3, hence
there is no contribution from model 3 to answering the secondary question about the PMFU
difference.

4.4 Survival Analysis
Finally, in this section, we present our results for the survival analysis. We will first present the
results for Kaplan-Meier analysis, then we will discuss the Cox proportional hazards model.
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4.4.1 Kaplan-Meier

Figure 13: Kaplan-Meier, probability of not having first corrective maintenance made before
time t, on three groups with none, one and more than 1 number of preventive maintenance
made on the asset.

In Figure 13 the Kaplan-Meier analysis is visualised. The probability of an asset having its
first corrective maintenance after time t is estimated using three different groups: One group
includes observations where there have not been a preventive maintenance done to the asset;
another one includes observations where there has been one preventive maintenance made on the
asset; and the third group includes observations where there has been more than one preventive
maintenance made on the asset. In Figure 13 we can see that the probability of an asset not
needing corrective maintenance is higher when the more preventive maintenance is done to it.
One conclusion from this figure is that the more preventive maintenance done to the asset, the
more time will pass for the asset until it needs corrective maintenance.

4.4.2 Cox proportional hazards model

In this section, we present the result from the Cox proportional hazards model together with
the validation of the assumptions. There are two Cox proportional hazards models, one model
with total number of maintenance included as feature variables and one with maintenance ratio
included as feature variables. The first obtained model is

Model formulation lifetime: h(t) = h0(t)e−0.195P M−0.431CM+0.0896dif_pmfu

Since the proportional hazards assumption, that the hazard functions are proportional over
time, is not fulfilled when creating a Cox model based on total number of maintenance during
a lifetime, a second Cox model is created using the ratios instead. The proportional hazards
assumption is checked using Schoenfeld residuals and is visualized in Figure 18. Since the ratios
are divided by time, the hazard functions form this model might be proportional over time
and the assumption can be fulfilled. We get the following formulation for this model: Model
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formulation Ratio: h(t) = h0(t)e−414.3P M_ratio−1105CM_ratio+0.07863dif_pmfu

In both models, the coefficients for the preventive- and corrective maintenance is negative sug-
esting that the more maintenance made to the asset the probability of it living longer increase.
The coefficient for the difference in PMFU value is positive for both models and hence the model
suggest that the more the hospital deviate from the national prioritisation scale the probability
of assets lifetime will decrease.

Figure 14: Cox proportional hazards model, probability of survival. Estimate of survival with
three observations with different number of preventive maintenance during a lifetime for one
asset

Figure 15: Cox proportional hazards model, probability of survival. Estimate of survival with
three observations with different number of corrective maintenance during a lifetime for one
asset.
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In Figure 14 and 15 the estimate of the probability of surviving for an asset is displayed. In
these Figures, the estimate comes from the Cox proportional hazards model with maintenance
made during a lifetime. In Figure 14 an investigation of how the preventive maintenance affects
the lifetime is made. This is made by using three different observations to make a prediction.
The PMFU difference and the number of corrective maintenance are 1.3 and 1 respectively for all
three observations. These values are selected since it is the mean of corrective maintenance and
PMFU value. The preventive maintenance differs for the three observations where the first one
has had no preventive maintenance made to it, the second has had 2 preventive maintenance’s
and the last has had 10 preventive maintenance’s made to the asset during its lifetime. In Figure
15 an investigation of how the corrective maintenance affects the lifetime is made. This is made
in the same way as for when investigating the preventive maintenance affect on the assets lifetime
but with the mean of all the preventive maintenance as the number of preventive maintenance
made to the asset. The three observations to make a prediction on has a varying number of
corrective maintenance of 0, 1 and 8. Both plots in Figure 14 and 15 shows a confidence interval
of 95 %.

Figure 16: Cox proportional hazards model, probability of survival from ratio model formulation.
Estimate of survival with three observations with different number of preventive maintenance
during a lifetime for one asset.
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Figure 17: Cox proportional hazards model, probability of survival from ratio model formulation.
Estimate of survival with three observations with different number of corrective maintenance
during a lifetime for one asset.

