
Huanyu
Li

2022

FACULTY OF SCIENCE AND ENGINEERING

Linköping Studies in Science and Technology, Dissertation No. 2218, 2022
Department of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

www.liu.se

Ontology-Driven Data Access and Data Integration w
ith

an Application in the M
aterials Design Dom

ain

Linköping Studies in Science and Technology
Dissertation No. 2218

Ontology-Driven Data Access
and Data Integration with an
Application in the Materials
Design Domain

Huanyu Li

LINKÖPING UNIVERSITY
LINKÖPING UNIVERSITY ELECTRONIC PRESS
https://ep.liu.se ep@ep.liu.se

This is an updated version of the thesis

Ontology-Driven Data Access and Data Integration with an
Application in the Materials Design Domain
Huanyu Li
https://doi.org/10.3384/9789179292683

2022-04-14 The thesis was first published online. The online

published version reflects the printed version.
2022-05-10 The thesis was updated with an errata list which is

also downloadable from the DOI landing page.
Before this date the PDF was downloaded 114 times.

https://ep.liu.se/
mailto:ep@ep.liu.se
https://doi.org/10.3384/9789179292683

Errata for “Ontology-Driven Data Access and
Data Integration with an Application in the

Materials Design Domain”

Huanyu Li
Linköping Studies in Science and Technology.

Dissertation No. 2218

Page 42. The second sentence of Section 4.1.2 should be updated as: FL0 allows
atomic concepts, the universal concept, intersection and value restriction.

Page 89. Figure 6.4 (a) should be updated as follows (phrase 2 is also a repre-
sentative phrase for topic 2).

Page 134. The fourth sentence of the paragraph starting with “The second
observation ...” should be updated as: UltraGraphQL and HyperGraphQL out-
perform other systems for some smaller datasets (e.g., UltraGraphQL’s QETs of
Q1 and Q2, HyperGraphQL’s QETs for Q1 from 1K-1K to 4K-4K).

Page 135. morph-morphql should be updated as: morph-graphql.

Linköping Studies in Science and Technology

Dissertations, No. 2218

Ontology‐Driven Data Access and Data Integration with an

Application in the Materials Design Domain

Huanyu Li

Linköping University

Department of Computer and Information Science

Division of Database and Information Techniques

SE‐581 83 Linköping, Sweden

Linköping 2022

This work is licensed under a Creative Commons “Attribution

4.0 International” license.
https://creativecommons.org/licenses/by/4.0/

Edition 1:1

© Huanyu Li, 2022

ISBN 978-91-7929-267-6 (print)
ISBN 978-91-7929-268-3 (PDF)
ISSN 0345-7524

DOI: https://doi.org/10.3384/9789179292683

Published articles have been reprinted with permission from the respective

copyright holder.
Typeset using XƎTEX

Printed by LiU-Tryck, Linköping 2022

ii

https://doi.org/10.3384/9789179292683
https://creativecommons.org/licenses/by/4.0

Dedicated to all the teachers and supervisors I encountered through the

journey of my studies!

iii

E F书山有路，学海无涯，

积跬步以至千里，积小流以成江海！

得遇至亲、良师、益友，幸甚足矣！

H G

v

ABSTRACT

The Semantic Web aims to make data on the web machine-readable by introducing se-
mantics to the data. Ontologies are one of the critical technologies in the Semantic Web.
Ontologies, which provide a formal definition of a domain of interest, can play an important
role in enabling semantics-aware data access and data integration over heterogeneous data
sources. Traditionally, ontology-based data access and integration methods focus on data
that follows relational data models. However, in some domains, such as materials design,
the models that data follows and the methods by which it is shared differ today. Data may
be based on different data models (i.e., relational models and non-relational models) and
may be shared in different ways (e.g., as tabular data via SQL queries or API (Application
Programming Interface) requests, or as JSON-formatted data via API requests). To ad-
dress these challenges, conventional ontology-based data access and integration approaches
must be adapted. The recently developed GraphQL, a framework for building APIs, is an
interesting candidate for providing such an approach, although the use of GraphQL for
integration has not yet been studied.

In this thesis, we propose a GraphQL-based framework for data access and integration. As
part of this framework, we propose and implement a novel approach that enables automatic
generation of GraphQL servers based on ontologies rather than building them from scratch.
The framework is evaluated via experiments based on a synthetic benchmark dataset. Fur-
ther, we utilize the field of materials design as a target domain to evaluate the feasibility
of our framework by showing the use of the framework for the Open Databases Integration
for Materials Design (OPTIMADE), which is a community effort aiming to develop a spec-
ification for a common API to make materials databases interoperable. At the beginning
of this work, no ontologies existed for the domain of computational materials databases.
As our approach requires the use of an ontology, we developed one: the Materials Design

Ontology (MDO). Furthermore, when new databases are added or new kinds of data are

added to existing databases, the coverage of the ontology driving the GraphQL server gen-
eration may need to be enlarged. Therefore, we study how ontologies can be extended and
propose an approach based on phrase-based topic modeling, formal topical concept analysis

and domain expert validation. In addition to extending MDO, we also use this approach

to extend two ontologies in the nanotechnology domain.

This work has been supported by the Swedish National Graduate School in Computer Science

(CUGS), the Swedish e-Science Research Centre (SeRC), the Swedish Research Council
(Vetenskapsrådet, dnr 2018-04147) and the EU project VALCRI (FP7-IP-608142).

vii

POPULÄRVETENSKAPLIG SAMMANFATTNING

Vi lever i en värld som är full av data. Man kan säga att vårt dagliga liv styrs av da-
ta. År 2020 var volymen global data ca 64,2 zettabyte. Det förutspås att volymen global
data skulle nå upp till 180 zettabyte år 2025. Data av detta slag består av information

som utgörs av transaktioner från företag, forskning, sociala medier etc. Tillväxten är högre

än tidigare eftersom vi befinner oss i covid-19-pandemin, och fler människor måste därför

oftare arbeta och delta i aktiviteter online. På grund av utvecklingen av datorrelaterade

teknologier kan vi producera data i ett stort antal olika sammanhang, analysera och lära

av dessa data samt bygga upp datadrivna arbetsflöden. Till exempel kan man i material-
designdomänen simulera extrema förhållanden för materialexperiment med datorprogram

istället för att utföra experiment i ett riktigt labb. Även om data effektiviserar många ak-
tiviteter i det dagliga livet och inom forskning, står vi inför utmaningen att data ibland

inte är FAIR. FAIR-principerna anger att data ska vara sökbara (Findable), tillgängliga

(Accessible), interoperabla (Interoperable) och återanvändningsbara (Reusable). Inom oli-
ka områden bedrivs forskning för att anpassa datahanteringen till dessa principer, inklusive

inom materialvetenskap. Ontologier och ontologibaserade tekniker har erkänts möjliggöra

dessa principer. Termen ontologi har sitt ursprung i filosofin, där det är namnet på läran om

vad som är, om objektens typ och strukturer, egenskaper, förhållanden inom varje område

av verkligheten. 1980 introducerades ontologier av Alexander et al. ur ett kunskapstekniskt

perspektiv och har sedan dess spridit sig till många delfält inom datavetenskap. Ontologi-
er kan intuitivt ses som en definition av de grundläggande termerna och relationerna för

en intressedomän och reglerna för att kombinera dessa termer och relationer. Ontologier

används för kommunikation mellan människor och organisationer genom att tillhandahålla

en gemensam terminologi över en domän. Ontologier kan ge en delad standardiserad re-
presentation av kunskap om en domän. Genom att beskriva data med hjälp av ontologier

blir data mer lätt att hitta (Findable). Genom att använda ontologier för att representera

metadata kan tillgänglighetsnivån höjas (Accessible). Genom att använda samma termi-
nologi som definieras av ontologier, möjliggörs interoperabilitet (Interoperable). Slutligen,
eftersom ontologier delas och standardiseras, stöds återanvändbarhet (Reusable). För att

göra data interoperabel och utbytbar behöver vi vanligtvis ett ramverk för att ge enhetlig

och semantikmedveten tillgång till data över flera datakällor.

I denna avhandling presenterar vi ett GraphQL-baserat ramverk för dataåtkomst och in-
tegration med hjälp av en ontologi för att generera en GraphQL-server. GraphQL är ett

nyutvecklat konceptuellt ramverk för att bygga API:er och kan stödja dataåtkomst och

integration. GraphQL introducerar ett GraphQL-schema för att specificera vilken data som

kan begäras; ett graffrågespråk som tillåter att skriva GraphQL-frågor; resolverfunktio-
ner som får åtkomst till backend-datakällor och omstrukturerar data enligt schemat. Om

GraphQL-schemat återspeglar semantiken för data från flera källor, och resolverfunktio-
nerna kan hämta data från flera källor och strukturera data enligt GraphQL-schemat, kan

heterogeniteten hos data från dessa källor behandlas. Vi föreslår och implementerar formella

metoder för att automatiskt skapa GraphQL-servrar baserade på en ontologi. Vi tillämpar

ix

vidare detta ramverk inom materialdesignområdet. Inom ramen för detta ramverk fokuserar

vi på att utveckla en ontologi för materialdesigndomänen och hur man utökar domänon-
tologier. Vi utvecklar en ontologi för materialdesigndomänen (Materials Design Ontology,
MDO), föreslår en metod för hur man utökar domänontologier och tar sedan fram kandi-
dater som kan utöka MDO och två ontologier inom nanoteknikdomänen.

x

Acknowledgments

Back in 2015, when the LiU-HIT master exchange program brought me to

Linköping, I could not have imagined having such an amazing journey in

academical research. Thanks to the exchange program between the School
of Software at Harbin Institute of Technology (HIT) and the Department of
Computer and Information Science at Linköping University (LiU), I was given

this unique opportunity to such a wonderful experience.

Without the support and help from the people around me throughout the

writing of this thesis, I would not have been able to finish it. I am fortu-
nate to have you all around me. I would like to start by expressing my deep

gratitude to my principal supervisor, Professor Patrick Lambrix, for introduc-
ing me to the world of research. In spite of many challenges, your guidance,
encouragement and words of support along the way give me the help and

confidence to thrive forward. Your insightful feedback and advice pushed me

to sharpen my thinking and brought my work to a higher level. Thank you

so much, Patrick!

To my wonderful supervision team! I would like to thank Professor Nahid

Shahmehri, for your great support, guidance and care. I am also grateful to

Associate Professor Rickard Armiento and Associate Professor Olaf Hartig.
Without your energy and time spent supervising and supporting me, I could

not move this far. It is lucky among the lucky that I have all of you as my

co-supervisors.

My sincere thanks go to the discussants in my 60% seminar for PhD, Associate

Professor Eva Blomqvist, and Professor Igor Abrikosov. Thank you for the

questions and discussions.

My special thanks go out to Patrick for nominating me for the Lawson

Stipendium and to the IDA board for selecting me. It is indeed a great
honor and encouragement to me. Without the international collaboration, I

xi

would not have been able to qualify for this prize. Therefore, I am grateful
to Catia Pesquita, Ernesto Jiménez-Ruiz, Daniel Faria, Valentina Ivanova,
Zlatan Dragisic, Mina Abd Nikooie Pour, Ying Li and many other co-authors
from the ontology matching community.

I thank the colleagues at IDA’s administrative department for the kind and

helpful assistance you have provided me with. I would like to express my

gratitude to Anne for your help. My thanks go to Brittany for your many

constructive comments on this thesis. I also want to thank Sijin, Kai and

Peige for proofreading some parts of this thesis.

I thank the colleagues at ADIT for making ADIT a pleasant place to work.
Especially, I would like to thank Associate Professor Niklas Carlsson. Your
questions during many presentations have been an inspiration for me.

I thank the Swedish National Graduate School in Computer Science (CUGS),
the Swedish e-Science Research Centre (SeRC), the Swedish Research Council
(Vetenskapsrådet, dnr 2018-04147) and the EU project VALCRI (FP7-IP-
608142) for financial supports.

There has been a lot more to life in the past five years than just writing, cod-
ing, and studying. I thank Professor Zebo Peng and Professor Nahid Shah-
mehri for organizing and leading the badminton group. I have enjoyed the

time with the group very much and have improved my badminton skills quite

a lot. In addition, I want to take this opportunity to thank my friends, Peige,
Kai and many others. My life is made more enjoyable by your presence. As
the travels, games, and talks are precious and unforgettable, the memories
will be as well.

Last but not least, I would like to thank my family, especially my parents, for
your understanding and support of every decision that I have made. Thank

you so much for encouraging me and for standing by me! 感谢一直以来支持
我的父母、家人，你们是我前进路上最坚实的后盾！

This journey is about to come to a conclusion. Fun and challenges are always
best friends along the path of going forward. As I am writing this, the past five

years flashed over in my mind like a movie. With all the previous memories
well kept in mind, it is also time to look forward to the new adventure!

Huanyu Li/李环宇

Linköping, 2022

xii

Contents

Abstract vii

List of Tables xxi

List of Listings xxiii

List of Acronyms xxv

Populärvetenskaplig sammanfattning ix

Acknowledgments xi

Contents xiii

List of Figures xvii

External Publications 1

1 Introduction 9

1.1 Motivation . 10

1.2 Problem formulation . 14

1.3 Contributions . 15

1.4 Research methods . 16

1.5 Thesis outline . 17

2 Background 21

2.1 Ontologies, RDF, SPARQL . 21

2.2 Data integration . 26

2.3 Materials design domain . 27

2.4 FAIR data principles . 28

xiii

2.5 Summary . 29

3 GraphQL-based framework for data access and integration 31

3.1 GraphQL . 31

3.1.1 GraphQL schemas . 31

3.1.2 GraphQL resolver functions 34

3.2 Overview of the framework . 35

3.2.1 GraphQL server generation process 36

3.2.2 GraphQL query answering process 37

3.3 Summary . 38

4 Ontology-based GraphQL server generation (OBG-gen) 39

4.1 Ontology-based GraphQL schema generation 39

4.1.1 GraphQL schema formalization 40

4.1.2 Ontology represented by description logic TBox 42

4.1.3 The Schema Generator algorithm 43

4.1.4 The intended meaning of GraphQL schemas generated

by the Schema Generator 45

4.2 Generic GraphQL resolver function 47

4.2.1 GraphQL queries represented by Abstract Syntax Trees 48

4.2.2 RDF Mapping Language (RML) 49

4.2.3 Components of the generic resolver function 51

4.2.4 The Evaluator algorithm 53

4.3 Related work . 56

4.4 Summary . 58

5 Materials Design Ontology (MDO) 61

5.1 Background and related work . 61

5.1.1 Ontology development . 62

5.1.2 Ontologies in the materials science domain 64

5.1.3 Databases in the materials science domain 67

5.1.4 Open Databases Integration for Materials Design 68

5.2 Development of Materials Design Ontology 68

5.2.1 Requirements analysis . 68

5.2.2 Using existing resources 70

5.3 Description of Materials Design Ontology 73

5.3.1 MDO core module . 73

5.3.2 MDO structure module . 74

xiv

5.3.3 MDO calculation module 75

5.3.4 MDO provenance module 77

5.4 Usage of Materials Design Ontology 78

5.4.1 Instantiating a materials calculation using MDO 79

5.5 Impact, reusability, and availability of MDO 79

5.6 Summary . 81

6 An approach for extending domain ontologies (ToPMine-
FTCA) 83

6.1 Background . 83

6.1.1 Extending ontologies based on unstructured text 84

6.1.2 Topic models . 85

6.2 The framework (ToPMine-FTCA) 86

6.2.1 Topic model-based text mining 86

6.2.2 Formal topical concept analysis 88

6.2.3 Domain expert validation 89

6.3 Summary . 91

7 Evaluation of ToPMine-FTCA 93

7.1 Related work . 93

7.2 Extending ontologies using ToPMine-FTCA 94

7.2.1 Extending ontologies in the nanotechnology domain . . 94

7.2.2 Extending Materials Design Ontology 110

7.3 Summary . 118

8 Evaluation of the GraphQL-based framework 119

8.1 Real case evaluation . 120

8.1.1 Data . 120

8.1.2 Systems . 121

8.1.3 Queries . 121

8.1.4 Experiments and measurements 125

8.1.5 Results and discussion . 134

8.2 Evaluation based on LinGBM . 136

8.2.1 Data . 136

8.2.2 Queries . 136

8.2.3 Experiments, results and discussion 137

8.3 Summary . 138

xv

9 An application to OPTIMADE 141

9.1 The OPTIMADE API . 142

9.2 The usage of MDO and OBG-gen with OPTIMADE 144

9.3 Summary . 148

10 Limitations and future work 149

10.1 Towards more user-friendly data access, data integration and

ontology extension . 149

10.2 Limitations in mapping languages 150

10.3 Semantic Web meets Materials Science 151

11 Conclusions 153

11.1 Ontology-driven data access and integration 154

11.2 Domain ontologies extension . 154

11.3 Evaluation and application in the materials science domain . . 155

Bibliography 157

A SPARQL queries for MDO competency questions 183

B GraphQL schemas used in the evaluation 193

B.1 MDO related GraphQL schema 193

B.2 University related GraphQL schema 202

C GraphQL queries used in the evaluation 209

C.1 MDO related queries . 209

C.1.1 Queries without filter expressions 209

C.1.2 Queries with filter expressions 212

C.2 Query examples according to query templates in LinGBM. . . . 219

xvi

List of Figures

1.1 An example of searching materials from Materials Project,
OQMD and NOMAD. 11

1.2 Mappings among thesis chapters and research questions, con-
tributions. 18

2.1 An outline of Materials Design Ontology. 22

2.2 Materials Design Ontology opened in Protégé. 23

3.1 A GraphQL schema example. 33

3.2 GraphQL-based framework for data access and integration. . . 35

3.3 An example GraphQL query/response. 37

4.1 The formalization of the GraphQL schema shown in Figure 3.1. 41

4.2 An example TBox. 43

4.3 An example ABox. 46

4.4 Abstract Syntax Trees for the query shown in Figure 3.3a. . . . 49

4.5 Technical components in the generic resolver function. 51

4.6 An example for answering the query in Figure 3.3a, (1)-(3) in-
dicate the requests to and responses from the data sources; (a)-
(c) indicate the parameter passing between the calls to Eval-
uators; (4) indicates a recursive call to Evaluator for getting

the data of Departments; frame (A) indicates a join operation. 56

5.1 An overview of MDO. 72

5.2 Concepts and relations in the Core module. 73

5.3 Description logic axioms for the Core module. 74

5.4 Concepts and relations in the Structure module. 75

5.5 Description logic axioms for the Structure module. 76

5.6 Concepts and relations in the Calculation module. 76

xvii

5.7 Description logic axioms for the Calculation module. 77

5.8 Concepts and relations in the Provenance module. 77

5.9 Description logic axioms for the Provenance module. 78

5.10 The envisioned use of MDO, (a)-(e) indicate ontology-based

data access in a materalized way; (1)-(4) indicate a virtual way

of data access by which the framework presented in Chapter 3

follows. 78

5.11 An instantiated materials calculation. 80

6.1 The intuitions behind Latent Dirichlet Allocation for repre-
senting a collection of documents. 85

6.2 An example of the inference with Latent Dirichlet Allocation. . 85

6.3 Approach: The upper part of the Figure shows the creation of a

phrase-based topic model with as input unstructured text and

as output phrases and topics. The lower part shows the formal
topical concept analysis with as input topics and as output a

topical concept lattice. In both parts a domain expert validates
and interprets the results. 87

6.4 Examples of (a) phrase occurrences in topics, (b) Formal Top-
ical Concept Lattice and (c) Formal Topical Concepts. 89

7.1 An example nanoparticle report in NIL. 96

7.2 Part of the lattice for the 40 topics and low mining threshold

setting. Nodes that contain one topic/one phrase and have as
child the bottom node and as parent the top node are not shown.104

7.3 Comparison of the frequent phrases of New ToPMine algorithm

with min_support as 10 (and max_support_word as 8000) to

settings with min_support as 15, 20, 25 and 30, respectively,
and settings with min_support as 10 and max_support_word

as 500, 1000, 3000, 5000, respectively. 113

7.4 Number of common phrases between pairs of topics. 116

8.1 An outline of the evaluation. 121

8.2 Query Execution Time (QET) for data size (1K-1K, 2K-2K,
4K-4K) on materials datasets. 126

8.3 Query Execution Time (QET) for data size (8K-8K, 16K-16K,
32K-32K) on materials datasets. 127

8.4 Query Execution Time (QET) for Q1 on materials datasets. . 128

xviii

8.5 Query Execution Time (QET) for Q2 on materials datasets. . 128

8.6 Query Execution Time (QET) for Q3 on materials datasets. . 129

8.7 Query Execution Time (QET) for Q4 on materials datasets. . 129

8.8 Query Execution Time (QET) for Q5 on materials datasets. . 130

8.9 Query Execution Time (QET) for Q6 on materials datasets. . 130

8.10 Query Execution Time (QET) for Q7 on materials datasets. . 131

8.11 Query Execution Time (QET) for Q8 on materials datasets. . 131

8.12 Query Execution Time (QET) for Q9 on materials datasets. . 132

8.13 Query Execution Time (QET) for Q10 on materials datasets. . 132

8.14 Query Execution Time (QET) for Q11 on materials datasets. . 133

8.15 Query Execution Time (QET) for Q12 on materials datasets. . 133

9.1 An instantiation of the structure shown in Listing 9.1. 144

xix

List of Tables

4.1 A summary of related approaches. 59

5.1 Characteristics of main ontologies in the materials science field. 66

7.1 Performance of ontology learning systems in different domains.
(Precision is truncated.) . 94

7.2 The parameters of ToPMine and New ToPMine. 98

7.3 The result of interpreting phrases. The first column defines the

case using the number of topics, low or high mining threshold,
and ontology. The precision is truncated. 99

7.4 The number (and truncated percentage in parentheses) of top-
ics that contribute to extending the ontologies. The first col-
umn defines the case using the number of topics, low or high

mining threshold, and ontology. 100

7.5 The result of interpreting topics. The first column defines the

case using the number of topics, low or high mining threshold,
and ontology. Note that some topics may be empty and some

topics may require several concepts. The values in parentheses
show the number of added concepts that are not found in the

phrase interpretation phase. 101

7.6 The result of interpreting lattice nodes. The first column de-
fines the case using the number of topics, low or high mining

threshold, and ontology. The values in parentheses show the

number of added concepts that are not found in the phrase or
topic interpretation phases. 102

7.7 New concepts for the NanoParticle Ontology and the

eNanoMapper ontology. 105

xxi

7.8 New axioms for the NanoParticle Ontology and the

eNanoMapper ontology. 106

7.9 The results of Text2Onto with different algorithms and differ-
ent numbers of returned candidates. (Precision is truncated.) . 108

7.10 The results for Text2Onto using all algorithms per setting

and ToPMine-FTCA for extending the NanoParticle Ontol-
ogy. (Precision is truncated.) . 108

7.11 New concepts found by ToPMine-FTCA and Text2Onto for
the NanoParticle Ontology. 109

7.12 The distribution of word frequency after preprocessing. 111

7.13 Number of frequent phrases for min_support as 10, 15, 20, 25

and 30 respectively, and three different versions of the ToP-
Mine algorithm. 112

7.14 Number of frequent phrases for min_support as 10 and for
max_support_word as 500, 1000, 3000, 5000, and 8000, re-
spectively for two different versions of the ToPMine algorithm. 112

7.15 Candidate concepts based on domain expert validation on the

experiment with min_support as 30 and max_support_word

as 500. 115

7.16 Topic labeling based on domain expert validation on the exper-
iment with min_support as 30 and max_support_word as 500

(Up to five representative phrases are selected for each label.). 117

8.1 Features of queries without filter conditions. 122

8.2 Features of queries with filter conditions. 122

8.3 Meanings of filter expressions in Q6 to Q12. 123

8.4 Comparison between OBG-gen-rdb and morph-rdb (QET in

seconds). 135

8.5 Average QET (in seconds). 137

9.1 The entries and properties in OPTIMADE API specification. . 142

xxii

List of Listings

2.1 An example RDF graph. 25

2.2 An example SPARQL query. 26

3.1 An example resolver function for the UniversityList field. . . 35

4.1 An example of RML mappings transforming university domain

data. 50

8.1 List all the structures containing the reduced chemical formula

of each structure’s composition. 123

8.2 The JSON response (an excerpt) of the query in Listing 8.1. . . 123

8.3 List all the calculations where the ID is in a given list of values
and the reduced chemical formula is in a given list of values. . . 124

8.4 The JSON response of the query in Listing 8.3. 124

8.5 A query according to query template 5. 137

9.1 An excerpt of the JSON response based on OPTIMADE API. . 143

9.2 An example query over data following OPTIMADE API speci-
fication retrieving both composition related and lattice related

fields. 145

9.3 The result of the query in Listing 9.2. 146

9.4 An example query over data following OPTIMADE API spec-
ification retrieving composition related fields. 146

9.5 The result of the query in Listing 9.4. 147

A.1 A SPARQL query for MDO CQ1. 183

A.2 A SPARQL query for MDO CQ2. 184

A.3 A SPARQL query for MDO CQ3. 184

A.4 A SPARQL query for MDO CQ4. 185

xxiii

A.5 A SPARQL query for MDO CQ5. 185

A.6 A SPARQL query for MDO CQ6. 186

A.7 A SPARQL query for MDO CQ7. 187

A.8 A SPARQL query for MDO CQ8. 188

A.9 A SPARQL query for MDO CQ9. 188

A.10 A SPARQL query for MDO CQ10. 189

A.11 A SPARQL query for MDO CQ11. 189

A.12 A SPARQL query for MDO CQ12. 190

A.13 A SPARQL query for MDO CQ13. 190

A.14 A SPARQL query for MDO CQ14. 191

B.1 MDO related GraphQL schema. 193

B.2 University related GraphQL schema. 202

C.1 Q1 in the real case evaluation. 209

C.2 Q2 in the real case evaluation. 210

C.3 Q3 in the real case evaluation. 210

C.4 Q4 in the real case evaluation. 211

C.5 Q5 in the real case evaluation. 211

C.6 Q6 in the real case evaluation. 212

C.7 Q7 in the real case evaluation. 213

C.8 Q8 in the real case evaluation. 214

C.9 Q9 in the real case evaluation. 215

C.10 Q10 in the real case evaluation. 216

C.11 Q11 in the real case evaluation. 217

C.12 Q12 in the real case evaluation. 218

C.13 An example query based on QT1 from LinGBM. 219

C.14 An example query based on QT2 from LinGBM. 220

C.15 An example query based on QT3 from LinGBM. 221

C.16 An example query based on QT4 from LinGBM. 222

C.17 An example query based on QT5 from LinGBM. 223

C.18 An example query based on QT6 from LinGBM. 224

C.19 An example query based on QT10 from LinGBM. 224

C.20 An example query based on QT11 from LinGBM. 225

xxiv

List of Acronyms

AST Abstract Syntax Tree

API Application Programming Interface

CSV Comma Separated Values

DNF Disjunctive Normal Form

FAIR Findable, Accessible, Interoperable, and Reusable

FTCA Formal Topical Concept Analysis

GCI General Concept Inclusion

IRI Internationalized Resource Identifier

JSON JavaScript Object Notation

JSON-LD JSON for Linked Data

LinGBM Linköping GraphQL Benchmark

LOV Linked Open Vocabularies

MDO Materials Design Ontology

OBDA Ontology-Based Data Access

OBDI Ontology-Based Data Integration

OBG-gen Ontology-Based GraphQL Server Generation

OPTIMADE Open Databases Integration for Materials Design

OWL Web Ontology Language

REST Representational State Transfer

RDF Resource Description Framework

RML RDF Mapping Language

SKOS Simple Knowledge Organization System

SPARQL SPARQL Protocol and RDF Query Language

xxv

SQL Structured Query Language

ToPMine Topical Phrase Mining

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML Extensible Markup Language

XSD XML Schema Definition

xxvi

External Publications

Work included in the thesis

• Paper I: Huanyu Li, Olaf Hartig, Rickard Armiento, Patrick Lambrix,
Ontology-Based GraphQL Server Generation for Data Access and Inte-
gration, 2022. (Submitted)

The paper presents a GraphQL-based framework for data access and in-
tegration in which an ontology drives the generation of GraphQL servers.
The need for such a system arises from discussions with OPTIMADE
experts and researchers in the Swedish e-Science Research Centre. The
author outlines the initial idea and the framework in the paper. The idea
and the framework are further developed through discussions among the
authors. The author is responsible for the prototype implementation
and the evaluation. The paper is drafted by the author and is written
together with the co-authors.

• Paper II: Patrick Lambrix, Rickard Armiento, Anna Delin, and
Huanyu Li. “Big Semantic Data Processing in the Materials Design
Domain.” In: Encyclopedia of Big Data Technologies. Springer, 2019.
doi: 10.1007/978-3-319-63962-8_293-1

• Paper III (an extended version of Paper II): Patrick Lambrix,
Rickard Armiento, Anna Delin, and Huanyu Li. “FAIR Big Data in the

Ex
te

rn
al

 P
ub

lic
at

io
ns

1

External Publications

Ex
te

rn
al

 P
ub

lic
at

io
ns

Materials Design Domain.” In: Encyclopedia of Big Data Technologies.
accepted. Springer, 2022

These two papers investigate the topic of big semantic data process-
ing in the materials design domain with respect to the state of the art
of databases, ontologies in the domain. The author is responsible for
studying and analyzing existing ontologies in the materials design do-
main and for writing the ontologies relevant parts of the two papers.

• Paper IV: Huanyu Li, Rickard Armiento, and Patrick Lambrix. “An

Ontology for the Materials Design Domain.” In: The Semantic Web

- ISWC 2020 - 19th International Semantic Web Conference, Athens,
Greece, November 2-6, 2020. Vol. 12507. Lecture Notes in Computer
Science. Springer, Cham, 2020, pp. 212–227. doi: 10.1007/978-3-
030-62466-8_14

The paper presents the Materials Design Ontology. The need for such

an ontology arises from discussions with OPTIMADE experts and re-
searchers in the Swedish e-Science Research Centre. The author outlines
the initial idea of the ontology. The scope and the requirements analy-
sis of the ontology are defined through discussions among authors (the

first co-author is a domain expert; the other co-author is an ontology

engineering expert). The author is the main developer of the ontology

with relevant deliverables supported through discussions with the co-
authors. The domain expert reviews the content of the ontology while

the ontology engineering expert reviews the logical basis of the ontol-
ogy. The paper is drafted by the author and is written together with

the co-authors.

• Paper V: Huanyu Li, Rickard Armiento, and Patrick Lambrix. “A

Method for Extending Ontologies with Application to the Materials Sci-
ence Domain.” In: Data Science Journal 18.1 (2019). doi: 10.5334/

dsj-2019-050

The paper presents an approach for extending domain ontologies with

applications in the nanotechnology domain. The author proposes the

initial idea behind the paper. The idea and the framework are polished

after discussions among authors. The author is responsible for the pro-
totype implementation and the experiments. The paper is drafted by

the author and is written together with the co-authors.

2

• Paper VI: Mina Abd Nikooie Pour, Huanyu Li, Rickard Armiento, and

Patrick Lambrix. “A First Step towards Extending the Materials Design

Ontology.” In: Proceedings of the Workshop on Domain Ontologies for

Research Data Management in Industry Commons of Materials and

Manufacturing (DORIC-MM 2021) co-located with the 18th European

Semantic Web Conference (ESWC 2021). 2021, pp. 1–11. url: http:

//purl.org/net/epubs/work/50300311

The paper presents the application of the approach presented in Paper

V in the materials design domain. The author selects the relevant corpus
and contributes to the evaluation and the writing of the paper.

• Paper VII: Huanyu Li, Rickard Armiento, and Patrick Lambrix. “Ex-
tending Ontologies in the Nanotechnology Domain using Topic Models
and Formal Topical Concept Analysis on Unstructured Text.” In: Pro-
ceedings of the ISWC 2019 Satellite Tracks (Posters & Demonstrations,
Industry, and Outrageous Ideas) co-located with 18th International Se-
mantic Web Conference (ISWC 2019). Vol. 2456. CEUR Workshop

Proceedings. CEUR-WS.org, 2019, pp. 5–8. url: http : / / ceur -
ws.org/Vol-2456/paper2.pdf

The paper presents a poster of Paper V.

Ex
te

rn
al

 P
ub

lic
at

io
ns

3

https://ws.org/Vol-2456/paper2.pdf
https://CEUR-WS.org
https://purl.org/net/epubs/work/50300311

External Publications

Ex
te

rn
al

 P
ub

lic
at

io
ns

Other related publications

• Huanyu Li, Zlatan Dragisic, Daniel Faria, Valentina Ivanova, Ernesto

Jiménez-Ruiz, Patrick Lambrix, and Catia Pesquita. “User valida-
tion in ontology alignment: functional assessment and impact.” In:
The Knowledge Engineering Review 34 (2019), e15. DOI: 10.1017/

S0269888919000080

• Mina Abd Nikooie Pour, Huanyu Li, Rickard Armiento, and Patrick

Lambrix. “A First Step towards a Tool for Extending Ontologies.”

In: Proceedings of the Sixth International Workshop on the Visualiza-
tion and Interaction for Ontologies and Linked Data co-located with the

20th International Semantic Web Conference (ISWC 2021). Vol. 3023.
CEUR Workshop Proceedings. CEUR-WS.org, 2021, pp. 1–12. URL:
http://ceur-ws.org/Vol-3023/paper2.pdf

• Robin Keskisärkkä, Huanyu Li, Sijin Cheng, Niklas Carlsson, and

Patrick Lambrix. “An Ontology for Ice Hockey.” In: Proceedings

of the ISWC 2019 Satellite Tracks (Posters & Demonstrations, In-
dustry, and Outrageous Ideas) co-located with 18th International Se-
mantic Web Conference (ISWC 2019). Vol. 2456. CEUR Work-
shop Proceedings. CEUR-WS.org, 2019, pp. 13–16. URL: http:

//ceur-ws.org/Vol-2456/paper4.pdf

• Zlatan Dragisic, Valentina Ivanova, Huanyu Li, and Patrick Lambrix.
“Experiences from the Anatomy track in the Ontology Alignment Eval-
uation Initiative.” In: Journal of Biomedical Semantics 8 (2017), 56:1–
56:28. DOI: 10.1186/s13326-017-0166-5

• Manel Achichi, Michelle Cheatham, Zlatan Dragisic, Jérôme Euzenat,
Daniel Faria, Alfio Ferrara, Giorgos Flouris, Irini Fundulaki, Ian Har-
row, Valentina Ivanova, Ernesto Jiménez-Ruiz, Elena Kuss, Patrick

Lambrix, Henrik Leopold, Huanyu Li, Christian Meilicke, Stefano Mon-
tanelli, Catia Pesquita, Tzanina Saveta, Pavel Shvaiko, Andrea Splen-
diani, Heiner Stuckenschmidt, Konstantin Todorov, Cássia Trojahn,
and Ondrej Zamazal. “Results of the Ontology Alignment Evalua-
tion Initiative 2016.” In: Proceedings of the 11th International Work-
shop on Ontology Matching co-located with the 15th International Se-
mantic Web Conference (ISWC 2016). Vol. 1766. CEUR Work-

4

http://ceur-ws.org/Vol-3023/paper2.pdf
https://CEUR-WS.org

shop Proceedings. CEUR-WS.org, 2016, pp. 73–129. URL: http:

//ceur-ws.org/Vol-1766/oaei16_paper0.pdf

• Manel Achichi, Michelle Cheatham, Zlatan Dragisic, Jérôme Euzenat,
Daniel Faria, Alfio Ferrara, Giorgos Flouris, Irini Fundulaki, Ian Harrow,
Valentina Ivanova, Ernesto Jiménez-Ruiz, Kristian Kolthoff, Elena Kuss,
Patrick Lambrix, Henrik Leopold, Huanyu Li, Christian Meilicke, Majid

Mohammadi, Stefano Montanelli, Catia Pesquita, Tzanina Saveta, Pavel
Shvaiko, Andrea Splendiani, Heiner Stuckenschmidt, Élodie Thiéblin,
Konstantin Todorov, Cássia Trojahn, and Ondrej Zamazal. “Results of
the Ontology Alignment Evaluation Initiative 2017.” In: Proceedings of
the 12th International Workshop on Ontology Matching co-located with

the 16th International Semantic Web Conference (ISWC 2017). Vol.
2032. CEUR Workshop Proceedings. CEUR-WS.org, 2017, pp. 61–
113. URL: http://ceur-ws.org/Vol-2032/oaei17_paper0.pdf

• Alsayed Algergawy, Michelle Cheatham, Daniel Faria, Alfio Ferrara,
Irini Fundulaki, Ian Harrow, Sven Hertling, Ernesto Jiménez-Ruiz,
Naouel Karam, Abderrahmane Khiat, Patrick Lambrix, Huanyu Li,
Stefano Montanelli, Heiko Paulheim, Catia Pesquita, Tzanina Saveta,
Daniela Schmidt, Pavel Shvaiko, Andrea Splendiani, Élodie Thiéblin,
Cássia Trojahn, Jana Vatascinová, Ondrej Zamazal, and Lu Zhou. “Re-
sults of the Ontology Alignment Evaluation Initiative 2018.” In: Pro-
ceedings of the 13th International Workshop on Ontology Matching colo-
cated with the 17th International Semantic Web Conference (ISWC

2018). Vol. 2288. CEUR Workshop Proceedings. CEUR-WS.org, 2018,
pp. 76–116. URL: http://ceur-ws.org/Vol-2288/oaei18_paper0.

pdf

• Ernesto Jiménez-Ruiz, Tzanina Saveta, Ondvrej Zamazal, Sven

Hertling, Michael R der, Irini Fundulaki, Axel-Cyrille Ngonga Ngomo,
Mohamed Ahmed Sherif, Amina Annane, Zohra Bellahsene, Sadok Ben

Yahia, Gayo Diallo, Daniel Faria, Marouen Kachroudi, Abderrahmane

Khiat, Patrick Lambrix, Huanyu Li, Maximilian Mackeprang, Majid

Mohammadi, Maciej Rybinski, Booma Sowkarthiga Balasubramani, and

Cássia Trojahn. “Introducing the HOBBIT platform into the Ontol-
ogy Alignment Evaluation Campaign.” In: Proceedings of the 13th In-
ternational Workshop on Ontology Matching co-located with the 17th

Ex
te

rn
al

 P
ub

lic
at

io
ns

5

http://ceur-ws.org/Vol-2288/oaei18_paper0
https://CEUR-WS.org
http://ceur-ws.org/Vol-2032/oaei17_paper0.pdf
https://CEUR-WS.org
https://ceur-ws.org/Vol-1766/oaei16_paper0.pdf
https://CEUR-WS.org

External Publications

Ex
te

rn
al

 P
ub

lic
at

io
ns

International Semantic Web Conference (ISWC 2018). Vol. 2288.
CEUR Workshop Proceedings. CEUR-WS.org, 2018, pp. 49–60. URL:
http://ceur-ws.org/Vol-2288/om2018_LTpaper5.pdf

• Alsayed Algergawy, Daniel Faria, Alfio Ferrara, Irini Fundulaki, Ian

Harrow, Sven Hertling, Ernesto Jiménez-Ruiz, Naouel Karam, Ab-
derrahmane Khiat, Patrick Lambrix, Huanyu Li, Stefano Montanelli,
Heiko Paulheim, Catia Pesquita, Tzanina Saveta, Pavel Shvaiko, An-
drea Splendiani, Élodie Thiéblin, Cássia Trojahn, Jana Vatascinová,
Ondrej Zamazal, and Lu Zhou. “Results of the Ontology Alignment
Evaluation Initiative 2019.” In: Proceedings of the 14th International
Workshop on Ontology Matching co-located with the 18th International
Semantic Web Conference (ISWC 2019). Vol. 2536. CEUR Work-
shop Proceedings. CEUR-WS.org, 2019, pp. 46–85. URL: http:

//ceur-ws.org/Vol-2536/oaei19_paper0.pdf

• Mina Abd Nikooie Pour, Alsayed Algergawy, Reihaneh Amini, Daniel
Faria, Irini Fundulaki, Ian Harrow, Sven Hertling, Ernesto Jiménez-
Ruiz, Clement Jonquet, Naouel Karam, Abderrahmane Khiat, Amir
Laadhar, Patrick Lambrix, Huanyu Li, Ying Li, Pascal Hitzler, Heiko

Paulheim, Catia Pesquita, Tzanina Saveta, Pavel Shvaiko, Andrea

Splendiani, Élodie Thiéblin, Cássia Trojahn, Jana Vatascinová, Beyza

Yaman, Ondrej Zamazal, and Lu Zhou. “Results of the Ontology

Alignment Evaluation Initiative 2020.” In: Proceedings of the 15th In-
ternational Workshop on Ontology Matching co-located with the 19th

International Semantic Web Conference (ISWC 2020). Vol. 2788.
CEUR Workshop Proceedings. CEUR-WS.org, pp. 92–138. URL:
http://ceurws.org/Vol-2788/oaei20_paper0.pdf

• Mina Abd Nikooie Pour, Alsayed Algergawy, Florence Amardeilh, Rei-
haneh Amini, Omaima Fallatah, Daniel Faria, Irini Fundulaki, Ian Har-
row, Sven Hertling, Pascal Hitzler, Martin Huschka, Liliana Ibanescu,
Ernesto Jiménez-Ruiz, Naouel Karam, Amir Laadhar, Patrick Lambrix,
Huanyu Li, Ying Li, Franck Michel, Engy Nasr, Heiko Paulheim, Ca-
tia Pesquita, Jan Portisch, Catherine Roussey, Tzanina Saveta, Pavel
Shvaiko, Andrea Splendiani, Cássia Trojahn, Jana Vatascinová, Beyza

Yaman, Ondrej Zamazal, and Lu Zhou. “Results of the Ontology

Alignment Evaluation Initiative 2021.” In: Proceedings of the 16th In-

6

http://ceurws.org/Vol-2788/oaei20_paper0.pdf
https://CEUR-WS.org
http://ceur-ws.org/Vol-2288/om2018_LTpaper5.pdf
https://CEUR-WS.org

ternational Workshop on Ontology Matching co-located with the 20th

International Semantic Web Conference (ISWC 2021). Vol. 3063.
CEUR Workshop Proceedings. CEUR-WS.org, pp. 62–108. URL:
http://ceurws.org/Vol-3063/oaei21_paper0.pdf

7

Ex
te

rn
al

 P
ub

lic
at

io
ns

http://ceurws.org/Vol-3063/oaei21_paper0.pdf
https://CEUR-WS.org

Ex
te

rn
al

 P
ub

lic
at

io
ns

1

Chapter

1

Introduction

“The Semantic Web is not ‘merely’ the tool for

conducting individual tasks that we have discussed so far.
In addition, if properly designed, the Semantic Web can

assist the evolution of human knowledge as a whole.”

Tim Berners-Lee, James Hendler and Ora Lassila

Tim Berners-Lee, James Hendler, and Ora Lassila proposed the idea of the

Semantic Web, an extension of the Web, to enable exchange and reuse of data

across applications [7]. The Semantic Web aims to make data on the Web

machine-readable by introducing semantics to the data. The term data covers
a wide variety of meanings including data models, schemas, vocabularies, as
well as datasets and associated semantics [8]. Over the decades, a number
of technologies have contributed to the layer cake of the Semantic Web. As
the World Wide Web Consortium (W3C)1 renders standards of Semantic Web

technologies, some domains such as eScience and eBusiness are using Semantic

Web-based technologies to assemble their domain knowledge and thus enhance

their workflows [9].

1https://www.w3.org/

9

https://1https://www.w3.org

1

1. Introduction

1.1 Motivation

This thesis is motivated by issues that relate to both the Semantic Web field as
well as materials design, which is one of the sub-fields of the materials science

domain. The materials science domain, like many other domains, is at an early

stage when it comes to introducing Semantic Web-based technologies into its
data-driven workflows. Over the last few decades, materials science has shifted

towards its fourth paradigm, (big) data-driven science [10]. More and more

materials scientists are recognizing the potential of data-driven techniques
to accelerate the discovery and design of new materials. A large number
of research groups and communities have thus developed a variety of data-
driven workflows, including data repositories [1, 2] and data analytics tools.
As data-driven techniques become more prevalent, more data is produced

by computer programs and is available from various sources, which leads to

challenges associated with reproducing, sharing, exchanging, and integrating

data among these sources [11, 10, 12, 13, 14]. Figure 1.1 illustrates an example

of searching for gallium nitride materials with the reduced chemical formula of
GaN in three databases of the materials design domain, Materials Project [15,
16], OQMD (The Open Quantum Materials Database) [17, 18] and NOMAD

(Novel Materials Discovery) [19, 20].
From the results, we can see that each of them contains a column that

represents chemical composition, but with different column names or differ-
ent insights (i.e., ‘Formula’ for Materials Project and NOMAD, ‘Composition’
for OQMD). The ‘Formula’ column for Materials Project actually represents
the reduced chemical formula. More detailed information regrading the chem-
ical composition can be found based on the value of the ‘Nsites’ column. For
instance, for the second row of the result from Materials Project, we can de-
rive that the unit cell formula is Ga2N2 based on the values of the ‘Formula’
and ‘Nsites’ columns. Meanwhile, the ‘Formula’ column for NOMAD actually

represents the unit cell formula rather than the reduced chemical formula. Un-
like the other two databases, OQMD contains a column for reduced chemical
formulas, but with a different column name (‘Composition’). Such differences
have to be addressed in order to integrate or exchange data from these data

sources. Apart from such differences in terminology, the data that needs to be

accessed or integrated from multiple data sources is typically heterogeneous
in different models (i.e., relational data stored in relational databases, and

hierarchical data stored in JSON data stores). Traditionally, ontology-based

10

1.1. Motivation

Figure 1.1: An example of searching materials from Materials Project, OQMD
and NOMAD.

data access and integration methods focus on data that follows relational data

models. Therefore, it is challenging for a data integration system to manage

requests to multiple different data sources (i.e., SQL queries to relational
data sources or API (Application Programming Interface) requests to JSON

or CSV data sources), and to provide integrated access to data from multiple

data sources. Many other fields also face similar challenges. For instance,
[21] discusses the problems of locating, retrieving, and integrating data in the

biomedical field.
Moreover, these problems are very related to the more recently developed

FAIR principles, which aim to make it easier for machines to locate and uti-
lize data automatically, as well as for individuals to reuse data [22]. The

FAIR principles state that data should be Findable, Accessible, Interopera-
ble, and Reusable. Ontologies and ontology-based techniques are recognized

as enablers of these principles. Using an ontology, knowledge of a domain can

be represented in a shared and standardized way. By describing data using

ontologies, the data will be more findable. By using ontologies for metadata

representation, the level of accessibility can be raised. By using the same ter-
minology as defined by ontologies, interoperability is enabled. Finally, since

ontologies are shared and standardized, reusability is supported. However,

1

11

1

1. Introduction

developing ontologies is not an easy task. As a matter of knowledge repre-
sentation, it is necessary to follow appropriate ontology engineering method-
ologies and gain a thorough understanding of the domain knowledge, which

requires the participation of both ontology engineers and domain experts.
Furthermore, we need to pay attention to maintaining ontologies throughout
their life cycles.

That is to say, for one thing, we need an adapted ontology-driven data

access and integration approach so that the heterogeneity of the underlying

data can be addressed, as well as the diversity of ways in which data can be

shared and queried. For another, we must have well-defined domain ontolo-
gies prior to implementing an ontology-driven approach to data access and

integration.
An ontology-driven data access and integration approach can use

GraphQL to orchestrate access to heterogeneous data sources. GraphQL [23]
is a conceptual framework for building APIs for Web and mobile applications.
It was publicly released in 2015 by Facebook, and the GraphQL ecosystem2

has grown tremendously in terms of libraries3 supporting different program-
ming languages (such as JavaScript, Python, and Java), tools (such as Apollo4

and GraphiQL5), and adopters (such as Airbnb, IBM, and Twitter). The

framework introduces the notion of a GraphQL schema. The schema contains
type definitions with fields, thereby describing the data that can be requested

from the back-end data stores. The framework also contains a graph query

language which allows to write GraphQL queries that ask for fields of objects.
Besides the GraphQL schema and the query language, the implementation

of a GraphQL server contains resolver functions for accessing back-end data

sources and structuring data according to the GraphQL schema. However,
although the GraphQL ecosystem is growing and GraphQL is used more and

more, there is not much work on providing semantic and integrated access
to multiple data sources, which is needed in many applications. GraphQL

could be used to integrate data from different sources by building a GraphQL

server over the existing data sources, in which the GraphQL schema provides
a view over data from multiple sources. If a domain ontology can capture the

semantics of data from multiple sources, we can make use of this ontology

2https://landscape.graphql.org
3https://graphql.org/code/
4https://www.apollographql.com
5https://github.com/graphql/graphiql

12

https://5https://github.com/graphql/graphiql
https://4https://www.apollographql.com
https://3https://graphql.org/code
https://2https://landscape.graphql.org

1.1. Motivation

to guide the definition of the GraphQL schema to reflect concepts and rela-
tionships captured in an ontology. Meanwhile, semantic mappings, which are

defined based on this ontology to describe how underlying data can be inter-
preted or annotated by the ontology, can be used in the resolver functions to

provide information about how to access back-end sources and structure the

obtained data according to the GraphQL schema. However, a semantics-aware

approach to employing GraphQL for data integration does not exist. Further-
more, there are no formal methods for defining a GraphQL API. Therefore,
developers have to implement the concrete details of a GraphQL server in

terms of the schema and resolver functions manually. Among the contribu-
tions of this thesis is a formal method for automatically building a GraphQL

server based on an ontology and semantic mappings.
We have seen that domain ontologies play an important role in represent-

ing domain knowledge and in facilitating the use of other Semantic Web-based

technologies. In an ontology-driven approach to data access and integration,
the coverage of the ontology may need to be enlarged when new databases
are added or new kinds of data are added to existing databases. Therefore,
it is vital that we maintain an ontology throughout its life cycle in order to

make it more complete. However, developing and extending ontologies are

not easy undertakings, and the results are not always complete. In addition

to being problematic for modeling a domain accurately, such incomplete on-
tologies may also impact the quality of semantically enabled applications such

as ontology-based search and data integration. Incomplete ontologies when

used in semantically enabled applications can lead to valid conclusions be-
ing missed. For instance, in ontology-based search, queries are refined and

expanded by moving up and down a hierarchy of concepts. Incomplete struc-
ture in ontologies influences the quality of the search results. In experiments
in the biomedical field, an example was given where a search using the MeSH

(Medical Subject Headings)6 ontology in PubMed,7 a large database with

abstracts of research articles in the biomedical field, would miss 55 of the doc-
uments if the relation between the concepts Scleral Disease and Scleritis was
missing [24]. Among the contributions of this dissertation is an approach for
extending domain ontologies based on topic modeling, formal topical concept
analysis and domain expert validation.

6http://www.nlm.nih.gov/mesh/
7http://www.ncbi.nlm.nih.gov/pubmed/

1

13

https://7http://www.ncbi.nlm.nih.gov/pubmed
https://6http://www.nlm.nih.gov/mesh

1

1. Introduction

The work in this thesis is a part of a project in SeRC (Swedish eScience

Research Centre), and is inspired by the work in the OPTIMADE consortium

(Open Databases Integration for Materials Design). The project in SeRC has
an aim of Data-Driven Computational Materials Design. More specifically,
it aims to enhance the knowledge discovery process for materials design by

using domain knowledge in the form of ontologies and Linked Data. The

OPTIMADE consortium aims to make materials databases interoperable by

developing a specification for a common REST API.

