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ABSTRACT

Hidden traffic participants pose a great challenge for autonomous
vehicles. Previous methods typically do not use previous obser-
vations, leading to over-conservative behavior. In this paper, we
present a continuation of our work on reasoning about objects out-
side the current sensor view. We aim to demonstrate our recently
proposed method on an autonomous platform and evaluate its relia-
bility and real-time feasibility when using real sensor data. Showing
a significant driving performance increase on a real platform, with-
out compromising safety, would be a significant contribution to the
field of autonomous driving.
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1 INTRODUCTION

To ensure safety and gain acceptance, autonomous vehicles (AVs)
must minimize the risk of causing accidents [1, 2]. For this, also
hidden objects need to be considered, such as a cyclist hidden
behind a large vehicle, or an object on the road occluded by a
building. However, assuming unseen regions to always be occupied
can be overly conservative and may even lead to the "freezing robot"
problem where the AV stops and deems all future paths unsafe [3].

In the scenario depicted in Figure 1, the AV should be able to
safely turn left. The dashed region behind the truck is currently not
seen from the sensors on the bus, however, the system should be able
to use previous observations to conclude that no traffic participant
could have reached this region without severely violating the traffic
rules (e.g. by making a U-turn behind the truck).
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Figure 1: Initially, at tj, the AV considers that hidden obsta-
cles may occupy all the unseen regions (dark red) behind
the truck. However, as new observations are made, unseen
regions are concluded free if no hidden object may have
reached there between the observations (dashed region at t;.).

Recently, several works have focused on tackling the challenge
with currently unseen objects caused by occlusions and range limi-
tations [4-9].

However, all the studies previously mentioned only consider the
current observation from the ego vehicle when evaluating where
hidden vehicles could be. Reachability analysis is used in [8, 9]
together with a planner to generate safe trajectories in scenarios
under occlusion. This is done by over-approximating all possible
future occupancies of virtual obstacles placed at the current edge of
the unseen region. This ensures that any possible hidden obstacle
is considered, however, it may lead to considering more obstacles
than necessary. By reasoning about where hidden obstacles could
have reached in between each observation, this over-conservative
anticipation can be reduced.

In [10], an approach was implemented to track regions that could
be occupied by pedestrians. Similarly in [11], sequential reasoning,
taking traffic rules into account, was presented for any possible
hidden obstacle. Monte Carlo simulations showed that the method
greatly improves the AVs’ performance in terms of time to complete
scenarios, without compromising safety. In this work, we aim to
validate the real-time feasibility of this approach on a real plat-
form. A poster showing preliminary results will be presented at the
International Conference for Cyber-Physical Systems, 2022.
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2 METHOD

The method used for modeling and computing possible hidden
obstacles is described in detail in [11]. Iteratively, the method com-
putes the region, $;, where possible hidden obstacles could be at
the current time. This is done by computing the reachable set of the
previous region, R(P;-1), and then intersecting it with the area
outside the current Field of View, FoV;. The reachable set includes
the region where any obstacle from $;_; could have reached in one
time-step given all constraints, e.g., maximum velocity or driving
direction of the lane. For this reason, it is assumed that a hidden
obstacle must be both outside our current field of view and within
the reachable set of the previously computed region.

A schematic example of the method is seen in Figure 1. The
reachable set R(#P;,) is visualized in bright red, and the region with
possible hidden obstacles, #;, is depicted in dark red. The dashed
area highlights a region in the state space that is outside the current
Field of View, FoVy, , yet still concluded free. The method requires
a representation of the area detected as free by the sensors at ev-
ery time-step, referenced as Field of View, FoV;. The method also
requires a map of the area including speed limit information and
a graph description of the lane network with precise boundaries,
driving directions, and other traffic rules. The set of possible hidden
obstacles is computed at every new time-step. For a motion plan-
ner to utilize this information, a prediction of the possible hidden
obstacles also needs to be provided. An extension of the method pro-
posed in [11] could include constant monitoring of other vehicles’
possible violations of the considered traffic rules.

3 EVALUATION

The experiments will be conducted with a modified Scania Citywide
battery electrical bus, seen in Figure 2. The bus is equipped with
sensors, computing units, and a fully autonomous driving software
stack in which the proposed method will be implemented.

This platform provides a grid map representation of the environ-
ment. To ensure safety, we will over-approximate the reachable sets
of all possible hidden obstacles between observations on this grid
representation, as done in [10] for pedestrians. An investigation of
real-time requirements and analysis of the method’s computational
complexity will also be required [12]. For motion predictions with
longer time horizons, the reachability predictions will similarly be
evaluated together with the provided platform’s algorithms for pre-
dictions. Instead of the simple sample-based motion planner in [11],
a general-purpose planner will be used, similar to the one described
in [13]. Once in operation, we aim to validate that the algorithm
can handle measurement uncertainties and does not introduce any
delays or other artifacts that influence the stability and robustness
of the system.

As in [11], we aim to compare the implemented sequential
method with a baseline method that only uses the current observa-
tions. To compare the methods, experiments will first be conducted
in a simulation environment of the platform and later carried out at
Scania’s test track in Sodertélje, Sweden. High definition maps of
the test track generated offline will be used, including speed limits
and precise lane network description. The scenario in Figure 1 will
be used to validate that our method can reduce the time for the ego
vehicle to complete the scenario, without compromising safety.
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Figure 2: A modified Scania Citywide bus, equipped with an
experimental research platform for autonomous driving.

4 CONCLUSIONS

This work aims at evaluating a method to compute possible hidden
obstacles based on previous observations and compare its perfor-
mance against a baseline method on a real platform.

The potential of the approach has been shown in simulations,
indicating an improvement in performance without a compromise
in safety [11]. However, an implementation of the method in a real
system will allow a deeper understanding of how uncertainties of
physical sensors might affect the method’s reliability.
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