In Figure 16 and 17 the estimate of the probability of surviving for an asset is displayed. In
this Figure the estimate comes from the Cox proportional hazards model with average mainte-
nance during one day. In Figure 16 an investigation of how the preventive maintenance affects
the lifetime is made. This is made by using three different observations to make a prediction.
The PMFU difference and the corrective maintenance ratio is 1.3 and 0.0003 respectively for all
three observations. These values are selected since it is the mean of the corrective maintenance
ratio and PMFU value. The preventive maintenance differs for the three observations where
the first one get in average a preventive maintenance made to it every forth year, the second
has get in average one preventive maintenance’s made to it every year and the last has get 4
preventive maintenance made to the asset during its lifetime. In Figure 17 an investigation of
how the corrective maintenance ratio affects the lifetime is made. This is made in the same
way as for when investigating the preventive maintenance ratio affect on the assets lifetime but
with the mean of the preventive maintenance ratio as the preventive maintenance ratio made to
the asset. The three observations to make a prediction on has a varying corrective maintenance
ratio of 0, 0.2/year and 0.4/year. As Figures 14 and 15, both plots in Figure 16 and 17 shows
a confidence interval of 95 %. Since there are many censored observations in the data set the
confidence interval grows with time. This is visible in Figures 14, 15, 16 and 17.

Validation of assumptions

Finally, we calculate the Schoenfeld residuals and the Martingale residuals to validate the as-
sumptions for Cox proportional hazards model empirically. This is done on both models to
verify the assumptions.
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Figure 18: Schoenfeld residuals of corrective- and preventive maintenance and the difference in
the PMFU value. The p-value for the test score is displayed for each variable ans well as the
global test-score.

In Figure 18, the Schoenfeld residuals and the p-values are displayed for the model with
number of maintenance made to the asset. Note that the p-value is smaller than 0.05 for
the preventive- and corrective variable as well as on the model globally. This means that the
proportional hazards assumption is violated and that the preventive- and corrective maintenance
variable and the model globally do not have hazard functions that are proportional over time.
Therefore the assumptions of a Cox proportional hazards model is not fulfilled.

(a) Martingale residuals of corrective mainte-
nance

(b) Martingale residuals of preventive mainte-
nance

Figure 19: Martingale residuals and square root martingale residuals of PM and CM.

Figure 20: Martingale residuals of the difference in PMFU value.

Figure 19 shows the martingale residuals and the square-root of the martingale residuals of
the corrective- and preventive maintenance. Since the maintenance can only have one mainte-
nance made at a time the variables has a discrete number of maintenance. Because the variables
only take integers both variables might look like there is a pattern. The line in the plot suggest
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that the corrective maintenance fulfil the linearity assumption since the line is almost linear.
When examining the preventive maintenance it does look slightly like the linearity assumption
is violated. Figure 20 shows the martingale residuals of the PMFU value and it is clear from
the line in the Figure that this variable violates the linearity assumption.

Figure 21: Schoenfeld residuals of corrective- and preventive maintenance ratios and the differ-
ence in the PMFU value. The p-value for the test score is displayed for each variable ans well
as the global test-score.

In Figure 21 the Schoenfeld residuals and the p-values are displayed for the model with
maintenance per day in average that is made to the asset. The p-value is greater than 0.05
for all variable as well as on the model globally. This means that the proportional hazards
assumption is fulfilled and that all variables as well as the model globally have hazard functions
that are proportional over time.

(a) Martingale residuals of corrective mainte-
nance ratio.

(b) Martingale residuals of preventive mainte-
nance ratio.

Figure 22: Martingale residuals and the square root martingale residuals of PM ratio and CM
ratio.

Figure 22 shows the martingale residuals and the square-root of the martingale residuals of
the corrective- and preventive maintenance ratios. In all four plots in the Figure, we can see
that there seems to be a pattern for both preventive- and corrective maintenance which suggest
that the variables violate the linearity assumption. It can be confirmed by the nonlinear curves
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in the plots. The martingale residuals of the PMFU difference is the same as in the first model,
see Figure 22b. The model with maintenance ratios fulfil the proportional hazards assumption
but not the linearity assumption.
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5 Discussion and Conclusions
Correlation Analysis

From the correlation analysis, we can conclude that when looking at each asset individually the
correlation varies a lot depending on which group the asset belongs to. The correlation has a
wide spread and there is no apparent negative or positive correlation between the preventive-
and corrective maintenance. When assessing the problem more generally and dividing the main-
tenance into years, the results are a bit more clear. Both Spearman’s and Pearson’s correlation
coefficients are negative for all groups, suggesting that the more preventive maintenance made to
the asset, the less corrective maintenance has to be done to that asset. However, the correlation
between these two variables can have another explanation and does not necessarily mean that
there is a relationship between the variables. The correlation can be found to be influenced
by another variable. Also the fact that the results differ when calculating the correlation using
each asset and divided into average per year suggests that the results might be unreliable. The
regression analysis confirms these differing results between the methods.