1.2 Problem formulation

The goal of this thesis is to offer a solution to the problem presented below:

How to provide semantics-aware data access and data inte-
gration over heterogeneous data, following different models, being

shared and queried via different ways?

Specifically, we have formulated this question in three parts:

• RQ1: How can the recently developed GraphQL be used for semantics-
aware data access and data integration over heterogeneous data sources?

The first sub-question relates to how GraphQL can be used for data

integration. One challenge highlighted in the previous section is that the

heterogeneity over different data sources makes it difficult to access and

integrate data, for ontology-based data access and integration approaches
(e.g., [25], [26], [27]). To address this problem, we need to facilitate the usage

of ontologies in a situation where heterogeneity exists. With regards to this
research question, we pursue the following objective: to design an ontology-
driven data access and integration framework in which a GraphQL server
plays a role in accessing underlying data sources by providing an (integrated)
view of the data.

• RQ2: How can ontologies be leveraged to generate GraphQL APIs for
semantics-aware data access and data integration?

The second sub-question relates to how a GraphQL server can be gener-
ated automatically to avoid constructing the GraphQL server from scratch.
A problem when applying GraphQL for data integration is that there are

14

1.3. Contributions

no existing formal methods for defining a GraphQL API aiming at data in-
tegration. With regards to this research question, we pursue the following

objectives: to design a formal method to generate a GraphQL schema based

on an ontology and a generic implementation of resolver functions based on

semantic mappings; to evaluate the framework with experiments over a syn-
thetic benchmark dataset, as well as a dataset from the materials design field;
and to construct a domain ontology for the materials design field prior to

evaluating and applying the framework in the field.

• RQ3: How can domain ontologies be extended by mining unstructured

text, with validation from domain experts?

The third sub-question relates to extension of domain ontologies. To an-
swer this research question, we pursue the following objective: to design an

approach for extending domain ontologies based on topic modeling, formal
topical concept analysis and domain expert validation; and to apply this ap-
proach in the materials science field.

1.3 Contributions

With a high-level GraphQL-based framework for data access and integration

and five contribution components related to different parts of the framework,
this thesis contributes in three respects to address the three research questions.
We show them as follows:

• To answer RQ1, we outline a GraphQL-based data access and integration

framework in which an ontology drives the generation of the GraphQL

server.

• To answer RQ2, one contribution is that we implement a prototype of the

framework in terms of ontology-based GraphQL server generation (OBG-
gen) (C1). We evaluate our approaches by conducting experiments over
a synthetic benchmark dataset and also over a dataset collected from the

materials design field. For the evaluation in the materials design domain we

make another contribution, which is the Materials Design Ontology (MDO)
(C2). MDO demonstrates the ability to increase interoperability among

different materials databases and has attracted the interest of database

providers. After that, we show the application of our approaches, in terms
of MDO and the GraphQL-based framework, in OPTIMADE (C3).

1

15

1

1. Introduction

• Within the scope and vision of the framework, and to answer RQ3, we

propose an approach for ontology extension based on phrase-based topic

modeling, formal topical concept analysis, and domain expert validation

(C4). We conduct experiments on the approach over the nanotechnology

domain and the materials design domain. Based on the results of the

experiments, we evaluate our approach, and produce valuable candidates
(C5) that can be used to extend relevant domain ontologies.

1.4 Research methods

In accordance with the formulated problems and relevant objectives described

in the previous section, this dissertation intends to address issues in and con-
tribute to both the Semantic Web field and the materials design field. We

have employed several scientific research methods in our research.
Our first step was to conduct systematic literature reviews on relevant

topics in both the Semantic Web field and the materials design field in order
to assess the current state of the art. In particular, the topics comprise data

management, databases, and ontologies, with focuses on materials science,
ontology extension, ontology-based data access and integration, as well as
GraphQL. The systematic literature review aims to identify any gaps in cur-
rent research, to summarize the existing evidence of a treatment or technology,
and to provide a framework or background for positioning new research activ-
ities [28]. Based on systematic literature reviews, we were able to identify the

challenges related to data access and integration, specific problems that need

to be resolved and hypotheses that underlie our research. The hypotheses of
our work are shown below:

• Hypothesis 1: The recently developed GraphQL can be used to assemble

an integrated view of underlying data and manage requests to underlying

data sources in an ontology-driven data access and integration scenario.

– GraphQL servers can be automatically generated based on proper do-
main ontologies and semantic mappings, in order to reduce the need to

construct GraphQL servers from scratch.

• Hypothesis 2: Ontologies and ontology-based techniques can help in

making data FAIR for the materials science domain.

16

1.5. Thesis outline

– In one respect, we require domain ontologies with an emphasis on de-
scribing semantics in order for data integration and access to be possible.
In another respect, we need approaches that can generate candidates for
extending existing domain ontologies.

In the second step, we proposed specific conceptual frameworks while

answering the research questions. By building conceptual frameworks, re-
searchers can obtain a better understanding of the core concepts of the study

and find the relationships among these concepts [29, 30]. Then, we applied

the prototyping methodology to develop our systems incrementally based on

the conceptual frameworks. The prototyping and incremental development
allow us to implement a partial system or a working version of the system

which can be reviewed and further improved. During the development, we

maintained the deliverables via GitHub repositories.8, 9 Finally, both qualita-
tive and quantitative evaluations were conducted, and an application in the

materials design field was enabled. We considered quantitative factors, such

as query execution time when we evaluate our GraphQL-based framework for
data access and integration, and precision when we evaluate our approach for
ontology extension. We took the quality criteria such as generalizability into

account during the evaluation by conducting experiments on our GraphQL-
based data access and integration framework using a synthetic benchmark

dataset. Generalizability refers to whether or not the results generated in

one study can be applied or extended to wider groups or different users and

situations [31, p. 280]. Additionally, in terms of ontology development, we

followed some ontology engineering methodologies and best practices to de-
velop a domain ontology for the materials design field. We maintained the

deliverables via a GitHub repository.10

1.5 Thesis outline

The outline of this thesis and the mappings among chapters, research ques-
tions, contributions are depicted in Figure 1.2.

We introduce concepts related to ontologies, RDF, SPARQL and data in-
tegration in Chapter 2, as well as the background of the materials design

8https://github.com/LiUSemWeb/OBG-gen
9https://github.com/LiUSemWeb/ToPMine-FTCA

10https://github.com/LiUSemWeb/MDO

1

17

https://10https://github.com/LiUSemWeb/MDO
https://9https://github.com/LiUSemWeb/ToPMine-FTCA
https://8https://github.com/LiUSemWeb/OBG-gen
https://repository.10

1. Introduction

1

Limitations and future work
Chapter 10RQ2

Conclusions
Chapter 11

GraphQL-based framework for data access and integration
Chapter 3

Ontology-based GraphQL server
generation (OBG-gen)

Chapter 4

Evaluation of the GraphQL-based framework
Chapter 8

Materials Design Ontology (MDO)
Chapter 5

An approach for extending domain
ontologies (ToPMine-FTCA)

Chapter 6

RQ1

RQ3

Evaluation of ToPMine-FTCA
Chapter 7

C3

C5C2

C1 C4

An application to OPTIMADE
Chapter 9

Background
Chapter 2

Introduction
Chapter 1

Figure 1.2: Mappings among thesis chapters and research questions,
contributions.

domain and FAIR data principles. In Chapter 3, we outline the GraphQL-
based framework for data access and integration. One important component
of this framework is the ontology-based GraphQL server generation of which

we present the implementation in Chapter 4. The implementation contains
the GraphQL schema generation based on an ontology and a generic imple-
mentation of resolver functions based on semantic mappings. We present
formal methods for automatically generating a GraphQL server in terms of
the GraphQL schema and a generic resolver function.

Within the scope and vision of the framework presented in Chapter 3, we

turn our focus to another essential component of the framework that relates to

ontology engineering. In Chapter 5, we present the Materials Design Ontol-
ogy, which is a domain ontology for the materials design field and is developed

by us with the purpose of making data over multiple materials databases
FAIR. Ontologies and databases relevant to materials design are also dis-
cussed. In Chapter 6, we present an approach for ontology extension based

18

1.5. Thesis outline

on topic modeling, formal topical concept analysis, and domain expert valida-
tion. In Chapter 7, we evaluate this approach by conducting experiments in

the nanotechnology domain and the materials design domain. In Chapter 8

we turn our attention to evaluating the framework presented in Chapter 3.
In Chapter 9, we introduce the usage of MDO and the GraphQL-based

framework for data access and integration to OPTIMADE. In Chapter 10

we discuss the limitations of our work and show some interesting directions
for future work. Towards the end of the thesis, the research questions and

contributions are reviewed in Chapter 11.

1

19

1

Chapter

2

Background

In this chapter, we provide an overview introduction to areas that are perti-
nent to this thesis. As a first step, we introduce ontologies in Section 2.1 from

the perspective of knowledge representation, as well as RDF and SPARQL.
In Section 2.2, we present the background of data integration with a focus
on ontology-based data access and integration. Since materials design is an

application domain to which this thesis intends to make a contribution, we

then introduce the materials design field in Section 2.3. In Section 2.4, we

provide an introduction to FAIR principles. As a final step, we provide a

summary in Section 2.5.

2.1 Ontologies, RDF, SPARQL

Ontologies. The term ontology originates in philosophy, in which it is the

science of what is, of the kinds and structures of objects, properties, and

relationships in every area of reality [32, 33]. It is since 1980, when Alexander
et al. [34] presented the technique known as “ontological analysis” from a

knowledge engineering perspective that ontologies were introduced into many

communities in computer science [33]. Ontologies can be viewed, intuitively, as
defining the terms, relations, and rules that combine these terms and relations
in a domain of interest [35]. Through ontologies, people and organizations are

able to communicate by establishing a common terminology. They provide

the basis for interoperability between systems and are applicable as an index

to a repository of information as well as a query model and a navigation

2

21

2. Background

2

model for data sources. Moreover, they are often used as a foundation for
integrating data sources, thereby alleviating the heterogeneity issue. The

benefits of using ontologies are their improved reusability, share-ability and

portability across platforms, as well as their increased maintainability and

reliability. On the whole, ontologies allow a field to be better understood

and allow information in that field to be handled much more effectively and

efficiently (e.g., knowledge representation for bioinformatics discussed in [36]).
From a knowledge representation point of view, ontologies usually contain

four components: (i) concepts that represent sets or classes of entities in a

domain, (ii) instances that represent the actual entities, (iii) relations, and

(iv) axioms that represent facts that are always true in the topic area of the

ontology. Relations can represent relationships among concepts. Axioms can

illustrate domain restrictions, cardinality restrictions, or disjointness restric-
tions. Depending on the components and information related to the compo-
nents they contain, ontologies can be classified. As an example, Figure 2.1

represents a small piece of the Materials Design Ontology (MDO) regard-
ing some core concepts and relationships (more details of MDO are given in

Chapter 5). The open-headed arrows represent axioms that represent is-a

relationships that is, if A is a B, then all entities belonging to concept A also

belong to concept B. We say that A is a sub-concept of B. In this example

Calculation

PropertyStructure

ComputationalMethod

Material CalculatedProperty PhysicalProperty

QuantityValue

Quantity

is-a
is-a

relatesToMaterial

hasInputStructure

hasOutputStructure

hasOutputCalculatedProperty

hasInputProperty

is-a

hasComputationalMethod

quantityValue

xsd:double

numericalValue

Figure 2.1: An outline of Materials Design Ontology.

22

2.1. Ontologies, RDF, SPARQL

we have it that CalculatedProperty and PhysicalProperty are sub-concepts of
Property, which is a sub-concept of Quantity. Therefore, all CalculatedProp-
erty and PhysicalProperty entities are Property entities which are Quantity

entities. The is-a relation is transitive such that, for instance, a Calculated-
Property entity is also a Quantity entity. The closed-headed arrows represent
general relations among concepts other than is-a relations. For instance, the

Calculation concept has a connection to the CalculatedProperty concept repre-
sented by the hasOutputCalculatedProperty relation. Additionally, a relation

can exist between a concept and a data type reference. For instance, Quan-
tityValue has a connection to the data type reference xsd:double represented

by the numericalValue relation. This means that each entity of the Quan-
tityValue concept can be associated with a double type value by having a

numericalValue connection.
In Figure 2.2 we show the part of MDO represented using the ontology

development system Protégé.1 On the left hand side the concepts and the is-a

hierarchy are shown. The is-a relations are represented by indentation. For
instance, CalculatedProperty is a sub-concept of Property, which in turn is a

sub-concept of Quantity. On the right-hand side of Figure 2.2 information re-
lated to the axioms of Structure are shown using a special notation reflecting

constructs in the representation language OWL (Web Ontology Language),2, 3

a knowledge representation language that is often used for representing on-
tologies and that is based on description logics [37]. Description logics are

a family of knowledge representation languages that include formalizations.
There are three basic building blocks of such a language, namely: (i) atomic

Figure 2.2: Materials Design Ontology opened in Protégé.

1https://protege.stanford.edu/
2http://www.w3.org/TR/owl-features/
3http://www.w3.org/TR/owl2-overview/

23

2

https://3http://www.w3.org/TR/owl2-overview
https://2http://www.w3.org/TR/owl-features
https://1https://protege.stanford.edu

2. Background

2

concepts (unary predicates) such as Calculation and Structure, (ii) atomic

roles (binary predicates) such as relatesToMaterial, and (iii) individuals (con-
stants) [37]. On the basis of these basic building blocks and logical con-
structors such as conjunction (⊓), disjunction (⊔), universal restriction (∀),
existential restriction (∃), and general concept inclusion (⊑), we can represent
more complex concepts or semantics. In Figure 2.2, the Structure concept con-
tains a definition, which can be represented in a description logic language as
Structure ⊑ ∃relatesT oMaterial.Material ⊓ ∀relatesT oMaterial.Material.
This means that a Structure entity is a sub-concept of an entity that may

have a relatesToMaterial relation, and the range of this relation must be a

Material entity.

RDF. The Resource Description Framework (RDF) is recommended by the

W3C [38], and can be used for representing graph data and supporting data

exchange. The core structure of the RDF-based data model is a set of triples
where each triple has a subject, a predicate and an object [38]. A set of such

triples is called an RDF graph in which each node represents a subject or an

object and each edge represents a predicate [38]. In an RDF graph, IRIs (Inter-
nationalized Resource Identifiers) are used to represent globally unique iden-
tifiers for resources. The Internationalized Resource Identifier is an internet
protocol standard which extends the Uniform Resource Identifier (URI) pro-
tocol by permitting more Unicode characters [38]. In an RDF graph, a subject
can be an IRI, or a blank node which is an anonymous resource; a predicate is
an IRI; an object can be an IRI, a literal or a blank node. For a more detailed

introduction to RDF, we refer the reader to [38]. Listing 2.1 illustrates an

example RDF graph representing data from the materials design domain. At
the beginning of the example, we have several namespace definitions which are

used for abbreviated URIs (line 1 to line 3). After that, as we can see, there

are four triples in total. The first two triples have the same subject, which

is defined using the IRI http://example.org/materials-design/calculation_1.
The last two triples have the same subject, http://example.org/materials-
design/property_1. The predicate rdf:type is used to classify a resource as an

instance of a concept. In our example, the two kinds of subjects represent re-
sources are instances of core:Calculation and core:CalculatedProperty,
respectively. These two concepts are from MDO. We also have predicates de-
fined as core:hasOutputCalculatedProperty and core:PropertyName to

24

http://example.org/materials
http://example.org/materials-design/calculation_1

2.1. Ontologies, RDF, SPARQL

represent relationships between resources. The object of the last triple is a

literal which is a string (“Band Gap”).

Listing 2.1: An example RDF graph.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

2 PREFIX core: <https://w3id.org/mdo/core/> .

3 PREFIX ex: <http://example.org/materials-design/> .

4

5 ex:calculation_1 rdf:type core:Calculation .

6 ex:calculation_1 core:hasOutputCalculatedProperty ex:property_1 .

7 ex:property_1 rdf:type core:CalculatedProperty .

8 ex:property_1 core:PropertyName "Band Gap" .

SPARQL. SPARQL is the W3C recommendation for querying RDF

graphs [39]. SPARQL enables users for querying data that can be mapped

to RDF. We refer to the syntax definition of SPARQL in [40]. This work

presents the definition of the SPARQL graph patterns recursively as below:

• A tuple from (I ∪ V) × (I ∪ V) × (I ∪ L ∪ V) is a graph pattern, where I

is a set of IRIs, L is a set of literals and V is an infinite set of variables
disjoint from I and L. A graph pattern is called a triple pattern if there is
just one single tuple.

• If P1 and P2 are graph patterns, then expressions (P1 AND P2),
(P1 OPT P2), and (P1 UNION P2) are also graph patterns. They are

called a conjunction graph pattern, an optional graph pattern and a union

graph pattern, respectively.

• If P is a graph pattern, and R is a SPARQL built-in condition, then ex-
pression (P FILTER R) is a graph pattern, which is also called a filter

graph pattern.

Listing 2.2 illustrates an example SPARQL query over the data represented

in the RDF graph in Listing 2.1. This query retrieves all the properties and

the corresponding property names. From line 5 to line 8, we have the WHERE

clause which specifies the graph pattern to be matched. The SELECT clause

(at line 4) specifies the variables to be projected from the graph pattern.

2

25

2. Background

Listing 2.2: An example SPARQL query.

2

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

2 PREFIX core: <https://w3id.org/mdo/core/> .

3

4 SELECT ?property ?property_name

5 WHERE {

6 ?property rdf:type core:Property;

7 core:PropertyName ?property_name.

8 }

2.2 Data integration

Data integration is regarding combining data that resides at multiple different
sources [41, 42, 43]. Ideally, a data integration system should enable unified

access to a number of data sources [41, 43]. Formally, according to [41], a

data integration system can be formalized as a triple ⟨G, S, M⟩, where:

• G is the global schema, expressed in a language LG over an alphabet AG ;

• S is the source schema, expressed in a language LS over an alphabet AS ;

• M is the mapping between G and S, constituted by a set of assertions that
define mappings from queries over the source schema S to queries over the

global schema G (similarly for mappings from queries over G to queries
over S). Such a mapping specifies correspondences between concepts in

the global schema and those in the source schema.

Ontology-based data integration (OBDI) is a form of data integration in

which an ontology plays the role of a global schema that captures domain

knowledge [44]. Usually, in an information system with only one single data

source, the formal treatment of OBDI is identical to that of ontology-based

data access (OBDA) [44, 45]. In this thesis, we generally refer to both OBDI
and OBDA as OBDA. OBDA, as a semantic technology, aims to facilitate ac-
cess to different underlying data sources [46]. Traditionally, these underlying

data sources are considered to be relational databases. Ontologies play the

role of global views over multiple data sources. There are different ways to im-
plement an OBDA system. Generally, these systems can be categorized into

two types, namely, data warehouse-based approaches and virtual approaches.
These two categories of methods both make use of semantic mappings in or-
der to overcome the differences between ontologies and local schemas, but

26

2.3. Materials design domain

in different ways [47, 48]. In a data warehouse-based approach, data from

multiple sources are usually loaded or stored in a centralized storage, which

is the warehouse [49, 43], based on semantic mappings. We refer to the data

in such warehouses as materialized data. Depending on the aims or function-
alities of a system, the materialized data could be stored in local databases
or transformed into RDF graphs. Therefore, queries are evaluated against
the materialized data. In a virtual approach, data is retained at the original
sources and mediators are used to translate queries defined in terms of a global
or mediated schema into queries defined in terms of each data source’s local
schema, based on semantic mappings. Therefore, queries are evaluated and

executed against each data source. SPARQL queries are widely supported by

data integration systems that use ontologies as global schemas.
A number of semantic mapping definition languages have been proposed

over the years. R2RML (RDB to RDF Mapping Language) is a language,
one of the two recommendations by the RDB2RDF W3C Working Group,4 to

define semantic mappings [50]. R2RML supports transformation rules defined

by users, while the other recommendation, Direct Mapping [51], does not.
Another language is RDF Mapping Language (RML) [52, 53], which allows
underlying data in formats beyond relational databases and is a superset of
R2RML. RML can also deal with data from CSV, JSON, and XML data

sources. In Section 4.2.2 of Chapter 4 we introduce more details of RML, of
which we make use in our work.

2.3 Materials design domain

The design of materials is a technological process that has many applications.
Most often, the goal is to achieve a set of desired material properties for an

application within certain limitations, such as avoiding or eliminating toxic

or critical raw materials. Such raw materials are of strategic and economic

importance for the economy but have a high risk associated with their sup-
ply [54]. The development of condensed matter theory and materials modeling

has made it possible to achieve quantum mechanics-based simulations that can

generate reliable materials data by using computer programs [55]. Over the

years, quite a number of materials databases have emerged. A common use of
these databases is to find materials with desirable properties as shown in the

4https://www.w3.org/2001/sw/rdb2rdf/

2

27

https://4https://www.w3.org/2001/sw/rdb2rdf

2. Background

2

data-driven materials design example discussed in [56]. At the same time, sev-
eral global efforts are underway to assemble and curate databases combining

experimentally measured and computationally predicted properties of mate-
rials, and also to make them interoperable. For instance, the Open Databases

Integration for Materials Design (OPTIMADE)5 consortium aims to make

materials databases interoperable by developing a specification for a common

REST API (Application Programming Interface). Some of the work in this
thesis is inspired by the work in the OPTIMADE consortium and makes an

application to OPTIMADE. We introduce more details of OPTIMADE in

Section 5.1.4 of Chapter 5, and we discuss the application in Chapter 9.
As databases in the materials design domain are heterogeneous in nature

and data is usually shared via APIs such as Web APIs in the domain, there

are a number of challenges to using them in an integrated way in the ma-
terials design workflow. For instance, retrieving data from more than one

database means that users have to understand and use different APIs or even

different data models to reach an agreement. APIs providing connections or
communications between computer applications or among components of a

software [57, 58], have been widely used, not only for exposing functionalities
but also for sharing data [58, 59]. Although APIs can establish guidelines re-
garding how to access data held in a specific database, integrating data that is
accessed via APIs is a challenging problem for both the materials science field

and the Semantic Web field. Data obtained via API requests is not usually

explicitly grounded in semantics [60]. The underlying data models are usually

obfuscated by APIs.

2.4 FAIR data principles

The FAIR principles were defined in 2016 by a wide range of scientists and or-
ganizations representing academia, industry, funding agencies, and scholarly

publishers [22]. The principles state that data should be Findable, Accessible,
Interoperable, and Reusable, respectively, with a goal of allowing machines
to automatically find and use data, and allowing individuals to reuse the

data [22]. Findable refers to the fact that data should be easy to find, acces-
sible to the fact that it should be clear how to access the data, interoperable

to the fact that the data needs to be integrated with other data and be usable

5https://www.optimade.org/

28

https://5https://www.optimade.org

2.5. Summary

by applications and workflows, and reusable to the fact that data should be

well described such that the data can be replicated or combined in different
settings.6 One way to make data FAIR is to annotate or classify data by using

ontologies. Ontologies can yield the annotations of data and the mappings
between data and concepts, relationships, which means that we can append

semantics to underlying data. From an application point of view, a general
data access or integration framework capable of providing a unified view of
data from multiple data sources, managing requests to these data sources and

responding explicitly to users with semantics, can increase the data interop-
erability.

As we mention at the very beginning of Chapter 1, the term data covers a

wide variety of meanings, which means it can also represent metadata such as
vocabularies and ontologies used to annotate and interpret the data. It is also

important that we make such metadata FAIR. To make a vocabulary FAIR,
some rules have been identified in [61]. For instance, registering vocabularies
in open repositories such as Linked Open Vocabularies (LOV)7 can enable

findability; making relevant URIs resolve can enable accessibility such as re-
serving secure and permanent URLs (Uniform Resource Locators) from the

W3C Permanent Identifier Community Group8; creating vocabularies with

standard means such as SKOS (Simple Knowledge Organization System)9 or
OWL can enable interoperability; and adding rich metadata to data can en-
able reusability. Additionally, there are a number of guidelines designed to

make ontologies FAIR [62]. For instance, metadata registries and annotations
can help in findability; URI design and content negotiation can help with

accessibility; serving ontologies in different standard serializations can help

with interoperability; and metadata description and diagram guidelines can

help with reusability.

2.5 Summary

In this chapter, we have introduced ontologies, RDF, SPARQL and data inte-
gration with a focus on ontology-based approaches. Following that, we moved

on to the materials design domain, and then introduced FAIR data principles.
The work covered in this thesis is particularly relevant to these topics. On the

6https://www.go-fair.org/fair-principles/
7https://lov.linkeddata.es/dataset/lov/
8https://www.w3.org/community/perma-id/
9https://www.w3.org/2004/02/skos/

2

29

https://9https://www.w3.org/2004/02/skos
https://8https://www.w3.org/community/perma-id
https://6https://www.go-fair.org/fair-principles

2. Background

basis of this background knowledge, in the following chapters we elaborate on

how this thesis addresses the research questions and describe the contributions
of this thesis.

2

30

Chapter

3

GraphQL-based framework

for data access and

integration

In this chapter, we present a GraphQL-based framework for data access and

integration in which the GraphQL server is generated automatically based

on an ontology and semantic mappings. First, for the sake of background

knowledge, we introduce GraphQL in Section 3.1. We then introduce the

outline of the framework in Section 3.2. The chapter ends with a summary in

Section 3.3.

3.1 GraphQL

GraphQL schemas and GraphQL resolver functions are basic building blocks
in the implementations of GraphQL servers. The former describe how users
can retrieve data using GraphQL APIs. The latter contain program code

including how to access data sources and structure the obtained data accord-
ing to the schema. We introduce GraphQL schemas and GraphQL resolver
functions in Section 3.1.1 and Section 3.1.2, respectively.

3.1.1 GraphQL schemas

In a GraphQL API, the GraphQL schema defines types, their fields, and the

value types of the fields. Such a schema represents a form of vocabulary

supported by a GraphQL API rather than specifying what the data instances
of an underlying data source may look like and what constraints have to be

guaranteed [63]. There are six different type definitions in GraphQL, which

3

31

3

3. GraphQL-based framework for data access and integration

are scalar type, object type, interface type, union type, enum type and input
object type. Figure 3.1 depicts a GraphQL schema example.

An object type represents a list of fields and each field has a value of a

specific type such as object type or scalar type. A scalar is used to represent a

value such as a string. In Figure 3.1, there are three basic object type defini-
tions, which are University, Department, and Professor. They all have field

definitions which represent the relationships to scalar types or to other object
types. For instance, the University type has a field definition UniversityID

of which the value type is String, and a field definition departments of which

the value type is a list of Departments. GraphQL allows defining abstract
types by supporting the interface type and the union type. An interface type

defines a list of fields and allows object types to implement. An object type

can then implement an interface type with the requirement that the object
type includes all fields defined by the interface type. The schema in Figure 3.1

contains an interface type, Author with an AuthorID field of which the value

type is String. The object type Professor implements Author and must
have the same definition for AuthorID field as that in Author. A union type

defines a list of possible types. An enum type describes the set of possible

values that are in scalars. For more details of union types and enum types,
we refer the reader to the latest GraphQL specification in [23].

GraphQL allows fields to accept arguments to configure their behav-
ior [23]. These arguments can be defined by input object types. An in-
put object type defines an input object with a set of input fields; the in-
put fields are either scalars, enums, or other input objects. This allows
arguments to accept arbitrarily complex structs, which can capture no-
tions of filtering conditions. For instance, according to the definitions of
UniversityFilter and StringFilter, we can define an input argument
as UniversityID:{_eq:"u1"} to capture the meaning of “UniversityID is

equal to ‘u1’”, where _eq represents the equal to operator. In our imple-
mentation presented in Chapter 4, _and, _or and _not are used to repre-
sent boolean expressions. For instance, _or:[{UniversityID:{_eq:"u1"}},

{UniversityID:{_eq:"u2"}}] represents the expression “UniversityID is

equal to ‘u1’ or ‘u2’”. In the example schema, we use the term filter to

represent the name of an input argument. This is just an informal way to

state input arguments representing filter conditions. Such input arguments
defined as input objects are not built-in constructs of GraphQL. Therefore,
their meanings are essentially defined by the program code of the GraphQL

32

5

10

15

20

25

30

35

40

3.1. GraphQL

1 type University{
2 UniversityID: String
3 departments: [Department]
4 }

type Department{
6 DepartmentID: String
7 head: String
8 }
9 interface Author{

AuthorID: String
11 }
12 type Professor implements Author{
13 AuthorID: String
14 doctoralDegreeFrom: [University]

}
16 input UniversityFilter{
17 UniversityID: StringFilter
18 departments: DepartmentFilter
19 _and: [UniversityFilter]

_or: [UniversityFilter]
21 _not: UniversityFilter
22 }
23 input DepartmentFilter{
24 DepartmentID: StringFilter

head: StringFilter
26 _and: [DepartmentFilter]
27 _or: [DepartmentFilter]
28 _not: DepartmentFilter
29 }

input StringFilter{
31 _eq: String
32 _in: [String]
33 _neq: String
34 _nin: [String]

_like: String
36 }
37 type Query{
38 UniversityList(filter: UniversityFilter): [University]
39 DepartmentList(filter: DepartmentFilter): [Department]

AuthorList: [Author]
41 ProfessorList: [Professor]
42 }

Figure 3.1: A GraphQL schema example.

3

33

3

3. GraphQL-based framework for data access and integration

server implementation, i.e., the resolver functions which manage requests to

underlying data sources and structure the returned data according to the

GraphQL schema.
Additionally, a GraphQL schema supports defining types that represent

operations such as query and mutation. The schema presumes the Query

type as the query root operation type. As Figure 3.1 shows, in the Query

type definition, there are four field definitions, which are UniversityList,
DepartmentList, AuthorList, and ProfessorList. For instance, the re-
turned type of UniversityList is [University], a list of Universities.
The UniversityList takes an argument defined as UniversityFilter as an

input for capturing the notion of a filtering condition.

3.1.2 GraphQL resolver functions

In a GraphQL API, apart from the GraphQL schema defining types, their
fields, and the value types of the fields, resolver functions are responsible for
populating the data for fields of types in the GraphQL schema. For instance,
for the schema example shown in Figure 3.1, there are four fields defined

in the Query type. Therefore, in the GraphQL server implementation, we

are supposed to define resolver functions to populate data for these fields,
UniversityList, DepartmentList, AuthorList, and ProfessorList. In our
implementation presented in Chapter 4, we assume that the GraphQL schema

supports a query that retrieves all the instances for each interface type or
object type. Therefore, we use the name of each interface type or object type

concatenated with ‘List’ as the name of a field in the Query type, where the

returned type is a list of the interface or object type. This is just an informal
way to state the behavior of a field in the Query type. To emphasize, what a

GraphQL query can retrieve over the underlying data sources relies on how the

resolver function is implemented. For instance, if the underlying data source

is a relational database, the resolver function should contain code specifying

the SQL query to be evaluated.
Listing 3.1 illustrates an example resolver function (written in JavaScript

syntax) for the UniversityList field. We assume that the underlying data

source is a relational database that contains a table named university with a

column named id. In line 2 and line 3, given an input argument representing

the id of a university (university_id), a query is evaluated against the rela-
tional database. In line 4, the data is structured according to the University

34

3.2. Overview of the framework

object defined in the JavaScript code which corresponds to the University

type definition in the schema shown in Figure 3.1.

Listing 3.1: An example resolver function for the UniversityList field.

1 const UniversityList = (university_id) => {

2 let data = db_conection.select().from('university')

3 .where('id', university_id);

4 let allUniversities = data.then(rows => new University(rows[0]));

5 return allUniversities;

6 };

3.2 Overview of the framework

Figure 3.2 illustrates the framework for data access and integration based on

GraphQL in which an ontology drives the generation of GraphQL server that
provides integrated access to data from heterogeneous data sources. These

data sources may be based on different schemas and formats and may be

accessed in different ways (e.g., as tabular data accessed via SQL queries or
as JSON-formatted data accessed via API requests). To address the hetero-
geneity, the framework relies on an ontology that provides an integrated view

of the data from the different sources, and corresponding semantic mappings
that define how the data from the underlying data sources is interpreted or
annotated by the ontology (arrows (a)) and (b)). Furthermore, two processes

GraphQL Server

GraphQL Schema

Semantic
Mappings

(a) (b)

(i) (ii)

Databases or Data Sets

Ontology

Generic Resolver
Function

CSVJSON

(2)

(3)

(1)

(4)

GraphQL Server Generation Process

GraphQL Query Answering Process

Figure 3.2: GraphQL-based framework for data access and integration.

35

3

3

3. GraphQL-based framework for data access and integration

are defined. The first process generates the GraphQL server. The second pro-
cess deals with answering queries and is performed after the GraphQL server
is set up. In accordance with these two processes, we have two types of in-
tended users or developers in the framework. One type is users or developers
of the GraphQL server generator, who should have prior knowledge of the

ontology, semantic mappings and the domain. The other type is end users
using a GraphQL server for data access and integration, who may or may not
be familiar with the Semantic Web or ontologies. For the purpose of writing

GraphQL queries, they need basic prior knowledge of GraphQL, which can

be learned from the self-documenting API of the generated GraphQL server
showing the schema. We introduce more details about these two processes in

Section 3.2.1 and Section 3.2.2, respectively.

3.2.1 GraphQL server generation process

This process includes generating both a GraphQL schema for the API pro-
vided by the server (arrow (i)) and a generic resolver function (arrow (ii)).
Given an ontology as an integrated view of data from multiple data sources,
we propose a method for generating a GraphQL schema based on this on-
tology, with the result that the schema becomes a view of the data to be

integrated. Additionally, we propose a generic implementation of resolver
functions that takes semantic mappings as inputs, so that the server is able

to get data from underlying data sources. In Chapter 4, we elaborate on the

implementation of our approaches for generating the GraphQL schema and

the generic resolver function. This GraphQL server generation process does
not need to be repeated unless the ontology or the semantic mappings change.
After this generation process, the GraphQL server can be set up.

In this GraphQL server generation process, we require users or developers
who are familiar with the query mechanisms of underlying data sources, do-
main ontologies that can be used for data access or integration. Consequently,
they can define the scope of the ontology that will be used for generating the

GraphQL schema for the server, as well as the semantic mappings that will be

used for generating the generic resolver function. This type of automatic gen-
eration of GraphQL servers based on ontologies and semantic mappings can

also benefit general GraphQL application developers, since it can eliminate

the need to build GraphQL servers from scratch.

36

3.2. Overview of the framework

3.2.2 GraphQL query answering process

During this process the query is validated against the GraphQL schema (ar-
row (1)); the underlying data sources are accessed via resolver functions, the

retrieved data is combined, the data is structured according to the schema

(arrows (2) and (3)); and finally the query result is returned (arrow (4)).
A GraphQL query example and corresponding query result are shown in

Figure 3.3. The example query is: “Get the university including the head

of each department where the UniversityID is ‘u1’”. The query takes as an

input an argument defined as filter: {UniversityID:{_eq:"u1"}}, which

follows the syntax of the input object type UniversityFilter. As we mention

in Section 3.1.1, the meaning of an input argument defined as an input object
type is essentially determined by the program code of the resolver functions.
Thus the query example shown in Figure 3.3a illustrates one way that we make

use of input objects to represent filtering conditions. In general, however, the

input object types can be used in various ways for any field, depending on the

implementation of the GraphQL server.
It has been noted that domain users are the intended users of GraphQL

servers, regardless of whether they have prior knowledge of the Semantic Web

or ontologies. In order to write GraphQL queries, they only need to have a ba-
sic understanding of GraphQL, which can easily be explored via the GraphQL

API provided by the server.

{ {
UniversityList("data":{

filter:{ "UniversityList":[
UniversityID:{ {

_eq:"u1"} "departments":[
}){ {"head":"Harry,Potter"},
departments{ {"head":"Sheldon,Cooper"}

head]
} }]

} }
} }

(a) Query. (b) Query Response.

Figure 3.3: An example GraphQL query/response.

3

37

3

3. GraphQL-based framework for data access and integration

3.3 Summary

In this chapter, we have introduced an overview of a GraphQL-based frame-
work for data access and integration in which an ontology drives the genera-
tion of a GraphQL server. This framework can fill a gap in GraphQL appli-
cations in the respect of promoting GraphQL, not only for semantics-aware

data access but for data integration, by automatically generating a GraphQL

server based on ontologies and semantic mappings. The remaining chapters
of this thesis are based on this framework and contribute to this framework

in different perspectives. Next, we elaborate on the implementation of this
framework, in terms of the GraphQL server generation, in Chapter 4.

38

Chapter

4

Ontology-based GraphQL

server generation (OBG-gen)

We have introduced the outline of the GraphQL-based framework for data

access and integration over multiple heterogeneous data sources in Chapter 3.
In this chapter, we focus on how the GraphQL server generation is automated

and move ahead to introduce our formal methods for generating GraphQL

servers driven by ontologies. As part of the generation, in Section 4.1 we

introduce a formal method for constructing a GraphQL schema based on an

ontology. Then, in Section 4.2 we introduce our generic implementation of
GraphQL resolver functions based on semantic mappings. In Section 4.3, we

introduce the related work. Finally, we end the chapter with a summary in

Section 4.4.

4.1 Ontology-based GraphQL schema generation

As mentioned in Section 3.1.1 of Chapter 3, the GraphQL schema represents
a form of vocabulary supported by the GraphQL API rather than specify-
ing what the data instances of an underlying data source may look like and

what constraints have to be guaranteed. Therefore, we focus on GraphQL lan-
guage features supporting semantics-aware and integrated data access, namely

how data can be queried, rather than reflecting the semantics of a complex

knowledge representation language in the context of a GraphQL schema. In

Section 4.1.1, we introduce how a GraphQL schema is formalized. In Sec-
tion 4.1.2, we introduce how an ontology is represented via a description logic

TBox. Given an ontology represented in a description logic TBox, the concept

4

39

4. Ontology-based GraphQL server generation (OBG-gen)

4

and role names can be used to generate types and fields in a GraphQL schema,
respectively. The relationships, which are represented as general concept in-
clusions in a description logic TBox can be used to specify how to connect
generated types and fields in a GraphQL schema. Then, in Section 4.1.3, we

present the core algorithm (Schema Generator) for generating a GraphQL

schemas based on an ontology. In Section 4.1.4, we present the intended

meaning of GraphQL schemas generated by the Schema Generator.

4.1.1 GraphQL schema formalization

According to [63, 64], a GraphQL schema can be defined over five finite sets.
These five sets are F ⊂ Fields, A ⊂ Arguments, T ⊂ Types, S ⊂ Scalars,
and D ⊂ Directives where T is the disjoint union of OT (object types), IT

(interface types), UT (union types), IOT (input object types) and S. Fields,
Arguments, Types, and Directives are pairwise disjoint, countably infinite

sets representing field names, argument names, type names, and directive

names, respectively. Scalars, which is a subset of Types, represents five built-
in scalar types, which are Int, Float, String, Boolean, and ID. Moreover, the

GraphQL schema definition language introduces non-null types and list types,
called wrapping types, according to types in Types. Given a type t belonging

to Types, the former is denoted as t!, while the latter is denoted as [t]. WT is
used to denote the set of all types that can formed by wrapping the types in

T, and WS denotes the set of all types that can formed by wrapping the scalar
types in S. In our current work, considering the knowledge representation

language we use for the ontology (see next section), we do not need directive

and union types. Therefore, a GraphQL schema S is defined over (F, A, T, S)
consisting of two assignments that are typeS and implementationS :

F AF• typeS = typeS ∪ typeS where,

– typeFS ∶ (OT ∪IT ∪IOT)×F ⇀ T∪WT, which is a partial function since a type

has a set of fields which is a subset of F, assigns a type to each field that
is defined for an object type, an interface type or an input object type,

F– typeS
AF ∶ dom(typeS) × A ⇀ S ∪ WS ∪ IOT, which is a partial function since

a field has a set of arguments which is a subset of A, assigns a type to

every argument of fields that are defined for a type;

→ 2OT ∪IT• implementationS ∶ IT assigns a set of object types or interface

types to every interface type.

40

4.1. Ontology-based GraphQL schema generation

• F = {UniversityID, departments, DepartmentID, head, AuthorID,
doctoralDegreeFrom, _and, _or, _not, _eq, _in, _neq, _nin, _like,
UniversityList, DepartmentList, AuthorList, ProfessorList};

A = {filter};
T = IT ∪ OT ∪ S ∪ UT ∪ IOT where,

– IT = {Author},
– OT = {Query, University, Department, Professor},
– S = {String},
– IOT = {UniversityFilter, DepartmentFilter, StringFilter};

F• typeS = {(University, UniversityID)↦ String,
(University, departments)↦ [Department],
(Department, DepartmentID)↦ String,
(Department, head)↦ String,
(Author, AuthorID)↦ String,
(Professor, AuthorID)↦ String,
(Professor, doctoralDegreeFrom)↦ [University],
(UniversityFilter, UniversityID)↦ StringFilter,
(UniversityFilter, departments)↦ DepartmentFilter,
(UniversityFilter, _and)↦ [UniversityFilter],
(UniversityFilter, _or)↦ [UniversityFilter],
(UniversityFilter, _not)↦ UniversityFilter,
(DepartmentFilter, DepartmentID)↦ StringFilter,
(DepartmentFilter, head)↦ StringFilter,
(DepartmentFilter, _and)↦ [DepartmentFilter],
(DepartmentFilter, _or)↦ [DepartmentFilter],
(DepartmentFilter, _not)↦ DepartmentFilter,
(StringFilter, _eq)↦ String,
(StringFilter, _in)↦ [String],
(StringFilter, _neq)↦ String,
(StringFilter, _nin)↦ [String],
(StringFilter, _like)↦ String,
(Query, UniversityList)↦ [University],
(Query, DepartmentList)↦ [Department],
(Query, AuthorList)↦ [Author],
(Query, ProfessorList)↦ [Professor]};

AF• typeS = {((Query, UniversityList), filter)↦ UniversityFilter,
((Query, DepartmentList), filter)↦ DepartmentFilter};

• implementationS = {Author ↦ {Professor}}.

Figure 4.1: The formalization of the GraphQL schema shown in Figure 3.1.

4

41

4. Ontology-based GraphQL server generation (OBG-gen)

4

Figure 4.1 illustrates a formalized representation of the GraphQL schema

shown in Figure 3.1. In the formalization, we have sets F, A, IT, OT, S and IOT,
which contains all the field names, argument names, interface type names, ob-
ject type names, scalar type names and input object type names, respectively.

FAdditionally, the formalization contains field declarations in the set typeS ; ar-
AFgument declarations in typeS ; object types implementing interface types dec-

larations in implementationS . For instance, (University, UniversityID) ↦

String declares that the University type has a field UniversityID of
which the returned type is String; ((Query, UniversityList), filter) ↦

UniversityFilter declares that the UniversityList field accepts an in-
put argument which is defined as the type UniversityFilter; Author ↦

{Professor} declares that the Professor type is one of the types that im-
plement the interface Author.

4.1.2 Ontology represented by description logic TBox

In our work we assume that the ontology is represented by a TBox in a

description logic, which is an extension of FL0 by adding qualified num-
ber restrictions. FL0 allows atomic concepts, the universal concept, the

bottom concept, intersection and value restriction. This description logic

can represent the semantics that can be reflected in a GraphQL schema for
data access and integration. Figure 4.2 illustrates an example TBox for the

university domain. Let NC, NR, NA, and ND be disjoint finite sets of con-
cept names, role names, attribute names, and datatype names respectively.
For instance, in the example shown in Figure 4.2, we have four concept
names University, Department, Author, and Professor; two role names
departments and doctoralDegreeFrom; a datatype name xsd:string; and

four attribute names UniversityID, DepartmentID, head and AuthorID. A

TBox over NC, NR, NA and ND is a finite set of general concept inclusions
(GCI) where each GCI is a statement in the form of C ⊑ E, where C and E

are concepts. We use a normalized TBox that contains only GCIs in the nor-
mal forms given in equation 4.1 where A, B ∈ NC, r ∈ NR, a ∈ NA, and d ∈ ND,
for generating the GraphQL schema. For instance, in the example shown in

Figure 4.2, we have eight GCIs representing the relationship among concepts
or relationships between concepts and datatypes. Normalization rules to ob-
tain such a TBox are presented in [65]. The work in [66] shows that such

normalization rules can preserve a conservative extension of a TBox in FL0.

42

4.1. Ontology-based GraphQL schema generation

A conservative extension guarantees that subsumptions with respect to the

original TBox coincide with those with respect to the normalized TBox.

NF1 ∶A ⊑ B NF2 ∶A ⊑ ∀r.B NF3 ∶A ⊑= 1r.B
(4.1)

NF4 ∶A ⊑ ∀a.d NF5 ∶A ⊑= 1a.d

NC = {University, Department, Author, Professor}
NR = {departments, doctoralDegreeFrom}
ND = {xsd:string}
NA = {UniversityID, DepartmentID, head, AuthorID}
University ⊑ ∀ departments.Department
University ⊑ =1 UniversityID.xsd:string
Department ⊑ =1 DepartmentID.xsd:string
Department ⊑ =1 head.xsd:string
Author ⊑ =1 AuthorID.xsd:string
Professor ⊑ Author
Professor ⊑ =1 AuthorID.xsd:string
Professor ⊑ ∀ doctoralDegreeFrom.University

Figure 4.2: An example TBox.

4.1.3 The Schema Generator algorithm

The details for generating a GraphQL schema are shown in Algorithm 1. An

example input of the algorithm is shown in Figure 4.2. The output for the ex-
ample is the schema shown in Figure 3.1. First, the algorithm iterates over the

concept names in NC (line 1 to line 5). For each concept, such as University

in the example shown in Figure 4.2, the concept name (University) is used

as the name of an object type to be generated (line 2); the term concatenated

with ‘Filter’ is used as the name of an input type (UniversityFilter) to be

generated (line 3); the term concatenated with ‘List’ is used as the name of
a field (UniversityList) of the Query type (line 4). Additionally, each such

field of the Query type is assigned an argument named ‘filter’, with a type that
is the corresponding input type (line 5, e.g., filter: UniversityFilter to

UniversityList). Next, the algorithm iterates over GCIs in the TBox (line 6

to line 30). For a GCI in the form of NF1 (line 7 to line 12), the name of
the super-concept is used as the name of an interface type to be generated

(line 8); a field for the Query type named by concatenating the interface type

4

43

4

4. Ontology-based GraphQL server generation (OBG-gen)

Algorithm 1: Schema Generator
Input : NC; normalized TBox T B;

Φ, mapping a datatype in ND to a scalar type
Output: a GraphQL schema S

1 for A ∈ NC do
2 OT = OT ∪ {A} // extend S with an empty object type, A
3 IOT = IOT ∪ {AFilter} // extend S with an empty input type, AFilter

/* add following field/argument declarations to the Query type:
AList(filter: AFilter): [A] */
F F ∪ {(Query,AList)↦ [A]}SS4 =type type

typeAF
S ∪ {((Query,AList), filter)↦ AFilter}

6 for t ∈ T B do
7 if t is of the form A ⊑ B (i.e., NF1) then
8 IT = IT ∪ {B} // extend S with an empty interface type, B
9 IOT = IOT ∪ {BFilter} // extend S with an input type, BFilter

/* add following field/argument declarations to the Query type:
BList(filter: BFilter): [B] */
F F ∪ {(Query,BList)↦ [B]}SS

S = typeAF5

10 =type type
= typeAF11 typeAF

S ∪ {((Query,BList), filter)↦ BFilter}
12 implementationS (B) = implementationS (B) ∪ A // declare that the

object type A implements B
13

S

14 if A ⊑= 1r .B ∈ T B then
15

16 else

S

/* add following field declarations to A and AFilter */
F F

S

⊑ ∀if is of the form of (i.e.,) thenA B NF t r 2.

Do nothing, this will be handed in line 19 to line 21 case

∪ {()↦ []} //A, r B [B]17 r:=type type

S

S

S

S

F F ∪ {(AFilter, r)↦ BFilter} //
19 if t is of the form of A ⊑= 1r .B (i.e., NF3) then

/* add following field declarations to A and AFilter */
F F

BFilter18 r:=type type

20 r:= Btype type ∪ {(A, r)↦ B} //
∪ {(AFilter, r)↦ BFilter} //

S

S

S

S
F F

22 if t is of the form of A ⊑ ∀a.d (i.e, NF4) then
23 if A ⊑= 1a.d ∈ T B then
24 Do nothing, this case will be handed in line 28 to line 30
25 else

/* add following field declarations to A and AFilter */
F F

BFilter21 r:=type type

26 r:=type type ∪ {(A, r)↦ [Φ(d)]} // [Φ(d)]
∪ {(AFilter, r)↦ Φ(d)Filter} // r: Φ(d)FilterS

S

S

S

S

S

typeF typeF

28 if t is of the form of A ⊑= 1a.d (i.e., NF5) then
/* add following field declarations to A and AFilter */

F F

F F

27 =

29 r:=type type ∪ {(A, r)↦ Φ(d)} // Φ(d)
∪ {(AFilter, r)↦ Φ(d)Filter} // r: Φ(d)Filter30 =type type

name and ‘List’ is generated (line 10); the previously generated object type

corresponding to the sub-concept implements the generated interface type

(line 12).
From line 13 to line 21, the algorithm deals with GCIs containing roles

(such as University ⊑ ∀ departments.Department), which can be of the

form NF2 or NF3. In both cases, a field definition (e.g., departments) of

44

4.1. Ontology-based GraphQL schema generation

the object type (e.g., University) and a field definition (departments) of
the input type (UniversityFilter) are generated. However, for NF3, the

returned type of the field is defined as the original object type corresponding

to the concept appearing on the right side of the GCI (line 20). For NF2,
the returned type is defined as a wrapped type, which is a list type (line 17).
For instance, the departments field declaration for the University type is
departments:[Department]. The algorithm deals with GCIs containing at-
tributes in a similar way (line 22 to line 30). For example, the University

object type has a field declaration, which is UniversityID:String. We de-
fine a function Φ for mapping a datatype that exists in the TBox to a scalar
type in GraphQL. Due to the fact that current GraphQL supports five ba-
sic scalar types which are ID, Float, Int, Boolean, and String, our cur-
rent implementation of function Φ focuses on mapping datatypes xsd:float,
xsd:int, xsd:string and xsd:boolean to scalar types Float, Int, String

and Boolean, respectively. However, GraphQL allows users to define custom

scalar types, and the values of such custom types should be JSON serializable.
Therefore, our Φ function can be easily extended in the future for mapping

any datatype besides xsd:float, xsd:int, xsd:string, and xsd:boolean

from a TBox into a custom scalar type in GraphQL.
Therefore, by generating the GraphQL schema based on an ontology we

can, for each object or interface type and each field declaration, find the cor-
responding concept and relationship in the ontology. Since such concepts
and relationships are used to define semantic mappings, when a resolver func-
tion (implemented based on semantic mappings) retrieves data sources of a

requested type and relevant fields it can therefore understand the semantic

mappings, which provide information regarding how to access underlying data

sources and structure the returned data according to the GraphQL schema.

4.1.4 The intended meaning of GraphQL schemas

generated by the Schema Generator

In Section 4.1.3, we present the Schema Generator which takes a TBox rep-
resenting an ontology as an input, to generate a GraphQL schema. Such a

GraphQL schema can describe how to access underlying data sources in which

the data can be annotated by the ontology. The underlying data thus can

be viewed as an ABox based on the TBox. Therefore, evaluating a GraphQL

query conforming to this GraphQL schema can be viewed as retrieving the

4

45

4. Ontology-based GraphQL server generation (OBG-gen)

4

ABox. Formally, an ABox, A is defined as a finite set of assertions of the

form C(x), R(x, y) or A(x, z), where C ∈ Nc,R ∈ NR,A ∈ NA, x and y are

instance names, z are literals. Figure 4.3 shows an example of ABox based

on the TBox in Figure 4.2.

University(university_1), University(university_2);
Department(d1), Department(d2), Department(d3), Department(d4);
departments(university_1, d1), departments(university_1, d2),
departments(university_2, d3), departments(university_2, d4);
UniversityID(university_1, “u1”), UniversityID(university_1, “u2”);
head(d1, “Harry, Potter”), head(d2, “Sheldon, Cooper”),
head(d3, “Paul, Atredies”), head(d4, “Jack, Lee”).

Figure 4.3: An example ABox.

Definition 1. Let Q be a GraphQL query over (F, A, T, S), let S be a

GraphQL schema over (F, A, T, S) such that Q conforms to S. S is generated

by the Schema Generator based on the TBox T representing the ontology

O. Let D be the underlying data that can be instantiated in terms of O.
Therefore, evaluating Q over D can be viewed as retrieving an ABox A based

on T :

• If Q requests an object or an interface type t with a field f of which

the returned type is a scalar type s or the wrapping type [s], in which

t ∈ OT ⊔ IT, f ∈ F, s ∈ S, and (t, f) ↦ s ∈ type or (t, f) ↦ [s] ∈ type SS
F F

can find the corresponding assertions in the ABox A of forms: t(x) and

f(x, y);

• If Q requests an object or an interface type t1 with a field f of which

the returned type is another object or interface type t2 or the wrapping

, we

type [t2], in which t1, t2 ∈ OT ⊔ IT, f ∈ F, and (t1, f) ↦ t2 ∈ type S
F

, we can find the corresponding assertions in the

or

S] ∈ typeF

ABox A of forms: t1(x), t2(y) and f(x, y).

For instance, given the GraphQL query shown in Figure 3.3a and

the ABox shown in Figure 4.3, the following assertions are supposed to

be retrieved: University(university_1), departments(university_1, d1),
departments(university_1, d2), head(d1, “Harry, Potter”), head(d2, “Shel-
don, Cooper”).

(t1, f) ↦ [t2

46

4.2. Generic GraphQL resolver function

The above definition presents the meaning of the GraphQL schema gener-
ated based on a TBox for evaluating GraphQL queries. The definition relies
on the Schema Generator where for each concept, the algorithm creates a

corresponding type with the same name of the concept, same for roles and at-
tributes. This guarantees to find the corresponding assertions from the ABox.
However, in practice, as we presented in Section 3.1.2, how a GraphQL query

can retrieve over the underlying data sources relies on how the resolver func-
tion is implemented when we construct GraphQL servers. In the next section,
we present how resolver functions can be implemented in a generic way based

on semantic mappings.

4.2 Generic GraphQL resolver function

In general, there are two styles for implementing resolver functions for a

GraphQL server. One option is to implement one resolver function per type

(object or interface) defined in the GraphQL schema, where such a func-
tion states how to fetch the data to populate relevant fields. For instance,
since the Query type in Figure 3.1 has four field definitions (UniversityList,
DepartmentList, AuthorList, and ProfessorList), we may provide four re-
solver functions for getting entities of the University, Department, Author

and Professor types from underlying data sources, respectively. The other
option is to provide a resolver function for every field of every type defined

in the GraphQL schema, such that this resolver could return data for this
field of any type. In our framework, we adopt the first style because it can be

easily generalized based on semantic mappings. That is, we can implement
just a generic resolver function that can be used to populate objects of any

object type or interface type, and can be viewed as a built-in function of the

GraphQL server. In Section 4.2.1, we introduce how a GraphQL query is
represented by Abstract Syntax Trees (ASTs), in which one represents query

fields and others represent the filter expression. Then in Section 4.2.2 we

introduce the RDF Mapping Language (RML), which is used for represent-
ing semantic mappings. In Section 4.2.3, we describe the components of the

generic resolver function. In Section 4.2.4, we present the core algorithm for
the generic resolver function, which is responsible for accessing underlying

data sources based on semantic mappings.

4

47

4. Ontology-based GraphQL server generation (OBG-gen)

4

4.2.1 GraphQL queries represented by Abstract Syntax

Trees

In general, a GraphQL query can be represented using a single Abstract Syn-
tax Tree that contains nodes representing the fields requested in the query,
and also contains additional nodes for the input arguments that may be used

for each of these fields. In our approach, we assume that each query accepts
an input argument which captures the notion of a filter condition. Therefore

we specify the query evaluation in two steps: (i) evaluating for a filter condi-
tion, which is represented via an input argument that is defined as an input
object type in the schema, (ii) evaluating for those fields that are requested

in the GraphQL query. For instance, in the query example shown in Fig-
ure 3.3a, the field having a filtering condition is different from the requested

fields (the former is UniversityID while the latter includes departments and

head). In the evaluation step for the filter condition, the identifier informa-
tion of the filtered out instances of the requested type (i.e., University) will
be obtained after accessing the underlying data sources. In the next step,
the underlying data sources will be accessed again to retrieve only the re-
quested fields for the filtered instances. Therefore, to enable such two steps
in the query evaluation, we use two ASTs to represent a GraphQL query

(cf. Figure 4.4, these two ASTs represent the query shown in Figure 3.3a of
Chapter 3), one of which captures the input argument structure (Figure 4.4a),
and the other of which captures the structure of the query, including the re-
quested fields and their types (Figure 4.4b). More specifically, every node

in such ASTs represents either a type (i.e., object type, interface type, in-
put type, or scalar type), a wrapping type, or a field. Additionally, ASTs
that represent input arguments also contain nodes that represent the values
of scalar-typed fields (e.g., "u1" in the AST shown in Figure 4.4a). The

types (i.e., UniversityFilter, StringFilter, String) or wrapping types
(i.e., [University], [Department]) are drawn with rectangle nodes. The

fields (i.e., UniversityID, _eq, departments, head) are drawn with rounded

rectangle nodes.
In practice, a filter condition is converted into disjunctive normal form

(DNF). DNF contains a sequence of disjuncts that are connected by the OR

(∨) operator, where each disjunct is a conjunction containing one or more

terms connected by the AND (∧) operator [67, p. 633]. A query result sat-
isfying DNF contains data formed by the union of data that satisfies each

48

4.2. Generic GraphQL resolver function

UniversityFilter [University]

UniversityID departments

StringFilter [Department]

String head_eq

"u1" String

(a) Abstract Syntax Tree for filter fields. (b) Abstract Syntax Tree for query fields.

Figure 4.4: Abstract Syntax Trees for the query shown in Figure 3.3a.

disjunct (conjunction) [67, p. 633]. Therefore, in the step of evaluating for
a filter condition: (i) multiple ASTs will be generated where each represents
one of the conjunctions (disjuncts); (ii) the underlying data source will be ac-
cessed several times to filter out instances for each conjunction; (iii) a union

of identifier information for the filtered out instances of the requested type

will be returned.

4.2.2 RDF Mapping Language (RML)

RML [52, 53] is a declarative mapping language for linking data to ontolo-
gies [68]. An RML document has one or more Triples Maps, which declare

how input data is mapped into triples of the form (subject, predicate, object).
An example of RML mappings is shown in Listing 4.1. A Triples Map con-
tains the following three components (Logical Source, Subject Map and a

set of Predicate-Object Maps). A logical source declares the source of in-
put data to be mapped. It contains definitions of source that locate the

input data source, reference formulation declaring how to refer to the in-
put data, and logical iterator declaring the iteration loop used to map

the input data. For instance, line 2 to line 6 in Listing 4.1 constitute the

definition of a logical source. The definition declares that the data source

is a JSON-formatted data source on the Web and also describes the way of
iterating the JSON-formatted data (line 5). A subject map declares a rule for
generating subjects when transforming underlying data into triples, including

how to construct URIs of subjects (e.g., line 8) and specifying the concept to

4

49

4. Ontology-based GraphQL server generation (OBG-gen)

4

which subjects belong (e.g., line 9). A predicate-object map consists of one

or more predicate maps declaring how to generate predicates of triples (e.g.,
line 12), and one or more object maps or referencing object maps defining how

to generate objects of triples. An object map can be a reference-valued term

map or a constant-valued term map. The former declares a valid reference to

a column (relational data sources), or to an object (JSON data sources). The

latter declares the value of the object as constant data. For instance, line 39

to line 41 make up a reference-valued term map. Line 19 to line 25 constitute

a definition of a referencing object map including the join condition based

on two triples maps. A referencing object map refers to another triples map

(called a parent triples map) by using a rr:joinCondition property to state

the join condition between the current triples map and the parent triples map.
A join condition contains two properties, rr:child and rr:parent, of which

the values must be logical references to logical sources of the current triples
map and the parent triples map, respectively.

Listing 4.1: An example of RML mappings transforming university domain data.

1 <UniversityMapping>

2 rr:logicalSource [

3 rml:source "http://example.com/universities.json";

4 rml:referenceFormulation ql:JSONPath;

5 rml:iterator "$.data.universities [*]";

6];

7 rr:subjectMap [

8 rr:template "http:// example.com/university /{uid}";

9 rr:class schema:University;

10];

11 rr:predicateObjectMap [

12 rr:predicate schema:UniversityID;

13 rr:objectMap [

14 rml:reference "uid";

15];

16];

17 rr:predicateObjectMap [

18 rr:predicate schema:departments;

19 rr:objectMap [

20 rr:parentTriplesMap <DepartmentMapping>

21 rr:joinCondition [

22 rr:child "uid";

23 rr:parent "university_id";

24];

25];

50

4.2. Generic GraphQL resolver function

26].

27

28 <DepartmentMapping>

29 rr:logicalSource [

30 rml:source "http://example.com/departments.csv";

31 rml:referenceFormulation ql:CSV;

32];

33 rr:subjectMap [

34 rr:template "http://example.com/department/{department_id}";

35 rr:class schema:Department;

36];

37 rr:predicateObjectMap [

38 rr:predicate schema:DepartmentID;

39 rr:objectMap [

40 rml:reference "department_id";

41];

42];

43 rr:predicateObjectMap [

44 rr:predicate schema:head;

45 rr:objectMap [

46 rml:reference "HEAD";

47];

48].

4.2.3 Components of the generic resolver function

We show the basic technical components of the generic resolver function in-
cluding QueryParser and Evaluator in Figure 4.5.

GraphQL Schema Requests to underlying data sources Semantic
GraphQL Query Data from underlying data sources Mappings

Data from underlying data sourcesSemantic
Mappings Requests to underlying data sources

QueryParser Evaluator

Evaluator(s)

An AST representing
the query structure

ASTs representing
(sub-)expressions

identifier information of
filtered out instances

Generic Resolver Function

Query
Result

4

Figure 4.5: Technical components in the generic resolver function.

51

http://example.com/department/{department_id
http://example.com/departments.csv

4. Ontology-based GraphQL server generation (OBG-gen)

4

In Algorithm 2, we show the generic resolver function. The inputs to

the generic resolver function are a GraphQL schema, a GraphQL query and

semantic mappings. The GraphQL query and schema are inputs of the Query-
Parser. The QueryParser parses a query including a filter expression given as
an input argument, and outputs the corresponding ASTs (e.g., Figure 4.4b)
for the input argument and the query structure, respectively. As we men-
tioned in Section 4.2.1, in our practical solution a filter condition is converted

into disjunctive normal form. As shown in Algorithm 2, the QueryParser

parses the query, converts a filter expression into a union of conjunctive ex-
pressions, and generates an AST for each conjunctive expression and an AST

for the query structure (line 2). Then, two processes, which are evaluating

the filter expression (line 5 to line 7) and evaluating the query fields (line 9

and line 13), will continue. The Evaluator is responsible for sending requests
to underlying data sources and fetching data according to an AST. During

evaluation of the filter expression, for each AST representing a conjunctive

Algorithm 2: Generic Resolver
Input : a GraphQL query: query; a GraphQL schema: schema;

the semantic mappings: triples_maps
Ouput: a list of objects of the type to be queried

1 Initialize an empty list: query_result
2 call QueryParser taking query and schema as inputs, to get ASTs for the

filter condition and query fields: filter_asts, query_ast
3 if filter_asts is not Empty then

/* there is an input argument given to the query */
4 Initialize an empty set: filtered_identifiers
5 for filter_ast in filter_asts do
6 call Evaluator taking filter_ast and triples_maps as inputs:

identifier_info
7 merge filtered_identifiers and identifier_info:

filtered_identifiers
8 if filtered_identifiers is not Empty then
9 call Evaluator taking query_ast, triples_maps and

filtered_identifiers as inputs: query_result
10 else
11 Do nothing, there is not any instance from data sources satisfying

the filter condition.
12 else

/* there is not an input argument given to the query */
13 call Evaluator taking query_ast, triples_maps as inputs:

query_result
14 return query_result

52

4.2. Generic GraphQL resolver function

(sub-)expression, an evaluator is called to request data that satisfies the con-
junctive (sub-)expression (line 6). After a call to an evaluator based on an

AST (filter_ast in line 6), data representing the requested type, which con-
tains identifier information, will be returned (identifier_info in line 6). Taking

the query in Figure 3.3a represented by the ASTs shown in Figure 4.4 as an

example, the requested type is University and data that can identify uni-
versity instances is supposed to be returned in identifier_info. Such identifier
information is captured in semantic mappings, which are used to construct the

URIs for subjects where such subjects represent instances of the University

concept. For instance, in line 8 of the RML mappings example in Listing 4.1,
the values of the uid attribute of the underlying data source are used to con-
struct URIs of subjects representing instances of the University concept. The

identifier information returned by evaluating each filter_ast is merged into fil-
tered_identifiers (line 7). During evaluation of the query fields, such merged

identifier information is taken into account in the call to the evaluator of the

query fields (line 9).
As we mentioned in Section 4.1.3, by generating the GraphQL schema

based on an ontology, we can therefore, for each object or interface type and

each field declaration, find the corresponding concept and relationship in the

ontology. Since such concepts and relationships are used to define seman-
tic mappings, when a generic resolver function retrieves data sources of a

requested type and relevant fields, it can therefore understand the seman-
tic mappings regarding how to access underlying data sources and structure

the returned data according to the GraphQL schema. Taking the query in

Figure 3.3a represented by the ASTs shown in Figure 4.4 as an example, as
the requested type is University, the generic resolver function can therefore

make use of relevant triples maps (line 1 to line 26 in Listing 4.1) defined in

semantic mappings which are used for transforming underlying data following

the semantics related to the University concept in the ontology.

4.2.4 The Evaluator algorithm

We present the details of Evaluator in Algorithm 3 and show an example in

Figure 4.6 of how evaluators work for answering the query in Figure 3.3a. An

AST and a number of triples maps from the semantic mappings are essential
inputs to the algorithm. For a given AST, we can obtain the object type

and fields that are requested in the query based on the root node and child

4

53

4. Ontology-based GraphQL server generation (OBG-gen)

4

nodes, respectively (line 2). For instance, taking the ASTs in Figure 4.4b

as examples, the root type and the field for evaluating the filter expression

are University and UniversityID, and the root type and the first level
requested field for evaluating query fields are University and departments,
respectively. After getting the relevant triples maps based on the root node

type (line 4 in Algorithm 3, e.g., UniversityMapping in Listing 4.1) or from

the argument (line 28, the parent triples map, DepartmentMapping, which

is an argument in the recursive call of an evaluator), the algorithm iterates
over triples maps and merges the data obtained based on each triples map

(line 5 to line 30). Exploring this in more detail, the algorithm parses each

triples map to get the logical source and relevant predicate-object maps (line 8

and line 9). As described in Section 4.2.2, there are three different types of
predicate-object map depending on the different maps of object, which are

a reference-valued term map, a constant-valued term map or a referencing-
object map. The algorithm iterates over the predicate-object maps and parses
each one (line 10 to line 16). For a reference-valued term map, the mapping

between the predicate and the reference column or attribute is stored (line 12,
e.g., {UniversityID: uid} is stored in pred_attr), which will be used for
rewriting a filter expression according to the underlying data source (line 18,
e.g., uid = 'u1'), annotating the obtained underlying data (line 21, e.g.,
HEAD is annotated as head for Department data). For a constant-valued term

map, the mapping between the predicate and the constant data value and type

is stored (line 14). Both pred_attr and pred_const will be used to annotate

the data from underlying sources (line 21).
In the phase of evaluating a filter expression, local_filter, which repre-

sents the rewritten filter expression, is a necessary argument when sending

requests to underlying data sources (line 19). While in the phase of eval-
uating query fields, filter_ids, being a NULL value or having at least one

element, is a necessary argument (line 19, arrow (a) in Figure 4.6). A NULL

value represents the fact that the GraphQL query does not include an input
argument. After obtaining the data from the underlying data sources, the

data is serialized into JSON format (key/value pairs) in which the keys are

predicates stated in the predicate-object map (line 21), where each predicate

corresponds to a field in the GraphQL schema. In the next step, the algorithm

iterates over predicate-object maps in which the object map refers to another
triples map (called a parent triples map) (line 22 to line 29). An evaluator is
called again to fetch data based on this parent triples map (line 28, arrow (4)

54

4.2. Generic GraphQL resolver function

in Figure 4.6). For the query example, the parent triples map refers to the

DepartmentMapping. Since such a referencing-object map definition states the

join condition between the current triples map (UniversityMapping) based

Algorithm 3: Evaluator
Input : an Abstract Syntax Tree: ast;

the semantic mappings: triples_maps;
the referencing data: ref ;
the identifiers for filtered out result: filtered_ids

Output: result of evaluating a filter expression or query fields
1 Initialize an empty list: result
2 get the root type and query fields from ast: root_type, query_fields
3 if triples_maps is Empty then
4 get relevant triples maps based on the root_type: triples_maps
5 for tm in triples_maps do
6 Initialize an empty list: referencing_poms
7 Initialize two empty lists: pred_attr, pred_const
8 get the logical source from tm: source
9 get all the predicate-object maps from tm based on query_fields: poms

10 for pom in poms do
11 if object_map in pom is a reference-valued term map then
12 extend pred_attr with a map between the predicate and

column/attribute
13 if object_map in pom is a constant-valued term map then
14 extend pred_const with a map between the predicate and data

value, type
15 if object_map is a referencing-object map term map then
16 extend referencing_poms with pom
17 parse ast and get the filter expression: filter_expr
18 localize filter_expr based on pred_attr: local_filter
19 access the data source based on source, local_filter, ref ,

filtered_ids: temp_result
20 if temp_result is not Empty then
21 annotate temp_result based on pred_attr, pred_const
22 for (pred, object_map) in referencing_poms do
23 get the sub tree from ast based on pred: sub_ast
24 parse object_map: parent_triples_map, join_condition
25 parse join_condition: child_field, parent_field
26 get the referencing data from temp_result on child_field:

child_data
27 ref = (child_data, parent_field)
28 call Evaluator based on sub_ast, parent_triples_map, ref :

parent_data
29 join temp_result and parent_data based on join_condition,

pred: temp_result
30 merge result and temp_result: result

4

31 return result

55

4. Ontology-based GraphQL server generation (OBG-gen)

4

on child_field (uid) and the parent triples map (DepartmentMapping) based

on parent_field (university_id) (line 21 to line 23 of the mappings in List-
ing 4.1), we can pass referencing data (ref), which contains the data obtained

according to the current triples map and parent_field, to the call of an eval-
uator when we fetch data according to the parent triples map (line 28). Such

referencing data is taken into account, in the recursive call to an evaluator,
when the request is sent to the underlying data sources (line 19, arrow (b) in

Figure 4.6). After the data is obtained according to the parent triples map

(arrow (c) in Figure 4.6), it is joined with data obtained according to the

current triples map (line 29, frame (A) in Figure 4.6).

Evaluator

department_id;department_name;HEAD;university_id

1;"Department of Magic";"Harry, Potter";"u1"

2;"Department of Physics";"Sheldon, Cooper";"u1"

3;"Department of Precognition";"Paul, Atreides";"u2"

4;"Department of Computer Science";"Jack, Lee";"u2"

{

 "data" :{

 "universities" :[

 { "uid": "u1","uname": "University 1"},

 { "uid": "u2","uname": "University 2"}]}

}

 line 2: root_tye='University', query_fields=['UniversityID']
line 4: triples_maps=[<UniversityMapping>]

line 12: pred_attr={'UniversityID': 'uid'}
line 17: filter_expr='UniversityID = ´u1´'
 line 18: local_filter=' uid = ´u1´ '
 line 19: temp_result = [{'uid': 'u1'}]

 line 31: result = [{'uid': 'u1'}]

Evaluator

Evaluator

http://example.com/universities.json

http://example.com/departments.csv

Department Data Sourse

University Data Sourse

A call of Evaluator for evaluating
the filter expression

A call of Evaluator for getting
University entities

A call of Evaluator for getting
Department entities

(2)

(3)

(4)

(a)

(c)

JSON

CSV

 line 2: root_tye='University', query_fields=['departments']
line 4: triples_maps=[<UniversityMapping>]

line 16: referencing_poms=[{'departments': OBJECT_MAP}]
line 19: temp_result=[{'uid': 'u1'}]

line 25: child_field='uid', parent_field='university_id'
line 26: child_data=['u1']
line 27: ref=(['u1'], 'university_id')
line 28:
line 29: join([{'uid': 'u1'}],

 [{'head': 'Harry, Potter', 'university_id': 'u1' },
{'head': 'Sheldon, Cooper', ' university_id': 'u1'}],
' departments', ('uid', 'university_id'))

 temp_result=[{
' departments':[

 { 'head': 'Harry, Potter' }, { 'head': 'Sheldon, Cooper' }
]}]

line 31: result=[{
' departments':

 [{'head': 'Harry, Potter'},{'head': 'Sheldon, Cooper'}]
}]

(A)

 line 2: root_tye='Department', query_fields=['head']
line 5: triples_maps=[<DepartmentMapping>]

line 12: pred_attr={'head': 'HEAD'}
 line 19: temp_result=[{'HEAD': 'Harry, Potter', 'university_id': 'u1' },

{'HEAD': 'Sheldon, Cooper', 'university_id': 'u1'}]
line 21: temp_result=[{'head': 'Harry, Potter', 'university_id': 'u1' },

{'head': 'Sheldon, Cooper', 'university_id': 'u1'}]
 line 31: result=[{'head': 'Harry, Potter', 'university_id': 'u1' },

{'head': 'Sheldon, Cooper', 'university_id': 'u1'}]

(1)

child_field

parent_field

(b)

Figure 4.6: An example for answering the query in Figure 3.3a, (1)-(3) indicate
the requests to and responses from the data sources; (a)-(c) indicate the parameter
passing between the calls to Evaluators; (4) indicates a recursive call to Evaluator

for getting the data of Departments; frame (A) indicates a join operation.

4.3 Related work

The widely used Semantic Web-based techniques and the recently developed

GraphQL have led to a number of works relevant to our GraphQL-based

framework for data access and data integration. We extend the summary of

56

4.3. Related work

approaches presented in [69] by adding several new related approaches and

new perspectives on the comparison. Table 4.1 summarizes these systems and

our approach. The majority of these systems can be divided into two cate-
gories, namely OBDA-based systems and GraphQL-based systems. The for-
mer group contains morph-rdb, morph-csv and Ontop. The latter group con-
sists of GraphQL-LD, HyperGraphQL, UltraGraphQL, morph-graphql, On-
tology2GraphQL and our OBG-gen. In addition to the two groups described

above, there is also another system, OBA, which is an ontology-based frame-
work that facilitates the development of REST APIs for knowledge graphs.

As a new perspective to the summary in [69], all the approaches (except for
GraphQL-LD) have two processes: (i) the service setup (preparation) process
and (ii) the query answering process. During the service setup process, some

approaches need semantic mappings as input such as morph-rdb, morph-csv,
Ontop, morph-graphql and OBG-gen. In such systems, semantic mappings
are used in a similar manner to represent differences between global and local
schemas. Morph-csv needs additional annotations for tabular data. OBG-
gen needs an ontology and semantic mappings together in order to generate a

GraphQL server that is intended not only for semantics-aware data access but
for data integration. Morph-graphql requires semantic mappings to generate

a GraphQL server intended for data access. Ontology2GraphQL needs a meta

model for the GraphQL query language and requires an ontology following the

meta model for generating the GraphQL schema. HyperGraphQL requires
no inputs during the service setup process, but the developer must build

the GraphQL server from scratch. UltraGraphQL, based on HyperGraphQL,
requires RDF schemas of SPARQL endpoints for bootstrapping the GraphQL

server. In actuality, GraphQL-LD does not require any GraphQL servers, but
instead focuses on how to represent GraphQL queries using SPARQL algebra

and to convert the results of a SPARQL query into a tree structure in response

to a GraphQL query.
For the query answering process, OBDA-based approaches (i.e., morph-

rdb, morph-csv and Ontop) accept SPARQL queries and translate them into

SQL queries. Ontop and morph-rdb handle underlying data stored in re-
lational databases, while morph-csv deals with data stored in CSV files.
Our approach, OBG-gen, accepts relational data, CSV-formatted data and

JSON-formatted data as the underlying data. The remaining approaches are

based on underlying data in SPARQL endpoints and translate input queries
(GraphQL queries for GraphQL-based approaches, API requests for OBA)

4

57

4. Ontology-based GraphQL server generation (OBG-gen)

4

into SPARQL queries. GraphQL-LD, HyperGraphQL, and UltraGraphQL

require context information expressed in JSON-LD. Such JSON-LD context
information contains URIs of classes to which instances in the RDF data

belong.

4.4 Summary

In this chapter, we have elaborated on the implementation of the framework

introduced in Chapter 3. We have also presented a formal method for generat-
ing a GraphQL schema based on an ontology. We then showed how a generic

resolver function is implemented based on semantic mappings. In Section 4.3,
we provided a detailed introduction to related work. Before we evaluate this
framework and apply this framework in specific domains, we turn our focus
to the preparation that is necessary to enable the usage of this framework.
In other words, we focus on how to construct a domain ontology that will
enable the GraphQL server generation process in the framework. Therefore,
we introduce the development of a domain ontology for the materials design

field (Chapter 5) and an approach for extending domain ontologies (Chapter 6

and Chapter 7). We present the evaluation of the framework in Chapter 8

and an application to the materials design field in Chapter 9.

58

4.4. Summary

T
ab

le
 4

.1
:

A
 s

um
m

ar
y

of
 r

el
at

ed
 a

pp
ro

ac
he

s.

A
pp

ro
ac

h
Se

rv
ic

e
Se

tu
p

(P
re

pa
ra

ti
on

)
P

ro
ce

ss

Q
ue

ry
 A

ns
w

er
in

g
P

ro
ce

ss
In

pu
t

O
ut

pu
t

In
pu

t
O

ut
pu

t
U

nd
er

ly
in

g
D

at
a

m
or

ph
-r

db
 [2

5,
 7

0]

se
m

an
ti

c
m

ap
pi

ng
s

(R
2R

M
L)

–

SP
A

R
Q

L
qu

er
y

SQ
L

qu
er

y
R

el
at

io
na

l d
at

a

m
or

ph
-c

sv
 [2

6]

se
m

an
ti

c
m

ap
pi

ng
s

(R
M

L)
,

ta
bu

la
r

m
et

ad
at

a
–

SP
A

R
Q

L
qu

er
y

SQ
L

qu
er

y
T

ab
ul

ar
 d

at
a

O
nt

op
 [2

7]

se
m

an
ti

c
m

ap
pi

ng
s

–
SP

A
R

Q
L

qu
er

y
SQ

L
qu

er
y

R
el

at
io

na
l d

at
a

G
ra

ph
Q

L-
LD

 [7
1]

–

–
G

ra
ph

Q
L

qu
er

y ,
JS

O
N

-L
D

 c
on

te
xt

SP

A
R

Q
L

qu
er

y
SP

A
R

Q
L

en
dp

oi
nt

H
yp

er
G

ra
ph

Q
L

[7
2]

–

G
ra

ph
Q

L
se

rv
er

(m
an

ua
lly

)
G

ra
ph

Q
L

qu
er

y ,
JS

O
N

-L
D

 c
on

te
xt

SP

A
R

Q
L

qu
er

y
SP

A
R

Q
L

en
dp

oi
nt

U
lt

ra
G

ra
ph

Q
L

[7
3,

 7
4]

R

D
F

 s
c h

em
as

 o
f

SP
A

R
Q

L
G

ra
ph

Q
L

se
rv

er
en

dp
oi

n t
s

(a
ut

om
at

ic
al

ly
)

G
ra

ph
Q

L
qu

er
y ,

JS
O

N
-L

D
 c

on
te

xt

SP
A

R
Q

L
qu

er
y

SP
A

R
Q

L
en

dp
oi

nt

m
or

ph
-g

ra
ph

ql
 [6

9]

se
m

an
ti

c
m

ap
pi

ng
s

(R
2R

M
L)

G

ra
ph

Q
L

se
rv

er
(a

ut
om

at
ic

al
ly

)
G

ra
ph

Q
L

qu
er

y
SQ

L
Q

ue
ry

R

el
at

io
na

l
da

ta

O
B

A
 [7

5]

an
 o

n t
ol

og
y

O
pe

n
A

P
I

sp
ec

ifi
ca

ti
on

;
a

R
E

ST
 A

P
I

se
rv

er
(a

ut
om

at
ic

al
ly

)
A

P
I

re
q u

es
ts

SP

A
R

Q
L

qu
er

y
SP

A
R

Q
L

en
dp

oi
nt

O
nt

ol
og

y2
G

ra
ph

Q
L

[7
6]

a
m

et
a

m
od

el
 f

or
 G

ra
ph

Q
L

G
ra

ph
Q

L
se

rv
er

qu
er

y
la

ng
ua

ge
,

an
 o

nt
ol

og
y

(a
ut

om
at

ic
al

ly
)

fo
llo

w
s

th
e

m
et

a
m

od
el

G
ra

ph
Q

L
qu

er
y

SP
A

R
Q

L
qu

er
y

SP
A

R
Q

L
en

dp
oi

nt

O
B

G
-g

en

se
m

an
ti

c
m

ap
pi

ng
s

(R
M

L)
,

G
ra

ph
Q

L
se

rv
er

an
 o

n t
ol

og
y

(a
ut

om
at

ic
al

ly
)

G
ra

ph
Q

L
qu

er
y

R
el

at
io

na
l

d a
ta

,
SQ

L
 q

ue
ry

,
C

SV
-f

or
m

at
te

d
da

ta
,

A
P

I
re

qu
es

ts

JS
O

N
-f

or
m

at
te

d
da

ta

4

59

4

Chapter

5

Materials Design Ontology

(MDO)

For the framework presented in Chapter 3, a domain ontology plays an impor-
tant role in generating a GraphQL server. Therefore, we turn our attention

to domain ontology development for the materials design field, aiming not
only to represent the domain knowledge but also to enable ontology-driven

data access and integration. At the beginning of this work, no ontologies
existed for the domain that could achieve such aims. In Section 5.1 we start
by introducing an overview of background knowledge relevant to ontology

development, and related work in the materials design field. In Section 5.2

we present the development of MDO (Materials Design Ontology), includ-
ing the requirements analysis, and methodologies that were used. Then in

Section 5.3, we introduce the concepts, relations, and the axiomatization of
MDO. We also introduce the envisioned usage of MDO in Section 5.4, and

summarize the impact, reusability, and availability of MDO in Section 5.5.
Finally, the chapter concludes in Section 5.6.

5.1 Background and related work

Developing a domain-specific ontology for representing domain knowledge

requires the developers to follow good practices of ontology development
methodologies and to make good use of existing resources in relevant domains.
In this Section, we first introduce several ontology engineering methodologies,
one of which we use for developing MDO, then introduce an overview of exist-

5

61

5. Materials Design Ontology (MDO)

5

ing ontologies, databases and an ongoing effort, OPTIMADE (Open Databases

Integration for Materials Design), in the field.

5.1.1 Ontology development

Ontologies can support formalization to represent knowledge. However, the

creation and management of ontologies do not come for free [77]. Therefore,
the field “Ontology Engineering” studies the principles, methods and tools
used for developing and maintaining ontologies [77]. Developing and main-
taining an ontology is similar to software design in which software has a life

cycle. Therefore, it is necessary to think about how to make the deliverables
compatible and resilient in the life cycle. A variety of methods for ontology

engineering have been developed by the community. The process of ontol-
ogy development usually involves making a number of design choices. For
instance, the background of the developers (ontology engineers or domain

experts or both); the background knowledge taken into account (existing lex-
icons, thesauri, database schemas, or text such as interview transcripts); the

tools for ontology development (engineering tools such as Protégé, evaluation

and debugging tools such as OOPS! [78], RepOSE [79], management and ver-
sioning tools such as GitHub and Ontoology [80]). Many methodologies have

been proposed for ontology development.
METHONTOLOGY is an early effort to develop a methodology for

ontology engineering [81]. This methodology proposes that the life cycle of an

ontology moves through states including Specification, Knowledge Acquisition,
Conceptualisation, Integration, Implementation, Evaluation, and Documenta-
tion.

NeOn is a methodology for ontology engineering, proposing nine scenar-
ios, which are commonly occurring situations, including Scenario 1: From

Specification to Implementation, Scenario 2: Reusing and re-engineering non-
ontological resources, Scenario 3: Reusing ontological resources, Scenario

4: Reusing and re-engineering ontological resources, Scenario 5: Reusing

and merging ontological resources, Scenario 6: Reusing, merging, and re-
engineering ontological resources, Scenario 7: Reusing ontology design pat-
terns (ODPs), Scenario 8: Restructuring ontological resources, and Scenario

9: Localizing ontological resources [82]. Depending on different existing back-
ground resources and the purpose of the ontology, developers can make use

of different scenarios or combinations of scenarios from NeOn [82]. However,

62

5.1. Background and related work

Scenario 1 should be included in any combinations since this scenario is a core

activity that is necessary in the development of any ontology [82]. LOT [83,
84], (Linked Open Terms) is proposed based on NeOn methodology with a

focus on matching the processes of ontology development with those of agile

software development. LOT also focuses on reusing terms published in ex-
isting ontologies and reusing ontologies developed according to Linked Data

principles.
On-To-Knowledge Methodology (OTKM) [85], focuses on construct-

ing ontologies for knowledge management applications in enterprises, where

such applications concern human issues, software engineering and the knowl-
edge meta process. The knowledge meta process is similar to the definition

and specification of ontology development activities. Within this knowledge

meta process, there are several activities including Feasibility Study, Kickoff,
Refinement, Evaluation, and Application & Evolution.

Along with the methodologies provided above, Ontology Design Patterns
(ODPs) provide another method for guiding the development of ontologies.
A representative ODP-based ontology development methodology is eXtreme

Design [86]. This methodology focuses on incremental development, inspired

by the eXtreme Programming (XP) agile software development approach. The

idea of eXtreme Design is that ODPs representing generic use cases can be

matched against local use cases defined in the requirements of the ontology

to be developed. Thus, an important part of such a methodology is selecting

existing ODPs that are suitable.1 Moreover, the work in [87] presents how

to integrate ontology matching and debugging processes into the incremental
development process of eXtreme Design.

We chose NeOn to guide the development of MDO. In particular, we fo-
cused on applying scenario 1 (From Specification to Implementation), scenario

2 (Reusing and re-engineering non-ontological resources), scenario 3 (Reusing

ontological resources) and scenario 8 (Restructuring ontological resources). We

did not consider the other scenarios because of we design MDO for semantics-
aware and integrated querying over materials databases and it is only neces-
sary to reuse certain concepts from other ontological resources. We did not
need to re-engineer or merge other ontological resources. Although we could

have used approaches such as eXtreme Design [86] or its extension [87] which

are modern approaches in terms of considering ontology design patterns, on-

1A repository of ODPs is available at http://ontologydesignpatterns.org.

5

63

http://ontologydesignpatterns.org

5. Materials Design Ontology (MDO)

5

tology matching and debugging, since our initial ontology is expected to be

of a smaller size and given our earlier experience with the NeOn methodol-
ogy for ontology engineering, we decided to use NeOn. In addition, none of
existing ontology design patterns were suitable for reuse in MDO to achieve

semantics-aware and integrated querying. NeOn allows combinations of sce-
narios covering different activities that might be involved in the life cycle of
an ontology, in contrast to rigid settings of workflows from other methodolo-
gies such as METHONTOLOGY, OTKM [82]. In addition, it considers (i)
the collaborative aspects of ontology development and (ii) the reuse and dy-
namic evolution of ontology networks [82]. In the materials science domain,
we see the trend that different domain ontologies are emerging. It is fore-
seeable that the materials science field will need and have a large number of
domain ontologies assembling ontology networks that use different resources
for development and that are developed collaboratively by different people.
Therefore, following NeOn methodology to develop MDO permits us to con-
sider all the necessary aspects of ontology development which would be needed

in the future maintenance and extension of MDO.

5.1.2 Ontologies in the materials science domain

A number of ontologies in the materials science field have been developed and

we show some characteristics in Table 5.1 from knowledge representation and

materials science perpectives. EMMO (earlier known as European Materials
& Modelling Ontology, and recently renamed Elementary Multiperspective

Material Ontology)2 is a top-level ontology with the purpose of developing

a standard representational ontology framework based on knowledge of ma-
terials modeling and characterization. Most other ontologies, however, are

domain ontologies that focus on specific sub-domains of the materials science

field (Domain column in Table 5.1) and have been developed with a specific

use in mind (Application Scenario column in Table 5.1). MatOnto [88], based

on the top-level ontology DOLCE (Descriptive Ontology for Linguistic and

Cognitive Engineering),3 aims to represent structured knowledge, properties
and processing steps relevant to materials for data exchange, reuse and in-
tegration. MatOWL [89] is extracted from MatML schema data to enable

ontology-based data access. The latter, MatML,4 is an extensible markup

2https://github.com/emmo-repo/EMMO
3http://www.loa.istc.cnr.it/dolce/overview.html
4https://www.matml.org

64

https://4https://www.matml.org
https://2https://github.com/emmo-repo/EMMO

5.1. Background and related work

language (XML) for exchanging materials information. The Materials Ontol-
ogy in [90] is designed for data exchange among thermal property databases,
particularly focusing on representing knowledge relevant to material process-
ing, measurement methods and manufacturing processes. The NanoParticle

Ontology [91], based on the Basic Formal Ontology (BFO)5 [92], and the

eNanoMapper ontology [93] are two ontologies in the nanotechnology domain.
The former represents properties of nanoparticles to design new nanoparticles,
while the latter focuses on assessing risks caused by the use of nanomateri-
als in engineering. Extensions to these ontologies are computed in [4] and

are presented in Chapter 7. The MMOY ontology [94] captures metal ma-
terials knowledge from Yago. The Materials and Molecules Basic Ontology

(MAMBO) [95] reuses some concepts and relationships in MDO and focuses
on materials based on molecules. The Dislocation Ontology [96] focuses on

representing knowledge related to crystalline materials and reuses some con-
cepts from MDO. The Platform MaterialDigital Ontology (PMD) [97] is a

prototype to describe materials science experiments.
The Materials Design Ontology (the last row in Table 5.1 of which we

introduce more details in the rest of the chapter), aims to enable semantic and

integrated querying over multiple heterogeneous materials databases, which

cannot be fulfilled by the other ontologies. They are either designed for specific

domains (e.g., MatOnto for crystals) or are designed as a top-level ontology

(i.e., EMMO) which contains semantics that are not necessary for semantic

and integrated querying over multiple materials databases.
From the knowledge representation perspective, the basic terms defined in

these ontologies shown in Table 5.1 involve materials, properties, performance,
and processing in specific sub-domains. All of the ontologies presented use

OWL as a representation language (Language column in Table 5.1). The num-
ber of OWL classes ranges from a few to several thousands (Ontology Metrics

column in Table 5.1). Some ontologies have more classes than properties (e.g.,
MatOnto, Materials Ontology, NanoParticle Ontology, MMOY and EMMO),
while some have many more properties (e.g., MDO). Several ontologies are

developed in a modular fashion (Modularity column in Table 5.1).

5

5http://basic-formal-ontology.org/

65

https://5http://basic-formal-ontology.org

5. Materials Design Ontology (MDO)

5

T
able 5.1: C

haracteristics of m
ain

 ontologies in
 the m

aterials science field.

O
ntology

K

now
ledge R

epresentation
 P

erspective
M

aterials Science P
erspective

O
ntology

 M
etrics

Language
M

odularity

D
om

ain

A
pplication

 Scenario

E
M

M
O

309

 classes, 35
 properties,

3
 individuals

O
W

L

!

M
aterials science

T
op-level ontology

M
atO

nto

[88]
78

 classes, 10
 properties,

24
 individuals

O
W

L

!

C
rystals

M
aterials discovery

M
atO

W
L

[89]
(not available)

O
W

L

M
aterials

Sem
antic querying

M
aterials O

ntology

[90]
606

 classes, 31
 properties,

488
 individuals

O
W

L

!

T
herm

al properties
D

ata
 exchange, search

E
LSSI-E

M
D

 ontology

[98]
35

 classes, 37
 properties,

33
 individuals

O
W

L

!

M
aterials testing

Standardization

N
anoP

article O
ntology

[91]
1904

 classes, 81
 properties

O
W

L

N
anotechnology

D

ata
 integration, search

eN
anoM

apper
[93]

12781
 classes, 5

 properties
464

 individuals
O

W
L

!

N

anotechnology

D
ata

 integration

M
M

O
Y

[94]
2325

 classes, 9
 properties,

1738
 individuals

O
W

L

M
etals

K
now

ledge extraction

M
A

M
B

O
[95]

26
 classes, 33

 properties
O

W
L

!

M

olecules-based
 m

aterials
K

now
ledge representation

D
islocation

 O
ntology

[96]
18

 classes, 16
 properties

O
W

L

!

C
rystalline m

aterials
K

now
ledge representation

P
M

D
[97]

13
 classes, 7

 properties
O

W
L

!

M

aterials experim
ents

K
now

ledge representation,
D

ata
 curation

M
D

O
[3]

37
 classes, 64

 properties
O

W
L

!

M

aterials design

Sem
antic/Integrated

 querying

over m
ultiple databases

66

5.1. Background and related work

5.1.3 Databases in the materials science domain

The Inorganic Crystal Structure Database (ICSD) [99] is a frequently utilized

database for completely identified inorganic crystal structures, with nearly

200k entries [100, 101]. The data contained in ICSD serves as an important
starting point in many electronic structure calculations. Several other crys-
tallographic information resources are also available [102]. A popular open ac-
cess resource is the Crystallography Open Database (COD) [103] with nearly

400k entries [104]. Closely related to COD is the Predicted Crystallography

Open Database (PCOD) [105] with over 1 million predicted crystal struc-
tures. Another open access resource that relates to COD is the Theoretical
Crystallography Open Database (TCOD) [106] with 2,906 entries. A number
of databases for phase identification are hosted at the International Centre

for Diffraction Data (ICDD) [107]. These databases have been in use by ex-
perimentalists for a long time. Springer Materials Springer Materials [108]
contains, among many other data sources, the well-known Landolt Börnstein

database, an extensive data collection from many areas of physical sciences
and engineering. The Japan National Institute of Materials Science (NIMS)
Materials Database MatNavi [109] contains a wide collection of mostly ex-
perimental but also some computational electronic structure data. Thermo-
dynamical data, which is necessary for computing phase diagrams with the

CALPHAD method, exists in many different databases [110]. Open access
databases with relevant data can be found through OpenCalphad [111].

Databases of results from electron structure calculations have existed in

some form for several decades. In 1978, Moruzzi, Janak, and Williams pub-
lished a book with computed electronic properties such as density of states,
bulk modulus and cohesive energy of all metals [112]. It is only in the last few

years, however, that the idea of collecting computed results at a large scale in

publicly available databases for general has become widespread. Prominent
examples of databases or repositories that appeared early during the present
trend are the Electronic Structure Project (ESP) [113], the Automatic Flow

for Materials Discovery (AFLOW) [114, 115], the Materials Project [116, 16],
the Open Quantum Materials Database (OQMD) [17, 18], and the Novel Ma-
terials Discovery (NOMAD) [20]. There is now a growing demand for open

science from funding agencies, regulatory bodies, the scientific community and

the general public. Data management plans are becoming mandatory, and

making research data, also raw data, available is now expected and becoming

5

67

5. Materials Design Ontology (MDO)

5

the norm in research. This has lead to an explosion of available materials
science datasets and archived data of varying quality and usefulness. Many

of the above mentioned repositories have made their frameworks available

(e.g., Automated Interactive Infrastructure and Database for Computational
Science (AiiDA) [117, 118], the Atomic Simulation Environment (ASE) [119,
120], and the high-throughput toolkit (httk) [121, 122]).

5.1.4 Open Databases Integration for Materials Design

OPTIMADE [123] is a consortium that gathers many database providers and

has made a first stable release of an API specification in 2021. The majority

of the databases are listed in Section 5.1.3. It aims at enabling interoper-
ability among materials databases through a common REST API. During the

development of OPTIMADE, widely used materials databases such as those

introduced in Section 5.1.3 were taken into account. OPTIMADE maintains
a schema that defines the specification of the OPTIMADE API. The OPTI-
MADE API specification includes, essentially, a list of terms for which there is
a consensus from different database providers. For the development of MDO,
these terms serve as a basis. Such terms mainly concerns structural infor-
mation about materials, with limited representation of semantic relationships
among these terms.

5.2 Development of Materials Design Ontology

We use OWL2 DL as the representation language for MDO. During the entire

process, two knowledge engineers, and one domain expert from the materials
design domain were involved. In the remainder of this section, we introduce

the key aspects of the development of MDO.

5.2.1 Requirements analysis

Since we developed MDO from scratch, the requirements analysis is the first
step and a core activity in Scenario 1: From Specification to Implementation.
In the context of ontology development, requirements analysis is usually repre-
sented as competency questions, restrictions, reasoning requirements classified

as functional requirements, and non-functional requirements such as naming

conventions, documentation and extendibility. During this step, we clarified

68

5.2. Development of Materials Design Ontology

the requirements by proposing use cases (UC), competency questions (CQ)
and additional restrictions (AR).

5.2.1.1 Use cases

The use cases, which were identified through literature study and discussion

between the domain expert and the knowledge engineers based on experi-
ence with the development of OPTIMADE and the use of materials science

databases, are listed below.

• UC1: MDO will be used for representing knowledge in basic materials
science such as solid-state physics and condensed matter theory.

• UC2: MDO will be used for representing materials calculation and stan-
dardizing the publication of the materials calculation data.

• UC3: MDO will be used as a standard to improve the interoperability

among heterogeneous databases in the materials design domain.

• UC4: MDO will be mapped to the schema of OPTIMADE to improve the

search functionality of OPTIMADE.

5.2.1.2 Competency questions

The competency questions are based on discussions with domain experts and

contain questions that the materials databases (as listed in Section 5.1.3)
generally do not provide an easy way to answer as well as questions that
experts would want to ask the databases. For instance, CQ1, CQ2, CQ6, CQ7,
CQ8 and CQ9 cannot be asked explicitly via the database APIs, although the

original downloadable data contains the answers. The SPARQL queries that
correspond to the following competency questions are given in Appendix A.

• CQ1: What are the calculated properties and their values produced by a

materials calculation?

• CQ2: What are the input and output structures of a materials calculation?

• CQ3: What is the space group type of a structure?

• CQ4: What is the lattice type of a structure?

• CQ5: What is the chemical formula of a structure?

• CQ6: For a series of materials calculations, what are the compositions of
materials with a specific range of a calculated property (e.g., band gap)?

5

69

5. Materials Design Ontology (MDO)

5

• CQ7: For a specific material and a given range of a calculated property

(e.g., band gap), what is the lattice type of the structure?

• CQ8: For a specific material and an expected lattice type of output struc-
ture, what are the values of calculated properties of the calculations?

• CQ9: What is the computational method used in a materials calculation?

• CQ10: What is the value for a specific parameter (e.g., cutoff energy) of
the method used for the calculation?

• CQ11: Which software produced the result of a calculation?

• CQ12: Who are the authors of the calculation?

• CQ13: Which software or code does the calculation run with?

• CQ14: When was the calculation data published to the database?

5.2.1.3 Additional restrictions

Further, we proposed a list of additional restrictions that help in defining

concepts. Some examples are shown below.

• AR1: A materials property can relate to a structure.

• AR2: A materials calculation has exactly one corresponding computational
method.

• AR3: A structure corresponds to one specific space group.

• AR4: A materials calculation is performed by some software program or
code.

• AR5: A structure is a part of some materials.

• AR6: A calculation is achieved by a specific computational method.

• AR7: A structure and a property can be published by references which

could be databases or publications.

• AR8: A calculation can take some structures as input.

• AR9: A calculation can take some properties as input.

5.2.2 Using existing resources

Developing an ontology does not mean redefining everything. As the second

scenario of the NeOn methodology presents, reusing and re-engineering non-
ontological resources are activities that avoid “reinventing the wheel” [82].

70

5.2. Development of Materials Design Ontology

Such non-ontological resources could be thesauri, glossaries or databases in

the domain of interest. During the development of MDO, we have had dis-
cussions with the domain expert regarding the scope of concepts and rela-
tionships to be modeled in MDO after the requirements analysis, as well as
the selection of relevant non-ontological resources. We then analyzed these

selected non-ontological resources and decided how to make use of them in the

development of MDO. These resources are: (i) the dictionaries of CIF (Crys-
tallographic Information Framework)6 and International Tables for Crystal-
lography,7 and (ii) the APIs from different databases (e.g., Materials Project,
AFLOW, OQMD) and OPTIMADE. The former helps in modeling concepts
and relationships relevant to materials structural knowledge that is involved

in the requirements analysis (e.g., UC1, CQ3, AR3). The latter helps in mod-
eling concepts and relationships relevant to materials calculation knowledge

(e.g., UC2, CQ1, AR2).
In the next step, we took a look at the third scenario of NeOn method-

ology, which is reusing ontological resources, and make use of some existing

ontological resources in the development of MDO. We started by searching,
assessing and comparing existing ontologies (as described in Section 5.1.2 and

shown in Table 5.1). We reused the concept Material from EMMO and the

concept atom from ChEBI (Chemical Entities of Biological Interest) [124].
EMMO is a top-level ontology for the materials science field and Material
is a general concept in it, which can connect to other domain ontologies.
Reusing the Material concept in MDO makes it possible to connect MDO

with other domain ontologies. ChEBI contains a conceptualization of knowl-
edge of chemical elements, which is useful for modeling materials composition

relevant knowledge in MDO (e.g., CQ5). As we present in the requirements
analysis, MDO needs to represent numerical values for materials properties,
and provenance information of materials calculations. Therefore, we reused

the Quantity, QuantityValue, QuantityKind and Unit concepts, as well as
relevant relationships from QUDT (Quantities, Units, Dimensions and Data

Types Ontologies) [125], and the Agent and SoftwareAgent concepts and rel-
evant relationships from PROV-O [126]. Additionally, for ontology annota-
tion, we used the metadata terms from the Dublin Core Metadata Initiative

(DCMI)8 to represent the metadata of MDO.