Regression Analysis

Regression model 1 and 2 suggest that an increasing number of preventive maintenance made
to the asset results in more corrective maintenance made to the asset. Although, both model 1
and 2 do not explain the data well since the variance explained by the models is approximately
30 % for both models. A rule-of-thumb is that a model should have a R2 value of at least
50 % for the model to be considered explaining the data. When approaching the regression
analysis in the same way as in the correlation analysis, we get similar results. The difference
is that we can get a measure of how well the model explains the data. The third regression
model explains the data much better than model 1 and 2, which might not be that surprising.
Intuitively, it is easier to predict the average number of corrective maintenance per year and
per group since this is a more general approach. From the correlation- and regression analysis,
the primary question has been answered in a general manner. In this thesis, nothing suggests
that the corrective maintenance will decrease with the more preventive maintenance made to a
specific asset. However, when looking at the average maintenance in a group we can conclude,
from the correlation and regression analysis, that there is a relationship between the corrective-
and preventive maintenance. This relationship suggests that the more number of preventive
maintenance made on average in a group, the less number of corrective maintenance has to be
done to the assets in average for the group.

Survival Analysis

The Kaplan-Meier analysis suggests that the more preventive maintenance on the asset, the
longer it will take until the asset needs any corrective maintenance. This finding is intuitive and
confirms that there is a relationship between the preventive- and corrective maintenance. The
resulting Cox models present that increasing the number of preventive maintenance made to the
asset will increase the expected lifetime of the asset. An interesting result for the Cox models is
that it suggests that increasing number of corrective maintenance made to the asset will increase
the expected lifetime for the asset. This is intuitive since the corrective maintenance is still work
made on the asset. However, none of the Cox models fulfilled the assumptions needed when
fitting a Cox proportional hazards model. These violations suggest that the hazard functions
are non-linear and that there is a variation in the maintenance made to the asset depending on
how long time the asset has been alive. An improvement to this work would be to fit an ex-
tended Cox model instead. This might solve the problem with time-depending covariates. Due
to the time constraint, a extended Cox model was never completed, but for future work this
is a possible method to answer the questions more thoroughly. See Section 2.3.1 for using the
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extended Cox model to solve the problem. Even though the results from the survival analysis
is in line with what was expected before the start of the thesis, the models do not explain the
observations very well and there might be a better way to estimate the lifetime of the assets.

When examining how the deviation from the national prioritisation scale (PMFU) affects the
number of corrective maintenance made to the asset, the variable is only significant for one of
the regression models. This model does not explain the observations very well. The survival
analysis shows that the expected lifetime is shortened if the medical technicians deviate from
the national prioritisation scale and rate an asset lower than the national prioritisation scale.
But as mentioned, the proportional Cox model does not fulfil its assumptions and does not have
a reliable result.

Conclusions

The primary question, whether preventive maintenance results in less corrective maintenance,
is largely answered affirmatively. The secondary question, whether the deviation from national
prioritisation of preventive maintenance affects the number of corrective maintenance or devia-
tions, has been examined. Still, the results are not reliable, and therefore this needs to be further
investigated. The secondary question on whether recurring preventive maintenance results in
less deviations in healthcare has not been investigated due to the time constraints. In conclu-
sion, this work has shown significant results and suggests that there is a significant relationship
between corrective- and preventive maintenance but further investigation is needed to confirm
this. For future work, an extended Cox model is suggested as a possible approach to show how
the PMFU value and maintenance affect the expected lifetime of the asset.
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Appendix
Table A

Work type Description
100 Planing
200 Acquisition
300 Delivery
400 Administrative administration
401 Service agreement
402 System management
500 Preventive Maintenance
501 Quality control
502 Random check
601 Training of healthcare staff
603 Corrective maintenance
604 Product-/system adaptation
605 Self-manufacturing
606 Rellocation
607 Deviation investigation in MTP healthcare
608 Material delivery
609 User support and consultation
611 Teknique round
700 Settlement
810 Research
820 Development
850 Clinical routine
860 Clinical development
861 Optimization X-ray physics
900 Internal activities
901 Competence development
902 Work environment and health-promoting workplace
903 Quality work
907 Deviation and customer complaints
909 Own equipment
910 Projects and assignments according to routine
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