6https://www.iucr.org/resources/cif
7https://it.iucr.org
8http://purl.org/dc/terms/

5

71

https://8http://purl.org/dc/terms
https://7https://it.iucr.org
https://6https://www.iucr.org/resources/cif

5. Materials Design Ontology (MDO)

5

qudt:Q
uantityK

ind

qudt:Q
uantityValue

qudt:Q
uantity

qudt:hasQ
uantityK

ind

qudt:U
nit

qudt:quantityValue
qudt:unit

EM
M
O
:M
aterial

core:Structure

core:C
alculation

core:Property

core:PhysicalProperty
core:C

alculatedProperty

core:relatesToM
aterial

core:hasInputProperty

core:relatesToStructure

core:hasO
utputC

alculatedProperty
rdfs:subC

lassO
f

rdfs:subC
lassO

f

core:hasInputStructure

core:hasO
utputStructure

rdfs:subC
lassO

f

provenance:R
eferenceAgent

prov:w
asA

ttributedTo

prov:A
gent

rdfs:subC
lassO

f

prov:Softw
areA

gent
rdfs:subC

lassO
f

prov:w
asA

ssociatedW
ith

calculation:H
artreeFockM

ethod

calculation:C
om

putationalM
ethod

rdfs:subC
lassO

f

calculation:hasC
om

putationalM
ethod

calculation:C
om

putationalM
ethodParam

eter

calculation:hasParam
eter

calculation:D
ensityFunctionalTheoryM

ethod

rdfs:subC
lassO

f

calculation:M
etaG

eneralizedG
radientApproxim

ation

calculation:H
ybridG

eneralizedG
radientApproxim

ation

calculation:H
ybridFunctional

calculation:H
ybridM

etaG
eneralizedG

radientApproxim
ation

calculation:G
eneralizedG

radientApproxim
ation

calculation:ExchangeC
orrelationEnergyFunctional

calculation:LocalD
ensityApproxim

ation

calculation:hasXC
Functional

rdfs:subC
lassO

f

rdfs:subC
lassO

f

rdfs:subC
lassO

f
rdfs:subC

lassO
f

rdfs:subC
lassO

f

rdfs:subC
lassO

f

structure:Lattice

structure:hasLattice

structure:SpaceG
roup

structure:hasSpaceG
roupstructure:PointG

roup

structure:hasPointG
roup

structure:AxisVectors
structure:hasAxisVectors

structure:LengthTriple

structure:hasLengthTriple

structure:Basis

structure:hasAxisVectors

structure:hasBasis

structure:AngleTriple

structure:hasAngleTriple
structure:C

om
position

structure:hasC
om

position

structure:hasAngleTriple

structure:hasLengthTriple

structure:O
ccupancy

structure:hasO
ccupancy

structure:Species

structure:hasSpecies

C
hEB

I:A
tom

structure:hasElem
ent

structure:Site

structure:C
oordinateVector

structure:hasC
artesianC

oordinates

structure:hasFractionalC
oordinates

structure:hasSite

structure:has_b_axisVector

structure:has_a_axisVector

structure:has_c_axisVector

F
igure 5.1: A

n
 overview

 of M
D

O
.

72

5.3. Description of Materials Design Ontology

5.3 Description of Materials Design Ontology

MDO consists of one basic module, Core, and two domain-specific modules,
Structure and Calculation, which imports the core module. In addition, the

Provenance module, which also imports Core, models provenance information.
In total, the OWL2 DL representation of the ontology contains 37 classes, 32

object properties, and 32 data properties. Figure 5.1 shows an overview of the

ontology. The ontology specification is also publicly accessible at w3id.org.9

The competency questions can be answered using the concepts and relations
in the different modules (CQ1 and CQ2 by Core, CQ3 to CQ8 by Structure,
CQ9 and CQ10 by Calculation, and CQ11 to CQ14 by Provenance).

5.3.1 MDO core module

The Core module as shown in Figure 5.2, consists of the top-level concepts
and relations of MDO, which are also reused in other modules. Figure 5.3

shows the description logic axioms for the core module. The module repre-
sents general information about materials calculations. The concepts Calcu-
lation and Structure represent materials calculations and materials structures,
respectively, while Property represents materials’ properties. Property is spe-
cialized into the disjoint concepts CalculatedProperty and PhysicalProperty

(Core1, Core2, Core3). Property, which can be viewed as a quantifiable as-
pect of one material or materials system, is defined as a subconcept of Quan-
tity from QUDT (Core4). Properties are also related to structures (Core5).
When a calculation is applied to materials structures, each calculation takes
some structures and properties as input, and may output structures and cal-
culated properties (Core6, Core7). In addition, we reuse the concept Material
of EMMO and state that each structure is related to some material (Core8).

qudt:QuantityKind

qudt:QuantityValue

qudt:Quantityqudt:hasQuantityKind

qudt:Unit

qudt:quantityValue

qudt:unit

EMMO:Material Structure

CalculationProperty

PhysicalProperty CalculatedProperty xsd:string

relatesToMaterial

hasInputProperty

relatesToStructure hasOutputStructure hasInputStructure

hasOutputCalculatedProperty ID

xsd:string PropertyName

xsd:double

qudt:numericValue

rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

Figure 5.2: Concepts and relations in the Core module.

9https://w3id.org/mdo/full/1.0/

5

73

https://9https://w3id.org/mdo/full/1.0

5. Materials Design Ontology (MDO)

5

(Core1) CalculatedProperty ⊑ Property

(Core2) PhysicalProperty ⊑ Property

(Core3) CalculatedProperty ⊓ PhysicalProperty ⊑ ⊥

(Core4) Property ⊑ Quantity

(Core5) Property ⊑ ∀ relatesToStructure.Structure

(Core6) Calculation ⊑ ∃ hasInputStructure.Structure

⊓ ∀ hasInputStructure.Structure ⊓ ∀ hasOutputStructure.Structure

(Core7) Calculation ⊑ ∃ hasInputProperty.Property ⊓ ∀ hasInputProperty.Property

⊓ ∀ hasOutputCalculatedProperty.CalculatedProperty

(Core8) Structure ⊑ ∃ relatesToMaterial.Material ⊓ ∀ relatesToMaterial.Material

Figure 5.3: Description logic axioms for the Core module.

5.3.2 MDO structure module

The Structure module as shown in Figure 5.4, represents the structural in-
formation of materials. Figure 5.5 shows the description logic axioms for the

structure module. Each structure has exactly one composition, which rep-
resents the chemical elements that compose the structure and the ratio of
elements in the structure (Struc1). The composition has different representa-
tions of chemical formulas. The occupancy of a structure relates the sites with

the species, i.e., the specific chemical elements, which occupy the site (Struc2–

Struc5). Each site has at most one representation of coordinates in Cartesian

format and at most one in fractional format (Struc6, Struc7). The spatial
information regarding structures is essential to reflect physical characteristics
such as melting point and strength of materials. To represent this spatial
information, we state that each structure is represented by some bases and a

(periodic) structure can also be represented by one or more lattices (Struc8).
Each basis and each lattice can be identified by one axis-vectors set or one

length triple together with one angle triple (Struc9, Struc10). An axis-vectors

set has three connections to coordinate vector representing the coordinates of
three translation vectors respectively, which are used to represent a (minimal)
repeating unit (Struc11). These three translation vectors are often called a,
b, and c. Point groups and space groups are used to represent information

of the symmetry of a structure. The space group is the group of symmetry

operations that map the structure to itself. Of these operations, subgroups
that keep at least one point fixed form the point groups. The space group

represents a symmetry group of patterns in three dimensions of a structure

and the point group represents a group of linear mappings, which correspond

74

5.3. Description of Materials Design Ontology

to the group of motions in space to determine the symmetry of a structure.
Each structure has one corresponding space group (Struc12). Based on the

definition from International Tables for Crystallography, each space group also

has some corresponding point groups (Struc13).

Structure

Lattice

hasLattice

AxisVectorshasAxisVectors

xsd:string

xsd:double

LatticeType

LatticeVolume
AngleTriple

hasAngleTriple
LengthTriple

hasLengthTriple

xsd:double

Angle_alpha

xsd:double xsd:double

Angle_beta Angle_gamma

xsd:double
xsd:double

xsd:doubleLength_a Length_b
Length_c

Basis

hasAngleTriple
hasAxisVectors

hasBasis

SpaceGroup

hasSpaceGroup

PointGroup

hasPointGroup

xsd:integer

SpaceGroupID

xsd:string

SpaceGroupSymbol

Composition

hasComposition Occupancy
hasOccupancy

xsd:string

PointGroupHMName

xsd:string

xsd:string

xsd:string

xsd:stringDescriptiveFormula

HillFormula

AnonymousFormula

ReducedFormula
Site

hasSite

Species

hasSpecies

xsd:doubleChEBI:Atom

hasElement

ElementRatio

CoordinateVector

has_c_axisVector

has_a_axisVector

has_b_axisVector

hasCartesianCoordinates

hasFractionalCoordinates

xsd:double

xsd:double

xsd:double

X_axisCoordinate

Y_axisCoordinate

Z_axisCoordinate

xsd:string ChEBI:formula

Figure 5.4: Concepts and relations in the Structure module.

5.3.3 MDO calculation module

The Calculation module as shown in Figure 5.6, represents the classifica-
tion of different computational methods. Figure 5.7 shows the description

logic axioms for the Calculation module. Each calculation is achieved via a

specific computational method (Cal1). Each computational method has some

parameters (Cal2). In the current version of this module, we represent two

different methods, the density functional theory method and the HartreeFock

method (Cal3, Cal4). In particular, the density functional theory method

is frequently used in materials design to investigate the electronic structure.
Such a method has at least one corresponding exchange correlation energy

functional (Cal5), which is used to calculate the exchange-correlation energy

of a system. There are different kinds of functionals to calculate exchange–
correlation energy (Cal6–Cal11).

5

75

5. Materials Design Ontology (MDO)

5

(Struc1) Structure ⊑ = 1 hasComposition.Composition

⊓ ∀ hasComposition.Composition

(Struc2) Structure ⊑ ∃ hasOccupancy.Occupancy ⊓ ∀ hasOccupancy.Occupancy

(Struc3) Occupancy ⊑ ∃ hasSpecies.Species ⊓ ∀ hasSpecies.Species

(Struc4) Occupancy ⊑ ∃ hasSite.Site ⊓ ∀ hasSite.Site

(Struc5) Species ⊑ = 1 hasElement.Atom

(Struc6) Site ⊑ ≤ 1 hasCartesianCoordinates.CoordinateVector

⊓ ∀ hasCartesianCoordinates.CoordinateVector

(Struc7) Site ⊑ ≤ 1 hasFractionalCoordinates.CoordinateVector

⊓ ∀ hasFractionalCoordinates.CoordinateVector

(Struc8) Structure ⊑ ∃ hasBasis.Basis ⊓ ∀ hasBasis.Basis ⊓ ∀ hasLattice.Lattice

(Struc9) Basis ⊑ = 1 hasAxisVectors.AxisVectors ⊔

(= 1 hasLengthTriple.LengthTriple ⊓ = 1 hasAngleTriple.AngleTriple)

(Struc10) Lattice ⊑ = 1 hasAxisVectors.AxisVectors ⊔

(= 1 hasLengthTriple.LengthTriple ⊓ = 1 hasAngleTriple.AngleTriple)

(Struc11) AxisVectors ⊑ = 1 has_a_axisVector.CoordinateVector

⊓ = 1 has_b_axisVector.CoordinateVector

⊓ = 1 has_c_axisVector.CoordinateVector

(Struc12) Structure ⊑ = 1 hasSpaceGroup.SpaceGroup

⊓ ∀ hasSpaceGroup.SpaceGroup

(Struc13) SpaceGroup ⊑ ∃ hasPointGroup.PointGroup

⊓ ∀ hasPointGroup.PointGroup

Figure 5.5: Description logic axioms for the Structure module.

Calculation xsd:string LatticeType

HartreeFockMethod

ComputationalMethod

rdfs:subClassOf

hasComputationalMethod

ComputationalMethodParameter

hasParameter

xsd:string

ParameterValue

DensityFunctionalTheoryMethod

rdfs:subClassOf

MetaGeneralizedGradientApproximation

HybridGeneralizedGradientApproximation

HybridFunctional

HybridMetaGeneralizedGradientApproximation

GeneralizedGradientApproximation

ExchangeCorrelationEnergyFunctional

LocalDensityApproximation

hasXCFunctional

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

Figure 5.6: Concepts and relations in the Calculation module.

76

5.3. Description of Materials Design Ontology

(Cal1) Calculation ⊑ = 1 hasComputationalMethod.ComputationalMethod

(Cal2) ComputationalMethod ⊑ ∃ hasParameter.ComputationalMethodParameter

⊓ ∀ hasParameter.ComputationalMethodParameter

(Cal3) DensityFunctionalTheoryMethod ⊑ ComputationalMethod

(Cal4) HartreeFockMethod ⊑ ComputationalMethod

(Cal5) DensityFunctionalTheoryMethod ⊑

∃ hasXCFunctional.ExchangeCorrelationEnergyFunctional
⊓ ∀ hasXCFunctional.ExchangeCorrelationEnergyFunctional

(Cal6) GeneralizedGradientApproximation ⊑ ExchangeCorrelationEnergyFunctional
(Cal7) LocalDensityApproximation ⊑ ExchangeCorrelationEnergyFunctional
(Cal8) MetaGeneralizedGradientApproximation ⊑

ExchangeCorrelationEnergyFunctional
(Cal9) HybridFunctional ⊑ ExchangeCorrelationEnergyFunctional
(Cal10) HybridGeneralizedGradientApproximation ⊑ HybridFunctional
(Cal11) HybridMetaGeneralizedGradientApproximation ⊑ HybridFunctional

Figure 5.7: Description logic axioms for the Calculation module.

5.3.4 MDO provenance module

The Provenance module, as shown in Figure 5.8, represents the provenance

information of materials data and calculations. Figure 5.9 shows the descrip-
tion logic axioms for the Provenance module. We reuse part of PROV-O and

define a new concept ReferenceAgent as a sub-concept of the Agent concept
PROV-O (Prov1). We state that each structure and property can be published

by reference agents, which could be databases or publications (Prov2, Prov3).
Each calculation is produced by a specific software (Prov4).

StructureCalculation Property

prov:SoftwareAgent

prov:Agent

ReferenceAgent

xsd:string

rdfs:subClassOf
DatabaseName

prov:wasAttributedToprov:wasAttributedToprov:wasAssociatedWith

xsd:string

xsd:string

AuthorName

xsd:string

xsd:string

xsd:string xsd:datetime

PublicationTitle

PublicationDateTimeDOI
rdfs:subClassOf

URL

SoftwareName

Figure 5.8: Concepts and relations in the Provenance module.

5

77

5. Materials Design Ontology (MDO)

(Prov1) ReferenceAgent ⊑ Agent

(Prov2) Structure ⊑ ∀ wasAttributedTo.ReferenceAgent

(Prov3) Property ⊑ ∀ wasAttributedTo.ReferenceAgent

(Prov4) Calculation ⊑ ∃ wasAssociatedwith.SoftwareAgent

5

Figure 5.9: Description logic axioms for the Provenance module.

5.4 Usage of Materials Design Ontology

In Figure 5.10, we show the envisioned use of MDO for semantic search over
OPTIMADE and materials science databases. As we introduced in Section 2.2

of Chapter 2, there are two ways to implement an ontology-based data ac-
cess approach: one is to materialize the underlying data to RDF data so

that the data can be queried by SPARQL queries; the other is to virtually

access the underlying data based on the semantic mappings. Using MDO

can enable both kinds of ontology-based data access approaches. By defin-
ing mappings between MDO and the schemas of materials databases, we can

create MDO-enabled query interfaces. The querying can occur, for instance,
via MDO-based query expansion, MDO-based mediation or through MDO-
enabled data warehouses. In Figure 5.10, the process labeled with (a)-(e)

shows the materialized way of accessing data. The process labeled with (1)-
(4) shows a virtual way of accessing data, which is similar to the framework

presented in Chapter 3. In addition, we provide an example to show how MDO

can represent the domain knowledge by instantiating a materials calculation

using MDO terminology, in Section 5.4.1.

Materials Project

AFLOW

OQMD

Other Data Stores

OPTIMADE

Materials Design Ontology

Core Structure

Calculation Provenance

Database Schema
Mappings

Query Mappings

Mapping Generator

Transformed Query

Query

Other
Application

Application

RDF Dataset

EMMOChEBI

Database APIs

Transformed Result

SPARQL Query

Transformed RDF Result

QUDT PROV-O

(a)(b) (c)

(d)(e)

(1) (2)

(3)
(4)

Figure 5.10: The envisioned use of MDO, (a)-(e) indicate ontology-based data
access in a materalized way; (1)-(4) indicate a virtual way of data access by which

the framework presented in Chapter 3 follows.

78

5.5. Impact, reusability, and availability of MDO

5.4.1 Instantiating a materials calculation using MDO

In Figure 5.11 we exemplify the use of MDO to represent a specific materials
calculation and related data in an instantiation. The example is from one of
the 85 stable materials published in the Materials Project in [121]. The cal-
culation is about one kind of elpasolites, with the composition Rb2Li1Ti1Cl6.
To avoid overcrowding the figure, we only show the instances corresponding

to the output structure of the calculation, and for multiple calculated prop-
erties, species and sites, we only show one instance respectively. Connected

to the instances of the core module’s concepts are instances representing the

structural information of the output structure, the provenance information

of the output structure and calculated properties, and the information about
the computational method used for the calculation.

5.5 Impact, reusability, and availability of MDO

To our knowledge, MDO is the first ontology representing concepts and re-
lationships relevant to solid-state physics, which are the basis for materials
design. The ontology fills a need for semantically enabling access to and inte-
gration of materials databases, and for realizing FAIR data in the materials
design field. This will have a large impact on the effectiveness and efficiency

of finding relevant materials data and calculations, thereby augmenting the

speed and the quality of the materials design process. Through our connec-
tion with OPTIMADE and because of the fact that we have created mappings
between MDO and some major materials databases, the potential for impact
is significant.

The development of MDO followed well-known practices from the ontol-
ogy engineering point of view (NeOn methodology and modular design). We

also reused some concepts from PROV-O, ChEBI, QUDT and EMMO. A per-
manent URL10 is reserved from w3id.org for MDO. MDO is maintained on

a GitHub repository,11 from which the ontology in OWL2 DL, visualizations
of the ontology and modules, UCs, CQs and restrictions are available. It is
licensed via an MIT license.12 Due to our modular approach MDO can be

extended with other modules, for instance, regarding different types of calcu-
lations and their specific properties. Several other efforts on building specific

10https://w3id.org/mdo/
11https://github.com/LiUSemWeb/Materials-Design-Ontology
12https://github.com/LiUSemWeb/Materials-Design-Ontology/blob/master/LICENSE

5

79

https://12https://github.com/LiUSemWeb/Materials-Design-Ontology/blob/master/LICENSE
https://11https://github.com/LiUSemWeb/Materials-Design-Ontology
https://10https://w3id.org/mdo
https://license.12
https://w3id.org

5. Materials Design Ontology (MDO)

5

F
igure 5.11: A

n
 instantiated

 m
aterials calculation.

80

5.6. Summary

domain ontologies such as MAMBO [95] and Dislocation Ontology [96] reuse

some concepts from MDO.

5.6 Summary

In this chapter, we have introduced the background in terms of ontologies,
databases in materials design domain, and an effort (OPTIMADE) that is
intended to integrate data in the field. We have introduced the details of the

development of MDO, which is inspired by OPTIMADE. MDO is an essential
output in the scope of the framework introduced in Chapter 3 in terms of em-
ploying the GraphQL-based framework for data access and integration in the

materials design field. Moreover, in the next chapter, we focus on introducing

a method for extending domain ontologies of which we make use to produce

candidates for extending two ontologies in the nanotechnology domain, as well
as MDO.

5

81

5

Chapter

6

An approach for extending

domain ontologies

(ToPMine-FTCA)

In the framework presented in Chapter 3, when new databases are added

or new kinds of data are added to existing databases, the coverage of the

ontology driving the GraphQL server generation may need to be enlarged.
Therefore, we study how ontologies can be extended and propose an approach

based on phrase-based topic modeling, formal topical concept analysis and

domain expert validation. The phrase-based topic model (ToPMine) is used

to mine unstructured text of interest. The formal topical concept analysis
(FTCA) is used to derive the relationships among topics and obtain more

specific formal topical concepts. Domain experts provide validation on the

result of the phrase-based topic modeling in terms of frequent phrases and

topics, and on the result of the formal topical concept analysis in terms of
formal topical concepts. This chapter is organized as below. In Section 6.1 we

introduce the relevant background knowledge. In Section 6.2, we introduce

the framework of our approach (ToPMine-FTCA). Finally, we summarize the

chapter in Section 6.3.

6.1 Background

We begin by introducing how ontologies can be extended by mining unstruc-
tured text in Section 6.1.1. Then, we introduce topic models in Section 6.1.2.

6

83

6. An approach for extending domain ontologies
(ToPMine-FTCA)

6

6.1.1 Extending ontologies based on unstructured text

The ontology extension problem that we tackle in this thesis deals mainly with

concept discovery and concept hierarchy derivation. These are also two of the

tasks in the problem of ontology learning [127]. Therefore, most of the related

work comes from that area. For instance, a recent survey [128] discusses 140

research papers. Different techniques can be used for concept and relationship

extraction. In this setting, new ontology elements are derived from text using

knowledge acquisition techniques.
Linguistic techniques use part-of-speech tagged corpora for extracting syn-

tactic structures that are analyzed regarding the words and the modifiers
contained in the structure. One kind of linguistic approach is based on lin-
guistics using lexico-syntactic patterns. The pioneering research conducted in

this line is in [129], which defines a set of patterns indicating is-a relation-
ships between words in the text. Other linguistic approaches may make use

of, for instance, compounding, the use of background and itemization, term

co-occurrence analysis or superstring prediction (e.g., [130, 131]).
Another paradigm is based on machine learning and statistical methods,

which use the statistics of the underlying corpora, such as the k-nearest neigh-
bors approach [132], association rules [133], bottom-up hierarchical clustering

techniques [134], supervised classification [135] and formal concept analy-
sis [136]. There are also some approaches that use topic models [137, 138,
139] but they focus on concept names that are words, rather than phrases.
In [140], a phrase-based topic model is proposed in which each topic is rep-
resented by a number of phrases. Ontology evolution approaches [141, 142]
allow for the study of changes in ontologies and using the change manage-
ment mechanisms to detect candidate missing relations. An approach that
allows for detection and user-guided completion of the is-a structure is given

in [143, 144], where completion is formalized as an abduction problem and

the RepOSE tool is presented.
We chose topic models as the basis for mining unstructured text in our

work due to the fact that topic models have the ability to generate the abstract
information from a collection of documents, which is valuable when deriving

new concepts, axioms or relationships for extending ontologies. Moreover, we

chose the phrase-based topic model in [140] for the reason that it can discover
topical phrases of arbitrary length, which is more interesting for representing

domain knowledge in materials design field. Based on our study of existing

84

6.1. Background

ontologies and databases for the materials science field as shown in Chapter 5,
we observed that the conceptualization in these ontologies and the schemas of
these databases contain terms expressed by more than one meaningful word.
Therefore it is advantageous to use the phrase-based topic model in [140].

6.1.2 Topic models

A topic model is a statistical model that represents the abstract topics ex-
pressed in a collection of documents and the most common topic model takes
Latent Dirichlet Allocation (LDA) [145] as the basis, which can be easily rep-
resented by its generative process. Given a collection of documents, words
are generated by the generative process in two stages: (i) a distribution over
topics is drawn randomly, (ii) for each word in the document, first choose a

topic randomly from the result in stage (i), and then choose a word from the

corresponding distribution over the vocabulary [146].

Figure 6.1: The intuitions behind Latent Dirichlet Allocation for representing a
collection of documents [146].

6

Figure 6.2: An example of the inference with Latent Dirichlet Allocation [146].

85

6. An approach for extending domain ontologies
(ToPMine-FTCA)

6

Figure 6.1 illustrates an example of how a topic model views a document.
From the perspective of a topic model, this document on the subject of “Seek-
ing Life’s Bare (Genetic) Necessities” belongs to a number of topics such as
the gene topic marked in yellow, the biology topic in red and the computer
topic in blue. The document belongs to each topic to a certain degree, as
shown in Figure 6.1. To represent the document, we can draw the categorical
probability distribution over a number of topics. Meanwhile, each topic can

be represented by a list of words which are more strongly correlated with the

topic, as shown in Figure 6.2. For instance, the gene topic includes words
such as human, genome and dna with high rankings in the list. A common

topic model can be viewed as working based on unigrams, while the phrase-
based topic models concern topical phrases of mixed lengths. ToPMine [140]
is one of the methods that consider phrases. ToPMine has a combination of a

frequent phrase mining framework, which segments a document, and a topic

modeling method, which works on the document partition.

6.2 The framework (ToPMine-FTCA)

The framework for extending ontologies, shown in Figure 6.3, contains the

following steps. In the first step, creation of a phrase-based topic model,
documents related to the domain of interest are used to create topics. The

phrases, as well as the topics, are suggestions that a domain expert should

validate or interpret and relate to concepts in the ontology. In the second

step the (possibly validated and updated) topics are used in a formal topical
concept analysis, which returns suggestions to the domain expert regarding

relations between topics and thus concepts in the ontology. Both steps lead

to the addition of new concepts and (subsumption) axioms to the ontology.
In the following subsections we describe these steps.

6.2.1 Topic model-based text mining

In our first step we use the phrase-based topic model, ToPMine [140]. Given

a corpus of documents and the number of requested topics, representations of
latent topics in the documents are generated by ToPMine. Essentially, topics
can be seen as a probability distribution over words or phrases. ToPMine

is purely data-driven, i.e., it does not require domain knowledge or specific

linguistic rule sets. This is important for an application domain (e.g., the

86

6.2. The framework (ToPMine-FTCA)

Unstructured Text

phrase 1
phrase 2

phrase 1
phrase 4

phrase 1
phrase 3
phrase 4

Topics

Domain Expert

Extended Domain

Phrases

phrase 1
phrase 2
phrase 3
phrase 4

...

...

Domain
Ontologies

Domain Expert

Domain Ontologies

Domain
Ontologies

Icon

Icon

Frequent Phrases
Mining

Topic Modeling

Phrase-Based
Topic Model
(ToPMine)

OntologiesFormal Topical Concept Lattice

Figure 6.3: Approach: The upper part of the Figure shows the creation of a
phrase-based topic model with as input unstructured text and as output phrases

and topics. The lower part shows the formal topical concept analysis with as input
topics and as output a topical concept lattice. In both parts a domain expert

validates and interprets the results.

materials design domain) as there is a lack of annotated background knowl-
edge. An important property of the system is that it works on bag-of-phrases,
rather than the traditional bag-of-words. This means that words occurring

closer together have more weight than words that are further away. Also, as
we assume existing ontologies, it is very likely that concepts with one-word

names are already in the ontology, and so we focus on phrases.
ToPMine consists of two parts: frequent phrases mining and topic model-

ing. In the first part, frequent contiguous phrases are mined, which consists
of collecting aggregate counts for all contiguous words satisfying a minimum

support threshold. Then the documents are segmented based on the frequent
phrases, and an agglomerative phrase construction algorithm merges the fre-
quent phrases guided by a significance score. In the second part, topics are

generated using a variant of Latent Dirichlet Allocation, called PhraseLDA,
which deals with phrases rather than words. For instance, if ToPMine is ap-
plied to mine the document shown in Figure 6.1, the generated topics can

6

87

6. An approach for extending domain ontologies
(ToPMine-FTCA)

6

have phrases as representatives (e.g., ‘computer analyses’ could be generated

to represent the computer topic).

6.2.2 Formal topical concept analysis

After we obtain results from ToPMine, we define a new variant of formal
concept analysis (e.g., [147]) and use this new variant on topics. These topics
can come directly from the previous step or can be a modified version of the

topics of the previous step, where non-relevant topics or phrases have been

removed.
We first define the notions of formal topical context, formal topical concept

and topical concept lattice.1

Definition 2 (Formal Topical Context). A formal topical context is a triple

(P, T, I) where P is a set of phrases, T is a set of topics, and I is a binary

relation between P and T (I ⊆ P × T).

We can also refer to the elements of P as objects and those of T attributes.
For instance, in the example shown in Figure 6.4, the set P consists of five

phrases, while the set T consists of five topics. The binary relation I indicates
phrase occurrences in topics.

Definition 3 (Formal Topical Concept). (A, B) is a formal topical concept
of (P, T, I) iff A ⊆ P , B ⊆ T , A ′ = B, B ′ = A where A ′ ∶= {t ∈ T ∣ ∀p ∈ A ∶
< p, t >∈ I} and B ′ ∶= {p ∈ P ∣ ∀t ∈ B ∶ < p, t >∈ I}. A is the extent and B is
the intent of (A, B).

In this definition, A ′ is the set of all topics common to the phrases of
A. In the other way, B ′ is the set of all phrases that have all topics in B.
For instance, in the example shown in Figure 6.4, we have a formal topical
concept ({phrase 1, phrase 2}, {topic 1, topic 3}). That means the two topics
are common to the two phrases, and vice versa.

Definition 4 (Topical Concept Lattice). Topical formal concepts can be or-
dered. We say that (A1,B1) ≤ (A2,B2) iff A1 ⊆ A2. The set Φ(P, T, I) of
all formal topical concepts of (P, T, I), with this order, is called the topical
concept lattice of (P, T, I).

1Note that formal topical concepts should not be confused with concepts in the ontolo-
gies.

88

6.2. The framework (ToPMine-FTCA)

phrase 1

topic 1 topic 2 topic 3 topic 4 topic 5

phrase 2

phrase 3

phrase 4

phrase 5

0

10

2 3

1 5 4

9876

topic 1

phrase 1 phrase 2 phrase 3 phrase 4

phrase 5

topic 3

topic 2

topic 4

topic 5

(a) Example of phrase occurrences in topics

(b) Example of Formal Topical Concept Lattice

ID

0

1

2

3

4

({phrase 1, phrase 2, phrase 3, phrase 4, phrase 5}, {}) 6 ({phrase 1}, {topic 1, topic 3, topic 5})

({phrase 1, phrase 2}, {topic 1, topic 3}) 7 ({phrase 2}, {topic 1, topic 2, topic 3})

({phrase 1, phrase 2, phrase 3}, {topic 3}) 8 ({phrase 3}, {topic 2, topic 3, topic 4})

({phrase 3, phrase 4, phrase 5}, {topic 4}) 9 ({phrase 4}, {topic 4, topic 5})

({phrase 1, phrase 4}, {topic 5}) 10 ({}, {topic 1, topic 2, topic 3, topic 4, topic 5})

Formal Topical Concept (FTC) ID Formal Topical Concept (FTC)

5 ({phrase 2, phrase 3}, {topic 2, topic 3})

(c) Formal Topical Concepts

Figure 6.4: Examples of (a) phrase occurrences in topics, (b) Formal Topical
Concept Lattice and (c) Formal Topical Concepts.

In the lattice shown in Figure 6.4, a node represents a formal topical
concept. For a formal topical concept (A, B), its extent (a set of phrases)
is found by collecting all phrases in its node as well as its descendants. The

intent (a set of topics) is found by collecting all topics in its node as well as
its ancestors.

6.2.3 Domain expert validation

As shown in Figure 6.3, a domain expert is involved in the different steps in

our approach to validate and interpret the results of the phrase-based topic

model and the formal topical concept analysis.
The domain expert validates or interprets all frequent phrases that

appear in all topics, which are outputs of ToPMine. The outcome can be one

of the following.

• (i) A frequent phrase is a meaningful representation of a concept in the spe-
cific domain and it is already in the ontology. For example, gold nanoparti-
cle is a specific concept within the nanotechnology domain and it is already

89

6

6. An approach for extending domain ontologies
(ToPMine-FTCA)

6

in the NanoParticle Ontology. We distinguish two cases: (i) a concept with

the same name or a name that is a synonym of the original form of the

frequent phrase already exists in the ontology (‘EXIST’) or (ii) a concept
with a name that is a modified form of the frequent phrase already exists
in the ontology (‘EXIST-m’).

• (ii) A frequent phrase is a meaningful representation of a concept in the

specific domain but it is not in the ontology. For example, microcrystalline

silicon is a meaningful representation of a concept but such a concept does
not exist in the ontology. We distinguish two cases: (i) a concept with the

same name as the original form of the phrase should be added into the

ontology (‘ADD’) or (ii) a concept with a modified form of the phrase as
its name should be added into the ontology (‘ADD-m’).

• (iii) No concept related to the phrase should be added to the ontology. This
can happen because the phrase does not make sense in the domain (‘No’),
but also because it is a meaningful representation of a concept in a more

general domain (‘No-g’). For example, electron transfer is a general concept
within the perspective in materials science, but should not necessarily be

in an ontology for the nanotechnology domain.

A second interaction with the domain expert occurs in the interpretation

of topics, which are outputs of ToPMine. The outcome can be one of the

following.

• (i) Using the representative phrases in a topic, the domain expert labels
the topic. Using this label as a phrase, we have the outcomes ‘EXIST’,
‘EXIST-m’, ‘ADD’, ‘ADD-m’, ‘No-g’ and ‘No’, as above. Furthermore, we

add an outcome ‘Q’ (for query) when the label for the topic is too specific to

add to the ontology, but could be defined using concepts in the ontologies
and OWL constructs.

• (ii) Using a subset of representative phrases in a topic, the domain expert
labels the subset. Using this label as a phrase, we have the outcomes
‘EXIST’, ‘EXIST-m’, ‘ADD’, ‘ADD-m’, ‘No-g’, ‘No’, and ‘Q’ as above.
This can be done for different subsets.

Finally, the domain expert interprets the lattice which is generated

based on the formal topical concept analysis.

90

6.3. Summary

• (i) Given the relationships in the lattice, as well as the connections of the

topics and phrases to concepts in the ontology, new relationships between

ontology concepts can be identified.

6.3 Summary

In this chapter, we have introduced an approach for ontology extension based

on phrase-based topic modeling (ToPMine), formal topical concept analysis
(FTCA) and domain expert validation. In the next chapter, we show how this
approach contributes to extending ontologies in the nanotechnology domain

and the materials design domain.

91

6

6

Chapter

7

Evaluation of
ToPMine-FTCA

In this chapter, we present the related work (Section 7.1), and the evaluation

(Section 7.2) of our approach, ToPMine-FTCA, as shown in Chapter 6. In

the end we present a summary (Section 7.3).

7.1 Related work

As presented in Chapter 6, our approach (ToPMine-FTCA) mainly deals
with concept discovery and concept hierarchy derivations. There are a num-
ber of relevant systems for extending ontologies. They are ASIUM [148],
CRCTOL [149], OntoGain [150], OntoLearn [151] and Text2Onto [152].
ASIUM applies linguistics-based techniques including sentence parsing, syn-
tactic structure analysis, and subcategorization frames and statistics-based

clustering techniques to produce candidates to extend ontologies. CRCTOL

implements both linguistics-based methods and relevance analysis. Onto-
Gain extracts concepts by using linguistics-based techniques including part-
of-speech tagging, sentence parsing, word sense disambiguation and statistics-
based relevance analysis. OntoLearn generates concepts based on linguistics-
based techniques including part-of-speech tagging and sentence parsing, as
well as taking the concepts, glossary and hypernyms from WordNet into ac-
count. Text2Onto uses statistics-based co-occurrence analysis and linguistics-
based techniques including part-of-speech tagging, sentence parsing, and syn-
tactic structure analysis. For extracting concepts from the textual resource,
Text2Onto implements four algorithms which are entropy-based, C-value/NC-

7

93

7. Evaluation of ToPMine-FTCA

7

value-based, relative term frequency-based, and term frequency and inverted

document frequency (TF-IDF)-based respectively. We show the performance

of these five systems in Table 7.1 according to [153]. Text2Onto is taken into

account for a comparison with our ToPMine-FTCA. It is the only system that
we could download and install. However, it is one of the most popular and

well-known ontology learning systems and is therefore a good choice.

Table 7.1: Performance of ontology learning systems in different domains.
(Precision is truncated.)

System Domain Precision

ASIUM French journal Le Monde 0.86

CRCTOL Patterns of Global Terrorism 0.92

OntoGain
Computer Science corpus 0.86

Medical corpus 0.89

OntoLearn Tourism 0.85

Text2Onto
Text from the paper [154] 0.61

Patterns of Global Terrorism 0.74

7.2 Extending ontologies using ToPMine-FTCA

For the evaluation, we consider two cases facing the nanotechnology domain

(presented in Section 7.2.1) and the materials design domain (presented in

Section 7.2.2), respectively. The evaluation aims to answer the following re-
search questions:

• RQa: How do the different outputs of the approach contribute to extending

the domain ontologies?

• RQb: How does the approach compare with other methods?

7.2.1 Extending ontologies in the nanotechnology domain

For the nanotechnology domain, in [12] it is stated that there is a gap between

data generation and shared data access. The domain lacks standards for
collecting and systematically representing nanomaterial properties. In [13]
stakeholder-identified technical and operational challenges for the integration

of data in the nanotechnology domain are presented. The technical challenges
mainly refer to (i) the use of different data formats, (ii) the use of different

94

7.2. Extending ontologies using ToPMine-FTCA

vocabularies, (iii) the lack of unique identifiers, and (iv) the use of different
data conceptualization methods. In terms of operational challenges, they

refer to (i) the fact that organizations have different levels of data quality and

completeness, and (ii) the lack of understandable documentation.
In the rest of this section, we first introduce the two ontologies that we

plan to extend using our approach, in Section 7.2.1.1. Then we introduce

the unstructured data we have collected for extending ontologies in the nan-
otechnology domain, in Section 7.2.1.2. Then we show the experiments and

the comparison with Text2Onto in Section 7.2.1.3 and Section 7.2.1.4, respec-
tively.

7.2.1.1 Ontologies in the nanotechnology domain

The ontologies that we extend are the NanoParticle Ontology [91] and the

eNanoMapper ontology [93]. Both ontologies are available via BioPortal.1

The NanoParticle Ontology [91] was created to support understanding

biological properties of nanomaterials, searching for nanoparticle relevant
data and designing nanoparticles. It builds on the Basic Formal Ontol-
ogy (BFO)2 [92] and the Chemical Entities of Biological Interest Ontology

(ChEBI) [124] to represent basic knowledge regarding physical, chemical and

functional features of nanotechnology used in cancer diagnosis and therapy.
The ontology contains 1,904 concepts and 81 relations. The eNanoMapper on-
tology [93] aims to integrate a number of ontologies such as the NanoParticle

Ontology to support assessing risks related to the use of nano materials. The

ontology covers common vocabulary terms used in nano-safety research with

a classification hierarchy (12,531 concepts) and other relations (4 relations).

7.2.1.2 Data collection

The corpus that we use is based on reports of nanoparticles from the Nanopar-
ticle Information Library (NIL) [155], which is a research database of emerging

nanoparticles. For each nanoparticle report, we take the text in the ‘Research

Abstract’ field as well as the abstracts (or only the title if there is no ab-
stract) from the publications in the ‘Related Publications’ field, as shown in

Figure 7.1. The final corpus contains 117 abstracts from the collection accord-
ing to the ‘Research Abstract’ field and 510 publications from the collection

1https://bioportal.bioontology.org/
2http://basic-formal-ontology.org/

7

95

https://2http://basic-formal-ontology.org
https://1https://bioportal.bioontology.org

7. Evaluation of ToPMine-FTCA

7

according to the ‘Related Publications’ field, respectively. For these 510 pub-
lications, we include titles and abstracts in the final corpus. The title and

abstract cover the basic content of an article. For research articles in the

materials science domain, they will generally contain summaries of problems,
experiments, simulations and computations. As the ontologies aim to rep-
resent basic knowledge in the domain, these parts of a research article often

contain enough information for extraction of concepts. When using the full
text, more proposals for concepts may be generated, but many of those will
not be relevant. In other fields, it has been shown that the use of titles (and

abstracts) may be a reasonable approach (e.g., [156]). Moreover, ToPMine

is able to get valuable outputs based on corpuses consisting of titles and ab-
stracts, as shown in [140].

Figure 7.1: An example nanoparticle report in NIL.

7.2.1.3 Experiments

In Table 7.2, we show the detailed descriptions of different parameters used

for ToPMine in our experiments for extending the NanoParticle Ontology,

96

7.2. Extending ontologies using ToPMine-FTCA

eNanoMapper ontology and MDO, respectively. These parameters can be

classified into two groups, which are parameters for frequent phrases mining

(i.e., min_support, max_support_word, max_phrase_size, and alpha1) and

topic modeling (i.e., num_topics, alpha2, and beta). In our experiments for
extending ontologies in the nanotechnology domain, we configure the phrases
mining threshold (alpha1) with two values (high and low), and the ToPMine

with different numbers of requested topics (20, 30 and 40). The values of
alpha2 and beta as hyper-parameters are justified in [157]. Thus we have six

experiments based on two values of alpha1 and three values of num_topics

over the data.
For the interpretation of the phrases, topics and lattice results, a domain

expert worked together with two ontology engineering experts. In the first 2

hour session the three experts went through the phrases of all topics for one

of the settings (low mining threshold, 40 topics) of the topic model approach.
Each phrase was discussed regarding whether it is relevant for a nanotech-
nology ontology, a check was performed to determine whether concepts with

the same or similar names already exist in the NanoParticle Ontology, and

then decisions were made regarding a category of ‘EXIST(-m)’, ‘ADD(-m)’, or
‘No(-g)’ as well as which axioms may be necessary to add to the ontology. In

addition to investigating the ontologies, in some cases terms were also checked

via Wikipedia or research articles. In preparation for the second session, the

ontology engineers prepared suggestions for the phrases for the other settings,
based on the interpretation results of the first session and a search in the two

ontologies. During the second session (4 hours) the phrases for all settings
were interpreted and related to both ontologies, and the topics for one setting

were interpreted. In the third (2 hour) session the remaining topics as well as
the lattice results were interpreted.

After the interpretation of the phrases by the domain expert for each

setting, all phrases interpreted with ‘No’ were removed from the phrase oc-
currence matrix. The updated matrix (with all ‘EXIST(-m)’, ‘ADD(-m)’ and

‘No-g’ phrases) were used as input for the formal topical concept analysis and

a formal topical concept lattice was generated.

Validation of frequent phrases. In Table 7.3 we show the results regard-
ing the interpretation of the phrases. In addition to the number of concepts
in the ‘EXIST(-m)’, ‘ADD(-m)’, and ‘No(-g)’ categories, we also show the

precision. The precision of the system is the ratio of the number of relevant

7

97

7. Evaluation of ToPMine-FTCA

7

T
able 7.2: T

he param
eters of ToPM

ine and
 N

ew
 ToPM

ine.

Param
eter

D
efault

D
escription

 of the param
eter

T
he value for

T
he value for

extending N
P

O
/eN

M

extending M
D

O

m
in_

support
10

M
inim

um
 support threshold

 that each
 phrase m

ust

be less than
 during frequent pattern

 m
ining

10
10, 15, 20,

25, 30

m
ax_

phrase_
size

40
M

axim
um

 allow
ed

 phrase size
10

10

a
lp
h
a
1

4

T
hreshold

 for the significance score w
hich

 m
ust be

satisfied
 w

hen
 com

bining tw
o w

ords as a phrase
4 (low

), 20 (high)
4

m
ax_

support_
w

ord
–

M
axim

um
 support threshold

 that each
 w

ord
 in

 a phrase m
ust

be less than
 during frequent pattern

 m
ining

–
500, 1000, 3000

5000, 8000

num
_

topics
5

N
um

ber of requested
 topics that need

 to be extracted

from
 the inputted

 docum
ents

20, 30, 40
10, 20

a
lp
h
a
2

4

A
 hyper-param

eter representing the sym
m

etric

D
irichlet prior over docum

ent-topic distributions
50/num

_
topics

4

beta
0.01

A
 hyper-param

eter representing the sym
m

etric

D
irichlet prior over topic-w

ord
 distributions

0.01
0.01

98

7.2. Extending ontologies using ToPMine-FTCA

Table 7.3: The result of interpreting phrases. The first column defines the case
using the number of topics, low or high mining threshold, and ontology. The

precision is truncated.

Setting ADD ADD-m EXIST EXIST-m No-g No precision

20, low, NPO

20, low, eNM

30, low, NPO

30, low, eNM

40, low, NPO

40, low, eNM

20, high, NPO

20, high, eNM

30, high, NPO

30, high, eNM

40, high, NPO

40, high, eNM

32 4 26 19 16 9 0.91

29 3 24 25 14 12 0.88

30 4 26 18 16 9 0.91

28 3 24 26 12 11 0.89

32 4 26 15 16 10 0.90

29 3 24 22 14 12 0.88

9 1 14 7 4 0 1.00

8 2 12 10 3 0 1.00

8 2 14 8 0 1 0.96

7 1 12 10 0 1 0.96

9 2 14 12 4 4 0.91

9 2 12 14 2 4 0.90

For the meanings of ‘ADD(-m)’, ‘EXIST(-m)’ and ‘No(-g)’, see Section 6.2.3.
For ‘ADD’ and ‘ADD-m’, a new concept is defined in the ontology and one or more subsumption
axioms are added.

proposed concepts to the number of proposed concepts. We defined a relevant
proposed concept as a proposed concept that the domain expert recognizes
as a relevant concept, whether it is in the ontology, or is more specific than

concepts in the ontology, or if it could belong to a more general ontology.
Therefore, the relevant proposed concepts are the ones that do not belong to

the ‘No’ category. This conforms to what is relevant in the ontology learning

setting.
We note that some phrases may contribute to the addition of multiple

concepts and axioms. Furthermore, the low mining threshold settings gener-
ate the highest number of phrases (in total and per topic). Except for one

‘No’ phrase, all phrases generated by any of the high mining threshold set-
tings are also generated by at least one (and usually all) low mining threshold

settings. For the low mining threshold settings there are only small differ-
ences regarding the phrases that occur in topics. There are 29 phrases that
are generated by all settings. Of these, 13 exist in the ontologies and relate,
among others, to kinds of nanotubes, microscopy, spectroscopy, and various
properties of nanoparticles. Furthermore, 7 exist in a modified form, e.g.,
‘core-shell nanoparticle’ for the phrase ‘core shell’. The remaining 9 should

be added to the ontologies in the same or modified form. These relate to

7

99

7. Evaluation of ToPMine-FTCA

Table 7.4: The number (and truncated percentage in parentheses) of topics that
contribute to extending the ontologies. The first column defines the case using the

number of topics, low or high mining threshold, and ontology.

7

Setting
contribute to ADD

and ADD-m

contribute to EXIST

and EXIST-m
contribute to No-g

20, low, NPO

20, low, eNM

20, high, NPO

20, high, eNM

30, low, NPO

30, low, eNM

30, high, NPO

30, high, eNM

40, low, NPO

40, low, eNM

40, high, NPO

40, high, eNM

18 (90.0%) 16 (80.0%) 6 (30.0%)

18 (90.0%) 16 (80.0%) 5 (40.0%)

11 (55.0%) 13 (65.0%) 3 (15.0%)

11 (55.0%) 13 (65.0%) 2 (10.0%)

19 (63.0%) 19 (63.0%) 11 (36.6%)

18 (60.0%) 20 (66.6%) 11 (36.6%)

10 (33.3%) 19 (63.3%) 3 (10.0%)

9 (30.0%) 20 (66.6%) 2 (6.6%)

22 (55.0%) 21 (52.5%) 12 (30.0%)

21 (52.5%) 23 (57.5%) 9 (22.5%)

13 (32.5%) 16 (40.0%) 4 (10.0%)

12 (30.0%) 18 (45.0%) 3 (7.5%)

properties (‘resolution’, ‘pore size’, ‘band gap’, ‘electrical conductivity’, ‘crys-
tallinity’), a technique (‘vapor deposition’) and nano-objects (‘mesoporous

silica nanoparticle’, ‘thin film’). ‘Reverse micelle-synthesized quantum dot’
leads to the creation of a specific kind of quantum dots as well as a specific

synthesis technique. Regarding the phrases that are only found by low min-
ing threshold settings, they relate to different kinds of silicons, nanoparticles,
properties and techniques, of which many should be added to the ontologies.
There are, however, also several phrases that relate to more general concepts
in the materials domain that should not necessarily be added to an ontology

in the nanotechnology domain. In all settings, we find most ‘EXIST(-m)’
cases, which shows that the phrases are relevant with respect to the existing

ontologies. Furthermore, we find many ‘ADD(-m)’ cases, which lead to new

concepts and axioms. There are also some phrases that relate to more general
concepts and some phrases that do not lead to anything meaningful in the

context of extending the ontology. From Table 7.4 we note that the more top-
ics the system generates, the lower the percentage of topics that contribute

to ‘EXIST(-m)’ and ‘ADD(-m)’ categories.

100

7.2. Extending ontologies using ToPMine-FTCA

Table 7.5: The result of interpreting topics. The first column defines the case
using the number of topics, low or high mining threshold, and ontology. Note that

some topics may be empty and some topics may require several concepts. The
values in parentheses show the number of added concepts that are not found in the

phrase interpretation phase.

Setting ADD ADD-m EXIST EXIST-m No-g Q No precision

20, low, both

30, low, both

40, low, both

20, high, both

30, high, both

40, high, NPO

40, high, eNM

3(1) 0 2 0 1 13 0 1.00

8(2) 0 4 0 1 13 0 1.00

16(1) 0 11 1 2 10 5 0.88

8(1) 0 3 2 0 7 0 1.00

3(2) 0 10 2 0 7 0 1.00

10(2) 0 10 3 2 3 2 0.93

10(2) 0 9 4 2 3 2 0.93

For the meanings of ‘ADD(-m)’, ‘EXIST(-m)’, ‘No(-g)’ and ‘Q’, see Section 6.2.3.
For ‘ADD’ and ‘ADD-m’, a new concept is defined in the ontology and one or more subsumption
axioms are added.

Validation of topics. In Table 7.5 we show the results regarding the in-
terpretation of the topics. We note that the high mining threshold settings
generate the most concepts to add to the ontologies. In each setting there

are one or two concepts that are not found during the interpretation of the

phrases (e.g., ‘high resolution experiment’, ‘water soluble reverse micelle sys-
tems’, ‘core-shell semiconductors’). All ‘EXIST(-m)’ concepts are also found

during the interpretation of the phrases. The ‘No-g’ category consists of pre-
viously identified phrases or specializations of those. Furthermore, many of
the topics are very specific and it is decided they should not be added to the

ontology, but queries (or complex concepts) using concepts in the ontologies
and OWL constructs can be constructed. We also observe that the results
for the two ontologies are almost the same, which may be because the topic

labels are (much) more specific than the phrase labels and the ontologies do

not model concepts at the lowest levels of specificity.

Validation of topical lattices. In the final step we generate lattices for
all settings. As an example, a part of the lattice for the case of 40 requested

topics with a low mining threshold is shown in Figure 7.2. Nodes that contain

one topic/one phrase with the bottom node as their child and the top node

as their parent are not shown. These have been dealt with in the phrase

interpretation step and as there are no connections to other nodes (except
top and bottom), no additional information can be gained for those nodes.

7

101

7. Evaluation of ToPMine-FTCA

Table 7.6: The result of interpreting lattice nodes. The first column defines the
case using the number of topics, low or high mining threshold, and ontology. The

values in parentheses show the number of added concepts that are not found in the
phrase or topic interpretation phases.

7

Setting ADD ADD-m EXIST EXIST-m No-g Q No precision

20, low, both

30, low, NPO

30, low, eNM

40, low, both

20, high, both

30, high, both

40, high, both

1(0) 0 1 0 2 0 0 1.00

4(2) 0 3 0 1 0 0 1.00

3(2) 0 4 0 1 0 0 1.00

3(0) 0 1 0 0 0 0 1.00

0(0) 0 1 0 1 1 0 1.00

1(1) 0 1 0 0 0 0 1.00

0(0) 0 0 0 0 0 0 1.00

For the meanings of ‘ADD(-m)’, ‘EXIST(-m)’, ‘No(-g)’ and ‘Q’, see Section 6.2.3.
For ‘ADD’, a new concept is defined in the ontology and one or more subsumption axioms are
added.

The lattices are used in the following ways. First, the domain expert labels
the nodes based on the phrases connected to the nodes. These may be the

extents or subsets of the extents of topics. The results are given in Table 7.6.
Some new concepts are found that are more general than concepts related to

topics (e.g., ‘core-shell cdse nanoparticles’), but in general, little additional
information is found.

Secondly, the domain expert labels the nodes based on the phrases con-
nected to the nodes and their descendants. As a node contains fewer phrases
than all of its ancestors, labeling may lead to the definition of a new concept
that is a super-concept of the concepts related to the ancestor topics (and rel-
evant axioms). As, according to the topic interpretation step, many topics are

very specific, this approach may provide a way to decide on the appropriate

level of specificity for concepts to add to the ontology. In our experiments,
however, the lattices are very flat and the nodes with empty intent contained

only one phrase, thus they do not lead to additional concepts.
Thirdly, the domain expert uses the lattice as a visualization tool to check

the original topic interpretation. According to the domain expert, the use of
the lattice provides significant help in interpreting the topics. As it groups
phrases that different topics have in common and distinguishes phrases that
are specific for certain topics, the structure of complex concepts (based on

other concepts) is clarified. This results in a better organization and visual-
ization of the topics and their underlying notions. For instance, for a topic

with phrases ‘particle size’, ‘quantum dot’, and ‘gold nanoparticle’, the phrase

102

7.2. Extending ontologies using ToPMine-FTCA

‘particle size’ is shared with another topic. By removing ‘particle size’ from

the phrase list of the topic, it is easier to see that the topic is a combination

of ‘particle size’ and a notion of ‘quantum dots of gold nanoparticles’.

Summary of validations. For our experiments we have currently used a

small number of resources, i.e., circa 600 abstracts and less than 10 hours for
each of the three experts. Even with these limited resources our approach finds
35 and 32 new concepts for the NanoParticle Ontology and the eNanoMapper
ontology, respectively, as shown in Table 7.7, as well as 42 and 37 new axioms,
respectively, as shown in Table 7.8. In addition to the new concepts and new

axioms, also other concepts are influenced. Indeed, for a new axiom A is-a B,
the sub-concepts of A receive B and all its super-concepts as its super-concepts
(and thus inherit their properties), and all super-concepts of B receive A and

its sub-concepts as sub-concepts (and thus all instances of these concepts are

also instances of B and its super-concepts). In this experiment, 72 concepts
from NanoParticle Ontology are influenced by the new axioms. Therefore, the

quality of semantically-enabled applications is improved whenever one of the

35 new or 72 influenced concepts is used. For the eNanoMapper ontology the

number of existing concepts influenced by adding new axioms is 37. In general,
if domain and range are used for the definition of relations in the ontologies,
even more concepts would be influenced. Thus, adding these axioms improves
the quality of the ontologies and the semantically-enabled applications that
use these ontologies. It is clear that the effort of extending the ontologies is
worthwhile.

7

103

7. Evaluation of ToPMine-FTCA

F
igure 7.2: Part of the lattice for the 40 topics and

 low
 m

ining threshold
 setting. N

odes that contain
 one topic/one phrase and

 have
as child

 the bottom
 node and

 as parent the top
 node are not show

n.

topic 10
topic 29

ground state,
copper nanoparticle,

sound state
transition m

etal,
cste nanoparticle

solid state

m
etallic nanoparticle

topic 3
zno nanow

ire,
single crystalline

topic 12
topic 13

topic 22

m
echanical

property
single crystal

topic 38
high purity

size distribution

topic 9
quantum

 dot, core shell,
sem

iconductor nanocrystal,
quantum

 confinem
ent,

cdse nanocrystal

topic 16
gold nanoparticle,
gold nanorods

particle size
silver nanoparticle

topic 2

pore size

topic 0

porous silicon

thin film
,

aspect ratio
several

m
icroscopy

m
cm

 41

optical property

m
icrocrystalline

silicon,
polym

orphous silicon,
am

orphous silicon,

topic 34
topic 37

phrases

electron transfer

topic 6

electron transfer

topic 24

7

104

7.2. Extending ontologies using ToPMine-FTCA

Table 7.7: New concepts for the NanoParticle Ontology and the eNanoMapper
ontology.

Concept NanoParticle eNanoMapper

amorphous silicon !

band gap !

Barium Titanate ! !

block copolymer ! !

copolymer ! !

polymer !

CdSe nanocrystal ! !

CdTe nanoparticle ! !

copper nanoparticle !

conductivity ! !

electrical ! !

gold nanorod ! !

growth mechanism ! !

resolution ! !

layer by layer growth ! !

liquid solid !

pressure !

MCM 41 ! !

mechanical property ! !

viscosity !

melt spin ! !

mesoporous silica nanoparticle ! !

mesoporous silica nanosphere ! !

microcrystalline silicon ! !

optical property !

polymorphous silicon ! !

pore size !

porous silicon ! !

quantum confinement ! !

reverse micelle-type quantum dot ! !

semiconductor nanocrystal ! !

nanocrystal ! !

silicon thin film ! !

thin film ! !

crystallinity ! !

thermal conductivity ! !

tunnel spectroscopy ! !

ZnO nanowire ! !

35 32

7

105

7. Evaluation of ToPMine-FTCA

Table 7.8: New axioms for the NanoParticle Ontology and the eNanoMapper
ontology.

Axiom NanoParticle eNanoMapper

7

amorphous silicon is a silicon !
band gap is a quality !
Barium Titanate is an inorganic compound or molecule !
Barium Titanate is a chemical substance !
block copolymer is a copolymer ! !
copolymer is a polymer ! !
polymer is an organic material !
CdSe nanocrystal is a nanocrystal ! !
CdTe nanoparticle is a nanoparticle ! !
copper nanoparticle is a metal nanoparticle !
conductivity is an independent general individual quality !
conductivity is a quality !
electrical conductivity is a conductivity ! !
gold nanorod is a nanorod ! !
growth mechanism is a process ! !
resolution is an independent general individual quality !
resolution is a quality !
layer by layer growth is a mechanism process ! !
liquid solid is a liquid solid interface !
pressure is an independent general individual quality !
MCM 41 is a mesoporous silica nanoparticle ! !
mechanical property is a realizable entity !
mechanical property is a quality !
viscosity is a mechanical property ! !
melt spin is a technique ! !
mesoporous silica nanoparticle is a nanoparticle ! !
mesoporous silica nanosphere is a nanosphere ! !
microcrystalline silicon is a silicon !
microcrystalline silicon is a chemical substance !
nanotube array has part nanotube ! !
optical property is a property !
polymorphous silicon is a silicon !
polymorphous silicon is a chemical substance !
pore size is a nanoparticle property !
porous silicon is a silicon !
porous silicon is a chemical substance !
raman scatter is a synonym of raman spectroscopy ! !
quantum confinement ! !
reverse micelle-type quantum dot is a quantum dot ! !
semiconductor nanocrystal is a semiconductor and is a nanocrystal ! !
nanocrystal is a nano-object and is a crystal ! !
silicon thin film is a thin film ! !
thin film is a fiat material part and one-dimensional nano-object ! !
crystallinity is an independent general individual quality !
crystallinity is a quality !
transition metal is a synonym of transition element !
thermal conductivity is a conductivity ! !
tunnel spectroscopy is a spectroscopy ! !
scanning tunneling spectroscopy is same as tunnel spectroscopy ! !
chemical vapor disposition is a vapor disposition ! !
physical vapor disposition is a vapor disposition ! !
ZnO nanowire is a nanowire ! !

42 37

106

7.2. Extending ontologies using ToPMine-FTCA

7.2.1.4 Comparison with Text2Onto

In this experiment, we use Text2Onto on the same corpus as in the exper-
iment for our approach. We apply Text2Onto to our corpus with default
settings for its four algorithms. For each of the settings, Text2Onto returns
thousands of candidates ranked by relevance. Instead of using the complete

ranked lists of thousands of proposed concepts, we decided to investigate the

results of the sub-lists containing the 100, 200, 300 and 400 top candidates
in the lists, respectively. The results are shown in Table 7.9. The entropy-
based and C-value/NC-value-based methods return exactly the same results.
For the relative term frequency (RTF)-based method the 160 highest ranked

proposed concepts are the same as the 160 highest ranked proposed concepts
for the entropy-based and C-value/NC-value-based methods. The precision

for the entropy-based and C-value/NC-value-based methods is the highest for
each fixed number of proposed concepts, closely followed by the relative term

frequency-based method. The TF-IDF-based method has the lowest precision.
However, the TF-IDF-based method finds the largest number of relevant new

concepts (‘ADD(-m)’). Furthermore, the precision decreases and the num-
ber of relevant new concepts increases for all algorithms when we take larger
sub-lists of top elements.

In Table 7.10, we show the results for Text2Onto when all algorithms are

used together for the different sub-lists of top elements and compare it to

our method. To answer RQb, in Table 7.11 we show all the new concepts
found by our method and Text2Onto for NanoParticle Ontology. 14 concepts
are found by both methods. Additionally, our method finds 21 new concepts
that are not found by Text2Onto, while Text2Onto finds 28 new concepts
that are not found by our method. The two methods seem, therefore, to be

complementary.
7

107

7. Evaluation of ToPMine-FTCA

Table 7.9: The results of Text2Onto with different algorithms and different
numbers of returned candidates. (Precision is truncated.)

7

No. Algorithm ADD ADD-m EXIST EXIST-m No-g No precision

Entropy 5 0 39 19 4 33 0.67

100
C-value/NC-value 5 0 39 19 4 33 0.67

RTF 5 0 39 20 4 32 0.68

TF-IDF 17 0 22 12 6 43 0.57

Entropy 7 1 63 43 8 79 0.60

200
C-value/NC-value 7 1 63 43 7 79 0.60

RTF 7 1 63 42 8 79 0.60

TF-IDF 24 1 38 19 19 99 0.50

Entropy 12 1 80 52 16 139 0.53

300
C-value/NC-value 12 1 80 52 16 139 0.53

RTF 13 1 78 52 16 140 0.53

TF-IDF 28 1 58 36 29 148 0.50

Entropy 18 1 98 62 20 199 0.50

400
C-value/NC-value 18 1 98 62 20 199 0.50

RTF 19 1 100 61 20 199 0.50

TF-IDF 36 1 70 44 38 211 0.47

Table 7.10: The results for Text2Onto using all algorithms per setting and
ToPMine-FTCA for extending the NanoParticle Ontology. (Precision is truncated.)

Setting ADD ADD-m EXIST EXIST-m No-g No precision

Text2Onto-100 20 0 51 27 11 71 0.60

Text2Onto-200 29 1 84 55 26 164 0.54

Text2Onto-300 39 1 118 78 44 266 0.51

Text2Onto-400 41 1 120 73 47 313 0.47

ToPMine-FTCA 32 3 25 18 14 22 0.80

108

7.2. Extending ontologies using ToPMine-FTCA

Table 7.11: New concepts found by ToPMine-FTCA and Text2Onto for the
NanoParticle Ontology.

Concept Approach Concept Approach

amorphous silicon !tf intensity !t2o

crystallinity !tf pressure !t2o

CdSe nanocrystal !tf melting !t2o

CdTe nanoparticle !tf nano colloid !t2o

electrical conductivity !tf nano composite !t2o

resolution !tf nano crystalline silicon particle !t2o

layer by layer growth !tf nanogrid !t2o

liquid solid !tf nano ribbon !t2o

MCM 41 !tf nanowire array !t2o

mechanical property !tf oxidation !t2o

melt spin !tf photo activity !t2o

mesoporous silica nanoparticle !tf polyelectrolyte !t2o

mesoporous silica nanosphere !tf silica nanosphere !t2o

polymorphous silicon !tf silicon nanowire !t2o

porous silicon !tf silicon nanowire array !t2o

reverse micelle-type quantum dot !tf superlattice nanowire !t2o

silicon thin film !tf titanium nanotube !t2o

thin film !tf band gap !both

thermal conductivity !tf barium titanate !both

tunnel spectroscopy !tf block copolymer !both

ZnO nanowire !tf copolymer !both

acid group !t2o copper nanoparticle !both

activation energy !t2o conductivity !both

barium titanate nanowire !t2o gold nanorod !both

boron nanowire !t2o growth mechanism !both

catalyst !t2o microcrystalline silicon !both

cluster !t2o nanocrystal !both

crystallite !t2o nanotube array !both

diblock copolymer !t2o pore size !both

esterification !t2o quantum confinement !both

ethylene oxide !t2o semiconductor nanocrystal !both

!both represents that the concept is found by both ToPMine-FTCA and Text2Onto.
!tf represents that the concept is found only by ToPMine-FTCA, while !t2o represents that
the concept is found only by Text2Onto.

109

7

7. Evaluation of ToPMine-FTCA

7

7.2.2 Extending Materials Design Ontology

Although the Materials Design Ontology (MDO) presented in Chapter 5 fills
a gap in the materials design domain in terms of covering domain knowledge,
there is still room for modeling additional relevant concepts and relation-
ships. In this section, we present how we apply our ToPMine-FTCA approach

to extending MDO. As we show in Section 7.2.1.2, for extending ontologies
in the nanotechnology domain, we make use of the Nanoparticle Informa-
tion Library, which is a research database that gathers relevant works about
nanoparticles. However, there is no similar corpus or database gathering re-
lated research papers that we can use for mining the unstructured data in the

materials design field. This is because materials design is a general process
that can cover, for instance, structural information or calculation information,
as opposed to nanoparticles, which represent a specific kind of materials in

terms of the nanotechnology domain Therefore, we make an extra effort in

terms of collecting the corpus and applying more techniques for processing

the collected corpus.
During the data collection process, we use MDO as a seed for querying

journal databases. We use two journals in the field of materials design, which

are NPJ Computational Materials3 and Computational Materials Science.4

We use the 37 concepts of MDO as search phrases in the two journals to find

relevant articles and then retrieve the titles and abstracts of the returned arti-
cles. Upon completion of this process, the corpus contains titles and abstracts
from 403 articles of NPJ Computational Materials and 8,193 from Compu-
tational Materials Science. When using ToPMine-FTCA on the corpus, we

add a preprocessing step when preparing input for ToPMine and a selection

step on words before performing frequent phrase mining. The purpose of the

former step is to provide a more precise corpus to ToPMine, since the cor-
pus may be more general than the one we use for extending ontologies in the

nanotechnology domain. The purpose of the latter step is to generate more

precise frequent phrases.

7.2.2.1 Preprocessing for ToPMine

In the preprocessing step, characters are set to lower case and punctuation

is removed. We also remove words with a word length of either one or two.

3https://www.sciencedirect.com/journal/computational-materials-science
4https://www.nature.com/npjcompumats/

110

https://4https://www.nature.com/npjcompumats
https://3https://www.sciencedirect.com/journal/computational-materials-science

7.2. Extending ontologies using ToPMine-FTCA

Such words are also general stopwords. After preprocessing there are 21,548

distinct words, which together occur 808,862 times. An overview of the fre-
quency of the words is presented in Table 7.12. Most of the words (72.27%)
occur less than 10 times, while there are 17 words that occur more than 3000

times. These are ‘based’, ‘properties’, ‘method’, ‘calculations’, ‘phase’, ‘ma-
terials’, ‘study’, ‘structure’, ‘temperature’, ‘density’, ‘results’, ‘energy’, ‘elec-
tronic’, ‘model’, ‘molecular’, ‘simulations’, and ‘surface’.

Table 7.12: The distribution of word frequency after preprocessing.

Frequency Percentage

less than 10 72.27%

10-30 13.25%

31-100 7.76%

101-500 5.25%

501-1000 0.83%

1001-2000 0.44%

2001-3000 0.12%

More than 3000 0.08%

7.2.2.2 Selecting frequent phrases

Given a minimum support threshold min_support in ToPMine, the phrases
that occur at least min_support times can be frequent phrases. ToPMine

also generates frequent phrases of a length up to a maximum length that
is given as an input parameter (max_phrase_size as shown in Table 7.2).
Furthermore, ToPMine does not generate all frequent phrases, rather it uses
a method based on partitioning documents and using a significance score to

decide which words are likely to belong together, in order to produce high-
quality frequent phrases [140]. The second column of Table 7.13 shows the

number of frequent phrases that ToPMine generates for different values of
min_support. The higher the min_support, the fewer frequent phrases are

generated.
In addition, we also define a maximum support thresh-

old max_support_word, and those words that occur more than

max_support_word times are removed. That is to say, we do not take

such words into account when composing phrases in ToPMine. These words
are usually very general terms that are not interesting for an ontology or
that would not be interesting for a domain ontology, though they might be

7

111

7. Evaluation of ToPMine-FTCA

Table 7.13: Number of frequent phrases for min_support as 10, 15, 20, 25 and 30
respectively, and three different versions of the ToPMine algorithm.

7

min_support original TopMine
New ToPMine

without stemming

New ToPMine

with stemming

10 6,901 6,478 5,452

15 3,826 3,578 3,022

20 2,542 2,402 2,046

25 1,816 1,722 1,477

30 1,375 1,298 1,119

Table 7.14: Number of frequent phrases for min_support as 10 and for
max_support_word as 500, 1000, 3000, 5000, and 8000, respectively for two

different versions of the ToPMine algorithm.

max_support_word
New ToPMine

without stemming

New ToPMine

with stemming

8,000 6,478 5,452

5,000 5,947 5,023

3,000 4,692 4,090

1,000 1,878 1,692

500 932 866

interesting for an upper ontology. We do note, however, that some of these

words could be useful, such as ‘method’, ‘electronic’, ‘model’, and ‘molecu-
lar’. In the remainder of this chapter we refer to the algorithm that adds
max_support_word as well as the preprocessing step as New ToPMine.
The second column in Table 7.14 shows how max_support_word influences
the number of generated frequent phrases with a constant min_support of 10.
The higher the value of max_support_word, the more frequent phrases are

generated. Since that no word occurs more than 8000 times in our corpus,
setting max_support_word to 8000 allows all words (or, in other words,
max_support_word is not used).

Another way to look at the influence of min_support and

max_support_word is to compare how many of the frequent phrases are

the same and how many are different for different settings. In Figure 7.3

we show this comparison of different settings to the base setting where

min_support is 10 and max_support_word is 8000 (i.e., max_support_word

112

7.2. Extending ontologies using ToPMine-FTCA

Figure 7.3: Comparison of the frequent phrases of New ToPMine algorithm with
min_support as 10 (and max_support_word as 8000) to settings with

min_support as 15, 20, 25 and 30, respectively, and settings with min_support as
10 and max_support_word as 500, 1000, 3000, 5000, respectively.

is not used), which is shown in the middle of the figure. The ‘Same’ bars
show how many generated phrases occur both in the base setting and the

compared setting. The ‘Removed’ bars show how many frequent phrases oc-
cur in the base setting, but not in the compared setting. For the cases where

we change min_support, these would be phrases that are frequent phrases for
min_support as 10, but not for the higher min_support value in the compared

setting. For example, ‘computational screening’ is removed for min_support
15. For the cases where we change the max_support_word, these would

be phrases with words that occur more often than the max_support_word

in the compared setting. For instance, ‘sheet metal forming’ contains the

word ‘metal’, which has a frequency of 3,457 and would thus be removed

for max_support_word as 1000. The ‘Added’ bars show which frequent
phrases occur newly in the compared settings. This happens, as previously

stated, because ToPMine does not generate all frequent phrases, but in-
stead focuses on high-quality frequent phrases. As an example, ‘exchange

correlation potential’ appears at least 10 times and less than 30 times and

‘exchange correlation’ appears at least 30 times. Both are frequent phrases
for min_support as 10. However, ToPMine does not generate ‘exchange

7

113

7. Evaluation of ToPMine-FTCA

7

correlation’ for min_support 10, but it does generate ‘exchange correlation

potential’. For min_support as 30, ‘exchange correlation potential’ is not a

frequent phrase, while ‘exchange correlation’ is, and ToPMine does generate

‘exchange correlation’ as a frequent phrase.
We also investigate using stemming on the frequent phrases. As an ex-

ample, the phrases ‘molecular dynamics simulations’, ‘molecular dynamics

simulation’, ‘molecular dynamic simulations’ and ‘molecular dynamic simu-
lation’ have the same stem ‘molecular dynam simul’. Stemming allows for
removing redundant phrases and thus reduces the work of the domain expert.
The influence on the number of generated phrases can be seen by comparing

the last two columns in Tables 7.13 and 7.14. A disadvantage is that in some

cases possible concept candidates may be removed. To alleviate this problem

we show the domain expert for each of the stemmed frequent phrases the list
of corresponding original phrases. This also helps the domain expert to choose

terms to be added to the ontology.
In Table 7.15, we show the candidate concepts based on the validation by a

domain expert of the frequent phrases from the experiment with min_support
as 30 and max_support_word as 500. In total, 88 candidate concepts are sug-
gested based on 81 out of 131 frequent phrases generated by the experiment.
Some candidate concepts can be added into MDO as sub-concepts of existing

concepts. For instance, ‘Linearized Augmented Plane Wave Method’ is a sub-
concept of ‘Density Functional Theory Method’. Some candidate concepts
are relevant to the materials design domain but may be not interesting for
data access or data integration over materials design databases. For instance,
‘Covalent Bond’ is a bonding type that can be used to describe materials
structures.

7.2.2.3 Validating topics

The number of topics (num_topic) is an input parameter to ToPMine. Each

topic contains a set of phrases and these sets do not have to be disjoint. For
instance, Figure 7.4 shows the overlap of phrases between topics for different
settings of input parameters. In general, when we increase the number of
topics, the number of frequent phrases in each topic decreases and the overlap

between topics decreases as well.
The domain expert validated these topics and, if possible, labeled them to

generate concepts for the ontology. In Table 7.16, we show the domain ex-

114

7.2. Extending ontologies using ToPMine-FTCA

Table 7.15: Candidate concepts based on domain expert validation on the
experiment with min_support as 30 and max_support_word as 500.

Iron Charpy Impact Test

Zigzag Ductile Transition

Armchair Real Space Methods

Kohn-Sham Solute Segregation

Rock Salt Stone-wales Defect

Unit Cell Absorption Spectrum

Core Shell Body Centered Cubic

Rare Earth Cohesive Zone Model
Slip Plane Face Centered Cubic

Domain Wall Hall-Petch Relation

Quantum Dot Kinematic Hardening

Reuss Model Mixed Mode Fracture

Zinc Blende Rock Salt Structure

Cement Paste Van der Waals Force

Porous Media Alkaline Earth Metal
Power Factor Coarse Grained Model
Valence Band Homo-lumo Energy Gap

Voight Model Quasi-harmonic Model
Anatase (TiO2) Anomalous Hall Effect

Boron Nitride Carbon Nanotube (cnt)

Contact Angle Additive Manufacturing

Covalent Bond Cahn–Hilliard Equation

Fatigue Limit Double Walled Nanotube

Lennard Jones Spinodal Decomposition

Brillouin Zone Hexagonal Boron Nitride

Edurance Limit Microstructural Features

Stacking Fault Spontaneous Polarization

Sound Velocity Muffin-tin Orbital Method

Conduction Band Austenitic Stainless Steel
Glass Formation Brittle-Ductile Transition

Cauchy-Born Rule Directional Solidification

Domain Switching Quasi-harmonic Debye Model
Fiber Reinforced Crystallographic Orientation

Half Metallicity Functionally Graded Material
Nearest Neighbor Hexagonal Close Packed (hcp)

Refractive Index Rutile Titanium Dioxide (TiO2)

Stainless Steels Modified Embedded Atom Method

Vapor Deposition Projector Augmented Wave Method

Vickers Hardness Muffin-tin Orbital Approximation

X-ray diffration Linearized Augmented Plane Wave Method

Dispersion Curves Asymmetric Tilt Grain Boundary Structure

Vibrational Modes Symmetric Tilt Grain Boundary Structure

Absorption Spectra Modified Becke-Johnson Exchange-Correlation Functional
Brittle Transition Perdew-Burke-Ernzerhof (PBE) Exchange-Correlation Functional

7

115

7

7. Evaluation of ToPMine-FTCA

pert’s validation of 10 topics generated by the New ToPMine with stemming,
min_support of 30 and max_support_word of 500. Among these topics, there

are two topics (topics 0 and 9) that are interpreted with multiples labels,
i.e., the domain expert divides the topic in different parts. The other topics
received one label. Further, representative phrases are given for each topic.
The labels and the representative phrases can all lead to new concepts.

(a) min_support as 10, num_topic as 10. (b) min_support as 10, num_topic as 20.

Figure 7.4: Number of common phrases between pairs of topics.

116

7.2. Extending ontologies using ToPMine-FTCA

T
ab

le
 7

.1
6:

 T
op

ic
 la

be
lin

g
ba

se
d

on
 d

om
ai

n
ex

pe
rt

 v
al

id
at

io
n

on
 t

he
 e

xp
er

im
en

t
w

ith
 m

in
_

su
pp

or
t

as
 3

0
an

d
m

ax
_

su
pp

or
t_

wo
rd

 a
s

50
0

(U
p

to
fiv

e
re

pr
es

en
ta

tiv
e

ph
ra

se
s

ar
e

se
le

ct
ed

 fo
r

ea
ch

 la
be

l.)
.

N
o.

T

op
ic

 la
be

ls

R
ep

re
se

nt
at

iv
e

P
hr

as
es

C
om

pu
ta

ti
on

al
 M

et
ho

d
C

at
eg

or
ie

s
Li

ne
ar

iz
ed

 A
ug

m
en

te
d

P
la

ne
 W

av
e

M
et

ho
d,

 H
ar

tr
ee

-F
oc

k
M

et
ho

d,
 K

oh
n-

Sh
am

,
P

er
de

w
-B

ur
ke

-E
rn

ze
rh

of
 (

P
B

E
)

E
xc

ha
ng

e-
C

or
re

la
ti

on
 F

un
ct

io
na

l,
M

od
ifi

ed
 B

ec
ke

-J
oh

ns
on

 E
xc

ha
ng

e-
C

or
re

la
ti

on
 F

un
ct

io
na

l,
A

bs
or

pt
io

n
Sp

ec
tr

um
, R

ef
ra

ct
iv

e
In

de
x,

 H
om

o-
lu

m
o

E
ne

rg
y

G
ap

, A
lk

al
in

e
E

ar
th

 M
et

al
,

D
is

pe
rs

io
n

C
ur

ve
s

M
at

er
ia

ls
 P

ro
pe

rt
ie

s
an

d
Fe

at
ur

es

E
le

ct
ro

ni
c

St
ru

ct
ur

e
Fe

at
ur

es

C
on

du
ct

io
n

B
an

d,
 V

al
en

ce
 B

an
d

0
M

at
er

ia
ls

 C
at

eg
or

iz
at

io
ns

H

al
f

M
et

al
lic

it
y,

 R
ar

e
E

ar
th

E
xp

er
im

en
ta

l M
et

ho
d

C
at

eg
or

ie
s

X
-r

ay
 D

iff
ra

ct
io

n
Sp

ec
ifi

c
M

at
er

ia
ls

Zi

nc
 B

le
nd

e
A

pp
lic

at
io

ns

O
pt

oe
le

ct
ro

ni
c

D
ev

ic
es

1
H

ar
dn

es
s-

re
la

te
d

M
at

er
ia

ls
 C

on
ce

pt
s

Q
ua

si
-h

ar
m

on
ic

 D
eb

ye
 M

od
el

, Q
ua

si
-h

ar
m

on
ic

 M
od

el
, R

oc
k

Sa
lt

, S
ou

nd
 V

el
oc

it
y,

 Z
in

c
B

le
nd

e

2
M

at
er

ia
ls

 S
tr

en
gt

h-
re

la
te

d
C

on
ce

pt
s

St
ac

ki
ng

 F
au

lt
, V

an
 d

er
 W

aa
ls

 F
or

ce
, T

en
si

on
 C

om
pr

es
si

on
, U

ni
ax

ia
l T

en
si

on
,

Sy
m

m
et

ri
c

T
ilt

 G
ra

in
 B

ou
nd

ar
y

St
ru

ct
ur

e
3

M
at

er
ia

ls
 F

at
ig

ue
/F

ra
ct

ur
e-

re
la

te
d

C
on

ce
pt

s
Fu

nc
ti

on
al

ly
 G

ra
de

d
M

at
er

ia
l,

F
ib

er
 R

ei
nf

or
ce

d,
 C

oh
es

iv
e

Zo
ne

 M
od

el
,

U
ni

t
C

el
l,

C
em

en
t

P
as

te

4
M

at
er

ia
ls

 S
yn

th
es

is
 C

on
ce

pt
s

A
dd

it
iv

e
M

an
uf

ac
tu

ri
ng

, V
ap

or
 D

ep
os

it
io

n,
 D

ir
ec

ti
on

al
 S

ol
id

ifi
ca

ti
on

,
M

ic
ro

st
ru

ct
ur

al
 F

ea
tu

re
s,

C
ry

st
al

lo
gr

ap
hi

c
O

ri
en

ta
ti

on
s

5
B

at
te

ry
-r

el
at

ed
 M

at
er

ia
ls

 C
on

ce
pt

s
Io

n
B

at
te

ri
es

, A
na

ta
se

 (
T
iO

2
),

 L
it

hi
um

 I
on

 B
at

te
ri

es
, R

ut
ile

 T
it

an
iu

m
 D

io
xi

de
 (
T
iO

2
),

B
or

on
 N

it
ri

de

6
M

at
er

ia
ls

 S
tr

uc
tu

ra
l

C
at

eg
or

iz
at

io
ns

Fa

ce
 C

en
te

re
d

C
ub

ic
, B

od
y

C
en

te
re

d
C

ub
ic

, C
oa

rs
e

G
ra

in
ed

 M
od

el
,

H
ex

ag
on

al
 C

lo
se

 P
ac

ke
d

(h
cp

),
 I

ro
n

7
N

an
ot

ub
e-

re
la

te
d

C
on

ce
pt

s
A

rm
ch

ai
r,

 B
or

on
 N

it
ri

de
, H

ex
ag

on
al

 B
or

on
 N

it
ri

de
, C

ar
bo

n
N

an
ot

ub
e

(c
nt

),
 C

ro
ss

 S
ec

ti
on

8
A

rt
ifi

ci
al

 I
n t

el
lig

en
ce

-M
et

ho
ds

 (
N

O
)

A
rt

ifi
ci

al
 N

eu
ra

l,
N

eu
ra

l N
et

w
or

ks
, O

pe
n

So
ur

ce
, D

eg
re

es
 F

re
ed

om
, A

rt
ifi

ci
al

 N
eu

ra
l

N
et

w
or

ks
M

at
er

ia
ls

 C
on

ce
pt

s
fo

r
So

la
r-

ce
lls

So

la
r

C
el

ls
,

Q
ua

nt
um

 D
ot

s,
 D

om
ai

n
W

al
l,

P
ow

er
 F

ac
to

r,
 E

le
ct

ri
c

F
ie

ld
s

9
M

at
er

ia
ls

 M
ag

ne
ti

sm
 C

on
ce

pt
s

D
om

ai
n

Sw
it

c h
in

g,
 A

no
m

al
ou

s
H

al
l E

ffe
ct

M
at

er
ia

ls
 P

ol
ar

iz
at

io
n

C
on

ce
pt

s
Sp

on
ta

ne
ou

s
P

ol
ar

iz
at

io
n

7

117

7

7. Evaluation of ToPMine-FTCA

7.3 Summary

In this chapter, we have presented our evaluation of using ToPMine-FTCA

to extend ontologies in the nanotechnology domain and the materials design

domain. In the former case, with the help of a well-organized repository of
relevant works for constructing the corpus, both our approach and Text2Onto

produce reasonable candidates for extending the NanoParticle Ontology and

the eNanoMapper ontology. In the latter case, we have shown the efforts we

make for producing more precise candidates for domain experts to validate,
in the situation that there is no organized repository of relevant works for
constructing the corpus. Nevertheless, our approach produces relevant candi-
dates. Since our Materials Design Ontology is relatively small, such candidates
can be of interest with regard to ontologies for other specific domains.

118

Chapter

8

Evaluation of the

GraphQL-based framework

In this chapter, we present an evaluation of the framework shown in Chapter 3.
We consider a real case application scenario in the materials design domain

in Section 8.1, and a synthetic benchmark scenario based on the Linköping

GraphQL Benchmark (LinGBM)1 in Section 8.2. Finally, the chapter ends
with a summary in Section 8.3.

The evaluation aims to answer the following research questions:

• RQa: Can the generated GraphQL server provide integrated access to

heterogeneous data sources?

• RQb: Can a GraphQL server generated based on the ontology answer
queries that correspond to competency questions of the ontology?

• RQc: How does the generated GraphQL server compare to other Ontology-
Based Data Access (OBDA) systems and other GraphQL-based systems in

terms of query performance and its behavior for increasing dataset sizes?

We performed all experiments on a server machine with Intel Xeon

Gold 6130 @ 2.10GHz CPUs. The machine runs a 64-bit CentOS Linux 7

(Core) operating system. We reserved 8 CPU cores and 4GB memory for the

experiments.

8

1https://github.com/LiUGraphQL/LinGBM

119

https://1https://github.com/LiUGraphQL/LinGBM

8. Evaluation of the GraphQL-based framework

8

8.1 Real case evaluation

In the real case evaluation, we focus on a use case in the materials design

domain where the task is data integration over two data sources, Materials
Project [15] and OQMD [158]. We compare our tool, OBG-gen (Ontology-
Based GraphQL Server Generation) in two versions (OBG-gen-rdb and OBG-
gen-mix) with three systems: morph-rdb [70], HyperGraphQL [72], and Ul-
traGraphQL [74]. Morph-rdb is an OBDA tool that can access a relational
database as a data source by translating SPARQL queries into SQL queries
based on R2RML mappings. HyperGraphQL and its extension UltraGraphQL

are GraphQL interfaces that can query Linked Data that may be provided

by local RDF files and remote SPARQL endpoints. The semantic mappings
(for all the systems) are based on the Materials Design Ontology presented

in Chapter 5. OBG-gen generates the GraphQL schema based on MDO. The

entire GraphQL schema is shown in Appendix B.1. UltraGraphQL and Hy-
perGraphQL use a modified version of the generated schema since they require

directive definitions to specify the correspondences between query entries and

the data.

8.1.1 Data

The data from the Materials Project and OQMD represents five different types
of real-world entities (Calculation, Structure, Composition, Band Gap and

Formation Energy). We define semantic mappings based on MDO to interpret
such data. All the semantic mappings are available at our repository.2 We

collect data in the sizes of 1K, 2K, 4K, 8K, 16K and 32K from each database

to populate the five entities. The size 1K means 1000 entities of each entity

type. We represent this data in different formats, such as tabular data for
relational databases and for CSV files, and JSON-formatted data for JSON

files. Additionally, for the RDF-based systems in our evaluation, we create

an RDF file based on RML mappings and MDO for each dataset setting.
We have six dataset settings for the experiments, which are 1K-1K, 2K-2K,
4K-4K, 8K-8K, 16K-16K and 32K-32K. Taking 32K-32K as an example, for
each entity type, the test data contains the data in the size of 32K from the

Materials Project and OQMD, respectively.

2https://github.com/LiUSemWeb/OBG-gen/tree/main/mapping_parser/semantic_
mappings

120

https://2https://github.com/LiUSemWeb/OBG-gen/tree/main/mapping_parser/semantic

8.1. Real case evaluation

Semantic Mappings

OBG-gen-rdb,
OBG-gen-mix

UltraGraphQL,
HyperGraphQL

RDF Triple Store

morph-rdb

SPARQL
Query

GraphQL
Query

RDBRDB

GraphQL
Query

Input to Systems

Triple Store Generation

Systems Interacting with
Data Source(s)

Ontology

GraphQL
Schema

Figure 8.1: An outline of the evaluation.

8.1.2 Systems

In Figure 8.1, we show how the five systems are configured in the evaluation.
HyperGraphQL and UltraGraphQL are provided with the same RDF data

for each dataset setting. OBG-gen-rdb and morph-rdb are provided with

two MySQL database instances hosting data from the Materials Project and

OQMD respectively. Conceptually, OBG-gen-mix is also provided with two

database instances. However, each instance contains different formats of data

such as data in a MySQL database, or in CSV or JSON files. More detailed,
the instance for Materials Project has Composition data in JSON format and

Band Gap data in CSV format. The instance for OQMD has Structure and

Band Gap data in JSON format and Formation Energy data in CSV format.
The data representing other entities for each instance is stored in MySQL

database instances.

8.1.3 Queries

We create queries that cover different features, aiming to evaluate our system

based on qualitative aspects regarding what functionalities the system can

satisfy and quantitative aspects regarding how the system performs over dif-
ferent data sizes. Query features of queries without and with filter expressions
are shown in Table 8.1 and Table 8.2, respectively. All the queries correspond

to complex competency questions stated in the requirements analysis of MDO

as presented in Chapter 5. From the perspective of GraphQL, we consider

8

121

8. Evaluation of the GraphQL-based framework

8

which choke point a query covers. The details of choke points are introduced

in LinGBM.3 These choke points are regarding the key technical challenges.
We characterize all queries using the perspectives of choke points, domain

interest (DI), and result size (RS). DI indicates that the query is a domain-
interest query. For RS, as the dataset grows, we consider whether the result
size increases linearly (L) or more than linearly (NL), or stays a constant
value (C). For queries with filter expressions we take into account the filter

expression form and whether the filtering AST differs from the query AST

(Diffs), such as in the example in Figure 4.4b where the filtering AST and the

query AST are different.

Table 8.1: Features of queries without filter conditions.

Query Choke Points Domain Interest (DI) Result Size (RS)

Q1 2.1, 2.2 L

Q2 2.1, 2.2 ! L

Q3 1.1, 2.1, 2.2 ! L

Q4 1.1, 2.1, 2.2 ! L

Q5 2.2 L

Table 8.2: Features of queries with filter conditions.

Query Choke Points DI Diffs filter expression form RS

Q6 1.1, 2.1, 2.2, 4.1, 4.4 ! A C

Q7 1.1, 2.1, 2.2, 4.1, 4.4 ! A & B C

Q8 1.1, 2.1, 2.2, 4.1, 4.4, 4.5 ! ! A & (B ∣ C) C

Q9 1.1, 2.1, 2.2, 4.1, 4.4, 4.5 ! ! A & B C

Q10 1.1, 2.1, 2.2, 4.1, 4.4, 4.5 ! ! A & (B & C) NL

Q11 2.2, 4.1, 4.4, 4.5 ! (A & B) & ((A & B) ∣ C) NL

Q12 2.2, 4.1, 4.4 ! A NL

In Table 8.3, we show more details of meanings of different filter expressions
for Q6–Q12. The filter expressions for Q6 and Q12 are more simple than

those for Q7–Q11 where the filter expressions have sub-expressions connected

by boolean operators. Query features in terms of DI, and the filter expression

form can help us understand systems qualitatively; Diffs and RS help in

understanding systems quantitatively in the scaling analysis over different

3https://github.com/LiUGraphQL/LinGBM/wiki/Choke-Points

122

https://3https://github.com/LiUGraphQL/LinGBM/wiki/Choke-Points

8.1. Real case evaluation

data sizes. We show Q1 in Listing 8.1 and Q7 in Listing 8.3. The results of
these two queries are given in Listing 8.2 and Listing 8.4, respectively. Q1

requests all the structures containing the reduced chemical formula of each

structure composition. Q7 requests all the calculations where the ID is in

a given list of values, and the reduced chemical formula is in a given list of
values. All the 12 queries for our experiments are given in Appendix C.1.

Table 8.3: Meanings of filter expressions in Q6 to Q12.

Query Filter expression meaning

Q6: A id is in a list

Q7: A & B id is in a list and reduced chemical formula is in a list

Q8: A & (B ∣ C)
id is in a list and reduced chemical formula is in list a1

or list a2

Q9: A & B property name is “Band Gap” and value is greater than 5

Q10: A & (B & C)
reduced chemical formula is in a list and property name
is “Band Gap” and value is greater than 5

Q11: (A & B) & ((A & B) ∣ C)
(property name is “Band Gap” and value is greater than 4)
and ((property name is “Band Gap” and value is greater
than 4) or reduced chemical formula is in a list)

Q12: A reduced chemical formula contains silicon element

Listing 8.1: List all the structures containing the reduced chemical formula of
each structure’s composition.

1 {

2 StructureList{

3 hasComposition{

4 ReducedFormula

5 }

6 }

7 }

Listing 8.2: The JSON response (an excerpt) of the query in Listing 8.1.

1 {

2 "data": {

3 "StructureList": [

4 { "hasComposition": { "ReducedFormula": "CeCrS2O" } },

5 { "hasComposition": { "ReducedFormula": "TlP(HO2)2" } },

6 { "hasComposition": { "ReducedFormula": "YClO" } }

7]

8 }

9 }

8

123

8. Evaluation of the GraphQL-based framework

Listing 8.3: List all the calculations where the ID is in a given list of values and

the reduced chemical formula is in a given list of values.

8

1 {

2 CalculationList(

3 filter: {

4 _and: [

5 {

6 ID: {

7 _in: ["6332","8088","21331","mp-561628","mp-614918"]

8 }

9 }

10 {

11 hasOutputStructure: {

12 hasComposition: {

13 ReducedFormula: {

14 _in: ["MnCl2","YClO"]

15 }

16 }

17 }

18 }

19]

20 }

21)

22 {

23 ID

24 hasOutputCalculatedProperty {

25 PropertyName

26 numericalValue

27 }

28 }

29 }

Listing 8.4: The JSON response of the query in Listing 8.3.

1 {

2 "data": {

3 "CalculationList": [

4 {

5 "ID": "6332",

6 "hasOutputCalculatedProperty": [

7 {

8 "PropertyName": "Formation Energy",

9 "numericalValue": -1.3247

10 },

11 {

124

8.1. Real case evaluation

12 "PropertyName": "Band Gap",

13 "numericalValue": 1.807

14 }

15]

16 },

17 {

18 "ID": "mp-614918",

19 "hasOutputCalculatedProperty": [

20 {

21 "PropertyName": "Formation Energy",

22 "numericalValue": -40.6691

23 },

24 {

25 "PropertyName": "Band Gap",

26 "numericalValue": 2.2287

27 }

28]

29 }

30]

31 }

32 }

8.1.4 Experiments and measurements

We evaluate the query execution time (QET) of the different systems over the

six dataset settings. Separately for each query, we run the query four times
and always consider the first run to be a warm-up, then take the averaged

value of the remaining three runs. Figure 8.2 and Figure 8.3 illustrate the

measurements for all systems and queries per data size. Figure 8.4 to Fig-
ure 8.15 illustrate the measurements over the six data sizes per query (Q1–

Q12). The measures for all data sizes and all queries are available online.4

For UltraGraphQL, we have measurements only for queries Q1–Q4 because

UltraGraphQL does not support queries with filtering conditions. For Hy-
perGraphQL answering queries with filter expressions, we have only the mea-
surement for Q6 because the system can only deal with filtering by resource

IRIs. Additionally, Table 8.4 illustrates a comparison between OBG-gen-rdb

and morph-rdb.

8

4https://github.com/LiUSemWeb/OBG-gen/tree/main/evaluation

125

https://4https://github.com/LiUSemWeb/OBG-gen/tree/main/evaluation

8. Evaluation of the GraphQL-based framework

8

Figure 8.2: Query Execution Time (QET) for data size (1K-1K, 2K-2K, 4K-4K)
on materials datasets.

126

8.1. Real case evaluation

Figure 8.3: Query Execution Time (QET) for data size (8K-8K, 16K-16K,
32K-32K) on materials datasets.

127

8

8. Evaluation of the GraphQL-based framework

8

Figure 8.4: Query Execution Time (QET) for Q1 on materials datasets.

Figure 8.5: Query Execution Time (QET) for Q2 on materials datasets.

128

8.1. Real case evaluation

Figure 8.6: Query Execution Time (QET) for Q3 on materials datasets.

8

Figure 8.7: Query Execution Time (QET) for Q4 on materials datasets.

129

8. Evaluation of the GraphQL-based framework

8

Figure 8.8: Query Execution Time (QET) for Q5 on materials datasets.

Figure 8.9: Query Execution Time (QET) for Q6 on materials datasets.

130

8.1. Real case evaluation

Figure 8.10: Query Execution Time (QET) for Q7 on materials datasets.

8

Figure 8.11: Query Execution Time (QET) for Q8 on materials datasets.

131

8. Evaluation of the GraphQL-based framework

8

Figure 8.12: Query Execution Time (QET) for Q9 on materials datasets.

Figure 8.13: Query Execution Time (QET) for Q10 on materials datasets.

132

8.1. Real case evaluation

Figure 8.14: Query Execution Time (QET) for Q11 on materials datasets.

8

Figure 8.15: Query Execution Time (QET) for Q12 on materials datasets.

133

8. Evaluation of the GraphQL-based framework

8

8.1.5 Results and discussion

By analyzing the obtained measurements, we summarize three observations.
The first observation is that both GraphQL servers generated by OBG-

gen-rdb and OBG-gen-mix can answer all 12 of the queries covering different
features (such as choke points) and corresponding to competency questions of
MDO. Therefore, the framework presented in Chapter 3 is feasible for data ac-
cess and integration; this answers RQa and RQb. Particularly, the GraphQL

schema generated based on the ontology can provide an (integrated) view of
underlying (heterogeneous) data; the generic resolver function based on the

semantic mappings is capable of accessing heterogeneous data sources, com-
bining the retrieved data (which may be in different formats), and structuring

the data according to the GraphQL schema.
The second observation is regarding queries without filtering conditions

(Q1–Q5) (cf. Figure 8.4 to Figure 8.8). All of the systems have increases of
QETs as the size of the dataset increases. However, morph-rdb is less sensitive

to the data size increase compared with other systems. UltraGraphQL and

HyperGraphQL outperform other systems for some smaller datasets (e.g.,
HyperGraphQL’s QETs of Q1 and Q2 for datasets, UltraGraphQL’s QETs
for Q1 from 1K-1K to 4K-4K). We explain this by the fact that these two

systems have additional context information declaring URIs of classes to which

instances in the RDF data belong (as shown in Table 4.1 in Chapter 4), which

is unlike the other systems which have to make use of semantic mappings to

output queries to be evaluated against the underlying data sources. OBG-
gen-rdb can outperform morph-rdb for some queries in smaller datasets (e.g.,
Q1 in 1K-1K, Q5 in 1K-1K and 2K-2K as shown in Table 8.4). For some

queries, OBG-gen-rdb and morph-rdb have close QETs (e.g., Q2 in 1K-1K as
shown in Table 8.4).

The third observation is regarding how OBG-gen-rdb and morph-rdb per-
form for queries with filter conditions (Q6–Q12) (cf. Figure 8.9 to Figure 8.15).
The two systems behave similarly for Q6 with stable QETs and Q12 with slight
increases, as the data size increases. As Table 8.2 shows, the result size of Q6

shown in Appendix C.6 is a constant over all the datasets in different sizes.
Additionally, as shown in Table 8.3 the filter expressions for Q6 and Q12 are

simpler compared with those of Q7–Q11. Therefore, the QETs consumed for
evaluating filtering expressions for Q6 and Q12 are less than those of Q7–Q11.
For other queries (Q7–Q11), morph-rdb outperforms OBG-gen-rdb, however

134

8.1. Real case evaluation

Table 8.4: Comparison between OBG-gen-rdb and morph-rdb (QET in seconds).

Data System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

1K-1K
OBG-gen-rdb 0.3 0.5 0.6 1.0 0.3 0.1 0.2 0.3 0.3 0.3 0.2 0.2

morph-rdb 0.5 0.5 0.5 0.6 0.5 0.2 0.2 0.2 0.3 0.5 0.3 0.3

2K-2K
OBG-gen-rdb 0.7 1.1 1.1 2.0 0.5 0.1 0.3 0.3 0.3 0.4 0.3 0.2

morph-rdb 0.5 0.6 0.6 0.8 0.6 0.2 0.2 0.2 0.3 0.3 0.3 0.3

4K-4K
OBG-gen-rdb 1.5 2.6 2.7 4.9 0.8 0.1 0.3 0.4 0.8 0.8 0.6 0.3

morph-rdb 0.7 0.8 0.7 1.1 0.7 0.2 0.2 0.4 0.5 0.3 0.4 0.6

8K-8K
OBG-gen-rdb 4.2 7.3 7.6 14.0 1.6 0.2 0.4 0.5 1.7 1.2 1.1 0.4

morph-rdb 0.9 1.1 1.1 1.9 0.9 0.2 0.2 0.5 0.6 0.3 0.5 0.8

16K-16K
OBG-gen-rdb 12.2 22.4 22.7 43.5 3.2 0.2 0.6 0.7 2.3 1.8 1.6 0.7

morph-rdb 1.5 1.9 1.6 3.2 1.3 0.2 0.2 0.5 0.7 0.4 0.5 0.9

32K-32K
OBG-gen-rdb 39.7 75.7 77.5 149.9 6.8 0.2 0.8 1.0 3.1 2.6 2.4 1.2

morph-rdb 2.0 3.1 2.4 5.4 2.0 0.2 0.3 0.6 0.7 0.4 0.5 1.0

the differences between the two systems are less than those for queries with-
out filtering conditions (e.g., Q1–Q4). The filtering conditions in GraphQL

queries for OBG-gen-rdb and in SPARQL queries for morph-rdb are written

within WHERE clauses in SQL queries, thus will be evaluated against the

back-end databases. The similar observation is also found in [69] where the

experiment metrics shows that morph-rdb outperforms other systems (e.g.,
morph-morphql) as the size of dataset increase due to the SPARQL to SQL

optimizations [25].
Based on the second and the third observations, we can answer the re-

search question RQc. The GraphQL servers generated by OBG-gen performs
similarly compared with other systems for queries without filtering conditions,
but are more sensitive to the increase of datasets even they can outperform for
some queries in smaller datasets. By comparing OBG-gen-rdb and morph-rdb,
we summarize the reasons as follows. As shown in Chapter 4, the implemen-
tation of OBG-gen is based on representing a GraphQL query with abstract
syntax trees (e.g., Figure 4.4 in Chapter 4) and processing a referencing ob-
ject map from semantic mappings in a nested loop (e.g., line 22 to line 29

in Algorithm 3). In this way, two basic requests are sent to underlying data

sources to get the data with respect to parent triples map and current triples

map as shown in Section 4.2.2 of Chapter 4, and there is a join operation

locally in our implementation (e.g., line 29 in Algorithm 3). For instance, to

answer Q7 shown in Figure 8.3, as the query asks for a list of Calculations

and for each Calculation asks for the ID field of which the returned type

8

135

8. Evaluation of the GraphQL-based framework

8

is scalar and the hasOutputCalculatedProperty field of which the returned

type is a list of CalcualtedProperty, therefore two requests are sent to un-
derlying data sources to get the data for populating ID, and PropertyName

and numericalValue, respectively. While for morph-rdb, based on semantic

mappings, a SPARQL query is translated to a single SQL query. For queries
with filtering conditions, both OBG-gen-rdb and morph-rdb can take the ad-
vantages of rewriting filter conditions into SQL queries so that the increases
of QETs as data size increases are not obvious.

8.2 Evaluation based on LinGBM

To show the generalizability of our system, we conduct an evaluation based

on LinGBM. It is developed as a performance benchmark for GraphQL server
implementations. LinGBM provides tools for generating datasets (data gen-
erator)5 and queries (query generator),6 and for testing execution time and

response time (test driver).7

8.2.1 Data

The dataset generated by the data generator is a scalable, synthetic dataset
regarding the University domain, including several entity types (e.g., univer-
sities and departments). We generate data in scale factors (sf) 4, 20 and 100.
We then create three MySQL database instances to store the data in these

three scale factors, respectively. We use a modified version of the GraphQL

schema provided by LinGBM for our GraphQL server, and define RML map-
pings according to the work in morph-graphql8 [69]. The modification part
is regarding input object type definitions so that we can use input objects to

represent filtering conditions as we show in Chapter 3 and Chapter 4. The

entire GraphQL schema is shown in Appendix B.2.

8.2.2 Queries

The experiments are performed over eight query sets, where each set contains
100 queries that are generated using the LinGBM query generator based on

5https://github.com/LiUGraphQL/LinGBM/tree/master/tools/datasetgen
6https://github.com/LiUGraphQL/LinGBM/tree/master/tools/querygen
7https://github.com/LiUGraphQL/LinGBM/tree/master/tools/testdriver_QET_QRT
8https://github.com/oeg-upm/morph-graphql/tree/master/examples/LinGBM-v2

136

https://8https://github.com/oeg-upm/morph-graphql/tree/master/examples/LinGBM-v2
https://7https://github.com/LiUGraphQL/LinGBM/tree/master/tools/testdriver_QET_QRT
https://6https://github.com/LiUGraphQL/LinGBM/tree/master/tools/querygen
https://5https://github.com/LiUGraphQL/LinGBM/tree/master/tools/datasetgen

8.2. Evaluation based on LinGBM

a query template (QT). A query template has placeholders where each place-
holder represents that an input argument can be assigned. The query gener-
ator can generate a set of actual queries (query instances) based on a query

template in which the placeholder in the query template is replaced by an ac-
tual value. We select eight query templates (QT1–QT6, QT10 and QT11) for
constructing these eight query sets (QS1–QS8). We show an example query

according to QT5 in Listing 8.5. For each query set, we show an example

query in Appendix C.2. The other six query templates from LinGBM requires
GraphQL servers to have implementations for functionalities such as ordering

and paging which are not considered currently by OBG-gen. However, these

functionalities are interesting for future extension of OBG-gen.

8.2.3 Experiments, results and discussion

Same as the real case evaluation, we evaluate the query execution time (QET)
of our system on the three datasets. Each query from a query set is evaluated

once. We show the average query execution times for the different query sets in

Table 8.5. Based on the obtained measurements, we observe that our system

has slight increases for QS1, QS2, QS4, QS6 and QS7 in terms of the average

QETs. For QS3, the average QET is stable for all the three datasets. For QT5,
the increase from 0.51 seconds at data scale factor 20 to 13.85 seconds at data

scale factor 100 is due to the dramatic increase in result size. More specifically,
the queries in QS5 and QS8 need to access the ‘graduateStudent’ table which

increases dramatically in size from 50,482 (sf=20) to 252,562 (sf=100). This
is the reason for the average QET of QS8 increasing in sf=100. Additionally,
each query in QS5 repeats a cycle two times (‘university’ to ‘graduateStudent’
to ‘university’) and requests the students’ emails and addresses along the way.
This causes the larger increase in average QET of QS5. The above synthetic

experiments indicate that our system can work in a general domain.

Table 8.5: Average QET (in seconds).

sf QS1

(QT1)

QS2

(QT2)

QS3

(QT3)

QS4

(QT4)

QS5

(QT5)

QS6

(QT6)

QS7

(QT10)

QS8

(QT11)

4 0.11 0.13 0.12 0.15 0.19 0.13 0.10 0.26

20 0.12 0.15 0.12 0.18 0.51 0.15 0.18 0.90

100 0.15 0.27 0.12 0.26 13.85 0.23 0.72 4.41

8

137

8. Evaluation of the GraphQL-based framework

Listing 8.5: A query according to query template 5.

8

1 {

2 DepartmentList(

3 filter:{

4 nr: { _eq: 314 }

5 })

6 {

7 nr

8 subOrganizationOf {

9 nr

10 undergraduateDegreeObtainedBystudent {

11 nr

12 emailAddress

13 memberOf {

14 nr

15 subOrganizationOf {

16 nr

17 undergraduateDegreeObtainedBystudent {

18 nr

19 emailAddress

20 memberOf {

21 nr

22 }

23 }

24 }

25 }

26 }

27 }

28 }

29 }

8.3 Summary

In this chapter, we have conducted an evaluation of the GraphQL-based frame-
work for data access and integration presented in Chapter 3. We use our pro-
totype, OBG-gen, as presented in Chapter 4, to generate GraphQL servers.
We conduct a real case evaluation over data collected from two databases in

the materials design domain. In addition, we evaluate our approach based

138

8.3. Summary

on a synthetic dataset. In the next chapter, we show the application of our
approach for the community effort, Open Databases Integration for Materials

Design (OPTIMADE).

8

139

8

Chapter

9

An application to

OPTIMADE

As previously mentioned, the OPTIMADE (Open Database Integrations for

Materials Design) API specification is one of the inspirations upon which this
thesis has been constructed. The collaborative effort of materials databases
in OPTIMADE is to develop a specification for a common REST API. Such a

common API specifies how data can be retrieved. In this regard, each database

provider within the OPTIMADE consortium provides a way for users to access
its data in accordance with this common API.

In Chapter 5, we have shown the vision of the usage of Materials De-
sign Ontology (MDO). One common usage is for data integration and access
through MDO-based mediation. In Chapter 3, we have outlined a GraphQL-
based framework for data access and integration with a prototype implemen-
tation in Chapter 4. Furthermore, in Chapter 8, we have shown experiments in

the materials design domain, in which we make use of MDO to define seman-
tic mappings for datasets collected from the Materials Project and OQMD,
and to set up a GraphQL server using OBG-gen (Ontology-Based GraphQL

Server Generation). To apply our approach to OPTIMADE, we focus on (i)
how the data following the OPTIMADE API can be annotated using MDO

terminology, (ii) comparing the GraphQL API, in which the GraphQL server
is generated by OBG-gen using MDO, to the OPTIMADE API. As the OP-
TIMADE API is under development, our application is at the level of a proof
of concept. In Section 9.1, we introduce the OPTIMADE API specification.

9

141

9. An application to OPTIMADE

9

Then in Section 9.2 we introduce the usage of MDO and OBG-gen to OPTI-
MADE.

9.1 The OPTIMADE API

The OPTIMADE API provides a standard for how underlying materials
databases can share data in a common manner. The consensus among

database providers with the OPTIMADE consortium is that each database

provider should have an endpoint, so that users can access the data through

the OPTIMADE API. For instance, the Materials Project has the base URL,
https://optimade.materialsproject.org and the OQMD has the base

URL, http://oqmd.org/optimade.
The latest stable version of this API is v1.1.0.1 Furthermore, a python

library named optimade-python-tools has been developed in order for different
data providers to share their data in accordance with the data model following

the OPTIMADE API specification [159]. The OPTIMADE API specification

defines a number of entries that users can use for accessing data. In Table 9.1,
we list these entries and related properties.

Table 9.1: The entries and properties in OPTIMADE API specification.

Entry Fields

id, type, immutable_id, elements, nelements, elements_ratios,
chemical_formula_descriptive, chemical_formula_reduced,

Structure
chemical_formula_hill, chemical_formula_anonymous,
dimension_types, nperiodic_dimensions, lattice_vectors,
cartesian_site_positions,nsites, species_at_sites,
species, assemblies, structure_features

Reference id, type, immutable_id, authors, year, title, journal, doi, etc.
Calculation id, type, immutable_id, etc.

In Listing 9.1, we show an excerpt of the JSON response from

a request that conforms to the OPTIMADE API. The endpoint in

this case is provided by the Materials Project. The request url
is http://optimade.materialsproject.org/v1/structures?page_limit=

100&filter=chemical_formula_reduced="MgNi", which retrieves structures
in which the reduced chemical formula is MgNi.

1https://petstore.swagger.io/?url=https://raw.githubusercontent.com/
Materials-Consortia/OPTIMADE/master/schemas/openapi_schema.json

142

https://1https://petstore.swagger.io/?url=https://raw.githubusercontent.com
http://optimade.materialsproject.org/v1/structures?page_limit
http://oqmd.org/optimade
https://optimade.materialsproject.org

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.1. The OPTIMADE API

Listing 9.1: An excerpt of the JSON response based on OPTIMADE API.

{

"data": [

{

"id": "mp -1010953",

"type": "structures",

"attributes": {

"elements": ["Mg", "Ni"],

"nelements": 2,

"elements_ratio": [0.5, 0.5],

"chemical_formula_descriptive": "MgNi",

"chemical_formula_reduced": "MgNi",

"chemical_formula_hill": "MgNi",

"chemical_formula_anonymous": "AB",

"dimension_types": [1, 1, 1],

"nperiodic_dimensions": 3,

"lattice_vectors": [

[3.046453 , 0.0, 0.0],

[0.0, 3.046453, 0.0],

[0.0, 0.0, 3.046453]

],

"cartesian_site_positions": [

[0.0, 0.0, 0.0],

[1.5232265 , 1.5232265 , 1.5232265]

],

"nsites": 2,

"species": [

{

"name": "Mg",

"chemical_symbols": ["Mg"],

"concentration": [1]

},

{

"name": "Ni",

"chemical_symbols": ["Ni"],

"concentration": [1]

}

],

"species_at_sites": ["Mg", "Ni"]

}

}

]

}

9

143

9. An application to OPTIMADE

9

9.2 The usage of MDO and OBG-gen with OPTIMADE

Figure 9.1 illustrates the application of MDO to annotate the structure illus-
trated in Listing 9.1. As a convenience for readers, we show only one instance

for a concept that has multiple instances within the instantiation. For all the

keys labeled in blue in Listing 9.1, we can interpret their corresponding val-
ues using the MDO terminology. For those keys marked in yellow, nelements,
dimension_types, nperiodic_dimensions and nsites, their values cannot be

interpreted using the terminology in MDO of the current version 1.0. MDO

can, however, interpret them if it models several data properties that are

associated with the Structure class in the ontology. This will be taken into

consideration in the future development of MDO.

Figure 9.1: An instantiation of the structure shown in Listing 9.1.

In addition, we define semantic mappings using RML for annotating

responses from OPTIMADE API requests using the MDO terminology.
Based on these semantic mappings and the GraphQL schema shown in Ap-
pendix B.1, we use OBG-gen to generate a GraphQL server that can answer
GraphQL queries in which the underlying data follows the OPTIMADE API
specification.2 We show a query example in Listing 9.2 and the corresponding

result in Listing 9.3. This query also retrieves structures in which the reduced

chemical formula is MgNi, just as the request does to get the data as shown

2The code for translating a OBG-gen supported filter conditions to OPTIMADE
supported filter conditions is available at https://github.com/LiUSemWeb/OBG-gen/tree/
optimade-impl.

144

https://github.com/LiUSemWeb/OBG-gen/tree

9.2. The usage of MDO and OBG-gen with OPTIMADE

in Listing 9.1. The key difference is that the GraphQL API allows users to

specify particular fields that they want returned. For instance, in Listing 9.2

the query asks for two composition-related fields (ReducedFormula and De-
scriptiveFormula) but only one of the three vectors that represent a lattice

(has_a_axisVector), in particular. The GraphQL API is therefore more flexi-
ble from a user’s perspective. Another example, asking for structures of which

the anonymous chemical formulas are “AB”, is shown in Listing 9.4. Instead

of asking for both composition-related fields and lattice-related fields like the

query in Listing 9.2, this query just asks for composition-related fields. The

query result is shown in Listing 9.5.

Listing 9.2: An example query over data following OPTIMADE API
specification retrieving both composition related and lattice related fields.

1 {

2 StructureList(

3 filter:{

4 hasComposition:{

5 ReducedFormula:{

6 _eq: "MgNi"

7 }

8 }

9 }

10){

11 hasComposition{

12 ReducedFormula

13 DescriptiveFormula

14 }

15 hasLattice{

16 hasAxisVectors{

17 has_a_axisVector{

18 X_axisCoordinate

19 Y_axisCoordinate

20 Z_axisCoordinate

21 }

22 }

23 }

24 }

25 }

9

145

9. An application to OPTIMADE

Listing 9.3: The result of the query in Listing 9.2.

9

1 {

2 "data": {

3 "StructureList": [

4 {

5 "hasComposition": {

6 "DescriptiveFormula": "MgNi",

7 "ReducedFormula": "MgNi"

8 },

9 "hasLattice": {

10 "hasAxisVectors": {

11 "has_a_axisVector": {

12 "X_axisCoordinate": 3.046453,

13 "Y_axisCoordinate": 0,

14 "Z_axisCoordinate": 0

15 }

16 }

17 }

18 }

19]

20 }

21 }

Listing 9.4: An example query over data following OPTIMADE API
specification retrieving composition related fields.

1 {

2 "StructureList"(

3 filter:{

4 hasComposition:{

5 AnonymousFormula:{

6 _eq:"AB"

7 }

8 }

9 }

10){

11 hasComposition{

12 ReducedFormula

13 DescriptiveFormula

14 }

15 }

16 }

146

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

9.2. The usage of MDO and OBG-gen with OPTIMADE

Listing 9.5: The result of the query in Listing 9.4.

{

"data": {

"StructureList": [

{

"hasComposition": {

"DescriptiveFormula": "AuN",

"ReducedFormula": "AuN"

}

},

{

"hasComposition": {

"DescriptiveFormula": "MgNi",

"ReducedFormula": "MgNi"

}

},

{

"hasComposition": {

"DescriptiveFormula": "HTi",

"ReducedFormula": "HTi"

}

},

{

"hasComposition": {

"DescriptiveFormula": "Mo2N2",

"ReducedFormula": "MoN"

}

},

{

"hasComposition": {

"DescriptiveFormula": "OPd",

"ReducedFormula": "OPd"

}

},

{

"hasComposition": {

"DescriptiveFormula": "Mg3Sn3",

"ReducedFormula": "MgSn"

}

},

{

"hasComposition": {

"DescriptiveFormula": "Au4Pr4",

"ReducedFormula": "AuPr"

}

9

147

9

9. An application to OPTIMADE

45 },

46 {

47 "hasComposition": {

48 "DescriptiveFormula": "MnZn",

49 "ReducedFormula": "MnZn"

50 }

51 }

52]

53 }

54 }

9.3 Summary

In this chapter, we have introduced an application to OPTIMADE in terms of
the usage of the GraphQL-based framework and MDO. Due to the fact that
the OPTIMADE API is under development, our application is at the level of
a proof of concept.

148

Chapter

10

Limitations and future work

In the previous chapters, we presented a GraphQL-based framework for
data access and integration, introduced different efforts aiming at enabling

GraphQL server generation within the framework, and showed the evaluations
and applications. There are still some limitations, which can be resolved in

the future. Additionally, based on our experience working in the interdisci-
plinary space between the Semantic Web field and the materials design field,
we show additional directions for future research.

10.1 Towards more user-friendly data access, data

integration and ontology extension

In Chapter 3, we have presented a GraphQL-based framework for data access
and integration, which includes the GraphQL server generation process and

the GraphQL query answering process. Ontologies and semantic mappings
are essential to enable the automatic generation of GraphQL servers. There-
fore, the coverage and the scope of the ontology and semantic mappings are

important and their definition depends on the users or developers who are

involved in the GraphQL server generation process. This means that when

new data sources are added to databases, or new types of data are added, new

semantic mappings need to be defined. It may also be necessary to modify

the ontology if we need to add additional concepts or relationships cover-
ing semantics that can be used to annotate the added data. However, there

10

149

10. Limitations and future work

10

is not much work on providing users and developers with suitable tools for
maintaining semantic mappings in a data integration scenario (as discussed

in [47]). The same issue exists when both ontologies and semantic mappings
are required in a data integration scenario. Thus, it would be interesting to

investigate this problem and to investigate what the functionalities that are

required in such a tool in the future research.
In addition, our current effort of ontology-based GraphQL schema genera-

tion focuses on GraphQL language features that support semantics-aware and

integrated data access, namely how underlying data can be queried, rather
than reflecting the semantics of a complex knowledge representation language

in the context of GraphQL schemas. Therefore, not all description logic con-
structors are used, but rather only those that are necessary for data access
via GraphQL. It would be worthwhile to investigate how to represent more

complex description logic constructors within the GraphQL context.
In Chapter 6, we presented an approach for extension of domain ontologies

and conducted experiments with a domain expert and two ontology engineers
regarding extension of domain ontologies. However, for the application of this
approach in practice for specific domains, a user interface would be necessary

to allow domain experts to use the approach effectively. We have implemented

a prototype based on ToPMine-FTCA in [160], which currently provides a user
interface for users to validate phrases and extend an ontology. Directions for
future work include conducting experiments in more domains based on this
prototype, and updating ToPMine-FTCA if needed.

10.2 Limitations in mapping languages

In our work, we use RML because it has the ability to support more data for-
mats (e.g., data in relational databases, JSON-formatted or CSV-formatted

data). In addition to this, other mapping languages are designed to deal
with specific data formats (e.g., R2RML is suitable for data in relational
databases). Despite the flexibility provided by RML when it comes to data

formats, it is limited in some cases. For instance, as we describe in Sec-
tion 4.2.2 of Chapter 4, a referencing object map refers to another triples map

(called a parent triples map) by using a rr:joinCondition property to state

the join condition between the current triples map and the parent triples map,
in which the join condition contains two properties rr:child and rr:parent

of which the values must be logical references to logical sources of the cur-

150

10.3. Semantic Web meets Materials Science

rent triples map and the parent triples map, respectively. Therefore, when we

need to define a referencing object map using RML to interpret the underlying

data, the underlying data must contain references (columns in relational data

or CSV-formatted data, key fields in JSON-formatted data) whose values can

be used for joining. Otherwise, even if we are able to annotate the underlying

data with terminologies from ontologies, we would not be able to use RML

mappings to materialize the data or use a virtual-based approach to access or
integrate the data. Similarly, this problem exists in other mapping languages,
such as R2RML. Additionally, current mapping languages lack formalization

and are associated with specific engines [47]. As a result, such mapping lan-
guages are difficult to extend and it is difficult to make them interoperable.

10.3 Semantic Web meets Materials Science

Although this thesis presents a framework of ontology-driven data access and

integration with an application in the materials design domain, there are

still a number of challenges that exist when employing Semantic Web-based

technologies in the materials science domain. One group of challenges relates
to the representation of domain knowledge in materials science. Currently,
the Materials Design Ontology effort focuses on computational methods and

structures at basic microscopic time and space scales. However, designing a

material with a set of expected properties involves the design not only on the

microscopic scale, but also on the macroscopic scale. When materials design

processes at all levels must be integrated and automated, which is the goal of
the materials science domain, we need to consider how ontologies representing

different levels of domain knowledge can work together without conflicts. A

direction for future work is to research on how to represent the fundamental
domain knowledge that can fit into different levels of materials science and

engineering.
In addition, many research groups in the field are developing ontologies

that target different sub-domains, such as materials design and materials ex-
periments. These domains are not orthogonal and may share some general
concepts and relations. Unlike the biomedical domain, which has had quite a

lot of domain ontologies created over the decades and gains experiences in on-
tology alignment (e.g. the work in [161] summarized experiences from aligning

two representative ontologies in the biomedical domain), there is not much

work focusing on ontology alignment in the materials science field. However

10

151

10

10. Limitations and future work

we can foresee that the need for aligning ontologies in the materials science

domain will arise. It is a challenge that there is no formally defined knowledge

base or thesaurus that can be used for ontology alignment systems. Therefore,
we should develop methods for building background knowledge bases or the-
sauri automatically through the learning of ontologies, or semi-automatically

through the contribution of domain experts. The Ontology Alignment Eval-
uation Initiative (OAEI)1 organizes the evaluation of ontology matching sys-
tems [162] and have obtained experiences in terms of the performance and

matching strategies of ontology alignment systems (e.g., results in [163, 164,
165, 166, 167, 168, 169]), user validation in ontology alignment (e.g., [170,
171]) and complex ontology alignment (e.g., [172, 173]) which can be em-
ployed to the materials science field.

1http://oaei.ontologymatching.org/

152

https://1http://oaei.ontologymatching.org

Chapter

11

Conclusions

“I think you get more prestige by doing good science than

by doing popular science because if you go with what you

really think is important then it’s a higher chance that it

really is important in the long run and it’s the long run

which has the most benefit to the world.”

Donald Knuth

We have now presented our solutions to the research questions and all the

contributions of this thesis. In this chapter, we revisit the research questions
and conclude this thesis. The goal of this thesis is to answer the following

research question:

How to provide semantics-aware data access and data inte-
gration over heterogeneous data, following different models, being

shared and queried via different ways?

This question is further formulated into three sub-questions:

• RQ1: How can the recently developed GraphQL be used for semantics-
aware data access and data integration over heterogeneous data sources?

• RQ2: How can ontologies be leveraged to generate GraphQL APIs for
semantics-aware data access and data integration?

• RQ3: How can domain ontologies be extended by mining unstructured

text, with validation from domain experts?

153 11

11. Conclusions

11.1 Ontology-driven data access and integration

In order to answer the first research question (RQ1), a GraphQL-based frame-
work for data access and data integration was proposed. This framework con-
tains two processes, which are the GraphQL server generation process and the

GraphQL query answering process. The first process has to do with construct-
ing GraphQL servers for the purpose of semantics-aware data access and data

integration. We formulated the second research question (RQ2) concerning

generation of GraphQL servers based on ontologies. Therefore, we proposed

and implemented formal methods for generating GraphQL servers based on

ontologies and semantic mappings. This process can be automated once suit-
able ontologies and semantic mappings have been defined. This automatic

generation of GraphQL servers will help GraphQL application developers to

avoid constructing every concrete detail of GraphQL servers. We developed

a prototype (OBG-gen) to enable the automatic generation process. The sec-
ond process is the normal query answering process in GraphQL applications,
and the intended users are domain users who need to query data from dif-
ferent underlying data sources. The domain users may or may not have the

background knowledge regarding the Semantic Web or ontologies. To write

GraphQL queries, they need basic prior knowledge of GraphQL, which can be

learned from the self-documenting API provided by the generated GraphQL

server showing the schema.

11.2 Domain ontologies extension

It is sometimes necessary to add new databases or new types of data to exist-
ing databases in order to integrate data in a real-world application. Thus, the

coverage of the ontology driving the GraphQL server generation may need to

be enlarged. We studied how ontologies can be extended (RQ3) and proposed

an approach (ToPMine-FTCA) based on phrase-based topic modeling, formal
topical concept analysis and domain expert validation. The use of phrase-
based topic modeling (ToPMine) aims at accomplishing the text mining task,
and produces a list of frequent phrases and a list of latent topics, of which

each topic contains a number of representative frequent phrases. Formal top-
ical concept analysis over latent topics is intended to find relations among

topics or phrases. In addition to the phrase-based topic modeling phase and

the formal topical concept analysis phase, the approach includes a domain

11 154

11.3. Evaluation and application in the materials science domain

expert validation phase, during which a domain expert provides validations
or interpretations of the results of the phrase-based topic modeling and the

formal topical concept analysis. The validation or interpretation of such a

concept or relation can serve as a basis for extending a domain ontology.

11.3 Evaluation and application in the materials

science domain

As we conclude in Section 11.1 and Section 11.2, while solving the three

research questions, we proposed the GraphQL-based framework for data ac-
cess and integration, which contains a prototype (OBG-gen) implementation

for automatic generation of a GraphQL server, and proposed an approach

(ToPMine-FTCA) for extension of domain ontologies. In order to evaluate

and apply the GraphQL-based framework and ToPMine-FTCA, we focused

on the materials science field. This thesis is also based on a part of the project,
SeRC-DCMD (Swedish eScience Research Centre-Data Driven Computational
Materials Design), and is inspired by the work in the OPTIMADE consortium

(Open Databases Integration for Materials Design). Therefore, we developed

a domain ontology, the Materials Design Ontology (MDO), which is the first
domain ontology for the materials design field. To design this ontology, we

followed the best practices with respect to ontology engineering methodology.
In the following steps, we first employed this ontology in the GraphQL-based

framework and conducted experiments over a dataset based on two databases
(Materials Project and OQMD) in the materials design field. Additionally, we

discussed an application of this GraphQL-based framework and MDO within

OPTIMADE. To evaluate and apply ToPMine-FTCA, we used it to extend

two ontologies in the nanotechnology domain as well as to extend MDO.
There is a clear interest among materials scientists in making data FAIR,

and recently there has been a lot of interest in Semantic Web-based tech-
nologies, but there has not been much practical application so far. Our con-
tributions, in terms of MDO and ToPMine-FTCA, have been presented at a

number of events in materials science (i.e., FAIR Data Infrastructure for Mate-
rials Genomics,1 European Materials Modelling Council (EMMC) Multiscale

Modelling of Materials and Molecules,2 CECAM Open Databases Integration

1https://th.fhi-berlin.mpg.de/meetings/fairdi2020/
2https://sites.google.com/site/emultiscale2020/

155 11

https://2https://sites.google.com/site/emultiscale2020

11. Conclusions

for Materials Design3 and Workshop on Ontologies for Materials-Databases
Interoperability 20214), and have attracted much interest.

11

3https://www.cecam.org/workshop-details/991
4https://www.optimade.org/omdi2021/

156

https://4https://www.optimade.org/omdi2021
https://3https://www.cecam.org/workshop-details/991

Bi
bl

io
gr

ap
hy

Bibliography

[1] Patrick Lambrix, Rickard Armiento, Anna Delin, and Huanyu Li. “Big

Semantic Data Processing in the Materials Design Domain.” In: Ency-
clopedia of Big Data Technologies. Springer, 2019. doi: 10.1007/978-
3-319-63962-8_293-1.

[2] Patrick Lambrix, Rickard Armiento, Anna Delin, and Huanyu Li.
“FAIR Big Data in the Materials Design Domain.” In: Encyclopedia

of Big Data Technologies. accepted. Springer, 2022.

[3] Huanyu Li, Rickard Armiento, and Patrick Lambrix. “An Ontology

for the Materials Design Domain.” In: The Semantic Web - ISWC

2020 - 19th International Semantic Web Conference, Athens, Greece,
November 2-6, 2020. Vol. 12507. Lecture Notes in Computer Science.
Springer, Cham, 2020, pp. 212–227. doi: 10.1007/978-3-030-62466-
8_14.

[4] Huanyu Li, Rickard Armiento, and Patrick Lambrix. “A Method for
Extending Ontologies with Application to the Materials Science Do-
main.” In: Data Science Journal 18.1 (2019). doi: 10.5334/dsj-2019-
050.

[5] Mina Abd Nikooie Pour, Huanyu Li, Rickard Armiento, and Patrick

Lambrix. “A First Step towards Extending the Materials Design On-
tology.” In: Proceedings of the Workshop on Domain Ontologies for

Research Data Management in Industry Commons of Materials and

157

Bi
bl

io
gr

ap
hy Bibliography

Manufacturing (DORIC-MM 2021) co-located with the 18th European

Semantic Web Conference (ESWC 2021). 2021, pp. 1–11. url: http:

//purl.org/net/epubs/work/50300311.

[6] Huanyu Li, Rickard Armiento, and Patrick Lambrix. “Extending On-
tologies in the Nanotechnology Domain using Topic Models and For-
mal Topical Concept Analysis on Unstructured Text.” In: Proceedings

of the ISWC 2019 Satellite Tracks (Posters & Demonstrations, Indus-
try, and Outrageous Ideas) co-located with 18th International Semantic

Web Conference (ISWC 2019). Vol. 2456. CEUR Workshop Proceed-
ings. CEUR-WS.org, 2019, pp. 5–8. url: http://ceur-ws.org/Vol-
2456/paper2.pdf.

[7] Tim Berners-Lee, James Hendler, and Ora Lassila. “THE SEMANTIC

WEB.” In: Scientific American 284.5 (2001), pp. 34–43. url: http:

//www.jstor.org/stable/26059207.

[8] Dean Allemang, Jams A Hendler, and Fabien Gandon. Semantic Web

for the Working Ontologist: Effective Modeling for Linked Data, RDFS,
and OWL. 3rd ed. Association for Computing Machinery, 2020. doi:
10.1145/3382097.

[9] John Domingue, Dieter Fensel, and James A Hendler. Handbook of
Semantic Web Technologies. Springer, Berlin, Heidelberg, 2011. doi:
10.1007/978-3-540-92913-0.

[10] Ankit Agrawal and Alok Choudhary. “Perspective: Materials infor-
matics and big data: Realization of the ”fourth paradigm” of science

in materials science.” In: APL Materials 4 (5 2016), 053208:1–10. doi:
10.1063/1.4946894.

[11] Surya R Kalidindi and Marc De Graef. “Materials Data Science: Cur-
rent Status and Future Outlook.” In: Annual Review of Materials

Research 45 (2015), pp. 171–193. doi: 10.1146/annurev- matsci-
070214-020844.

[12] Alexander Tropsha, Karmann C Mills, and Anthony J Hickey. “Repro-
ducibility, sharing and progress in nanomaterial databases.” In: Nature

Nanotechnology 12 (2017), pp. 1111–1114. doi: 10.1038/nnano.2017.

233.

158

www.jstor.org/stable/26059207
http://ceur-ws.org/Vol
https://CEUR-WS.org
https://purl.org/net/epubs/work/50300311

Bibliography

[13] Sandra Karcher, Egon L. Willighagen, John Rumble, Friederike

Ehrhart, Chris T. Evelo, Martin Fritts, Sharon Gaheen, Stacey L.
Harper, Mark D. Hoover, Nina Jeliazkova, Nastassja Lewinski, Richard

L. Marchese Robinson, Karmann C. Mills, Axel P. Mustad, Dennis G.
Thomas, Georgia Tsiliki, and Christine Ogilvie Hendren. “Integration

among databases and data sets to support productive nanotechnology:
Challenges and recommendations.” In: NanoImpact 9 (2018), pp. 85–

101. doi: 10.1016/j.impact.2017.11.002.

[14] John Rumble, John Broome, and Simon Hodson. “Building an Inter-
national Consensus on Multi-Disciplinary Metadata Standards: A CO-
DATA Case History in Nanotechnology.” In: Data Science Journal 8

(2019), 12:1–11. doi: 10.5334/dsj-2019-012.

[15] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William

Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter,
David Skinner, Gerbrand Ceder, and Kristin a. Persson. “The Ma-
terials Project: A materials genome approach to accelerating materials
innovation.” In: APL Materials 1.1 (2013), p. 011002. doi: 10.1063/

1.4812323.

[16] The Materials Project. https://materialsproject.org. Accessed:
2022-02-04.

[17] James E. Saal, Scott Kirklin, Muratahan Aykol, Bryce Meredig, and

C. Wolverton. “Materials Design and Discovery with High-Throughput
Density Functional Theory: The Open Quantum Materials Database

(OQMD).” In: JOM, The Journal of The Minerals, Metals & Materi-
als Society (TMS) 65.11 (Nov. 2013), pp. 1501–1509. doi: 10.1007/

s11837-013-0755-4.

[18] The Open Quantum Materials Database (OQMD). http://oqmd.org.
Accessed: 2022-02-04.

[19] Claudia Draxl and Matthias Scheffler. “NOMAD: The FAIR concept
for big data-driven materials science.” In: MRS Bulletin 43.9 (2018),
pp. 676–682. doi: 10.1557/mrs.2018.208.

[20] Novel Materials Discovery (NOMAD). https://repository.nomad-
coe.eu/. Accessed: 2022-02-04.

Bi
bl

io
gr

ap
hy

159

https://repository.nomad
http://oqmd.org
https://materialsproject.org

Bi
bl

io
gr

ap
hy Bibliography

[21] Patrick Lambrix. “Towards a semantic Web for bioinformatics using

ontology-based annotation.” In: 14th IEEE International Workshops

on Enabling Technologies: Infrastructure for Collaborative Enterprise

(WETICE’05). 2005, pp. 3–7. doi: 10.1109/WETICE.2005.58.

[22] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,
Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-
Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jil-
dau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, In-
grid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard

Finkers, Alejandra Gonzalez-Beltran, Alasdair J.G. Gray, Paul Groth,
Carole Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A.C ’t Hoen,
Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher,
Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt Persson,
Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta

Sansone, Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn,
Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van Mulli-
gen, Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine

Wolstencroft, Jun Zhao, and Barend Mons. “The FAIR Guiding Prin-
ciples for scientific data management and stewardship.” In: Scientific

data 3 (2016), 160018:1–9. doi: 10.1038/sdata.2016.18.

[23] Inc. Facebook. Specification for GraphQL-June 2021 Edition. https:

//spec.graphql.org/October2021/. Accessed: 2022-03-30. 2021.

[24] Qiang Liu and Patrick Lambrix. “A System for Debugging Missing Is-a

Structure in Networked Ontologies.” In: Data Integration in the Life

Sciences, 7th International Conference, DILS 2010. Lecture Notes in

Computer Science. Springer, Berlin, Heidelberg, 2010, pp. 50–57. doi:
10.1007/978-3-642-15120-0_5.

[25] Freddy Priyatna, Oscar Corcho, and Juan Sequeda. “Formalisation

and Experiences of R2RML-Based SPARQL to SQL Query Transla-
tion Using Morph.” In: Proceedings of the 23rd International Confer-
ence on World Wide Web. Association for Computing Machinery, 2014,
pp. 479–490. doi: 10.1145/2566486.2567981.

[26] David Chaves-Fraga, Edna Ruckhaus, Freddy Priyatna, Maria-Esther
Vidal, and Oscar Corcho. “Enhancing Virtual Ontology Based Access
over Tabular Data with Morph-CSV.” In: Semantic Web 12.6 (2021).
doi: 10.3233/SW-210432.

160

https://spec.graphql.org/October2021
https://10.1038/sdata.2016.18
https://10.1109/WETICE.2005.58

Bibliography

[27] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman

Kontchakov, Davide Lanti, Martin Rezk, Mariano Rodriguez-Muro,
and Guohui Xiao. “Ontop: Answering SPARQL Queries Over Rela-
tional Databases.” In: Semantic Web 8.3 (2017), pp. 471–487. doi:
10.3233/SW-160217.

[28] Barbara Kitchenham. “Procedures for performing systematic reviews.”

In: Keele, UK, Keele University 33.2004 (2004), pp. 1–26.

[29] Joseph A Maxwell. Qualitative research design: An interactive approach

(3rd ed.) SAGE Publications, Inc, 2012.

[30] Sharon M Ravitch and Matthew Riggan. Reason & rigor: How concep-
tual frameworks guide research. Sage Publications, Inc, 2016.

[31] Virginia Braun and Victoria Clarke. SUCCESSFUL QUALITATIVE

RESEARCH: a practical guide for beginners. SAGE Publications Inc.,
2013.

[32] Barry Smith. “Ontology.” In: The furniture of the world. Brill, 2012,
pp. 47–68. doi: 10.1163/9789401207799_005.

[33] Christopher Welty. “Ontology Research.” In: AI Magazine 24.3 (2003),
p. 11. doi: 10.1609/aimag.v24i3.1714.

[34] James H. Alexander, Michael J. Freiling, Sheryl J. Shulman, Jeffrey

L. Staley, Steven Rehfuss, and Steven L. Messick. “Knowledge Level
Engineering: Ontological Analysis.” In: Proceedings of the Fifth AAAI

National Conference on Artificial Intelligence. AAAI’86. AAAI Press,
1986, pp. 963–967. url: https://www.aaai.org/Papers/AAAI/1986/

AAAI86-159.pdf.

[35] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. “Knowledge en-
gineering: Principles and methods.” In: Data & Knowledge Engineering

25.1 (1998), pp. 161–197. doi: 10.1016/S0169-023X(97)00056-6.

[36] Robert Stevens, Carole A. Goble, and Sean Bechhofer. “Ontology-
based Knowledge Representation for Bioinformatics.” In: Briefings in

Bioinformatics 1.4 (2000), pp. 398–414. doi: 10.1093/bib/1.4.398.

[37] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele

Nardi, and Peter F. Patel-Schneider. The Description Logic Handbook:
Theory, Implementation and Applications. 2nd ed. Cambridge Univer-
sity Press, 2007. doi: 10.1017/CBO9780511711787.

Bi
bl

io
gr

ap
hy

161

https://www.aaai.org/Papers/AAAI/1986

Bi
bl

io
gr

ap
hy Bibliography

[38] RDF 1.1 Concepts and Abstract Syntax W3C Recommendation 25

February 2014. Technical Report. 2014. url: https://www.w3.org/

TR/rdf11-concepts/.

[39] SPARQL 1.1 Overview W3C Recommendation 21 March 2013. Tech-
nical Report. 2013. url: https : / / www . w3 . org / TR / sparql11 -
overview/.

[40] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and

Complexity of SPARQL.” In: ACM Trans. Database Syst. 34.3 (2009).
doi: 10.1145/1567274.1567278.

[41] Maurizio Lenzerini. “Data Integration: A Theoretical Perspective.” In:
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems. PODS ’02. Association for
Computing Machinery, 2002, pp. 233–246. doi: 10 . 1145 / 543613 .

543644.

[42] Diego Calvanese and Giuseppe De Giacomo. “Data Integration: A

Logic-Based Perspective.” In: AI magazine 26.1 (2005), pp. 59–59. doi:
10.1609/aimag.v26i1.1799.

[43] AnHai Doan, Alon Halevy, and Zachary Ives. “1 - Introduction.” In:
Principles of Data Integration. Morgan Kaufmann, 2012, pp. 1–18. doi:
10.1016/B978-0-12-416044-6.00001-6.

[44] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio

Lenzerini, and Riccardo Rosati. “Ontology-Based Data Access and In-
tegration.” In: Encyclopedia of Database Systems. Springer, New York,
NY, 2018, pp. 2590–2596. doi: 10.1007/978-1-4614-8265-9_80667.

[45] Guohui Xiao, Dag Hovland, Dimitris Bilidas, Martin Rezk, Martin

Giese, and Diego Calvanese. “Efficient Ontology-Based Data Inte-
gration with Canonical IRIs.” In: The Semantic Web 15th Interna-
tional Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–
7, 2018, Proceedings. Vol. 10843. Lecture Notes in Computer Science.
Springer,Cham, 2018, pp. 697–713. doi: 10.1007/978-3-319-93417-
4_45.

[46] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo,
Antonella Poggi, Riccardo Rosati, and Michael Zakharyaschev.
“Ontology-Based Data Access: A Survey.” In: Proceedings of the

162

https://www.w3.org

Bibliography

Twenty-Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI-18. International Joint Conferences on Artificial Intelli-
gence Organization, July 2018, pp. 5511–5519. doi: 10.24963/ijcai.

2018/777.

[47] Oscar Corcho, Freddy Priyatna, and David Chaves-Fraga. “Towards a

new generation of ontology based data access.” In: Semantic Web 11.1

(2020), pp. 153–160. doi: 10.3233/SW-190384.

[48] Gio Wiederhold. “Mediators in the Architecture of Future Information

Systems.” In: Computer 25.3 (1992), pp. 38–49. doi: 10 . 1109 / 2 .

121508.

[49] Panos Vassiliadis. “A Survey of Extract–Transform–Load Technology.”

In: Integrations of Data Warehousing, Data Mining and Database Tech-
nologies: Innovative Approaches 5.3 (2009), pp. 1–27. doi: 10.4018/

978-1-60960-537-7.ch008.

[50] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB

to RDF Mapping Language. https://www.w3.org/TR/r2rml/. Ac-
cessed: 2022-02-04.

[51] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, and Juan

Sequeda. A Direct Mapping of Relational Data to RDF. https://www.

w3.org/TR/rdb-direct-mapping/. Accessed: 2022-02-04.

[52] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Ver-
borgh, Erik Mannens, and Rik Van de Walle. “RML: A Generic Lan-
guage for Integrated RDF Mappings of Heterogeneous Data.” In: Pro-
ceedings of the Workshop on Linked Data on the Web co-located with

the 23rd International World Wide Web Conference (WWW 2014).
Vol. 1184. CEUR Workshop Proceedings. CEUR-WS.org, 2014. url:
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf.

[53] Anastasia Dimou, Miel Vander Sande, Jason Slepicka, Pedro Szekely,
Erik Mannens, Craig Knoblock, and Rik Van de Walle. “Mapping Hi-
erarchical Sources into RDF Using the RML Mapping Language.” In:
2014 IEEE International Conference on Semantic Computing. IEEE,
2014, pp. 151–158. doi: 10.1109/ICSC.2014.25.

Bi
bl

io
gr

ap
hy

163

https://10.1109/ICSC.2014.25
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
https://CEUR-WS.org
https://w3.org/TR/rdb-direct-mapping
https://www
https://www.w3.org/TR/r2rml

Bi
bl

io
gr

ap
hy Bibliography

[54] European Commission, Entrepreneurship Directorate-General for In-
ternal Market Industry, SMEs, S Bobba, P Claudiu, D Huygens, P

Alves Dias, B Gawlik, E Tzimas, D Wittmer, P Nuss, M Grohol, H

Saveyn, F Buraoui, G Orveillon, T Hámor, S Slavko, F Mathieux, M

Gislev, C Torres De Matos, G Blengini, F Ardente, D Blagoeva, and E

Garbarino. Report on critical raw materials and the circular economy.
Publications Office, 2018. doi: 10.2873/331561.

[55] Kurt Lejaeghere, Gustav Bihlmayer, Torbjörn Björkman, Peter Blaha,
Stefan Blügel, Volker Blum, Damien Caliste, Ivano E. Castelli, Stew-
art J. Clark, Andrea Dal Corso, Stefano de Gironcoli, Thierry Deutsch,
John Kay Dewhurst, Igor Di Marco, Claudia Draxl, Marcin Dulak, Olle

Eriksson, Jose A. Flores-Livas, Kevin F. Garrity, Luigi Genovese, Paolo

Giannozzi, Matteo Giantomassi, Stefan Goedecker, Xavier Gonze, Os-
car Grånäs, E. K. U. Gross, Andris Gulans, Francois Gygi, D. R.
Hamann, Phil J. Hasnip, N. A. W. Holzwarth, Diana Iusan, Dominik B.
Jochym, François Jollet, Daniel Jones, Georg Kresse, Klaus Koepernik,
Emine Kücükbenli, Yaroslav O. Kvashnin, Inka L. M. Locht, Sven

Lubeck, Martijn Marsman, Nicola Marzari, Ulrike Nitzsche, Lars Nord-
ström, Taisuke Ozaki, Lorenzo Paulatto, Chris J. Pickard, Ward

Poelmans, Matt I. J. Probert, Keith Refson, Manuel Richter, Gian-
Marco Rignanese, Santanu Saha, Matthias Scheffler, Martin Schlipf,
Karlheinz Schwarz, Sangeeta Sharma, Francesca Tavazza, Patrik

Thunström, Alexandre Tkatchenko, Marc Torrent, David Vanderbilt,
Michiel J. van Setten, Veronique Van Speybroeck, John M. Wills,
Jonathan R. Yates, Guo-Xu Zhang, and Stefaan Cottenier. “Repro-
ducibility in density functional theory calculations of solids.” In: Sci-
ence 351.6280 (2016), aad3000. doi: 10.1126/science.aad3000.

[56] Rickard Armiento. “Database-Driven High-Throughput Calculations
and Machine Learning Models for Materials Design.” In: Machine

Learning Meets Quantum Physics. Vol. 968. Lecture Notes in Physics.
Springer, Cham, 2020. doi: 10.1007/978-3-030-40245-7_17.

[57] Cleidson R. B. de Souza, David Redmiles, Li-Te Cheng, David Millen,
and John Patterson. “Sometimes You Need to See through Walls: A

Field Study of Application Programming Interfaces.” In: Proceedings of
the 2004 ACM Conference on Computer Supported Cooperative Work.

164

Bibliography

CSCW ’04. Association for Computing Machinery, 2004, pp. 63–71.
doi: 10.1145/1031607.1031620.

[58] Oscar Borgogno and Giuseppe Colangelo. “Data sharing and inter-
operability: Fostering innovation and competition through APIs.” In:
Computer Law & Security Review 35.5 (2019), p. 105314. doi: 10.

1016/j.clsr.2019.03.008.

[59] Milan Dojchinovski and Tomas Vitvar. “Linked Web APIs dataset.”

In: Semantic Web 9.4 (2018), pp. 381–391. doi: 10.3233/SW-170259.

[60] Diego Serrano, Eleni Stroulia, Diana Lau, and Tinny Ng. “Linked

REST APIs: A Middleware for Semantic REST API Integration.” In:
2017 IEEE International Conference on Web Services (ICWS). IEEE,
2017, pp. 138–145. doi: 10.1109/ICWS.2017.26.

[61] Simon J. D. Cox, Alejandra N. Gonzalez-Beltran, Barbara Magagna,
and Maria-Cristina Marinescu. “Ten simple rules for making a vocab-
ulary FAIR.” In: PLOS Computational Biology 17.6 (2021), pp. 1–15.
doi: 10.1371/journal.pcbi.1009041.

[62] Daniel Garijo and Maria Poveda-Villalón. “Best Practices for Imple-
menting FAIR Vocabularies and Ontologies on the Web.” In: Appli-
cations and Practices in Ontology Design, Extraction, and Reasoning.
IOS Press, 2020. doi: 10.3233/SSW200034.

[63] Olaf Hartig and Jan Hidders. “Defining Schemas for Property Graphs
by Using the GraphQL Schema Definition Language.” In: Proceed-
ings of the 2nd Joint International Workshop on Graph Data Manage-
ment Experiences & Systems (GRADES) and Network Data Analyt-
ics (NDA). GRADES-NDA’19. Association for Computing Machinery,
2019. doi: 10.1145/3327964.3328495.

[64] Olaf Hartig and Jorge Pérez. “Semantics and Complexity of GraphQL.”

In: Proceedings of the 2018 World Wide Web Conference. WWW ’18.
Lyon, France: International World Wide Web Conferences Steering

Committee, 2018, pp. 1155–1164. doi: 10.1145/3178876.3186014.

[65] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Intro-
duction to Description Logic. 1st. USA: Cambridge University Press,
2017. isbn: 0521695422. doi: 10.1017/9781139025355.

Bi
bl

io
gr

ap
hy

165

https://10.1109/ICWS.2017.26

Bi
bl

io
gr

ap
hy Bibliography

[66] Franz Baader, Pavlos Marantidis, and Maximilian Pensel. “The Data

Complexity of Answering Instance Queries in FL0.” In: Companion

Proceedings of the The Web Conference 2018. WWW ’18. International
World Wide Web Conferences Steering Committee, 2018, pp. 1603–

1607. doi: 10.1145/3184558.3191618.

[67] Thomas M. Connolly and Carolyn E. Begg. Database Systems: A Prac-
tical Approach to Design, Implementation, and Management. 5th ed.
PEARSON Education, 2010.

[68] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Gi-
acomo, Maurizio Lenzerini, and Riccardo Rosati. “Linking Data to

Ontologies.” In: Journal on Data Semantics X. Springer, Berlin, Hei-
delberg, 2008, pp. 133–173. doi: 10.1007/978-3-540-77688-8_5.

[69] David Chaves-Fraga, Freddy Priyatna, Ahmad Alobaid, and Os-
car Corcho. “Exploiting Declarative Mapping Rules for Generating

GraphQL Servers with Morph-GraphQL.” In: International Journal
of Software Engineering and Knowledge Engineering 30.06 (2020),
pp. 785–803. doi: 10.1142/S0218194020400070.

[70] morph-rdb, version 3.12.5. https://github.com/oeg-upm/morph-
rdb/releases/tag/v3.12.5. Accessed: 2022-02-04.

[71] Ruben Taelman, Miel Vander Sande, and Ruben Verborgh. “GraphQL-
LD: Linked Data Querying with GraphQL.” In: Proceedings of the

ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas

Tracks co-located with 17th International Semantic Web Conference

(ISWC 2018). Vol. 2180. CEUR Workshop Proceedings. CEUR-WS,
2018. url: http://ceur-ws.org/Vol-2180/paper-65.pdf.

[72] Semantic Integration Ltd. HyperGraphQL, version 2.0.0. https://

github.com/hypergraphql/hypergraphql/releases/tag/2.0.0.
Accessed: 2022-02-04.

[73] Lars Gleim, Tim Holzheim, István Koren, and Stefan Decker. “Auto-
matic Bootstrapping of GraphQL Endpoints for RDF Triple Stores.”

In: Joint Proceedings of Workshops AI4LEGAL2020, NLIWOD, PRO-
FILES 2020, QuWeDa 2020 and SEMIFORM2020 co-located with the

19th International Semantic Web Conference (ISWC 2020). Vol. 2722.
CEUR Workshop Proceedings. CEUR-WS.org, 2020, pp. 119–134. url:
http://ceur-ws.org/Vol-2722/quweda2020-paper-2.pdf.

166

http://ceur-ws.org/Vol-2722/quweda2020-paper-2.pdf
https://CEUR-WS.org
https://github.com/hypergraphql/hypergraphql/releases/tag/2.0.0
http://ceur-ws.org/Vol-2180/paper-65.pdf
https://github.com/oeg-upm/morph

Bibliography

[74] Semantic Integration Ltd. UltraGraphQL, version 1.0.0. https://git.

rwth-aachen.de/i5/ultragraphql. Accessed: 2022-02-04.

[75] Daniel Garijo and Maximiliano Osorio. “OBA: An Ontology-Based

Framework for Creating REST APIs for Knowledge Graphs.” In: The

Semantic Web - ISWC 2020 - 19th International Semantic Web Confer-
ence, Athens, Greece, November 2-6, 2020. Vol. 12507. Lecture Notes
in Computer Science. Springer, Cham, 2020, pp. 48–64. doi: 10.1007/

978-3-030-62466-8_4.

[76] Carles Farré, Jovan Varga, and Robert Almar. “GraphQL Schema Gen-
eration for Data-Intensive Web APIs.” In: Model and Data Engineering.
Springer, Cham, 2019, pp. 184–194. doi: 10.1007/978-3-030-32065-
2_13.

[77] York Sure, Steffen Staab, and Rudi Studer. “Ontology Engineering

Methodology.” In: Handbook on Ontologies. Springer, Berlin, Heidel-
berg, 2009, pp. 135–152. doi: 10.1007/978-3-540-92673-3_6.

[78] Marı́a Poveda-Villalón, Asunción Gómez-Pérez, and Mari Carmen

Suárez-Figueroa. “OOPS! (OntOlogy Pitfall Scanner!): An On-Line

Tool for Ontology Evaluation.” In: 10.2 (2014). doi: 10.4018/ijswis.

2014040102.

[79] Patrick Lambrix. Completing and Debugging Ontologies: state of the

art and challenges. arXiv:1908.03171. 2020.

[80] Ahmad Alobaid, Daniel Garijo, María Poveda-Villalón, Idafen

Santana-Pérez, and Óscar Corcho. “OnToology, a tool for collabora-
tive development of ontologies.” In: Proceedings of the International
Conference on Biomedical Ontology. Vol. 1515. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2015. url: http : / / ceur - ws . org / Vol -
1515/demo3.pdf.

[81] Mariano Fernández-López, Asunción Gómez-Pérez, and Natalia Ju-
risto. “METHONTOLOGY: from Ontological Art towards Ontological
Engineering.” In: Proceedings of the Ontological Engineering AAAI-97

Spring Symposium Series. 1997, pp. 33–40. url: https://www.aaai.

org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf.

Bi
bl

io
gr

ap
hy

167

https://www.aaai
https://CEUR-WS.org
https://git

Bi
bl

io
gr

ap
hy Bibliography

[82] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Mariano

Fernández-López. “The NeOn Methodology for Ontology Engineer-
ing.” In: Ontology Engineering in a Networked World. Springer, Berlin,
Heidelberg, 2012, pp. 9–34. doi: 10.1007/978-3-642-24794-1_2.

[83] María Poveda-Villalón. “A Reuse-Based Lightweight Method for De-
veloping Linked Data Ontologies and Vocabularies.” In: The Semantic

Web: Research and Applications. Springer, Berlin, Heidelberg, 2012,
pp. 833–837. doi: 10.1007/978-3-642-30284-8_66.

[84] Raúl García-Castro, Alba Fernández-Izquierdo, Christopher Heinz, Pe-
ter Kostelnik, Marı́a Poveda-Villalón, and Fernando Serena. D2.2 De-
tailed specification of the semantic model. Technical Report. 2017. url:
https : / / vicinity2020 . eu / vicinity / content / d22 - detailed -
specification-semantic-model.

[85] York Sure, Steffen Staab, and Rudi Studer. “On-To-Knowledge

Methodology (OTKM).” In: Handbook on Ontologies. Ed. by Steffen

Staab and Rudi Studer. Springer, Berlin, Heidelberg, 2004, pp. 117–

132. doi: 10.1007/978-3-540-24750-0_6.

[86] Valentina Presutti, Eva Blomqvist, Enrico Daga, and Aldo Gangemi.
“Pattern-Based Ontology Design.” In: Ontology Engineering in a Net-
worked World. Ed. by Mari Carmen Suárez-Figueroa, Asunción Gómez-
Pérez, Enrico Motta, and Aldo Gangemi. Springer, Berlin, Heidelberg,
2012, pp. 35–64. doi: 10.1007/978-3-642-24794-1_3.

[87] Zlatan Dragisic, Patrick Lambrix, and Eva Blomqvist. “Integrating

Ontology Debugging and Matching into the eXtreme Design Method-
ology.” In: Proceedings of the 6th Workshop on Ontology and Semantic

Web Patterns (WOP 2015) co-located with the 14th International Se-
mantic Web Conference (ISWC 2015). Vol. 1461. CEUR Workshop

Proceedings. CEUR-WS.org, 2015. url: http://ceur-ws.org/Vol-
1461/WOP2015_paper_1.pdf.

[88] Kwok Cheung, John Drennan, and Jane Hunter. “Towards an Ontology

for Data-driven Discovery of New Materials.” In: AAAI Spring Sympo-
sium: Semantic Scientific Knowledge Integration. 2008, pp. 9–14. url:
https://www.aaai.org/Papers/Symposia/Spring/2008/SS-08-
05/SS08-05-003.pdf.

168

https://www.aaai.org/Papers/Symposia/Spring/2008/SS-08
http://ceur-ws.org/Vol
https://CEUR-WS.org

Bibliography

[89] Xiaoming Zhang, Changjun Hu, and Huayu Li. “Semantic query on

materials data based on mapping MATML to an OWL ontology.” In:
Data Science Journal 8 (2009), pp. 1–17. doi: 10.2481/dsj.8.1.

[90] Toshihiro Ashino. “Materials Ontology: An Infrastructure for Exchang-
ing Materials Information and Knowledge.” In: Data Science Journal
9 (2010), pp. 54–61. doi: 10.2481/dsj.008-041.

[91] Dennis G Thomas, Rohit V Pappu, and Nathan A Baker. “NanoPar-
ticle Ontology for cancer nanotechnology research.” In: Journal of
Biomedical Informatics 44.1 (2011), pp. 59–74. doi: 10.1016/j.jbi.

2010.03.001.

[92] Robert Arp, Barry Smith, and Andrew D. Spear. Building Ontologies

with Basic Formal Ontology. The MIT Press, 2015. url: https://

mitpress.mit.edu/books/building-ontologies-basic-formal-
ontology.

[93] Janna Hastings, Nina Jeliazkova, Gareth Owen, Georgia Tsiliki,
Cristian R Munteanu, Christoph Steinbeck, and Egon Willighagen.
“eNanoMapper: harnessing ontologies to enable data integration for
nanomaterial risk assessment.” In: Journal of Biomedical Semantics

6.1 (2015), p. 10. doi: 10.1186/s13326-015-0005-5.

[94] Xiaoming Zhang, Dongyu Pan, Chongchong Zhao, and Kai Li.
“MMOY: Towards deriving a metallic materials ontology from Yago.”

In: Advanced Engineering Informatics 30 (2016), pp. 687–702. doi:
10.1016/j.aei.2016.09.002.

[95] Fabio ALe Piane, Matteo Baldoni, Mauro GCaspari, and Francesco

Merucuri. “Introducing MAMBO: Materials And Molecules Basic On-
tology.” In: Proceedings of the Workshop on Domain Ontologies for

Research Data Management in Industry Commons of Materials and

Manufacturing (DORIC-MM 2021) co-located with the 18th European

Semantic Web Conference (ESWC 2021). 2021, pp. 28–39. url: http:

//purl.org/net/epubs/work/50300311.

[96] Ahmad Zainul Ihsan, Danilo Dessì, Mehwish Alam, Harald Sack, and

Stefan Sandfeld. “Steps towards a Dislocation Ontology for Crystalline

Materials.” In: Proceedings of the Second International Workshop on

Semantic Digital Twins co-located with the 18th Extended Semantic

Web Conference (ESWC 2021). Vol. 2887. CEUR Workshop Proceed-

Bi
bl

io
gr

ap
hy

169

https://purl.org/net/epubs/work/50300311
https://mitpress.mit.edu/books/building-ontologies-basic-formal

Bi
bl

io
gr

ap
hy Bibliography

ings. CEUR-WS.org, 2021. url: http://ceur-ws.org/Vol-2887/

paper4.pdf.

[97] Mehwish Alam, Henk Birkholz, Danilo Dessì, Christoph Eberl, Heike

Fliegl, Peter Gumbsch, Philipp von Hartrott, Lutz Mädler, Markus
Niebel, Harald Sack, and Akhil Thomas. “Ontology Modelling for Ma-
terials Science Experiments.” In: Proceedings of the Poster & Demo

track co-located with he 17th International Conference on Semantic

Systems (SEMANTiCS 2021). Vol. 2941. CEUR Workshop Proceed-
ings. CEUR-WS.org, 2021. url: http://ceur-ws.org/Vol-2941/

paper11.pdf.

[98] European Committee for Standardization (CEN). “A Guide to the

Development and Use of Standards Compliant Data Formats for En-
gineering Materials Test Data.” In: (2010). European Committee for
standardization. url: https://joinup.ec.europa.eu/collection/

european - committee - standardization - cen / solution / guide -
development - and - use - standards - compliant - data - formats -
engineering-materials-test-data/about.

[99] Inorganic Crystal Structure Database (ICSD). https://icsd.fiz-
karlsruhe.de. Accessed: 2022-02-04.

[100] Alec Belsky, Mariette Hellenbrandt, Vicky Lynn Karen, and Pe-
ter Luksch. “New developments in the Inorganic Crystal Structure

Database (ICSD): accessibility in support of materials research and

design.” In: Acta Crystallographica Section B: Structural Science 58.3

(2002), pp. 364–369. doi: 10.1107/S0108768102006948.

[101] G. Bergerhoff, R. Hundt, R. Sievers, and I. D. Brown. “The inor-
ganic crystal structure data base.” In: Journal of Chemical Informa-
tion and Computer Sciences 23.2 (1983), pp. 66–69. doi: 10.1021/

ci00038a003.

[102] Leslie Glasser. “Crystallographic Information Resources.” In: Journal
of Chemical Education 93 (2016), pp. 542–549. doi: 10.1021/acs.

jchemed.5b00253.

[103] Crystallography Open Database (COD). http : / / www .

crystallography.net/cod/. Accessed: 2022-02-04.

170

https://crystallography.net/cod
https://karlsruhe.de
https://icsd.fiz
https://joinup.ec.europa.eu/collection
http://ceur-ws.org/Vol-2941
https://CEUR-WS.org
http://ceur-ws.org/Vol-2887
https://CEUR-WS.org

Bibliography

[104] Saulius Grazulis, Adriana Dazkevic, Andrius Merkys, Daniel
Chateigner, Luca Lutterotti, Miguel Quiros, Nadezhda R. Sere-
bryanaya, Peter Moeck, Robert T. Downs, and Armel Le Bail.
“Crystallography Open Database (COD): an open-access collection

of crystal structures and platform for world-wide collaboration.” In:
Nucleic Acids Research 40.Database issue (2012), pp. D420–D427.
doi: 10.1093/nar/gkr900.

[105] Predicted Crystallography Open Database (PCOD). http : / / www .

crystallography.net/pcod/. Accessed: 2022-02-04.

[106] Theoretical Crystallography Open Database (TCOD). http://www.

crystallography.net/tcod/. Accessed: 2022-02-04.

[107] The International Centre for Diffraction Data (ICDD). https://www.

icdd.com. Accessed: 2022-02-04.

[108] Springer Materials. https://materials.springer.com. Accessed:
2022-02-04.

[109] The National Institute for Materials Science (NIMS) Materials

Database (MatNavi). https : / / www . nims . go . jp / eng/. Accessed:
2022-02-04.

[110] C. E. Campbell, U. R. Kattner, and Z.-K. Liu. “File and data

repositories for Next Generation CALPHAD.” In: Scripta Materialia

70.Supplement C (2014), pp. 7–11. doi: 10 . 1016 / j . scriptamat .

2013.06.013.

[111] The databases provided by OpenCalhad. http://www.opencalphad.

com/databases.html. Accessed: 2022-02-04.

[112] V. L. Moruzzi, J. F. Janak, and A. R. Williams. Calculated Electronic

Properties of Metals. Pergamon Press, 2013. doi: 10.1016/C2013-0-
03017-4.

[113] The Electronic Structure Project (ESP). http://materialsgenome.

se. Accessed: 2022-02-04.

[114] Stefano Curtarolo, Wahyu Setyawan, Shidong Wang, Junkai Xue,
Kesong Yang, Richard Taylor, Lance Nelson, Gus Hart, Stefano San-
vito, Marco Buongiorno-Nardelli, Natalio Mingo, and Ohad Levy.
“AFLOWLIB.ORG: A distributed materials properties repository from

Bi
bl

io
gr

ap
hy

171

https://AFLOWLIB.ORG
http://materialsgenome
http://www.opencalphad
https://materials.springer.com
https://icdd.com
https://www
https://crystallography.net/tcod
http://www
https://crystallography.net/pcod

Bi
bl

io
gr

ap
hy Bibliography

high-throughput ab initio calculations.” In: Computational Materi-
als Science 58.Supplement C (2012), pp. 227–235. doi: 10.1016/j.

commatsci.2012.02.002.

[115] Automatic Flow for Materials Discovery (AFLOW). ttp://aflowlib.

org/. Accessed: 2022-02-04.

[116] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William

Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter,
David Skinner, Gerbrand Ceder, and Kristin A. Persson. “Commen-
tary: The Materials Project: A materials genome approach to acceler-
ating materials innovation.” In: APL Materials 1.1 (2013), p. 011002.
doi: 10.1063/1.4812323.

[117] Giovanni Pizzi, Andrea Cepellotti, Riccardo Sabatini, Nicola Marzari,
and Boris Kozinsky. “AiiDA: automated interactive infrastructure

and database for computational science.” In: Computational Materi-
als Science 111.Supplement C (2016), pp. 218–230. doi: 10.1016/j.

commatsci.2015.09.013.

[118] Automated Interactive Infrastructure and Database for Computational
Science (AiiDA). https://www.aiida.net. Accessed: 2022-02-04.

[119] Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano

E. Castelli, Rune Christensen, Marcin Dulak, Jesper Friis, Michael
N. Groves, Bjørk Hammer, Cory Hargus, Eric D. Hermes, Paul C.
Jennings, Peter Bjerre Jensen, James Kermode, John R. Kitchin,
Esben Leonhard Kolsbjerg, Joseph Kubal, Kristen Kaasbjerg, Steen

Lysgaard, Jón Bergmann Maronsson, Tristan Maxson, Thomas Olsen,
Lars Pastewka, Andrew Peterson, Carsten Rostgaard, Jakob Schiøtz,
Ole Schütt, Mikkel Strange, Kristian S. Thygesen, Tejs Vegge, Lasse

Vilhelmsen, Michael Walter, Zhenhua Zeng, and Karsten W. Jacobsen.
“The atomic simulation environment - a Python library for working

with atoms.” In: Journal of Physics: Condensed Matter 29.27 (2017),
p. 273002. doi: 10.1088/1361-648X/aa680e.

[120] The Atomic Simulation Environment (ASE). https://wiki.fysik.

dtu.dk/ase/. Accessed: 2022-02-04.

[121] Felix Faber, Alexander Lindmaa, Anatole von Lilienfeld, and Rickard

Armiento. “Machine Learning Energies of 2 Million Elpasolite

172

https://wiki.fysik
https://www.aiida.net

Bibliography

(ABC2D6) Crystals.” In: Physical Review Letters 117.13 (Sept. 2016),
p. 135502. doi: 10.1103/PhysRevLett.117.135502.

[122] The High-Throughput Toolkit (httk). https://httk.org. Accessed:
2022-02-04.

[123] Casper W Andersen, Rickard Armiento, Evgeny Blokhin, Gareth J

Conduit, Shyam Dwaraknath, Matthew L Evans, Ádám Fekete, Ab-
hijith Gopakumar, Saulius Gražulis, Andrius Merkys, et al. “OPTI-
MADE: an API for exchanging materials data.” In: Scientific Data

8.217 (2021). doi: 10.1038/s41597-021-00974-z.

[124] Paula de Matos, Adriano Dekker, Marcus Ennis, Janna Hastings, Ken-
neth Haug, Steve Turner, and Christoph Steinbeck. “ChEBI: a chem-
istry ontology and database.” In: Journal of Cheminformatics 2.P6

(2010). doi: 10.1186/1758-2946-2-S1-P6.

[125] Ralph Haas, Paul J Keller, Jack Hodges, and Jack Spivak. Quantities,
units, dimensions and data types ontologies (QUDT). http://qudt.

org. Accessed: 2022-02-04.

[126] Timothy Lebo, Satya Sahoo, Deborah McGuinness, Khalid Belhaj-
jame, James Cheney, David Corsar, Daniel Garijo, Stian Soiland-
Reyes, Stephan Zednik, and Jun Zhao. PROV-O: The PROV Ontology.
https://www.w3.org/TR/prov-o/. Accessed: 2022-02-04. 2013.

[127] Paul Buitelaar, Phillip Cimiano, and Bernardo Magnini. Ontology

Learning from Text: Methods, Evaluation and Applications. Vol. 123.
IOS Press, 2005.

[128] Muhammad Nabeel Asim, Muhammad Wasim, Muhammad Usman

Ghani Khan, Waqar Mahmood, and Hafiza Mahnoor Abbasi. “A sur-
vey of ontology learning techniques and applications.” In: Database

2018 (2018), bay101:1–24. doi: 10.1093/database/bay101.

[129] Marti A. Hearst. “Automatic acquisition of hyponyms from large text
corpora.” In: 14th International Conference on Computational Linguis-
tics. 1992, pp. 539–545. doi: 10.3115/992133.992154.

[130] Tomas Wächter, He Tan, Andre Wobst, Patrick Lambrix, and Michael
Schroeder. “A Corpus-Driven Approach for Design, Evolution and

Alignment of Ontologies.” In: Proceedings of the 2006 Winter Sim-
ulation Conference. IEEE, 2006, pp. 1595–1602. doi: 10.1109/WSC.

2006.322932.

Bi
bl

io
gr

ap
hy

173

https://www.w3.org/TR/prov-o
http://qudt
https://httk.org

Bi
bl

io
gr

ap
hy Bibliography

[131] Patrick Arnold and Erhard Rahm. “Semantic Enrichment of Ontology

Mappings: A Linguistic-Based Approach.” In: 17th East European Con-
ference on Advances in Databases and Information Systems. Vol. 8133.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2013,
pp. 42–55. doi: 10.1007/978-3-642-40683-6_4.

[132] Alexander Maedche, Viktor Pekar, and Steffen Staab. “Ontology

Learning Part One — On Discovering Taxonomic Relations from the

Web.” In: Web Intelligence. Springer, Berlin, Heidelberg, 2003, pp. 301–

320. doi: 10.1007/978-3-662-05320-1_14.

[133] Alexander Maedche and Steffen Staab. “Discovering Conceptual Re-
lations from Text.” In: Proceedings of the 14th European Conference

on Artificial Intelligence. ECAI’00. IOS Press, 2000, pp. 321–325. url:
https://dl.acm.org/doi/10.5555/3006433.3006501.

[134] Elias Zavitsanos, Georgios Paliouras, George A. Vouros, and Sergios
Petridis. “Discovering Subsumption Hierarchies of Ontology Concepts
from Text Corpora.” In: IEEE/WIC/ACM International Conference

on Web Intelligence (WI’07). IEEE, 2007, pp. 402–408. doi: 10.1109/

WI.2007.55.

[135] Vassilis Spiliopoulos, George A.Vouros, and Vangelis Karkaletsis. “On

the discovery of subsumption relations for the alignment of ontologies.”

In: Journal of Web Semantics 8 (2010), pp. 69–88. doi: 10.1016/j.

websem.2010.01.001.

[136] Phillip Cimiano, Andreas Hotho, and Steffen Staab. “Learning Concept
Hierarchies from Text Corpora using Formal Concept Analysis.” In:
Journal of Artificial Intelligence Research 24 (2005), pp. 305–339. doi:
10.1613/jair.1648.

[137] Markus Schaal, Roland M. Müller, Marko Brunzel, and Myra

Spiliopoulou. “RELFIN - Topic Discovery for Ontology Enhancement
and Annotation.” In: The Semantic Web: Research and Applications,
Second European Semantic Web Conference, ESWC 2005, Heraklion,
Crete, Greece, May 29 - June 1, 2005, Proceedings. 2005, pp. 608–622.
doi: 10.1007/11431053_41.

[138] Zhijie Lin, Rui Lu, Yun Xiong, and Yangyong Zhu. “Learning Ontology

Automatically Using Topic Model.” In: 2012 International Conference

174

https://WI.2007.55
https://dl.acm.org/doi/10.5555/3006433.3006501

Bibliography

on Biomedical Engineering and Biotechnology. IEEE, 2012, pp. 360–

363. doi: 10.1109/iCBEB.2012.263.

[139] Monika Rani, Amit Kumar Dhar, and O. P. Vyas. “Semi-automatic

terminology ontology learning based on topic modeling.” In: Engineer-
ing Applications of Artificial Intelligence 63 (2017), pp. 108–125. doi:
10.1016/j.engappai.2017.05.006.

[140] Ahmed El-Kishky, Yanglei Song, Chi Wang, Clare R. Voss, and Ji-
awei Han. “Scalable Topical Phrase Mining from Text Corpora.” In:
Proceedings of the VLDB Endowment 8.3 (2014), pp. 305–316. doi:
10.14778/2735508.2735519.

[141] Michael Hartung, James Terwilliger, and Erhard Rahm. “Recent Ad-
vances in Schema and Ontology Evolution.” In: Schema Matching and

Mapping. Springer, Berlin, Heidelberg, 2011, pp. 149–190. doi: 10.

1007/978-3-642-16518-4_6.

[142] Julio Cesar Dos Reis, Duy Dinh, Cedric Pruski, Marcos Da Silveira,
and Chantal Reynaud-Delaitre. “Mapping adaptation actions for the

automatic reconciliation of dynamic ontologies.” In: 22nd ACM In-
ternational Conference on Information and Knowledge Management.
CIKM ’13. Association for Computing Machinery, 2013, pp. 599–608.
doi: 10.1145/2505515.2505564.

[143] Valentina Ivanova and Patrick Lambrix. “A Unified Approach for
Aligning Taxonomies and Debugging Taxonomies and Their Align-
ments.” In: The Semantic Web: Semantics and Big Data, 10th Interna-
tional Conference, ESWC 2013, Montpellier, France, May 26-30, 2013.
Proceedings. Vol. 7882. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, 2013, pp. 1–15. doi: 10.1007/978-3-642-38288-
8_1.

[144] Patrick Lambrix, Fang Wei-Kleiner, and Zlatan Dragisic. “Completing

the is-a structure in light-weight ontologies.” In: Journal of Biomedical
Semantics 6 (2015), 12:1–26. doi: 10.1186/s13326-015-0002-8.

[145] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirich-
let Allocation.” In: Journal of Machine Learning Research 3 (2003),
pp. 993–1022.

[146] David M. Blei. “Probabilistic Topic Models.” In: Commun. ACM 55.4

(2012), pp. 77–84. doi: 10.1145/2133806.2133826.

Bi
bl

io
gr

ap
hy

175

Bi
bl

io
gr

ap
hy Bibliography

[147] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer,
Berlin, Heidelberg, 1999. doi: 10.1007/978-3-642-59830-2.

[148] David Faure and Thierry Poibeau. “First Experiments of Using Seman-
tic Knowledge Learned by ASIUM for Information Extraction Task Us-
ing INTEX.” In: Proceedings of the First International Conference on

Ontology Learning - Volume 31. OL’00. CEUR-WS.org, 2000, pp. 7–12.
url: https://dl.acm.org/doi/10.5555/3053703.3053706.

[149] Xing Jiang and Ah-Hwee Tan. “CRCTOL: A semantic-based domain

ontology learning system.” In: Journal of the American Society for

Information Science and Technology 61.1 (2010), pp. 150–168. doi:
10.1002/asi.21231.

[150] Euthymios Drymonas, Kalliopi Zervanou, and Euripides G. M. Pe-
trakis. “Unsupervised Ontology Acquisition from Plain Texts: The

OntoGain System.” In: Natural Language Processing and Informa-
tion Systems 15th International Conference on Applications of Natural
Language to Information Systems, NLDB 2010, Cardiff, UK, June 23-
25, 2010. Proceedings. Vol. 6177. Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, 2010, pp. 277–287. doi: 10.1007/978-
3-642-13881-2_29.

[151] Roberto Navigli, Paola Velardi, Alessandro Cucchiarelli, and Francesca

Neri. “Extending and enriching WordNet with OntoLearn.” In: Pro-
ceedings of the 2nd Global WordNet Conference (GWC). 2004, pp. 279–

284. url: http://www.fi.muni.cz/gwc2004/proc/86.pdf.

[152] Philipp Cimiano and Johanna Völker. “Text2Onto.” In: Natural Lan-
guage Processing and Information Systems 10th International Con-
ference on Applications of Natural Language to Information Systems,
NLDB 2005, Alicante, Spain, June 15-17, 2005. Proceedings. Vol. 3513.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2005,
pp. 227–238. doi: 10.1007/11428817_21.

[153] Wilson Wong, Wei Liu, and Mohammed Bennamoun. “Ontology learn-
ing from text: A look back and into the future.” In: ACM Computing

Surveys 44.4 (2012), p. 20. doi: 10.1145/2333112.2333115.

[154] Roberto Navigli and Paola Velardi. “Learning Domain Ontologies
from Document Warehouses and Dedicated Web Sites.” In: Compu-

176

http://www.fi.muni.cz/gwc2004/proc/86.pdf
https://dl.acm.org/doi/10.5555/3053703.3053706
https://CEUR-WS.org

Bibliography

tational Linguistics 30.2 (June 2004), pp. 151–179. doi: 10 . 1162 /

089120104323093276.

[155] National Institute for Occupational Safety and Health

(NIOSH). NanoParticle Information Library (NIF). http : / /

nanoparticlelibrary.net. Accessed: 2022-02-04.

[156] Lukas Galke, Florian Mai, Alan Schelten, Dennis Brunsch, and Ans-
gar Scherp. “Using Titles vs. Full-text as Source for Automated Se-
mantic Document Annotation.” In: Proceedings of the Knowledge Cap-
ture Conference. K-CAP 2017. 2017, 20:1–4. doi: 10.1145/3148011.

3148039.

[157] Mark Steyvers and Tom Griffiths. “Probabilistic Topic Models.” In:
Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum,
2007.

[158] James E. Saal, Scott Kirklin, Muratahan Aykol, Bryce Meredig, and

C. Wolverton. “Materials Design and Discovery with High-Throughput
Density Functional Theory: The Open Quantum Materials Database

(OQMD).” In: JOM, The Journal of The Minerals, Metals & Materials

Society (TMS) 65 (2013), pp. 1501–1509. doi: 10.1007/s11837-013-
0755-4.

[159] Matthew L Evans, Casper W Andersen, Shyam Dwaraknath, Markus
Scheidgen, Ádám Fekete, and Donald Winston. “optimade-python-
tools: a Python library for serving and consuming materials data via

OPTIMADE APIs.” In: Journal of Open Source Software 6.65 (2021),
p. 3458. doi: 10.21105/joss.03458.

[160] Mina Abd Nikooie Pour, Huanyu Li, Rickard Armiento, and Patrick

Lambrix. “A First Step towards a Tool for Extending Ontologies.” In:
Proceedings of the Sixth International Workshop on the Visualization

and Interaction for Ontologies and Linked Data co-located with the

20th International Semantic Web Conference (ISWC 2021). Vol. 3023.
CEUR Workshop Proceedings. CEUR-WS.org, 2021, pp. 1–12. url:
http://ceur-ws.org/Vol-3023/paper2.pdf.

[161] Zlatan Dragisic, Valentina Ivanova, Huanyu Li, and Patrick Lambrix.
“Experiences from the Anatomy track in the Ontology Alignment Eval-
uation Initiative.” In: Journal of Biomedical Semantics 8 (2017), 56:1–

56:28. doi: 10.1186/s13326-017-0166-5.

Bi
bl

io
gr

ap
hy

177

http://ceur-ws.org/Vol-3023/paper2.pdf
https://CEUR-WS.org
https://nanoparticlelibrary.net

Bi
bl

io
gr

ap
hy Bibliography

[162] Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt, Pavel
Shvaiko, and Cássia Trojahn. “Ontology Alignment Evaluation Initia-
tive: Six Years of Experience.” In: Journal on Data Semantics XV .
Springer, Berlin, Heidelberg, 2011, pp. 158–192. doi: 10.1007/978-
3-642-22630-4_6.

[163] Manel Achichi, Michelle Cheatham, Zlatan Dragisic, Jérôme Euzenat,
Daniel Faria, Alfio Ferrara, Giorgos Flouris, Irini Fundulaki, Ian Har-
row, Valentina Ivanova, Ernesto Jiménez-Ruiz, Elena Kuss, Patrick

Lambrix, Henrik Leopold, Huanyu Li, Christian Meilicke, Stefano Mon-
tanelli, Catia Pesquita, Tzanina Saveta, Pavel Shvaiko, Andrea Splen-
diani, Heiner Stuckenschmidt, Konstantin Todorov, Cássia Trojahn,
and Ondrej Zamazal. “Results of the Ontology Alignment Evaluation

Initiative 2016.” In: Proceedings of the 11th International Workshop on

Ontology Matching co-located with the 15th International Semantic Web

Conference (ISWC 2016). Vol. 1766. CEUR Workshop Proceedings.
CEUR-WS.org, 2016, pp. 73–129. url: http://ceur-ws.org/Vol-
1766/oaei16_paper0.pdf.

[164] Manel Achichi, Michelle Cheatham, Zlatan Dragisic, Jérôme Euzenat,
Daniel Faria, Alfio Ferrara, Giorgos Flouris, Irini Fundulaki, Ian Har-
row, Valentina Ivanova, Ernesto Jiménez-Ruiz, Kristian Kolthoff, Elena

Kuss, Patrick Lambrix, Henrik Leopold, Huanyu Li, Christian Meil-
icke, Majid Mohammadi, Stefano Montanelli, Catia Pesquita, Tzan-
ina Saveta, Pavel Shvaiko, Andrea Splendiani, Heiner Stuckenschmidt,
Élodie Thiéblin, Konstantin Todorov, Cássia Trojahn, and Ondrej
Zamazal. “Results of the Ontology Alignment Evaluation Initiative

2017.” In: Proceedings of the 12th International Workshop on On-
tology Matching co-located with the 16th International Semantic Web

Conference (ISWC 2017). Vol. 2032. CEUR Workshop Proceedings.
CEUR-WS.org, 2017, pp. 61–113. url: http://ceur-ws.org/Vol-
2032/oaei17_paper0.pdf.

[165] Alsayed Algergawy, Michelle Cheatham, Daniel Faria, Alfio Ferrara,
Irini Fundulaki, Ian Harrow, Sven Hertling, Ernesto Jiménez-Ruiz,
Naouel Karam, Abderrahmane Khiat, Patrick Lambrix, Huanyu Li,
Stefano Montanelli, Heiko Paulheim, Catia Pesquita, Tzanina Saveta,
Daniela Schmidt, Pavel Shvaiko, Andrea Splendiani, Élodie Thiéblin,
Cássia Trojahn, Jana Vatascinová, Ondrej Zamazal, and Lu Zhou. “Re-

178

http://ceur-ws.org/Vol
https://CEUR-WS.org
http://ceur-ws.org/Vol
https://CEUR-WS.org

Bibliography

sults of the Ontology Alignment Evaluation Initiative 2018.” In: Pro-
ceedings of the 13th International Workshop on Ontology Matching co-
located with the 17th International Semantic Web Conference (ISWC

2018). Vol. 2288. CEUR Workshop Proceedings. CEUR-WS.org, 2018,
pp. 76–116. url: http://ceur-ws.org/Vol-2288/oaei18_paper0.

pdf.

[166] Alsayed Algergawy, Daniel Faria, Alfio Ferrara, Irini Fundulaki, Ian

Harrow, Sven Hertling, Ernesto Jiménez-Ruiz, Naouel Karam, Ab-
derrahmane Khiat, Patrick Lambrix, Huanyu Li, Stefano Montanelli,
Heiko Paulheim, Catia Pesquita, Tzanina Saveta, Pavel Shvaiko, An-
drea Splendiani, Élodie Thiéblin, Cássia Trojahn, Jana Vatascinová,
Ondrej Zamazal, and Lu Zhou. “Results of the Ontology Alignment
Evaluation Initiative 2019.” In: Proceedings of the 14th International
Workshop on Ontology Matching co-located with the 18th International
Semantic Web Conference (ISWC 2019). Vol. 2536. CEUR Workshop

Proceedings. CEUR-WS.org, 2019, pp. 46–85. url: http://ceur -
ws.org/Vol-2536/oaei19_paper0.pdf.

[167] Mina Abd Nikooie Pour, Alsayed Algergawy, Reihaneh Amini, Daniel
Faria, Irini Fundulaki, Ian Harrow, Sven Hertling, Ernesto Jiménez-
Ruiz, Clement Jonquet, Naouel Karam, Abderrahmane Khiat, Amir
Laadhar, Patrick Lambrix, Huanyu Li, Ying Li, Pascal Hitzler, Heiko

Paulheim, Catia Pesquita, Tzanina Saveta, Pavel Shvaiko, Andrea

Splendiani, Élodie Thiéblin, Cássia Trojahn, Jana Vatascinová, Beyza

Yaman, Ondrej Zamazal, and Lu Zhou. “Results of the Ontology Align-
ment Evaluation Initiative 2020.” In: Proceedings of the 15th Interna-
tional Workshop on Ontology Matching co-located with the 19th Inter-
national Semantic Web Conference (ISWC 2020). Vol. 2788. CEUR

Workshop Proceedings. CEUR-WS.org, pp. 92–138. url: http : / /

ceur-ws.org/Vol-2788/oaei20_paper0.pdf.

[168] Mina Abd Nikooie Pour, Alsayed Algergawy, Florence Amardeilh, Rei-
haneh Amini, Omaima Fallatah, Daniel Faria, Irini Fundulaki, Ian Har-
row, Sven Hertling, Pascal Hitzler, Martin Huschka, Liliana Ibanescu,
Ernesto Jiménez-Ruiz, Naouel Karam, Amir Laadhar, Patrick Lam-
brix, Huanyu Li, Ying Li, Franck Michel, Engy Nasr, Heiko Paulheim,
Catia Pesquita, Jan Portisch, Catherine Roussey, Tzanina Saveta,
Pavel Shvaiko, Andrea Splendiani, Cássia Trojahn, Jana Vatascinová,

Bi
bl

io
gr

ap
hy

179

https://ceur-ws.org/Vol-2788/oaei20_paper0.pdf
https://CEUR-WS.org
https://ws.org/Vol-2536/oaei19_paper0.pdf
http://ceur
https://CEUR-WS.org
http://ceur-ws.org/Vol-2288/oaei18_paper0
https://CEUR-WS.org

Bi
bl

io
gr

ap
hy Bibliography

Beyza Yaman, Ondrej Zamazal, and Lu Zhou. “Results of the On-
tology Alignment Evaluation Initiative 2021.” In: Proceedings of the

16th International Workshop on Ontology Matching co-located with the

20th International Semantic Web Conference (ISWC 2021). Vol. 3063.
CEUR Workshop Proceedings. CEUR-WS.org, pp. 62–108. url: http:

//ceur-ws.org/Vol-3063/oaei21_paper0.pdf.

[169] Ernesto Jiménez-Ruiz, Tzanina Saveta, Ondvrej Zamazal, Sven

Hertling, Michael Röder, Irini Fundulaki, Axel-Cyrille Ngonga Ngomo,
Mohamed Ahmed Sherif, Amina Annane, Zohra Bellahsene, Sadok

Ben Yahia, Gayo Diallo, Daniel Faria, Marouen Kachroudi, Abderrah-
mane Khiat, Patrick Lambrix, Huanyu Li, Maximilian Mackeprang,
Majid Mohammadi, Maciej Rybinski, Booma Sowkarthiga Balasubra-
mani, and Cássia Trojahn. “Introducing the HOBBIT platform into

the Ontology Alignment Evaluation Campaign.” In: Proceedings of the

13th International Workshop on Ontology Matching co-located with the

17th International Semantic Web Conference (ISWC 2018). Vol. 2288.
CEUR Workshop Proceedings. CEUR-WS.org, 2018, pp. 49–60. url:
http://ceur-ws.org/Vol-2288/om2018_LTpaper5.pdf.

[170] Zlatan Dragisic, Valentina Ivanova, Patrick Lambrix, Daniel Faria,
Ernesto Jiménez-Ruiz, and Catia Pesquita. “User Validation in On-
tology Alignment.” In: The Semantic Web - ISWC 2016 - 15th Inter-
national Semantic Web Conference, Kobe, Japan, October 17-21, 2016.
Vol. 9981. Lecture Notes in Computer Science. Springer, Cham, 2016,
pp. 200–217. doi: 10.1007/978-3-319-46523-4_13.

[171] Huanyu Li, Zlatan Dragisic, Daniel Faria, Valentina Ivanova, Ernesto

Jiménez-Ruiz, Patrick Lambrix, and Catia Pesquita. “User valida-
tion in ontology alignment: functional assessment and impact.” In:
The Knowledge Engineering Review 34 (2019), e15. doi: 10.1017/

S0269888919000080.

[172] Elodie Thiéblin, Michelle Cheatham, Cassia Trojahn, and Ondrej Za-
mazal. “A consensual dataset for complex ontology matching evalu-
ation.” In: The Knowledge Engineering Review 35 (2020), e34. doi:
10.1017/S0269888920000247.

[173] Lu Zhou, Elodie Thiéblin, Michelle Cheatham, Daniel Faria, Catia

Pesquita, Cassia Trojahn, and Ondřej Zamazal. “Towards evaluating

180

http://ceur-ws.org/Vol-2288/om2018_LTpaper5.pdf
https://CEUR-WS.org
https://ceur-ws.org/Vol-3063/oaei21_paper0.pdf
https://CEUR-WS.org

Bibliography

complex ontology alignments.” In: The Knowledge Engineering Review

35 (2020), e21. doi: 10.1017/S0269888920000168. Bi
bl

io
gr

ap
hy

181

Bi
bl

io
gr

ap
hy

Appendix

A

SPARQL queries for MDO

competency questions

This appendix lists the 14 SPARQL queries to answer competency questions
covered in the requirements analysis of MDO presented in Chapter 5.

CQ1: What are the calculated properties and their values produced by a

materials calculation?

Listing A.1: A SPARQL query for MDO CQ1.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3

4 SELECT ?calculation ?property ?value WHERE

5 {

6 ?calculation rdf:type core:Calculation;

7 core:hasOutputCalculatedProperty ?property.

8 ?property core:hasPropertyValue ?value.

9 }

A
pp

en
di

x
A

183

https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns

A. SPARQL queries for MDO competency questions

CQ2: What are the input and output structures of a materials calculation?

Listing A.2: A SPARQL query for MDO CQ2.

A
pp

en
di

x
A

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3

4 SELECT ?calculation ?input_structure ?output_structure WHERE

5 {

6 ?calculation rdf:type core:Calculation;

7 core:hasInputStructure ?input_structure;

8 core:hasOutputStructure ?output_structure.

9 }

CQ3: What is the space group type of a structure?

Listing A.3: A SPARQL query for MDO CQ3.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3 PREFIX structure: <https://w3id.org/mdo/structure/>

4

5 SELECT ?calculation ?output_structure ?symbol WHERE

6 {

7 ?calculation rdf:type core:Calculation;

8 core:hasOutputStructure ?output_structure.

9 ?output_structure rdf:type core:Structure;

10 structure:hasSpaceGroup ?spacegroup.

11 ?spacegroup rdf:type structure:SpaceGroup;

12 structure:hasSpaceGroupSymbol ?symbol.

13 }

184

https://w3id.org/mdo/structure
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns

CQ4: What is the lattice type of a structure?

Listing A.4: A SPARQL query for MDO CQ4.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3 PREFIX structure: <https://w3id.org/mdo/structure/>

4

5 SELECT ?calculation ?output_structure ?type WHERE

6 {

7 ?calculation rdf:type core:Calculation;

8 core:hasOutputStructure ?output_structure.

9 ?output_structure rdf:type core:Structure;

10 structure:hasLattice ?lattice.

11 ?lattice rdf:type structure:Lattice;

12 structure:hasLatticeType ?type.

13 }

CQ5: What is the chemical formula of a structure?

Listing A.5: A SPARQL query for MDO CQ5.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3 PREFIX structure: <https://w3id.org/mdo/structure/>

4

5 SELECT ?calculation ?outputstructure ?formula WHERE

6 {

7 ?calculation rdf:type core:Calculation;

8 core:hasOutputStructure ?outputstructure.

9 ?outputstructure structure:hasComposition ?composition.

10 ?composition structure:hasDescriptiveFormula ?formula.

11 }

A
pp

en
di

x
A

185

https://w3id.org/mdo/structure
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns
https://w3id.org/mdo/structure
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns

A. SPARQL queries for MDO competency questions

A
pp

en
di

x
A

CQ6: For a series of materials calculations, what are the compositions of
materials with a specific range of a calculated property (e.g., band gap)?

Listing A.6: A SPARQL query for MDO CQ6.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3 PREFIX structure: <https://w3id.org/mdo/structure/>

4 PREFIX qudt: <http://qudt.org/schema/qudt/>

5

6 SELECT ?formula ?value WHERE

7 {

8 ?calculation rdf:type core:Calculation;

9 core:hasOutputCalculatedProperty ?property;

10 core:hasOutputStructure ?output_structure .

11 ?property qudt:quantityValue ?quantity_value;

12 core:hasPropertyName ?name.

13 ?quantity_value rdf:type qudt:QuantityValue;

14 qudt:numericValue ?value.

15 ?output_structure structure:hasComposition ?composition.

16 ?composition structure: hasDescriptiveFormula ?formula.

17 FILTER (?value >5 && ?name="band_gap")

18 }

186

CQ7: For a specific material and a given range of a calculated property

(e.g., band gap), what is the lattice type of the structure?

Listing A.7: A SPARQL query for MDO CQ7.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3 PREFIX structure: <https://w3id.org/mdo/structure/>

4 PREFIX calculation: <https://w3id.org/mdo/calculation/>

5

6 SELECT ?outputstructure ?value ?type WHERE

7 {

8 ?calculation rdf:type core:Calculation;

9 core:hasOutputCalculatedProperty ?property;

10 core:hasOutputStructure ?outputstructure.

11 ?property core:hasPropertyValue ?value;

12 core:hasPropertyName ?name.

13 ?outputstructure structure:hasLattice ?lattice.

14 ?lattice structure:hasLatticeType ?type.

15 FILTER (?value >5 && ?name="band_gap")

16 }

A
pp

en
di

x
A

187

https://w3id.org/mdo/calculation
https://w3id.org/mdo/structure
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns

A. SPARQL queries for MDO competency questions

A
pp

en
di

x
A

CQ8: For a specific material and an expected lattice type of output struc-
ture, what are the values of calculated properties of the calculations?

Listing A.8: A SPARQL query for MDO CQ8.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3 PREFIX structure: <https://w3id.org/mdo/structure/>

4

5 SELECT ?outputstructure ?value ?type WHERE

6 {

7 ?calculation rdf:type core:Calculation;

8 core:hasOutputCalculatedProperty ?property;

9 core:hasOutputStructure ?outputstructure.

10 ?Property core:hasPropertyValue ?value;

11 core:hasPropertyName ?name.

12 ?outputstructure structure:hasLattice ?lattice.

13 ?lattice structure:hasLatticeType ?type.

14 FILTER (?name="band_gap" && ?type="cubic")

15 }

CQ9: What is the computational method used in a materials calculation?

Listing A.9: A SPARQL query for MDO CQ9.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3 PREFIX calculation: <https://w3id.org/mdo/calculation/>

4

5 SELECT ?calculation ?method WHERE

6 {

7 ?calculation rdf:type core:Calculation;

8 calculation:hascomputationalMethod ?method.

9 }

188

https://w3id.org/mdo/calculation
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns
https://w3id.org/mdo/structure
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns

CQ10: What is the value for a specific parameter (e.g., cutoff energy) of
the method used for the calculation?

Listing A.10: A SPARQL query for MDO CQ10.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3 PREFIX calculation: <https://w3id.org/mdo/calculation/>

4

5 SELECT ?calculation ?method ?name ?value WHERE

6 {

7 ?calculation rdf:type core:Calculation;

8 calculation:hasComputationalMethod ?method.

9 ?method calculation:hasParameter ?parameter;

10 calculation:hasParameterValue ?value;

11 calculation:hasParameterName ?name.

12 FILTER (?name="cutoff_energy")

13 }

CQ11: Which software produced the result of a calculation?

Listing A.11: A SPARQL query for MDO CQ11.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3 PREFIX prov: <http://www.w3.org/ns/prov#>

4

5 SELECT ?calculation ?software WHERE

6 {

7 ?calculation rdf:type core:Calculation;

8 prov:wasAssociatedWith ?software.

9 }

A
pp

en
di

x
A

189

http://www.w3.org/ns/prov
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns
https://w3id.org/mdo/calculation
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns

A. SPARQL queries for MDO competency questions

CQ12: Who are the authors of the calculation?

Listing A.12: A SPARQL query for MDO CQ12.

A
pp

en
di

x
A

 1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3 PREFIX provenance: <https://w3id.org/mdo/provenance/>

4 PREFIX prov: <http://www.w3.org/ns/prov#>

5

6 SELECT ?calculation ?author_name WHERE

7 {

8 ?calculation rdf:type core:Calculation;

9 core:hasOutputStructure ?output_structure.

10 ?output_structure rdf:type core:Structure;

11 prov:wasAttributedTo ?reference.

12 ?reference rdf:type provenance:ReferenceAgent;

13 provenance:hasAuthorName ?author_name.

14 }

CQ13: Which software or code does the calculation run with?

Listing A.13: A SPARQL query for MDO CQ13.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX core: <https://w3id.org/mdo/core/>

3 PREFIX prov: <http://www.w3.org/ns/prov#>

4

5 SELECT ?calculation ?software WHERE

6 {

7 ?calculation rdf:type core:Calculation;

8 prov:wasAssociatedWith ?software.

9 }

190

http://www.w3.org/ns/prov
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/ns/prov
https://w3id.org/mdo/provenance
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns

1
2
3
4
5
6
7
8
9

10
11
12
13
14

CQ14: When was the calculation data published to the database?

Listing A.14: A SPARQL query for MDO CQ14.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX core: <https://w3id.org/mdo/core/>

PREFIX provenance: <https://w3id.org/mdo/provenance/>

PREFIX prov: <http://www.w3.org/ns/prov#>

SELECT ?calculation ?date WHERE

{

?calculation rdf:type core:Calculation;

core:hasOutputStructure ?output_structure.

?output_structure rdf:type core:Structure;

prov:wasAttributedTo ?reference.

?reference rdf:type provenance:ReferenceAgent;

provenance:hasPublicationDateTime ?datetime.

}

A
pp

en
di

x
A

191

http://www.w3.org/ns/prov
https://w3id.org/mdo/provenance
https://w3id.org/mdo/core
http://www.w3.org/1999/02/22-rdf-syntax-ns

A
pp

en
di

x
A

Appendix

B

GraphQL schemas used in

the evaluation

This appendix lists the GraphQL schemas used in the real case evaluation

and the evaluation based on LinGBM, presented in Chapter 8.

B.1 MDO related GraphQL schema

Listing B.1: MDO related GraphQL schema.

interface Thing{

iri: String

}

interface Property{

PropertyName: String

numericalValue: Float

iri: String

}

type Query{

PhysicalPropertyList(filter: PhysicalPropertyFilter):

[PhysicalProperty]

AngleTripleList(filter: AngleTripleFilter): [AngleTriple]

CompositionList(filter: CompositionFilter): [Composition]

CalculatedPropertyList(filter: CalculatedPropertyFilter):

[CalculatedProperty]

AxisVectorsList(filter: AxisVectorsFilter): [AxisVectors]

LatticeList(filter: LatticeFilter): [Lattice]

OccupancyList(filter: OccupancyFilter): [Occupancy]

A
pp

en
di

x
B

193

B. GraphQL schemas used in the evaluation

A
pp

en
di

x
B

SpeciesList(filter: SpeciesFilter): [Species]

BasisList(filter: BasisFilter): [Basis]

LengthTripleList(filter: LengthTripleFilter): [LengthTriple]

SpaceGroupList(filter: SpaceGroupFilter): [SpaceGroup]

StructureList(filter: StructureFilter): [Structure]

CalculationList(filter: CalculationFilter): [Calculation]

CoordinateVectorList(filter: CoordinateVectorFilter):

[CoordinateVector]

PointGroupList(filter: PointGroupFilter): [PointGroup]

SiteList(filter: SiteFilter): [Site]

PropertyList(filter: PropertyFilter): [Property]

}

type AxisVectors{

has_c_axisVector: CoordinateVector

has_b_axisVector: CoordinateVector

has_a_axisVector: CoordinateVector

iri: String

}

type Lattice{

hasAngleVector: AngleTriple

hasLengthVector: LengthTriple

hasAxisVectors: AxisVectors

iri: String

}

type CoordinateVector{

X_axisCoordinate: Float

Z_axisCoordinate: Float

Y_axisCoordinate: Float

iri: String

}

type CalculatedProperty implements Property{

PropertyName: String

numericalValue: Float

iri: String

}

type PhysicalProperty implements Property{

PropertyName: String

numericalValue: Float

iri: String

}

194

B.1. MDO related GraphQL schema

type Composition{

ReducedFormula: String

HillFormula: String

DescriptiveFormula: String

AnonymousFormula: String

iri: String

}

type Occupancy{

hasSpecies: [Species]

hasSite: [Site]

iri: String

}

type Structure implements Thing{

hasOccupancy: [Occupancy]

hasSpaceGroup: SpaceGroup

hasComposition: Composition

hasBasis: Basis

hasLattice: Lattice

iri: String

}

type Calculation implements Thing{

ID: String

hasInputProperty: Property

hasOutputCalculatedProperty: CalculatedProperty

hasInputStructure: [Structure]

hasOutputStructure: [Structure]

iri: String

}

type PointGroup{

PointGroupHMName: String

iri: String

}

type SpaceGroup{

hasPointGroup: PointGroup

SpaceGroupID: Int

SpaceGroupSymbol: String

iri: String

}

type LengthTriple{

Length_a: Float

A
pp

en
di

x
B

195

B. GraphQL schemas used in the evaluation

A
pp

en
di

x
B

Length_b: Float

Length_c: Float

iri: String

}

type Site{

hasCartesianCoordinates: CoordinateVector

hasFractionalCoordinates: CoordinateVector

iri: String

}

type AngleTriple{

Angle_gamma: Float

Angle_alpha: Float

Angle_beta: Float

iri: String

}

type Basis{

hasAxisVectors: [AxisVectors]

hasAngleVector: [AngleTriple]

hasLengthVector: [LengthTriple]

iri: String

}

type Species{

iri: String

}

input AxisVectorsFilter{

_and: [AxisVectorsFilter]

_or: [AxisVectorsFilter]

_not: AxisVectorsFilter

has_c_axisVector: CoordinateVectorFilter

has_b_axisVector: CoordinateVectorFilter

has_a_axisVector: CoordinateVectorFilter

iri: StringFilter

}

input LatticeFilter{

_and: [LatticeFilter]

_or: [LatticeFilter]

_not: LatticeFilter

hasAngleVector: AngleTripleFilter

hasLengthVector: LengthTripleFilter

hasAxisVectors: AxisVectorsFilter

196

B.1. MDO related GraphQL schema

iri: StringFilter

}

input CoordinateVectorFilter{

_and: [CoordinateVectorFilter]

_or: [CoordinateVectorFilter]

_not: CoordinateVectorFilter

X_axisCoordinate: FloatFilter

Z_axisCoordinate: FloatFilter

Y_axisCoordinate: FloatFilter

iri: StringFilter

}

input PropertyFilter{

_and: [PropertyFilter]

_or: [PropertyFilter]

_not: PropertyFilter

numericalValue: FloatFilter

iri: StringFilter

}

input CalculatedPropertyFilter{

_and: [CalculatedPropertyFilter]

_or: [CalculatedPropertyFilter]

_not: CalculatedPropertyFilter

numericalValue: FloatFilter

iri: StringFilter

}

input PhysicalPropertyFilter{

_and: [PhysicalPropertyFilter]

_or: [PhysicalPropertyFilter]

_not: PhysicalPropertyFilter

numericalValue: FloatFilter

iri: StringFilter

}

input CompositionFilter{

_and: [CompositionFilter]

_or: [CompositionFilter]

_not: CompositionFilter

ReducedFormula: StringFilter

HillFormula: StringFilter

DescriptiveFormula: StringFilter

AnonymousFormula: StringFilter

A
pp

en
di

x
B

197

B. GraphQL schemas used in the evaluation

A
pp

en
di

x
B

iri: StringFilter

}

input OccupancyFilter{

_and: [OccupancyFilter]

_or: [OccupancyFilter]

_not: OccupancyFilter

hasSpecies: SpeciesFilter

hasSite: SiteFilter

iri: StringFilter

}

input StructureFilter{

_and: [StructureFilter]

_or: [StructureFilter]

_not: StructureFilter

hasOccupancy: OccupancyFilter

hasSpaceGroup: SpaceGroupFilter

hasComposition: CompositionFilter

hasBasis: BasisFilter

hasLattice: LatticeFilter

iri: StringFilter

}

input CalculationFilter{

_and: [CalculationFilter]

_or: [CalculationFilter]

_not: CalculationFilter

ID: StringFilter

hasInputProperty: PropertyFilter

hasOutputCalculatedProperty: CalculatedPropertyFilter

hasInputStructure: StructureFilter

hasOutputStructure: StructureFilter

iri: StringFilter

}

input PointGroupFilter{

_and: [PointGroupFilter]

_or: [PointGroupFilter]

_not: PointGroupFilter

PointGroupHMName: StringFilter

iri: StringFilter

}

input SpaceGroupFilter{

198

B.1. MDO related GraphQL schema

_and: [SpaceGroupFilter]

_or: [SpaceGroupFilter]

_not: SpaceGroupFilter

hasPointGroup: PointGroupFilter

SpaceGroupID: IntFilter

SpaceGroupSymbol: StringFilter

iri: StringFilter

}

input LengthTripleFilter{

_and: [LengthTripleFilter]

_or: [LengthTripleFilter]

_not: LengthTripleFilter

Length_a: FloatFilter

Length_b: FloatFilter

Length_c: FloatFilter

iri: StringFilter

}

input SiteFilter{

_and: [SiteFilter]

_or: [SiteFilter]

_not: SiteFilter

hasCartesianCoordinates: CoordinateVectorFilter

hasFractionalCoordinates: CoordinateVectorFilter

iri: StringFilter

}

input AngleTripleFilter{

_and: [AngleTripleFilter]

_or: [AngleTripleFilter]

_not: AngleTripleFilter

Angle_gamma: FloatFilter

Angle_alpha: FloatFilter

Angle_beta: FloatFilter

iri: StringFilter

}

input BasisFilter{

_and: [BasisFilter]

_or: [BasisFilter]

_not: BasisFilter

hasAxisVectors: AxisVectorsFilter

hasAngleVector: AngleTripleFilter

A
pp

en
di

x
B

199

B. GraphQL schemas used in the evaluation

A
pp

en
di

x
B

hasLengthVector: LengthTripleFilter

iri: StringFilter

}

input SpeciesFilter{

_and: [SpeciesFilter]

_or: [SpeciesFilter]

_not: SpeciesFilter

iri: StringFilter

}

input StringFilter{

_eq: String

_neq: String

_gt: String

_egt: String

_lt: String

_elt: String

_in: [String]

_nin: [String]

_like: String

_ilike: String

}

input IntFilter{

_eq: Int

_neq: Int

_gt: Int

_egt: Int

_lt: Int

_elt: Int

_in: [Int]

_nin: [Int]

_like: Int

_ilike: Int

}

input FloatFilter{

_eq: Float

_neq: Float

_gt: Float

_egt: Float

_lt: Float

_elt: Float

200

_in: [Float]

_nin: [Float]

_like: Float

_ilike: Float

}

B.1. MDO related GraphQL schema

201

A
pp

en
di

x
B

B. GraphQL schemas used in the evaluation

A
pp

en
di

x
B

B.2 University related GraphQL schema

Listing B.2: University related GraphQL schema.

type Query{

UniversityList(filter: UniversityFilter): [University]

FacultyList(filter: FacultyFilter): [Faculty]

DepartmentList(filter: DepartmentFilter): [Department]

ResearchGroupList(filter: ResearchGroupFilter): [ResearchGroup]

ProfessorList(filter: ProfessorFilter): [Professor]

LecturerList(filter: LecturerFilter): [Lecturer]

PublicationList(filter: PublicationFilter): [Publication]

GraduateStudentList(filter: GraduateStudentFilter):

[GraduateStudent]

}

type University{

nr: Int

name: String

undergraduateDegreeObtainedByFaculty: [Faculty]

mastergraduateDegreeObtainers: [Faculty]

doctoralDegreeObtainers: [Faculty]

undergraduateDegreeObtainedBystudent: [GraduateStudent]

}

type Faculty{

nr: Int

name: String

telephone: String

emailAddress: String

undergraduateDegreeFrom: University

masterDegreeFrom: University

doctoralDegreeFrom: University

worksFor: Department

publications: [Publication]

}

type Department{

nr: Int

name: String

subOrganizationOf: University

head: Professor

faculties: [Faculty]

202

B.2. University related GraphQL schema

}

type ResearchGroup{

nr: Int

subOrganizationOf: Department

}

type Professor{

nr: Int

professorType: String

researchInterest: String

headOf: Department

name: String

telephone: String

emailAddress: String

undergraduateDegreeFrom: University

masterDegreeFrom: University

doctoralDegreeFrom: University

worksFor: Department

publications: [Publication]

}

type Lecturer{

nr: Int

name: String

telephone: String

emailAddress: String

undergraduateDegreeFrom: University

masterDegreeFrom: University

doctoralDegreeFrom: University

worksFor: Department

publications: [Publication]

}

type Publication{

nr: Int

name: String

title: String

abstract: String

mainAuthor: [Faculty]

}

type GraduateStudent{

nr: Int

name: String

A
pp

en
di

x
B

203

B. GraphQL schemas used in the evaluation

A
pp

en
di

x
B

telephone: String

emailAddress: String

age: Int

memberOf: Department

undergraduateDegreeFrom: University

advisor: Professor

}

input UniversityFilter{

_and: [UniversityFilter]

_or: [UniversityFilter]

_not: UniversityFilter

nr: IntFilter

name: StringFilter

undergraduateDegreeObtainedByFaculty: [FacultyFilter]

mastergraduateDegreeObtainers: [FacultyFilter]

doctoralDegreeObtainers: [FacultyFilter]

undergraduateDegreeObtainedBystudent: [GraduateStudentFilter]

}

input FacultyFilter{

_and: [FacultyFilter]

_or: [FacultyFilter]

_not: FacultyFilter

nr: IntFilter

name: StringFilter

telephone: StringFilter

emailAddress: StringFilter

undergraduateDegreeFrom: UniversityFilter

masterDegreeFrom: UniversityFilter

doctoralDegreeFrom: UniversityFilter

worksFor: DepartmentFilter

publications: [PublicationFilter]

}

input DepartmentFilter{

_and: [DepartmentFilter]

_or: [DepartmentFilter]

_not: DepartmentFilter

nr: IntFilter

name: StringFilter

subOrganizationOf: UniversityFilter

head: ProfessorFilter

204

B.2. University related GraphQL schema

faculties: [FacultyFilter]

}

input ResearchGroupFilter{

_and: [ResearchGroupFilter]

_or: [ResearchGroupFilter]

_not: ResearchGroupFilter

nr: IntFilter

subOrganizationOf: DepartmentFilter

}

input ProfessorFilter{

_and: [ProfessorFilter]

_or: [ProfessorFilter]

_not: ProfessorFilter

nr: IntFilter

professorType: StringFilter

researchInterest: StringFilter

headOf: StringFilter

name: StringFilter

telephone: StringFilter

emailAddress: StringFilter

undergraduateDegreeFrom: UniversityFilter

masterDegreeFrom: UniversityFilter

doctoralDegreeFrom: UniversityFilter

worksFor: DepartmentFilter

publications: [PublicationFilter]

}

input LecturerFilter{

_and: [LecturerFilter]

_or: [LecturerFilter]

_not: LecturerFilter

nr: IntFilter

name: StringFilter

telephone: StringFilter

emailAddress: StringFilter

undergraduateDegreeFrom: UniversityFilter

masterDegreeFrom: UniversityFilter

doctoralDegreeFrom: UniversityFilter

worksFor: DepartmentFilter

publications: [PublicationFilter]

}

A
pp

en
di

x
B

205

B. GraphQL schemas used in the evaluation

A
pp

en
di

x
B

input PublicationFilter{

_and: [PublicationFilter]

_or: [PublicationFilter]

_not: PublicationFilter

nr: IntFilter

name: StringFilter

title: StringFilter

abstract: StringFilter

mainAuthor: [FacultyFilter]

}

input GraduateStudentFilter{

_and: [GraduateStudentFilter]

_or: [GraduateStudentFilter]

_not: GraduateStudentFilter

nr: IntFilter

name: StringFilter

telephone: StringFilter

emailAddress: StringFilter

age: IntFilter

memberOf: DepartmentFilter

undergraduateDegreeFrom: UniversityFilter

advisor: ProfessorFilter

}

input StringFilter{

_eq: String

_neq: String

_gt: String

_egt: String

_lt: String

_elt: String

_in: [String]

_nin: [String]

_like: String

_ilike: String

}

input IntFilter{

_eq: Int

_neq: Int

_gt: Int

_egt: Int

206

_lt: Int

_elt: Int

_in: [Int]

_nin: [Int]

_like: Int

_ilike: Int

}

B.2. University related GraphQL schema

207

A
pp

en
di

x
B

A
pp

en
di

x
B

Appendix

C

GraphQL queries used in

the evaluation

This appendix lists the 12 GraphQL queries used in the real case evaluation

and 8 example queries used in the evaluation based on LinGBM, presented in

Chapter 8.

C.1 MDO related queries

C.1.1 Queries without filter expressions

Query 1: List all the structures containing the reduced formula of each

structure’s composition.

Listing C.1: Q1 in the real case evaluation.

1 {

2 StructureList{

3 hasComposition{

4 ReducedFormula

5 }

6 }

7 }

A
pp

en
di

x
C

209

C. GraphQL queries used in the evaluation

Query 2: List all the calculations containing the reduced formula of each

output structure’s composition.

Listing C.2: Q2 in the real case evaluation.

A
pp

en
di

x
C

1 {

2 CalculationList{

3 hasOutputStructure{

4 hasComposition{

5 ReducedFormula

6 }

7 }

8 }

9 }

Query 3: List all the calculations containing the name and value of each

output calculated property.

Listing C.3: Q3 in the real case evaluation.

1 {

2 CalculationList{

3 hasOutputCalculatedProperty{

4 PropertyName

5 numericalValue

6 }

7 }

8 }

210

C.1. MDO related queries

Query 4: List all the calculations containing the name and value of each

output calculated property, the reduced formula of each output structure’s
composition.

Listing C.4: Q4 in the real case evaluation.

1 {

2 CalculationList{

3 hasOutputStructure{

4 hasComposition{

5 ReducedFormula

6 }

7 }

8 hasOutputCalculatedProperty{

9 PropertyName

10 numericalValue

11 }

12 }

13 }

Query 5: List all the calculations and structures.

Listing C.5: Q5 in the real case evaluation.

1 {

2 ThingList{

3 ... on Calculation{iri}

4 ... on Structure{iri}

5 }

6 }

A
pp

en
di

x
C

211

C. GraphQL queries used in the evaluation

A
pp

en
di

x
C

C.1.2 Queries with filter expressions

Query 6: List all the calculations where the ID is in a given list of values.

Listing C.6: Q6 in the real case evaluation.

1 {

2 CalculationList(

3 filter: {

4 ID: {

5 _in: ["6332","8088","21331","mp-561628","mp-614918"]

6 }

7 }

8)

9 {

10 ID

11 hasOutputCalculatedProperty {

12 PropertyName

13 numericalValue

14 }

15 }

16 }

212

C.1. MDO related queries

Query 7: List all the calculations where the ID is in a given list of values
and the reduced formula is in a given list of values.

Listing C.7: Q7 in the real case evaluation.

1 {

2 CalculationList(

3 filter: {

4 _and: [

5 {

6 ID: {

7 _in: ["6332","8088","21331","mp-561628","mp-614918"]

8 }

9 }

10 {

11 hasOutputStructure: {

12 hasComposition: {

13 ReducedFormula: {

14 _in: ["MnCl2","YClO"]

15 }

16 }

17 }

18 }

19]

20 }

21)

22 {

23 ID

24 hasOutputCalculatedProperty {

25 PropertyName

26 numericalValue

27 }

28 }

29 }

A
pp

en
di

x
C

213

C. GraphQL queries used in the evaluation

A
pp

en
di

x
C

Query 8: List all the calculations where the ID is in a given list of values,
and the reduced formula is in a given list A or B.

Listing C.8: Q8 in the real case evaluation.

1 {

2 CalculationList(

3 filter: {

4 _and: [

5 {

6 ID: {

7 _in: ["6332","8088","21331","mp-561628","mp-614918"]}

8 }

9 {

10 _or: [

11 {

12 hasOutputStructure: { hasComposition: {

13 ReducedFormula: { _in: ["MnCl2","YClO"]}

14 }

15 }

16 }

17 {

18 hasOutputStructure: { hasComposition: {

19 ReducedFormula: { _in: ["CeCrS2O","SiO2","O"]}

20 }

21 }

22 }

23]

24 }

25]

26 }

27)

28 {

29 ID

30 hasOutputCalculatedProperty {

31 PropertyName

32 numericalValue

33 }

34 }

35 }

214

C.1. MDO related queries

Query 9: List all the calculations where the value of band gap property is
higher than 5.

Listing C.9: Q9 in the real case evaluation.

1 {

2 CalculationList(

3 filter: {

4 hasOutputCalculatedProperty: {

5 _and: [

6 { PropertyName: { _eq: "Band Gap" } }

7 { numericalValue: { _gt: 5 } }

8]

9 }

10 }

11)

12 {

13 ID

14 hasOutputStructure {

15 hasComposition {

16 ReducedFormula

17 }

18 }

19 }

20 }

A
pp

en
di

x
C

215

C. GraphQL queries used in the evaluation

A
pp

en
di

x
C

Query 10: List all the calculations where the value of band gap property is
higher than 5, and the reduced formula in a given list of values.

Listing C.10: Q10 in the real case evaluation.

1 {

2 CalculationList(

3 filter: {

4 _and: [

5 {

6 hasOutputStructure: {

7 hasComposition: {

8 ReducedFormula: { _in: ["MnCl2", "YClO"] }

9 }

10 }

11 }

12 {

13 hasOutputCalculatedProperty: {

14 _and: [

15 { PropertyName: { _eq: "Band Gap" } }

16 { numericalValue: { _gt: 5 } }

17]

18 }

19 }

20]

21 }

22)

23 {

24 ID

25 hasOutputStructure {

26 hasComposition {

27 ReducedFormula

28 }

29 }

30 hasOutputCalculatedProperty {

31 PropertyName

32 numericalValue

33 }

34 }

35 }

216

C.1. MDO related queries

Query 11: List all the calculations where the filter condition is complex

that needs to be simplified.

Listing C.11: Q11 in the real case evaluation.

1 {

2 CalculationList(

3 filter: {

4 _and: [

5 { hasOutputCalculatedProperty: {

6 _and: [

7 { PropertyName: { _eq: "Band Gap" } }

8 { numericalValue: { _gt: 4 } }

9]

10 }

11 }

12 {

13 _or: [

14 { hasOutputCalculatedProperty: {

15 _and: [

16 { PropertyName: { _eq: "Band Gap" } }

17 { numericalValue: { _gt: 4 } }

18]

19 }

20 }

21 { hasOutputStructure: {

22 hasComposition: {

23 ReducedFormula: { _in: ["YClO", "CsCl"] }

24 }

25 }

26 }

27]

28 }

29]

30 }

31)

32 {

33 ID

34 }

35 }

A
pp

en
di

x
C

217

C. GraphQL queries used in the evaluation

Query 12: List all the structures that contain Silicon element.

Listing C.12: Q12 in the real case evaluation.

1 {

2 StructureList(

3 filter: {

4 hasComposition: {

5 ReducedFormula: { _like: "%Si%" }

6 }

7 }

8)

9 {

10 hasComposition {

11 ReducedFormula

12 }

13 }

14 }

A
pp

en
di

x
C

218

C.2. Query examples according to query templates in LinGBM.

C.2 Query examples according to query templates in

LinGBM.

An example query in QS1 according to QT1. Queries of this template

retrieve several attributes of the graduate student that get bachelor’s degree

from the university that grant the doctoral degree to the given faculty.

Listing C.13: An example query based on QT1 from LinGBM.

1 {

2 FacultyList(

3 filter: {

4 nr: { _eq: 214041 }

5 }

6)

7 {

8 doctoralDegreeFrom {

9 undergraduateDegreeObtainedBystudent {

10 nr

11 emailAddress

12 }

13 }

14 }

15 }

A
pp

en
di

x
C

219

C. GraphQL queries used in the evaluation

An example query in QS2 according to QT2. Queries of this template

retrieve all the publications by all faculties that got their doctoral degree from

a given university.

Listing C.14: An example query based on QT2 from LinGBM.

1 {

2 UniversityList(

3 filter: {

4 nr: { _eq: 531 }

5 }

6)

7 {

8 doctoralDegreeObtainers {

9 publications {

10 title

11 }

12 }

13 }

14 }

A
pp

en
di

x
C

220

C.2. Query examples according to query templates in LinGBM.

An example query in QS3 according to QT3. Given a research group

that belongs to a department, queries of this template retrieve the University

that granted the doctoral degree to the head of this department.

Listing C.15: An example query based on QT3 from LinGBM.

1 {

2 ResearchGroupList(

3 filter: {

4 nr: { _eq: 32008 }

5 }

6)

7 {

8 subOrganizationOf {

9 head {

10 nr

11 emailAddress

12 doctoralDegreeFrom {

13 nr

14 }

15 }

16 }

17 }

18 }

A
pp

en
di

x
C

221

C. GraphQL queries used in the evaluation

A
pp

en
di

x
C

An example query in QS4 according to QT4. Queries of this template

retrieve the details of the graduate student that got bachelor’s degree from

the same university as the one that granted the doctoral degree to the given

lecturer, including the department of the students’supervisor.

Listing C.16: An example query based on QT4 from LinGBM.

1 {

2 LecturerList(

3 filter: {

4 nr: { _eq: 209064 }

5 }

6)

7 {

8 doctoralDegreeFrom {

9 nr

10 undergraduateDegreeObtainedBystudent {

11 nr

12 emailAddress

13 advisor {

14 nr

15 emailAddress

16 worksFor {

17 nr

18 }

19 }

20 }

21 }

22 }

23 }

222

C.2. Query examples according to query templates in LinGBM.

An example query in QS5 according to QT5. Queries of this template

go from a given department to its university, then retrieve all graduate stu-
dents who got the bachelor’s degree from the university, then come back to

the department. Each query repeats this cycle two times and requests the

students’email addresses along the way.

Listing C.17: An example query based on QT5 from LinGBM.

1 {

2 DepartmentList(

3 filter:{

4 nr:{ _eq: 314 }

5 })

6 {

7 nr

8 subOrganizationOf {

9 nr

10 undergraduateDegreeObtainedBystudent {

11 nr

12 emailAddress

13 memberOf {

14 nr

15 subOrganizationOf {

16 nr

17 undergraduateDegreeObtainedBystudent {

18 nr

19 emailAddress

20 memberOf {

21 nr

22 }

23 }

24 }

25 }

26 }

27 }

28 }

29 }

A
pp

en
di

x
C

223

C. GraphQL queries used in the evaluation

A
pp

en
di

x
C

An example query in QS6 according to QT6. Queries of this template

retrieve all graduate students that graduated from a given university, and then

retrieve the professors that supervise these students and the department’s
head of these professors.

Listing C.18: An example query based on QT6 from LinGBM.

1 {

2 UniversityList(

3 filter: {

4 nr: { _eq: 973 }

5 }

6)

7 {

8 undergraduateDegreeObtainedBystudent {

9 advisor {

10 worksFor {

11 nr

12 }

13 }

14 }

15 }

16 }

An example query in QS7 according to QT10. Queries of this template

retrieve all publications for which the title contains the given keyword.

Listing C.19: An example query based on QT10 from LinGBM.

1 {

2 PublicationList(

3 filter: {

4 title:{ _like: "%potsy%" }

5 }

6)

7 {

8 nr

9 title

10 abstract

11 }

12 }

224

C.2. Query examples according to query templates in LinGBM.

An example query in QS8 according to QT11. Queries of this template

search for all graduate students who have graduated from a given university

by using a search condition (instead of starting the traversal from the given

university as done in Q6). Then, for each graduate student, the advisor is
requested.

Listing C.20: An example query based on QT11 from LinGBM.

1 {

2 GraduateStudentList(

3 filter: {

4 undergraduateDegreeFrom: {

5 nr: { _eq: 424 }

6 }

7 }

8)

9 {

10 nr

11 advisor {

12 nr

13 }

14 }

15 }

A
pp

en
di

x
C

225

A
pp

en
di

x
C

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

Linköping Studies in Arts and Sciences
Linköping Studies in Statistics

Linköping Studies in Information Science

Linköping Studies in Science and Technology
No 14 Anders Haraldsson: A Program Manipulation

System Based on Partial Evaluation, 1977, ISBN 91-
7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification of
Time Margins in Digital Designs, 1977, ISBN 91-7372-
157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91- 7372-
168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compiler
and its Implications for Ideal Hardware, 1978, ISBN
91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries in
a Meta-Database System, 1978, ISBN 91- 7372-232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Development
of Methods and Tools for Interactive Design of
Applications Software, 1980, ISBN 91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Abstract
Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-7372-
489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91- 7372-527-7.

No 94 Hans Lunell: Code Generator Writing Systems, 1983,
ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Programming
Environment based on Incremental Compilation,
1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372- 805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for Non-
Monotonic Reasoning, 1987, ISBN 91-7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-7870-
301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic of
Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface
Management Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowledge
Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interactive
Design in Multiple Inheritance Hierarchies, 1991,
ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-
Cognitive and Computational Aspects, 1992, ISBN
91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Manage-
ment Systems with an Active Expert Methodology,
1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity of
Reasoning about Plans, 1992, ISBN 91-7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slicing
with Applications to Debugging and Testing, 1993,
ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-7871-078-
2.

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach, 1993,
ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Physical
Environments: Compositional Modelling and Frame-
work for Verification, 1994, ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision Support
and Learning. A Study of Discrete-Event
Manufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-516-
4.

No 383 Andreas Kågedal: Exploiting Groundness in Logic
Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic
Control Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996, ISBN
91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996, ISBN
91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning
Perspective - Development and Evaluation of the
SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning:
Algorithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic
Programming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-7871-
728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in
Description Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Relational
Database Technology for Finite Element Analysis
Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions in
Unification-Based Formalisms, 1997, ISBN 91-7871-
857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Coop-
erative Perspective on Knowledge-Based Decision
Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management
Systems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN 91-
7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Heteroge-
neous Real-Time Systems, 1997, ISBN 91-7219-035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Languages from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av kom-
munikationsmönster i satellitkontor och flexibla
kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a
Parallel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault Prevention
- An Empirical Study in Software Engineering, 1998,
ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-X.

No 555 Jonas Hallberg: Timing Issues in High-Level Synthe-
sis, 1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data - From
Discrete to Continuous, 1999, ISBN 91-7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based on Col-
laborative Dialogue with a Learning Companion,
1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN 91-
7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image
Reinterpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narratives,
1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organizational
Aspects of Requirements Engineering Methods - A
practice-oriented approach, 1999, ISBN 91-7219-541-
X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Overload
Management in Real-Time Database Systems, 1999,
ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN 91-
7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on the
Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-7219-
547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN 91-
7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken -
En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-7219-
709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and Knowledge
Together: Information Systems Design for Autonomy
and Control in Command Work, 2000, ISBN 91-7219-
796-X.

No 660 Erik Larsson: An Integrated System-Level Design for
Testability Methodology, 2000, ISBN 91-7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Provi-
sion - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN 91-7373-126-
9.

No 724 Paul Scerri: Designing Agents for Systems with Ad-
justable Autonomy, 2001, ISBN 91-7373-207-9.

No 725 Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN 91-
7373-208-7.

No 726 Pär Carlshamre: A Usability Perspective on Require-
ments Engineering - From Methodology to Product
Development, 2001, ISBN 91-7373-212-5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN 91-
7373-258-3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems, 2002,
ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Teamwork
Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for Time
Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-supported
Interorganisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory Design
of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of Dis-
tributed Tactical Operations, 2002, ISBN 91-7373-421-
7.

No 772 Pawel Pietrzak: A Type-Based Framework for Locat-
ing Errors in Constraint Logic Programs, 2002, ISBN
91-7373-422-5.

No 758 Erik Berglund: Library Communication Among Pro-
grammers Worldwide, 2002, ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented Dynamic
Systems Using a Logic-Based Framework, 2002, ISBN
91-7373-424-1.

No 779 Mathias Broxvall: A Study in the Computational
Complexity of Temporal Reasoning, 2002, ISBN 91-
7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for Enabling
Interoperability of Structured and Object-Oriented
Analysis and Design Tools, 2002, ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie av
den Internetbaserade encyklopedins bruksegenska-
per, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X.

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av
informationssystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics -
programming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of
Information Systems with GIS Functionality in
Public Health Informatics: A Requirements
Engineering Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-Time
Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic Behaviour of
Large Distributed Systems to Improve Development
and Testing – An Empirical Study in Software
Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineering
Tool Data Representation and Exchange, 2004, ISBN
91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of
Organising when Implementing and Using
Enterprise Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of Ontolo-
gies in Information-Providing Dialogue Systems,
2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Healthcare
Professionals, 2004, ISBN 91-7373-971-5.

No 882 Robert Eklund: Disfluency in Swedish human-
human and human-machine travel booking di-
alogues, 2004, ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign
Linguistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using
Finite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-in-
ventory systems - Modelling and Analysis in both a
traditional and an e-business context, 2004, ISBN 91-
85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interaction,
2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Scheduling
Techniques for Real-Time Embedded Systems, 2004,
ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as
Constructing and Opposing Customer Focus: Three
Case Studies on Management Accounting and
Customer Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other
Extensions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Informa-
tion Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for Con-
straint Satisfaction and Related Problems - Methods
and Applications, 2005, ISBN 91-85297-99-2.

No 963 Calin Curescu: Utility-based Optimisation of
Resource Allocation for Wireless Networks, 2005,
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic
Situations, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-85457-
54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour, 2005,
ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application
Integration for Business-to-Business
Communications, 2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for
Automated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Reusable and
Reconfigurable Real-Time Software using Aspects
and Components, 2006, ISBN 91-85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with Detailed
Contact Analysis, 2006, ISBN 91-85497-43-X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact
Satisfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level Lan-
guage for Modeling with Partial Differential Equa-
tions, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-79-8

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN 91-
85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Cooperation,
2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code Gener-
ation for Digital Signal Processors, 2006, ISBN 91-
85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of Equa-
tion-Based Simulation Programs, 2006, ISBN 91-
85523-68-2.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and
Specifications, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natural
Language Processing, 2006, ISBN 91-85643-88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of Glasses -
Applying Systemic Accident Models on Road Safety,
2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which cannot
be seen - A Cognitive Systems Engineering
perspective on requirements management, 2006,
ISBN 91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for Semantic
Web Technology, 2007, ISBN 91-85643-31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion in
Software Testing, 2007, ISBN 978-91-85715-74-9.

No 1075 Almut Herzog: Usable Security Policies for Runtime
Environments, 2007, ISBN 978-91-85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for Satisfiability and related problems,
2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architectures,
2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-
hensible Data Mining Models - An Evolutionary
Approach, 2007, ISBN 978-91-85715-34-3.

No 1089 Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogeneous
Scheduling Policies, 2007, ISBN 978-91-85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous Shape
Writing for Text Entry and Control, 2007, ISBN 978-
91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007, ISBN
978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting so-
cially through embodied action, 2007, ISBN 978-91-
85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Management
in Conversational Recommender Systems, 2007,
ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in
Embedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Predictable
Design of Real-time Embedded Systems, 2007, ISBN
978-91-85831-06-7.

No 1139 Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation
and Interactions, 2007, ISBN 978-91-85895-66-3.

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN 978-
91-85895-49-6.

No 1150 Sanny Syberfeldt: Optimistic Replication with For-
ward Conflict Resolution in Distributed Real-Time
Databases, 2007, ISBN 978-91-85895-27-4.

No 1155 Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008, ISBN
978-91-85895-11-3.

No 1156 Artur Wilk: Types for XML with Application to
Xcerpt, 2008, ISBN 978-91-85895-08-3.

No 1183 Adrian Pop: Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages, 2008, ISBN 978-91-7393-895-2.

No 1185 Jörgen Skågeby: Gifting Technologies -
Ethnographic Studies of End-users and Social Media
Sharing, 2008, ISBN 978-91-7393-892-1.

No 1187 Imad-Eldin Ali Abugessaisa: Analytical tools and
information-sharing methods supporting road safety
organizations, 2008, ISBN 978-91-7393-887-7.

No 1204 H. Joe Steinhauer: A Representation Scheme for De-
scription and Reconstruction of Object
Configurations Based on Qualitative Relations, 2008,
ISBN 978-91-7393-823-5.

No 1222 Anders Larsson: Test Optimization for Core-based
System-on-Chip, 2008, ISBN 978-91-7393-768-9.

No 1238 Andreas Borg: Processes and Models for Capacity
Requirements in Telecommunication Systems, 2009,
ISBN 978-91-7393-700-9.

No 1240 Fredrik Heintz: DyKnow: A Stream-Based Know-
ledge Processing Middleware Framework, 2009,
ISBN 978-91-7393-696-5.

No 1241 Birgitta Lindström: Testability of Dynamic Real-
Time Systems, 2009, ISBN 978-91-7393-695-8.

No 1244 Eva Blomqvist: Semi-automatic Ontology Construc-
tion based on Patterns, 2009, ISBN 978-91-7393-683-5.

No 1249 Rogier Woltjer: Functional Modeling of Constraint
Management in Aviation Safety and Command and
Control, 2009, ISBN 978-91-7393-659-0.

No 1260 Gianpaolo Conte: Vision-Based Localization and
Guidance for Unmanned Aerial Vehicles, 2009, ISBN
978-91-7393-603-3.

No 1262 AnnMarie Ericsson: Enabling Tool Support for For-
mal Analysis of ECA Rules, 2009, ISBN 978-91-7393-
598-2.

No 1266 Jiri Trnka: Exploring Tactical Command and
Control: A Role-Playing Simulation Approach, 2009,
ISBN 978-91-7393-571-5.

No 1268 Bahlol Rahimi: Supporting Collaborative Work
through ICT - How End-users Think of and Adopt
Integrated Health Information Systems, 2009, ISBN
978-91-7393-550-0.

No 1274 Fredrik Kuivinen: Algorithms and Hardness Results
for Some Valued CSPs, 2009, ISBN 978-91-7393-525-8.

No 1281 Gunnar Mathiason: Virtual Full Replication for
Scalable Distributed Real-Time Databases, 2009,
ISBN 978-91-7393-503-6.

No 1290 Viacheslav Izosimov: Scheduling and Optimization
of Fault-Tolerant Distributed Embedded Systems,
2009, ISBN 978-91-7393-482-4.

No 1294 Johan Thapper: Aspects of a Constraint
Optimisation Problem, 2010, ISBN 978-91-7393-464-0.

No 1306 Susanna Nilsson: Augmentation in the Wild: User
Centered Development and Evaluation of
Augmented Reality Applications, 2010, ISBN 978-91-
7393-416-9.

No 1313 Christer Thörn: On the Quality of Feature Models,
2010, ISBN 978-91-7393-394-0.

No 1321 Zhiyuan He: Temperature Aware and Defect-
Probability Driven Test Scheduling for System-on-
Chip, 2010, ISBN 978-91-7393-378-0.

No 1333 David Broman: Meta-Languages and Semantics for
Equation-Based Modeling and Simulation, 2010,
ISBN 978-91-7393-335-3.

No 1337 Alexander Siemers: Contributions to Modelling and
Visualisation of Multibody Systems Simulations with
Detailed Contact Analysis, 2010, ISBN 978-91-7393-
317-9.

No 1354 Mikael Asplund: Disconnected Discoveries:
Availability Studies in Partitioned Networks, 2010,
ISBN 978-91-7393-278-3.

No 1359 Jana Rambusch: Mind Games Extended:
Understanding Gameplay as Situated Activity, 2010,
ISBN 978-91-7393-252-3.

No 1373 Sonia Sangari: Head Movement Correlates to Focus
Assignment in Swedish, 2011, ISBN 978-91-7393-154-
0.

No 1374 Jan-Erik Källhammer: Using False Alarms when
Developing Automotive Active Safety Systems, 2011,
ISBN 978-91-7393-153-3.

No 1375 Mattias Eriksson: Integrated Code Generation, 2011,
ISBN 978-91-7393-147-2.

No 1381 Ola Leifler: Affordances and Constraints of
Intelligent Decision Support for Military Command
and Control – Three Case Studies of Support
Systems, 2011, ISBN 978-91-7393-133-5.

No 1386 Soheil Samii: Quality-Driven Synthesis and
Optimization of Embedded Control Systems, 2011,
ISBN 978-91-7393-102-1.

No 1419 Erik Kuiper: Geographic Routing in Intermittently-
connected Mobile Ad Hoc Networks: Algorithms
and Performance Models, 2012, ISBN 978-91-7519-
981-8.

No 1451 Sara Stymne: Text Harmonization Strategies for
Phrase-Based Statistical Machine Translation, 2012,
ISBN 978-91-7519-887-3.

No 1455 Alberto Montebelli: Modeling the Role of Energy
Management in Embodied Cognition, 2012, ISBN
978-91-7519-882-8.

No 1465 Mohammad Saifullah: Biologically-Based Interactive
Neural Network Models for Visual Attention and
Object Recognition, 2012, ISBN 978-91-7519-838-5.

No 1490 Tomas Bengtsson: Testing and Logic Optimization
Techniques for Systems on Chip, 2012, ISBN 978-91-
7519-742-5.

No 1481 David Byers: Improving Software Security by
Preventing Known Vulnerabilities, 2012, ISBN 978-
91-7519-784-5.

No 1496 Tommy Färnqvist: Exploiting Structure in CSP-
related Problems, 2013, ISBN 978-91-7519-711-1.

No 1503 John Wilander: Contributions to Specification,
Implementation, and Execution of Secure Software,
2013, ISBN 978-91-7519-681-7.

No 1506 Magnus Ingmarsson: Creating and Enabling the
Useful Service Discovery Experience, 2013, ISBN 978-
91-7519-662-6.

No 1547 Wladimir Schamai: Model-Based Verification of
Dynamic System Behavior against Requirements:
Method, Language, and Tool, 2013, ISBN 978-91-
7519-505-6.

No 1551 Henrik Svensson: Simulations, 2013, ISBN 978-91-
7519-491-2.

No 1559 Sergiu Rafiliu: Stability of Adaptive Distributed
Real-Time Systems with Dynamic Resource
Management, 2013, ISBN 978-91-7519-471-4.

No 1581 Usman Dastgeer: Performance-aware Component
Composition for GPU-based Systems, 2014, ISBN
978-91-7519-383-0.

No 1602 Cai Li: Reinforcement Learning of Locomotion based
on Central Pattern Generators, 2014, ISBN 978-91-
7519-313-7.

No 1652 Roland Samlaus: An Integrated Development
Environment with Enhanced Domain-Specific
Interactive Model Validation, 2015, ISBN 978-91-
7519-090-7.

No 1663 Hannes Uppman: On Some Combinatorial
Optimization Problems: Algorithms and Complexity,
2015, ISBN 978-91-7519-072-3.

No 1664 Martin Sjölund: Tools and Methods for Analysis,
Debugging, and Performance Improvement of
Equation-Based Models, 2015, ISBN 978-91-7519-071-6.

No 1666 Kristian Stavåker: Contributions to Simulation of
Modelica Models on Data-Parallel Multi-Core
Architectures, 2015, ISBN 978-91-7519-068-6.

No 1680 Adrian Lifa: Hardware/Software Codesign of
Embedded Systems with Reconfigurable and
Heterogeneous Platforms, 2015, ISBN 978-91-7519-040-
2.

No 1685 Bogdan Tanasa: Timing Analysis of Distributed
Embedded Systems with Stochastic Workload and
Reliability Constraints, 2015, ISBN 978-91-7519-022-8.

No 1691 Håkan Warnquist: Troubleshooting Trucks –
Automated Planning and Diagnosis, 2015, ISBN 978-
91-7685-993-3.

No 1702 Nima Aghaee: Thermal Issues in Testing of
Advanced Systems on Chip, 2015, ISBN 978-91-7685-
949-0.

No 1715 Maria Vasilevskaya: Security in Embedded Systems:
A Model-Based Approach with Risk Metrics, 2015,
ISBN 978-91-7685-917-9.

No 1729 Ke Jiang: Security-Driven Design of Real-Time
Embedded System, 2016, ISBN 978-91-7685-884-4.

No 1733 Victor Lagerkvist: Strong Partial Clones and the
Complexity of Constraint Satisfaction Problems:
Limitations and Applications, 2016, ISBN 978-91-7685-
856-1.

No 1734 Chandan Roy: An Informed System Development
Approach to Tropical Cyclone Track and Intensity
Forecasting, 2016, ISBN 978-91-7685-854-7.

No 1746 Amir Aminifar: Analysis, Design, and Optimization
of Embedded Control Systems, 2016, ISBN 978-91-
7685-826-4.

No 1747 Ekhiotz Vergara: Energy Modelling and Fairness for
Efficient Mobile Communication, 2016, ISBN 978-91-
7685-822-6.

No 1748 Dag Sonntag: Chain Graphs – Interpretations,
Expressiveness and Learning Algorithms, 2016, ISBN
978-91-7685-818-9.

No 1768 Anna Vapen: Web Authentication using Third-
Parties in Untrusted Environments, 2016, ISBN 978-
91-7685-753-3.

No 1778 Magnus Jandinger: On a Need to Know Basis: A
Conceptual and Methodological Framework for
Modelling and Analysis of Information Demand in
an Enterprise Context, 2016, ISBN 978-91-7685-713-7.

No 1798 Rahul Hiran: Collaborative Network Security:
Targeting Wide-area Routing and Edge-network
Attacks, 2016, ISBN 978-91-7685-662-8.

No 1813 Nicolas Melot: Algorithms and Framework for
Energy Efficient Parallel Stream Computing on
Many-Core Architectures, 2016, ISBN 978-91-7685-
623-9.

No 1823 Amy Rankin: Making Sense of Adaptations:
Resilience in High-Risk Work, 2017, ISBN 978-91-
7685-596-6.

No 1831 Lisa Malmberg: Building Design Capability in the
Public Sector: Expanding the Horizons of
Development, 2017, ISBN 978-91-7685-585-0.

No 1851 Marcus Bendtsen: Gated Bayesian Networks, 2017,
ISBN 978-91-7685-525-6.

No 1852 Zlatan Dragisic: Completion of Ontologies and
Ontology Networks, 2017, ISBN 978-91-7685-522-5.

No 1854 Meysam Aghighi: Computational Complexity of
some Optimization Problems in Planning, 2017, ISBN
978-91-7685-519-5.

No 1863 Simon Ståhlberg: Methods for Detecting Unsolvable
Planning Instances using Variable Projection, 2017,
ISBN 978-91-7685-498-3.

No 1879 Karl Hammar: Content Ontology Design Patterns:
Qualities, Methods, and Tools, 2017, ISBN 978-91-
7685-454-9.

No 1887 Ivan Ukhov: System-Level Analysis and Design
under Uncertainty, 2017, ISBN 978-91-7685-426-6.

No 1891 Valentina Ivanova: Fostering User Involvement in
Ontology Alignment and Alignment Evaluation,
2017, ISBN 978-91-7685-403-7.

No 1902 Vengatanathan Krishnamoorthi: Efficient HTTP-
based Adaptive Streaming of Linear and Interactive
Videos, 2018, ISBN 978-91-7685-371-9.

No 1903 Lu Li: Programming Abstractions and Optimization
Techniques for GPU-based Heterogeneous Systems,
2018, ISBN 978-91-7685-370-2.

No 1913 Jonas Rybing: Studying Simulations with
Distributed Cognition, 2018, ISBN 978-91-7685-348-1.

No 1936 Leif Jonsson: Machine Learning-Based Bug
Handling in Large-Scale Software Development,
2018, ISBN 978-91-7685-306-1.

No 1964 Arian Maghazeh: System-Level Design of GPU-
Based Embedded Systems, 2018, ISBN 978-91-7685-
175-3.

No 1967 Mahder Gebremedhin: Automatic and Explicit
Parallelization Approaches for Equation Based
Mathematical Modeling and Simulation, 2019, ISBN
978-91-7685-163-0.

No 1984 Anders Andersson: Distributed Moving Base
Driving Simulators – Technology, Performance, and
Requirements, 2019, ISBN 978-91-7685-090-9.

No 1993 Ulf Kargén: Scalable Dynamic Analysis of Binary
Code, 2019, ISBN 978-91-7685-049-7.

No 2001 Tim Overkamp: How Service Ideas Are
Implemented: Ways of Framing and Addressing
Service Transformation, 2019, ISBN 978-91-7685-025-1.

No 2006 Daniel de Leng: Robust Stream Reasoning Under
Uncertainty, 2019, ISBN 978-91-7685-013-8.

No 2048 Biman Roy: Applications of Partial Polymorphisms
in (Fine-Grained) Complexity of Constraint
Satisfaction Problems, 2020, ISBN 978-91-7929-898-2.

No 2051 Olov Andersson: Learning to Make Safe Real-Time
Decisions Under Uncertainty for Autonomous
Robots, 2020, ISBN 978-91-7929-889-0.

No 2065 Vanessa Rodrigues: Designing for Resilience:
Navigating Change in Service Systems, 2020, ISBN
978-91-7929-867-8.

No 2082 Robin Kurtz: Contributions to Semantic Dependency
Parsing: Search, Learning, and Application, 2020,
ISBN 978-91-7929-822-7.

No 2108 Shanai Ardi: Vulnerability and Risk Analysis
Methods and Application in Large Scale
Development of Secure Systems, 2021, ISBN 978-91-
7929-744-2.

No 2125 Zeinab Ganjei: Parameterized Verification of
Synchronized Concurrent Programs, 2021, ISBN 978-
91-7929-697-1.

No 2153 Robin Keskisärkkä: Complex Event Processing
under Uncertainty in RDF Stream Processing, 2021,
ISBN 978-91-7929-621-6.

No 2168 Rouhollah Mahfouzi: Security-Aware Design of
Cyber-Physical Systems for Control Applications,
2021, ISBN 978-91-7929-021-4.

No 2205 August Ernstsson: Pattern-based Programming
Abstractions for Heterogeneous Parallel Computing,
2022, ISBN 978-91-7929-195-2.

No 2218 Huanyu Li: Ontology-Driven Data Access and Data
Integration with an Application in the Materials
Design Domain, 2022, ISBN 978-91-7929-267-6.

No 2219 Evelina Rennes: Automatic Adaption of Swedish
Text for Increased Inclusion, 2022, ISBN 978-91-7929-
269-0.

No 2220 Yuanbin Zhou: Synthesis of Safety-Critical Real-
Time Systems, 2022, ISBN 978-91-7929-271-3.

Linköping Studies in Arts and Sciences
No 504 Ing-Marie Jonsson: Social and Emotional

Characteristics of Speech-based In-Vehicle
Information Systems: Impact on Attitude and
Driving Behaviour, 2009, ISBN 978-91-7393-478-7.

No 586 Fabian Segelström: Stakeholder Engagement for
Service Design: How service designers identify and
communicate insights, 2013, ISBN 978-91-7519-554-4.

No 618 Johan Blomkvist: Representing Future Situations of
Service: Prototyping in Service Design, 2014, ISBN
978-91-7519-343-4.

No 620 Marcus Mast: Human-Robot Interaction for Semi-
Autonomous Assistive Robots, 2014, ISBN 978-91-
7519-319-9.

No 677 Peter Berggren: Assessing Shared Strategic
Understanding, 2016, ISBN 978-91-7685-786-1.

No 695 Mattias Forsblad: Distributed cognition in home
environments: The prospective memory and
cognitive practices of older adults, 2016, ISBN 978-
91-7685-686-4.

No 787 Sara Nygårdhs: Adaptive behaviour in traffic: An
individual road user perspective, 2020, ISBN 978-91-
7929-857-9.

No 811 Sam Thellman: Social Robots as Intentional Agents,
2021, ISBN 978-91-7929-008-5.

Linköping Studies in Statistics
No 9 Davood Shahsavani: Computer Experiments De-

signed to Explore and Approximate Complex Deter-
ministic Models, 2008, ISBN 978-91-7393-976-8.

No 10 Karl Wahlin: Roadmap for Trend Detection and As-
sessment of Data Quality, 2008, ISBN 978-91-7393-
792-4.

No 11 Oleg Sysoev: Monotonic regression for large
multivariate datasets, 2010, ISBN 978-91-7393-412-1.

No 13 Agné Burauskaite-Harju: Characterizing Temporal
Change and Inter-Site Correlations in Daily and Sub-
daily Precipitation Extremes, 2011, ISBN 978-91-7393-
110-6.

No 14 Måns Magnusson: Scalable and Efficient
Probabilistic Topic Model Inference for Textual Data,
2018, ISBN 978-91-7685-288-0.

No 15 Per Sidén: Scalable Bayesian spatial analysis with
Gaussian Markov random fields, 2020, 978-91-7929-
818-0.

Linköping Studies in Information Science
No 1 Karin Axelsson: Metodisk systemstrukturering- att

skapa samstämmighet mellan informationssystem-
arkitektur och verksamhet, 1998. ISBN 9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet -
en studie av datorstödd metodbaserad
systemutveckling, 1998, ISBN 9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN 91-7219-
606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos infor-
mationssystem och affärsprocesser, 2000, ISBN 91-
7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X.

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability - Un-
derstanding Information Technology as a Tool for
Business Action and Communication, 2003, ISBN 91-
7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra system-
utvecklingsverksamheter - en taxonomi för
metautveckling, 2003, ISBN 91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden –
 Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-963-

4.
No 10 Ewa Braf: Knowledge Demanded for Action -

Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration method
and computerized tool support, 2005, ISBN 91-85297-
48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med hjälp

av effektiva förvaltningsobjekt, 2005, ISBN 91-85297-
60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese
Christiansson: Mötet mellan process och komponent
- mot ett ramverk för en verksamhetsnära
kravspecifikation vid anskaffning av komponent-
baserade informationssystem, 2006, ISBN 91-85643-
22-X.

Ontology-Driven Data Access
and Data Integration with an
Application in the Materials
Design Domain

Linköping Studies in Science and Technology
Dissertation No. 2218

Huanyu Li

Huanyu
Li

2022
Ontology-Driven Data Access and Data Integration w

ith
an Application in the M

aterials Design Dom
ain

FACULTY OF SCIENCE AND ENGINEERING

Linköping Studies in Science and Technology, Dissertation No. 2218, 2022
Department of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

www.liu.se

www.liu.se

	Abstract
	Populärvetenskaplig sammanfattning
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	External Publications
	Introduction
	Motivation
	Problem formulation
	Contributions
	Research methods
	Thesis outline

	Background
	Ontologies, RDF, SPARQL
	Data integration
	Materials design domain
	FAIR data principles
	Summary

	GraphQL-based framework for data access and integration
	GraphQL
	GraphQL schemas
	GraphQL resolver functions

	Overview of the framework
	GraphQL server generation process
	GraphQL query answering process

	Summary

	Ontology-based GraphQL server generation (OBG-gen)
	Ontology-based GraphQL schema generation
	GraphQL schema formalization
	Ontology represented by description logic TBox
	The Schema Generator algorithm
	The intended meaning of GraphQL schemas generated by the Schema Generator

	Generic GraphQL resolver function
	GraphQL queries represented by Abstract Syntax Trees
	RDF Mapping Language (RML)
	Components of the generic resolver function
	The Evaluator algorithm

	Related work
	Summary

	Materials Design Ontology (MDO)
	Background and related work
	Ontology development
	Ontologies in the materials science domain
	Databases in the materials science domain
	Open Databases Integration for Materials Design

	Development of Materials Design Ontology
	Requirements analysis
	Using existing resources

	Description of Materials Design Ontology
	MDO core module
	MDO structure module
	MDO calculation module
	MDO provenance module

	Usage of Materials Design Ontology
	Instantiating a materials calculation using MDO

	Impact, reusability, and availability of MDO
	Summary

	An approach for extending domain ontologies (ToPMine-FTCA)
	Background
	Extending ontologies based on unstructured text
	Topic models

	The framework (ToPMine-FTCA)
	Topic model-based text mining
	Formal topical concept analysis
	Domain expert validation

	Summary

	Evaluation of ToPMine-FTCA
	Related work
	Extending ontologies using ToPMine-FTCA
	Extending ontologies in the nanotechnology domain
	Extending Materials Design Ontology

	Summary

	Evaluation of the GraphQL-based framework
	Real case evaluation
	Data
	Systems
	Queries
	Experiments and measurements
	Results and discussion

	Evaluation based on LinGBM
	Data
	Queries
	Experiments, results and discussion

	Summary

	An application to OPTIMADE
	The OPTIMADE API
	The usage of MDO and OBG-gen with OPTIMADE
	Summary

	Limitations and future work
	Towards more user-friendly data access, data integration and ontology extension
	Limitations in mapping languages
	Semantic Web meets Materials Science

	Conclusions
	Ontology-driven data access and integration
	Domain ontologies extension
	Evaluation and application in the materials science domain

	Bibliography
	SPARQL queries for MDO competency questions
	GraphQL schemas used in the evaluation
	MDO related GraphQL schema
	University related GraphQL schema

	GraphQL queries used in the evaluation
	MDO related queries
	Queries without filter expressions
	Queries with filter expressions

	Query examples according to query templates in LinGBM.

	Dr-sammanst

